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 The parasitic mite Varroa destructor is one of the biggest health problems of the 

Western Honey Bee, Apis mellifera. It feeds from the bees’ hemolymph and vectors 

several honey bee pathogens. V. destructor has also been reported to compromise honey 

bee immunity but available data are insufficient to support this claim. This study was 

designed to assess the effect of mite infestation on honey bee immune-gene expression 

during the biologically relevant host developmental stages. 

 In my experiment, mites were manually introduced into honey bee larval cells at 

three different levels. Control groups were either left unmanipulated or wounded.  

Developing bees were collected with any retrievable mites daily from the experimental 

cells for ten days. Mite reproduction was assessed and bee hosts were analyzed for 

expression levels of ten immune genes using quantitative RT-PCR. 

This experiment showed effects of developmental time and experimental 

treatment on gene expression that generally contradict the previously hypothesized 

immunosuppression of bees by V. destructor. However, mites might temporarily suppress 

the honey bees’ normal response to cuticle wounding based on reproductive timing. The 

artificial wounding group exhibited an increased viral load, suggesting that wounding 

may trigger or enable virus replication.  Overall, my results indicate the importance of 

physical trauma caused by wounding and suggest complex temporal dynamics in the 

relationships between bee host, mite parasite, and vectored pathogens. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 Concerns over honey bee (Apis mellifera) health have triggered increased research 

on the parasitic mite, Varroa destructor, as a potential candidate for the worldwide 

decline in bee colony numbers.  Honey bees rely on group-level defenses and individual 

immunity to combat pathogens and parasites. Once mites have overcome group-level 

defenses, the individual defense of bee hosts becomes important. Common patterns of 

cellular and humoral immune-gene responses across invertebrates provide a framework 

for understanding honey bee responses.  Based on this knowledge, and the hypothesis 

that Varroa may manipulate individual host immunity, investigations into the bee-mite 

relationship are necessary at the molecular level. 

 

Immunity and Immune Function 

 Every organism that faces fitness costs by direct interaction with another 

organism will require certain defenses.  A primary defense for dealing with parasites is 

seen in the form of removal behavior, prophylaxis, or external morphological barriers, all 

attempting to prevent the entry of foreign molecules into an organism (Schmid-Hempel 

2005).  In an organism the purpose of immunity is to prevent damage by an invading or 

non-self agent once it has breached initial defenses (Playfair and Bancroft 2004).  The 

main functions of immunity are to recognize invading agents as non-self, communicate
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 the threat to other necessary components, and to destroy or dispose of the elements with 

as little damage to the host as possible (Playfair and Bancroft 2004).  These responses 

exist at the molecular level and respond specifically to antagonistic molecules. 

 

Components of Parasite Avoidance and Coevolution 

 Although life is diverse, the core processes of immunity remain conserved across 

many multicellular organisms.  The first step in immunity is to actually detect the foreign 

particle and determine whether or not it is a threat, as benign and even beneficial 

microflora exist (Playfair and Bancroft 2004, Bowman and Hultmark 1987).  Circulating 

proteins that are expressed constitutively and exist free-floating in the circulation system 

or attached to cell surfaces called pathogen recognition receptors (PRRs) perform this 

vital task (Medzhikov and Janeway1997).  PRRs bind to structures that are common to 

many groups of pathogens such as components of bacterial cell walls and double-

stranded RNA produced by viruses.  A wide variety of these recognition proteins exist to 

detect many types of threats, and upon recognition will initiate a series of subsequent 

reactions that reaches the nuclear DNA and expresses a pathogen-specific response to 

destroy the invading bodies.  This form of immunity is known as innate immunity 

(Medzhikov and Janeway 1997).  In vertebrates there is a form of immunity often 

referred to as adaptive immunity, which can produce novel recognition molecules once a 

foreign body is detected.  These molecules are remembered by the immune system, but 

are also energetically costly to produce.  Additionally, this adaptive system initially relies 

on the innate immune response for pathogen detection prior to communication with 
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specialized cell types such as T and B cells.  As a result of this hierarchy, the innate 

response is the first line in defense and is highly conserved (Medzhikov and Janeway 

1997). 

 Parasitism is not a new feature of life, therefore approaches to handling foreign 

molecules are rooted deep in the evolutionary tree and common features can be found in 

many of the major branches of life (Schmid-Hempel 2005).  Innate immunity is an 

ancient feature that is found in vertebrates, invertebrates, and potentially even in plants.  

A form of the response pathway known as the nuclear factor kappa-B (NFĸB) path is 

present in humans as well as the fruit fly Drosophila (Medzhikov and Janeway 1997).  

Just as a host organism's immune system is molded over generations to handle dangerous 

pathogens, the pathogens themselves are also undergoing selection to overcome host 

defenses.  Pathogens can evade host recognition in a variety of ways including, among 

others, blocking PRRs, mimicking host molecules, producing protective barriers, or even 

suppressing or attacking factors of the host immune system (Playfair and Bancroft 2004). 

 

Insect Immunity 

 There are common themes of immune response throughout life, but within the 

animal kingdom, the most successful class in numbers, Insecta, has a relatively simple 

system of response when compared to the more familiar vertebrate immune system.  This 

is due to a trade-off associated with high reproductive rates and short lifespan.  Insects 
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benefit from fast immune-gene defenses expressed in RNA and protein structures rather 

than the costly proliferation of specialized cell types found in vertebrates (Boman and 

Hultmark 1987).  The non-specific, innate system includes cellular responses in insects 

that are very similar to those in vertebrates and other organisms.  Foreign particles are 

recognized and either encapsulated or phagocytized by specialized hemocytes called 

granulocytes and plasmatocytes (Wilson-Rich et al. 2009, Boman and Hultmark 1987).  

Plasmatocytes form nodules around large regions to stop invading cells (Boman and 

Hultmark 1987).  This process is similar to coagulation in vertebrates. 

 The non-cellular, or humoral, responses to microbial infection set insects apart, as 

insects are not believed to have adaptive immunity and yet they are able to survive in an 

impressive range of habitats (Boman and Hultmark 1987).  This humoral response is 

comparable only to the early, innate responses in vertebrates (Christophides et al. 2004).  

Most induced responses in insects are secreted from the fat body in response to specific 

foreign molecules, while acute responses consist of preemptively expressed immune 

factors already circulating in the hemolymph (Christophides et al. 2004).  For a response 

to occur, pathogenic molecules must first be recognized.  Bacterial structures such as 

lipopolysaccharides and peptidoglycan are common triggers of acute PRRs that are found 

in the hemolymph or bound to cell membranes (Christophides et al. 2004).  These 

communicate with serine proteases which modulate a cascade of many types of responses 

including melanization by prophenoloxidases to synthesis of antimicrobial peptides 

(AMPs).  AMPs are understood to be broadly expressed in response to groups of 



5 

pathogens.  For example, recognition of fungal or Gram-positive bacteria activate the 

Toll pathway, which is responsible for a certain set of AMPs whereas the immune 

deficiency (Imd) pathway responds to Gram-negative bacteria (Christophides et al. 2004).  

The mechanism of regulating such induced responses is not known in depth but the 

presence of AMP isoforms suggests that protein responses can be modulated to respond 

specifically to various threats (Schmid-Hempel 2005). 

 

Social Insects Immunity 

 Social insects have some advantages in defense, which have made their immune 

response somewhat different than in solitary insects.  A specific type of sociality, called 

eusociality, consists of differing reproductive castes working cooperatively within a 

single colony.  One of the defining features of most eusocial insects is a centralized nest 

or hive structure that allows for raising large amounts of brood and storing foods in a 

protected environment (Wilson-Rich et al. 2009).  The potential for introduction of 

disease is often reduced by a division of labor within workers that includes foragers that 

seek food sources free of parasites and guards that physically stop outside invaders, or 

diseased members of the colony, from entering the nest (Cremer et al. 2007).  Within the 

nest, castes specialized in cleaning will often line the hive with various substances, either 

secreted or collected from plant compounds, containing antimicrobial properties.  

Cleaning tasks can also include grooming to detect ectoparasites and removal of diseased 

colony members, an emergent pattern that mimics tasks performed by specialized 
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immune cells (Wilson-Rich et al. 2009, Cremer and Sixt 2008).  Some social insects will 

tend closely to their brood, and provide it with food sources rich in antimicrobial 

compounds (Wilson-Rich et al. 2009). 

 

Social Insects Susceptibility 

 The evolution of eusociality and its benefits at the colony level could have a 

detrimental effect on individual immunity and trade-offs exist in immune response.  The 

evolution of sociality in insects provides many beneficial, emergent features but group 

living imposes a new set of risks not experienced by solitary insects.  Social insects face 

especially high risks from parasites and pathogens, due to crowded living conditions and 

the potential that  the similar genetic makeup  of nestmates will render them vulnerable 

against specific pathogens (Schmid-Hempel 2005, Evans and Spivak 2010).  This can 

allow for a small subset of parasites to coevolve and specialize to a great degree, because 

the nest provides a stable environment and numerous hosts (Schmid-Hempel 2005). 

 

Honey Bee Immune System 

 One of the well-understood immune systems within social insects is that of the 

honey bee.  Regardless, the way in which induced immunity in honey bees works is not 

as well-characterized as in Drosophila or Anopheles, and the studies that do exist look at 

a narrow group of responses and have used microbial challenges such as Escherichia coli 
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which do not represent natural honey bee pathogens (Evans 2004).  One of the earliest 

studies on honey bee AMPs, by Casteels et al. (1989), discovered a family of peptide 

structures called apidaecins that responded non-specifically to bacteria and other injected 

foreign molecules.  The key finding was that these peptides responded immediately upon 

challenge.  Three additional AMPs were also characterized; hymenoptaecin, abaecin, and 

defensin (Casteels-Josson et al. l994).   Several of these AMPs have corresponding 

precursor structures which might be processed differently to respond to specific 

pathogens and may even involve combining distinctly expressed peptides to create a 

mature peptide.  It is still not well-known how these AMPs respond; however, they are 

induced following pathogen recognition and can be continuously expressed for long 

periods of time greater than 36 hours (Casteels-Josson et al. 1994).  A study on early 

larval development of worker honey bees in response to the bacterial disease American 

foulbrood, Paenibacillus larvae, shows the expression of abaecin and defensin in control 

larvae in stages as early as the first larval instar (Evans 2004).  Therefore, these humoral 

responses exist prior to the adult life stage in bees.  Cellular response in brood is lacking 

and a crucial enzyme precursor involved in cellular responses, pro-phenoloxidase 

(ProPO), is greatly under-expressed in larvae compared to adults (Wilson-Rich et al. 

2009).  In comparison to Anopheles and Drosophila, honey bees have very similar 

immune-gene pathways.  The common insect immune pathways of Toll, Imd, 

JAK/STAT, and JNK remain intact.  Honey bees are adapted to a more narrow set of 

pathogens and lack diversity in both targeting receptors and in the expressed AMP 

paralogs that can be found in other organisms (Wilson-Rich et al. 2009, Evans and 
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Spivak 2010).  It is hypothesized that honey bee immunity to viruses involves dsRNA 

interference, but the response of AMPs to viruses is unknown (Evans and Spivak 2010). 

 

Honey Bees and the Consequences of Domestication 

 As domesticated animals, the evolution of honey bee immunity experiences 

unnatural conditions such as the high density placement of hives and introduction of 

parasites that increase pathogen exposure and contribute to loss of colony number.  Given 

the valuable services these insects perform, managed beekeeping operations have worked 

in many ways to maximize productivity of honey bee hives for their products as well as 

crop pollination.  In some instances, these practices incorporate the transportation of 

hives across large geographic regions in order to follow a nectar flow (Boecking and 

Genersch 2008).  The nature of this practice also allows for pathogens to be easily 

transmitted between colonies due to the great number and close proximity of hives.  It has 

also allowed for inter and intra-specific transmission of novel pathogens (Oldroyd 1999).  

 

Honey Bee Importance 

 The importance of honey bees as natural pollinators has long been recognized.  

Many agricultural crops rely heavily on the pollination provided by foraging honey bee 

workers. Honey bees are the most important source of animal pollination and are 

responsible for 35% of global food production, producing fruits, vegetables, and 
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stimulant crops (Genersch 2010).  For human health they are invaluable, accounting for 

the crops that contain micro-nutrients that are necessary for a nutritionally balanced and 

complete diet (Klein et al. 2011).  In the US alone, the added crop value of honey bee 

pollination is estimated to be $15 billion, making them an economically influential insect 

(Morse and Calderone 2000).  Honey bees are also beneficial pollinators of non-

agricultural crops as a contributor to wild flower biodiversity (Genersch 2010).  

Approximately 80% of all wild flowers rely on insect pollination, and a decline in the 

honey bee population would no doubt have consequences for plant diversity (Potts et al. 

2010). 

 

Honey Bees as Model Organisms 

 In addition to the valuable pollination services they perform, honey bees are also 

important as model organisms for study.  Experimentally, honey bees can be studied with 

relative ease in the field or indoors due to their domestication.  With tens of thousands of 

workers present in a stationary hive large amounts of data can be collected with relative 

ease.  Their differentiation into different castes as well as their haplodiploid sex-

determination allows comparisons of honey bees to be made, answering many questions 

about behavioral and developmental mechanisms (HBGSC 2006).  Extensive genome 

work and discovery of many candidate genes exists, which provides a crucial framework 

for understanding insect immunity (Evans 2006).  The genome of the common honey 

bee, Apis mellifera, was released in 2006 and has been updated and annotated in 
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subsequent years.  A. mellifera is a particularly useful insect model when compared to 

either Drosophila or Anopheles because it is evolving more slowly (HBGSC 2006).  This 

should make evolution of its immune-gene responses easier to pursue, as well as 

providing for homologous traits with other distantly related organisms. 

 

Health Crisis and Decline 

 In recent years, there has been a sharp decrease in the number of US colonies, 

with loss estimates of 30 percent or more occurring during overwintering periods (Pettis 

and Delaplane 2010, vanEngelsdorp et al. 2011).  Colony losses in managed honey bees 

are prevalent in not only the United States, but in Canada as well as in Europe (Pettis and 

Delaplane 2010, Guzman-Novoa 2009).  USDA estimates show a drop in nearly two 

thirds of all managed colonies ranging from around 6 million in the late 1940s to a little 

over 2 million in 2008 (Pettis and Delaplane 2010). 

 In an attempt to pinpoint a single candidate for the decline in honey bee health, 

recent literature tends to converge on the parasitic, invasive mite species, Varroa 

destructor, as the pathogen with the most considerable impact (Rosenkranz et al. 2010).  

Varroa, a genus of mite native to the eastern honey bee Apis cerana, is estimated to have 

been transmitted to the western honey bee, A. mellifera, only within the last 50 to 60 

years by proximity of the two species' hives as well as shared pollination sources 

(Oldyoyd 1999).  This effect is believed to be connected to a rise in the increasing 
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commercialization of beekeeping globally (Sammataro et al. 2000, Genersch 2010, 

Rosenkranz et al. 2010).  Varroa parasitism can increase honey bee mortality by physical 

damage.  However, it is thought that the damage caused by Varroa comes from its ability 

to effectively vector multiple honey bee viruses (Rosenkranz et al. 2010). 

 

Varroa Biology 

 Varroa mites are obligatory haematophagic mites that have two life stages, a 

reproductive phase and a phoretic phase.  During the reproductive phase a fertile mother 

mite, often referred to as a foundress, will find a larval host and enter into its cell in the 

wax comb.  The timing of host infestation varies, but typically mites will invade worker 

brood or drone brood of A. mellifera between 15 to 20 hours or 40 to 50 hours prior to 

cell-capping, respectively (Boot et al. 1992).  In as little as 5 hours after cell-capping by 

workers, the foundress will begin feeding from the abdomen of the developing larva 

(Rosenkranz et al. 2010).  During this period of capped larval bee metamorphosis and 

development into an adult bee, the mite produces offspring at regular intervals, which 

then sib-mate within the cell such that reproductive females can emerge with the adult 

bee host.  This begins the phoretic life stage, in which a fertile mite attaches to another 

adult worker and seeks a new brood cell for invasion.  This relatively short life cycle of 

offspring allows Varroa to expand in numbers quickly within a hive.  The phoretic life 

stage allows the mite to enter other beehives through host transport.  Common honey bee 

behaviors such as resource foraging at common sites or robbing from competing hives 
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permit mites to be transferred from bees of one colony to bees of another (Rosenkranz et 

al. 2010). 

 Adaptation in honey bees in response to mites is not as evident as in the mites 

themselves. This occurs for several reasons.  Primarily, the mites are obligate on the 

honey bee hosts and given their protection from many external forces such as predators, 

adapting to the host is the primary evolutionary pressure (Oldroyd 1999).  In the arms 

race between mites and bees, mites have a potential upper hand given their relatively 

short generation time. 

 Typically, parasitic relations between mites and bees are rare and brood 

parasitism is even rarer (Oldroyd 1999).  From a very general viewpoint, many ticks and 

mites typically adopt parasitism when their host provides a nest habitat.  These 

associations might actually start out as commensalistic (Evans 1992).  If the mites begin 

by feeding on small host ectoparasites found in proximity and on the nest-making 

arthropod, the transition to feeding on the arthropod’s hemolymph is plausible.  This 

might explain how mites were able to get into close enough contact with bees to form the 

close symbiosis we see today. 

 

Honey Bee Defenses Against Varroa and What They Contribute in 

Resistance/Tolerance 

 At the colony level of defense there are some adaptations in honey bees specific 

to defense from Varroa that extend beyond individual immunity.  One of the best known 
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defenses observed in honey bees to protect themselves from mites is hygienic behavior.  

One type of behavioral response to disease in brood cells is for workers with highly-tuned 

senses to detect and remove the bee larvae from the hive altogether (Boecking and Spivak 

1999).  This involves first detecting injured or infested pupae and then opening their 

capped cell, and this detection is known to vary between colonies.  There is also a 

grooming behavior that bees can perform on themselves or on other colony members that 

removes loose particles originating from outside of the nest that could contain harmful 

microbial life.  In some lineages of bees, grooming can effectively remove mites.  Even 

though mites have adapted to cling to spots on the thorax or abdomen where “auto-

grooming” would be difficult, workers can perform a dance to signal the other workers to 

assist in grooming.  Swarming behavior to abandon compromised hives, seasonal brood 

allocation, and post cell-capping time are examples of several additional lines of defense 

thought to combat the Varroa life cycle, but they have not been studied heavily 

(Rosenkranz et al. 2010).  This is likely due to difficulty involved in tracking colonies as 

well as issues involved in creating accurate models.  Another poorly-understood trait of 

bees thought to influence mite infestation is the variable sizes of the wax cells (Piccirillo 

and De Jong 2003).  Finally, bees do have a chitinous cuticle as well as intestinal 

microflora that provide resistance to some pathogens, although it does not directly defend 

against Varroa (Boecking and Spivak 1999).  Additionally, mites vector pathogens, have 

a short reproductive cycle compared to that of their honey bee host, and possibly even 

suppresses their host’s specific immune responses.  
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Immunosuppression by Varroa 

 There have been several studies, namely those by Gregory et al. (2005) and Yang 

and Cox-Foster (2005), which suggest that mites reduce transcript levels of specific 

AMPs in their hosts, suggesting a mechanism of immune-gene suppression in Varroa 

dependent on mite number as well as pathogen presence.  Gregory et al. (2005) 

performed quantitative PCR on collected pupae naturally infested with mites to observe 

the relationship between mite number and expression of the antibacterial peptides 

defensin and abaecin expressed in their hosts.  A significant decrease in abaecin 

expression was measured in bees infested with a single mite relative to non-infested bees.  

Interestingly, as the number of mites increased from 1 to 6, this trend of abaecin 

suppression diminished.  It was determined that bees infested with lower mite numbers of 

1 to 4 showed decreased AMP expression while heavily infested bees containing 5 or 6 

mites did not differ from non-infested controls.  Defensin transcripts followed a similar 

pattern with mildly infested cells containing 2 to 4 mites having significant AMP 

suppression.  A second major study about immune-gene suppression by Varroa measured 

a wide range of cellular and humoral responses in honey bees as well as virus titers (Yang 

and Cox-Foster 2005).  Pathogens are a growing area of concern in comparative 

expression of immune targets (Evans 2004).  Yang and Cox-Foster (2005) discovered 

several novel instances of down-regulated immunity-related responses at both the cellular 

(enzymatic) and humoral levels. Additionally, the study injected nearly-emerged adult 

bees with E. coli to see if interaction between pathogens and Varroa infestation existed.  
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Expression of the AMP hymenoptaecin was significantly lowered by the presence of mite 

feeding.  Defensin and abaecin expression levels were also lowered with mite infestation, 

but only in host bees the authors had grouped by degree of overt physical deformities 

caused by deformed wing virus (DWV).  In these bees, immunosuppression was also 

dependent on the presence of a bacterial challenge, suggesting that the mites alone might 

not be affecting immunity.  Enzymes required for cellular immune responses, glucose 

dehydrogenase, glucose oxidase, phenol oxidase (PO), and lysozyme, were suppressed to 

some degree by mite infestation.  The degree of suppression was again dependent upon 

viral titers and bacterial challenge.  This underlines the necessity for pathogen screening 

when investigating immunity. 

 Typically, a wound piercing both the cuticle and body wall of a honey bee elicits 

immune responses for pathogen defense as well as clotting to prevent loss of hemolymph 

(Richards et al. 2011, Dushay 2009).  A recent study found that salivary gland extracts 

from adult V. destructor mites damage haemocytes by disintegration and can also inhibit 

aggregation and pseudopod formation required for wound healing (Richards et al. 2011).  

This study was unable to separate various constituents of the salivary gland extract that 

might also aid in digestion or other lysosomal enzymes that are not actively excreted into 

the host as a means of host immune-gene manipulation.  If the immune response of honey 

bees is shut off such that no response is possible, then adaptation that would normally 

select for advantageous forms of innate defense would be nearly ineffective.  One 

interesting aspect of the host-parasite balance is that the mites must not kill their pupal 
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host because it is required for the mites to escape from the sealed wax cell upon 

emergence (Oldroyd 1999).  In this same line of reasoning, parasites that cause overly 

severe diseases in their hosts can increase selection within the host's immune system due 

to increased selection pressure (Ewald 1983). 

 

Considerations Given Immune-gene Suppression Studies 

 The two studies that show the immunosuppressive ability of mites do not capture 

a biologically meaningful or realistic way of accounting for mite number and fail to 

control for the developmental age of the honey bee hosts (Gregory et al. 2005, Yang and 

Cox-Foster 2005).  Gregory et al. (2005) looked at the effect of increasing mite number 

on host immune-gene response using the total number of mites collected from cells.  

Thus, adult and nymphal mites were considered in the same way, even though their 

nutritional demands are vastly different and nymphal offspring will require less 

hemolymph than adult mites (Garedew et al. 2004).  Both previous studies on Varroa 

immunosuppression looked at pupae near emergence (Gregory et al. 2005, Yang and 

Cox-Foster 2005).  Consideration of the interactive effects of AMPs under varying 

microbial challenges makes it difficult to ascertain a direct causal relationship between 

the challenge and the response measured (Evans 2004).  Therefore, pathogen presence is 

an important factor to control for.  Yang and Cox-Foster (2005) considered DWV titers 

and found no correlation with the expression of the AMPs they found to be 

immunosuppressed, leaving the suppressive effects contributed by mites and pathogens 
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undetermined.  The groups of mite-infested bees they found to have lowered AMP 

expression were sorted based on their visible level of wing deformity rather than level of 

mite infestation alone.  These studies don't provide a direct link between mites and 

immune-gene suppression.  Induced responses, requiring activation of a signal 

transduction pathway, might respond in a manner specific to mite feeding whereas acute 

responses utilize immune molecules that have already been expressed and are circulating 

in the hemolymph preemptively to infection (Christophides et al. 2004).  It is important to 

know if humoral factors in the bees infested by the mites are induced or acute.   

Understanding what elements are normally produced for acute responses as well as the 

interaction with cellular defenses during normal and infested cells could help shed light 

on the interaction between mites and their hosts at the gene level.  These responses are 

expected to change with bee development and increase as the developing bee’s immune 

system matures (Laughton et al. 2011).  Thus, it is important to understand the process of 

honey bee immune-gene response during the times when developing brood is most 

susceptible to mite infestation, which is immediately after the brood cell is capped. 

 

Hypotheses 

 My study attempts to uncover what effect varying degrees of mite infestation have 

on the expression patterns of several immune-genes of honey bees over the course of host 

development. 



18 

 I hypothesize: 

◦ Expression of innate immune responses in honey bees will vary with mite 

number 

◦ Expression of innate immune responses in honey bees will vary with the age 

of the larval or pupal host 

 

 I predict: 

◦ Increasing mite number will correspond to a decrease in some innate 

responses if immune suppression exists, namely abaecin, defensin, 

hymenoptaecin, and apidaecin. 

◦ Early larval hosts will express less induced responses to mite infestation than 

later pupal hosts 

 

To clarify issues arising in the literature stemming from sampling host bees near 

emergence, my study includes the biologically relevant time point immediately after cell-

capping.  Ideally, this captures the beginning, rather than the end, of the mite-bee 

interaction within capped cells.  Additionally, I use a controlled system of mite 

introduction and collection to see what effect adult foundress number and nymphal 

offspring have on host immune response.  An additional aim of my study is to see if any 

expression levels of innate responses correspond to other intermediate products expressed 

in the Toll and Imd pathways while also considering the levels of commonly present 

pathogens such as DWV.  
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CHAPTER II 

 

METHODS 

 

 

 A primary goal of the experiment was to effectively mimic the interaction 

between mites and honey bees in nature.  As such, all experiments were carried out in 

hives in Greensboro, NC.  The project involved manually introducing Varroa mites into 

randomized cohorts of honey bee brood along with controls so as to avoid the potentially 

confounding variables of colony or seasonal variation.  Introductions and sampling took 

place between June and August 2011 to capture the peak production of honey bee worker 

brood (Winston 1987). 

 

Brood Considerations 

 For a controlled study of mite-bee interactions it is crucial to artificially introduce 

mature mites into honey bee brood cells that contain larvae of a specific age. To 

successfully monitor the developmental progress of the brood before initiation into the 

study, a transparency sheet was attached to the experimental frames using tacks, and open 

cells containing fourth instar larvae were marked on this sheet (de Ruijter 1987).  After 

marking, the frames were immediately returned to their hive and six hours later all 

freshly-capped cells could be identified and used in the experiment. This ensured that all 

experimental brood was approximately the same age.  All experimental brood frames 

were transferred quickly into a temperature controlled shed (28°C) and all cells were 
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covered with damp paper towels to keep brood from losing moisture.  Varroa mites are 

not known to feed on or affect their larval host in any manner prior to cell-capping, 

therefore this time period was not of interest to my study (Garedew et al. 2004).  Cell-

capping provides a straightforward, distinct life-stage at which to begin studying the 

species interaction between Varroa and the bee host.  Previous studies have successfully 

used this methodology as a repeatable way to manually introduce mites in situ (de Ruijter 

1987, Spivak unpublished). 

 

Mite Introduction 

 Mites were extracted from two existing donor colonies using the powdered sugar 

shake method as described in Boecking and Ritter (1993).  Donor colonies were 

established in late April 2011 by inserting two frames of highly mite-infested drone 

brood into two productive colonies receiving no mite control treatments.  For each 

introduction, approximately 300 to 600 worker bees were collected from brood frames 

into a 500mL mason jar using a bee brush (Brushy Mountain Bee Farm).  Brood-tending 

workers were collected because mated female mites preferentially choose nurse hosts for 

transport to new brood-containing cells (Kraus 1993).  The collection of adult phoretic 

mites ensures that mites are in the correct reproductive state, which cannot be guaranteed 

in mites that are collected from within cells.  Mites that are collected from within cells 

may be in the midst of a reproductive phase or may have not yet mated, thus this 

approach was avoided (Steiner et al. 1994).  Directly after adult mites were collected, 

they were quickly introduced into experimental cells to avoid physiological harm to the 
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mites that could arise from environmental stress (e.g. temperature, desiccation), or 

starvation.   

 Six hours post-capping (HPC) was the target time for selecting experimental cells 

in my study.  It was crucial that mites be introduced within 24 HPC so that their oocyte 

development occurred normally (Boot et al. 1999, Steiner et al. 1994). Unpublished data 

from Marla Spivak suggest that the optimal time for mite introduction is within the first 

six HPC.  Mites were introduced into brood cells as described in Boot et al. (1999). 

Newly-capped worker cells were cut open with a razor blade and live mites were 

carefully inserted before pushing the wax back into place. Mites were cleaned of powder 

sugar using a small paintbrush and water, and were then transferred into cells using 

ethanol-washed insect pinning needles.  Aumeier and Rosenkranz (2001) used solvent-

washed forceps to make a very small (approximately 2.5mm) incision on one side of the 

cap, and therefore 95% ethanol was used to clean all introduction tools between cell 

manipulations to prevent accidental introduction of various, confounding pathogens.  The 

cell was sealed by pressing the wax of the cell’s wall and cap together using forceps and 

the handle of a small paintbrush.  This step is necessary to prevent introduced mites from 

escaping. 

 To test for effects of foundress number and help disentangle the effect of the mite 

age and number that were confounded in Gregory et al. (2005), three mite introduction 

treatments were performed. Cells received one mite in the first group, two mites in the 

second group, and three to four mites in the third treatment group.  In addition to the 

treatment groups, two control groups were established (Figure 1). The first, negative 

control group received no mites or manipulation aside from cutting of the cell cap to 

simulate potentially confounding variables caused by the cell disturbance of the mite 
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introduction procedure.  The control bees also provided a necessary timeline of naturally 

expressed immune-gene levels in mite-free brood.  The second, positive control group 

was established to mimic the physical wounding of the bee host made by the mite. The 

contrast between positive control and treatment groups was performed to provide a more 

accurate understanding of the degree of immunosuppression caused by specific elements 

of the mite's feeding (e.g. salivary extracts), as opposed to general immune responses to 

wounding at the feeding site.   

 

 
NTC 8 10 10 9 9 10 8 9 12 15

Wound 10 10 10 12 11 10 10 10 10 15

1 Mite 10 10 11 10 10 11 10 11 10 16

2 Mites 11 10 9 11 10 10 10 10 14 11

3+ Mites 10 10 10 11 11 10 10 10 8 9

HPC 24 72 120 192 240  
Figure 1. Schematic diagram of the experimental setup and its relation to mite life cycle. The shaded 

cells in the table indicate samples investigated in quantitative PCR.  Cell numbers indicate the 

number of cells (n) collected within each time and treatment. Non-treatment controls (NTC) and 

positive controls are indicated in the first two rows. Picture modified from Rosenkranz et al. 2010. 
 

 All thorax wounding was performed on fifth larval instars used for introductions 

as described above.  Preliminary tests proved that these wounds could be made on larvae 

without noticeable effect on their development or mortality, in accordance with previous 

studies that pierced the cuticle of white, red, and brown-eyed pupae at the second 
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abdominal sternite (Herrmann et al. 2005).  Based on this study, a 50um diameter 

capillary needle washed in ethanol was inserted no more than 0.3mm deep into larvae.  

Wounds were made on the dorsal side between the second thoracic segment (T2) to the 

first abdominal segment (A1) of larvae with special care to avoid puncture of the visible 

midgut or the tracheal or nervous systems along the dorsomedial region of the larva 

(Dade 1994). 

 

Sample Collection 

 Random subsets of experimental cells that randomly received either negative 

control, positive control, single, dual, or highly mite-infested treatments were collected 

regularly at 24 hour time intervals over the course of ten days following cell-capping 

(Figure 1).  Cells were dissected using standard forceps.  The larval or pupal hosts were 

immediately removed using soft forceps and were carefully cleaned of any attached mites 

to avoid genetic contamination of the samples.  Bees were placed in 1.5mL TRIzol 

reagent (Invitrogen), briefly homogenized by hand using a sterilized pipette tip, and 

immediately stored on dry ice.   

 Adult mites and all mite offspring, ranging from egg to pre-adult nymphal stages, 

were recorded.  Identification of mite developmental stage was determined visually based 

on morphological references (Ifantidis 1983, Rosenkranz 2010).  Mites were considered 

to be egg/larva, protomale/protonymph, deutonymph, light adult, or dark adult.  The 

youngest category of nymphal mites, protonymphs, was classified based on overall body 

size, idiosomal shape, and positioning of the legs.  At this age, the sex of the mites could 

not be visually determined (Steiner 1988).  It has been repeatedly observed that only one 
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male is produced in the beginning of the mite reproductive cycle.  Separation of male and 

female offspring number could be approximated in singly-infested cells under this 

assumption (Martin 1994, 1995).  Deutonymphs were classified based on a larger body 

size and a more ellipsoidal dorsal shield.  At this developmental stage, male mites could 

be distinguished based on their teardrop body shape, longer leg length, and moderate 

darkening of both the leg and idiosoma coloration (Rosenkranz et al. 2010).  The 

immobile deutochrysalis form was also classified as deutonymphal.  Given the limited 

developmental time within the cell for female offspring, it was also possible to 

distinguish freshly moulted adult females from foundress females based on the degree of 

sclerotization and darkness of body coloration.  Mites were considered dead only if they 

were immobile as adults.  All mites collected within a single cell were stored together in 

approximately 0.5mL TRIzol and immediately stored on dry ice.  All samples were 

subsequently stored at -80°C to prevent degradation prior to RNA extraction. 

 

Sample Preparation 

 The experimental design resulted in samples collected from 500 cells (5 

experimental groups × 10 time points). An exhaustive molecular characterization of all 

samples would have been prohibitively expensive. Therefore, quantitative molecular data 

were collected from select groups and time points across the sample set.  Those groups 

analyzed include the negative and positive controls as well as singly and highly mite-

infested cells.  For each of these four experimental groups the samples collected 24, 72, 

120, 192, and 240 HPC were studied to capture the beginning, middle, and end of host 

development.  The 72 and 192 hour time points were included to capture the time 
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immediately after the initiation of the foundress mite laying her first male offspring and 

the deposition of the final female offspring, respectively (Ifantidis 1983). 

 All RNA extractions were performed following the standard TRIzol protocol 

(Life Technologies).  Frozen samples were thawed to room temperature for five minutes 

and subsequently mixed using a vortexer for 20 to 30 seconds and further homogenized 

using a p1000 pipette tip.  300μL chloroform was added to each sample and shaken by 

hand for 15 seconds.  After two to three minutes of additional incubation at room 

temperature samples were centrifuged at 12,000G for 15 minutes at 4°C for phase 

separation.  The uppermost, aqueous phase containing the isolated RNA was carefully 

pipetted into a clean microcentrifuge tube.  750μL 100% isopropanol was added.  After 

ten minutes of incubation at room temperature, samples were again centrifuged at 

12,000G for ten minutes at 4°C.  The supernatant was carefully decanted and the RNA 

pellet was washed with 1.5mL 75% ethanol before a final centrifugation at 7,500G for 

five minutes.  The supernatant was removed and once the pellet had sufficiently air-dried, 

the RNA was resuspended by adding 50μL RNase-free water diluted with 1:100 RNA 

inhibitor (RNaseOUT, Invitrogen) added.  Sample tubes were then placed in a 60°C heat 

block for 15 minutes to aid in resuspension. 

 To remove DNA contaminants and prevent sample degradation due to RNases, 

reactions were performed in a 96-well plate using 1μL DNase buffer, 1μL DNase 

enzyme, and 0.2μL RNaseOUT (Invitrogen).  This solution was added to 8μL aliquots of 

the extracted RNA quantified using spectrophotometry (Nanodrop) and normalized to 

500ng/μL using RNase-free water.  Samples were incubated for one hour at 37°C, and 

another ten minutes at 75°C to inactivate enzymes.  To each sample, 0.02μL poly-dT 

(n=12-18, 0.5μg/μL), 0.5μL random hexamer (50μM), 0.2μL 2mM dNTP, and 0.298μL 
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H2O were added.  The samples were heated to 65°C for five minutes and then placed on 

ice for ten minutes to allow for annealing of the random primers.  Superscript II 

(Invitrogen) was used for cDNA synthesis, and 4μL provided buffer, 2μL DTT, 0.5μL 

enzyme, and 3.5μL H2O were added to each sample and incubated at 42°C for 50 

minutes, then at 70°C for 15 minutes to inactivate the enzyme.  Finally, samples were 

diluted 1:5 with molecular grade water (G Biosciences) for a total of 100μL cDNA 

template for quantitative polymerase chain reaction (qPCR). 

 

Quantitative PCR  

 Target sequences for amplification of individual samples included immune 

response genes, constitutively expressed “housekeeping” genes, intermediate detection 

and transcription factors in the Toll and Imd pathways, a precursor to ProPO, and DWV 

(Table 2).  These transcripts were selected from a larger list of putative immunological 

and pathogenic primers (Evans 2006, Boncristiani et al. 2011).  An initial screen of 27 

primers were screened using cDNA templates comprised of samples pooled from each 

experimental group for the 24 HPC, 120 HPC, and 240 HPC time points.  Only screened 

primers exhibiting a prominent melt-curve peak at the predetermined annealing 

temperature were used in the study of the full data set.  This ensured specific primer 

binding and thus successful amplification of the desired sequence, if present in the 

sample. 

 QPCR was performed using Brilliant SYBR Green Master Mix (Applied 

Biosystems).  20 μL reactions were created using 10μL master mix, 1μL cDNA template, 

0.5μL forward and reverse target primers at a 8μM concentration (Evans 2006).  Samples 
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were run in a StepOnePlus (Applied Biosystems) quantitative PCR thermocycler 

following Evans’ (2006) protocol with a slight adjustment to the initial holding stage and 

annealing temperature. The following cycling conditions were used: three minutes at 

95°C, then 40 cycles of 95°C for 20 seconds, 60°C for 30 seconds, 72°C for one minute, 

and 72°C for another 20 seconds during which fluorescence measurements were taken.  A 

final melt curve stage was included at 95°C for 15 seconds, 60°C for one minute, and a 

final ramp at 0.3°C to 95°C for 15 seconds.  The fluorescence level for each sample was 

based on the quantity of SYBR green reporter dye incorporated into the amplified cDNA 

and allowed for a comparison of the relative concentration of a given target gene between 

samples (Schmittgen and Livak 2008). 

 

Analyses 

 The threshold cycle (CT) is the cycle of PCR amplification at which the target 

gene reaches a defined level of fluorescence.  CT values were collected based on the 

default StepOnePlus algorithmic threshold search criteria.  Multiple reaction plates were 

required to account for the total number of samples.  In these instances, the Applied 

Biosystems’ threshold value was calculated individually for each plate.  To determine a 

standard threshold level of fluorescence for an individual primer target, all plate-specific 

threshold levels that were calculated by the internal Applied Biosystems StepOnePlus 

algorithm were taken into account.  A pooled threshold value of all plates was created, 

weighted by the number of samples contributing to each threshold value on a given 96-

well plate.  This standard threshold value was then used to recalculate every sample's 

cycle threshold (CT) for a given target.  Using a standardized threshold allowed for 
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comparison across different plates which was necessary to simultaneously assess the 

effects of time and treatment. 

 For samples exhibiting no expression in a given run, a second reaction was 

performed.  In the event that an individual sample was run twice with undetermined 

amplification, a CT value of 45 was used instead of the missing value.  This value 

exceeds the maximum number of cycles in the reaction protocol and was therefore a valid 

surrogate value. 

 CT values determined from qPCR were compared overall and across treatment 

groups within each of the five time periods using ribosomal protein S5 (RPS5) as an 

internal control.  RPS5 provides a fundamental functional role in gene synthesis and is 

expected to reflect an organism’s capacity for expression even at early larval stages, 

which makes it a good “housekeeping gene” (Evans and Wheeler 2000).  Alpha tubulin 

and beta actin were also tested as potential housekeeping genes as internal standards but 

showed many inconsistencies in melt curves and amplification as well as in expression 

between treatment groups.  The CT values for the housekeeping gene were subtracted 

from the CT values of the target gene of interest for each sample to calculate the ∆CT 

value.  This value was then inversely scaled under the assumption that PCR efficiency 

was 2, such that the transcript number doubled each cycle of PCR yielding 2
N
 copies 

(Schmittegen and Livak 2008).  To account for skew in the scaled ∆CT data, the data was 

log transformed prior to statistical analysis.  Analysis of housekeeping genes was also 

scaled in the same manner prior to ANOVA in order to more accurately represent mRNA 

concentrations corresponding to cycle number. 
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 The overall expression levels of the target sequences were tested in response to 

time and treatment using two-way analysis of variance (ANOVA) using R statistical 

software.  An interaction term was included in the model to discern the individual, main 

effects of the factors of interest vs. their potential compounded effects. 

 Additionally, mite reproductive success was compared among the treatment 

groups and correlated to immune gene expression.  Reproductive success was analyzed 

separately as either total offspring in a cell or a value of individual reproductive success 

per mite (offspring/foundress mite).  All analyses concerning mite reproduction were 

performed only on mite-infested cells within the 72, 120, 192, and 240 hour time points.  

For V. destructor, the mean number of HPC for the laying of the first observable 

offspring is approximately 60 HPC (Ifantidis 1983, Martin 1994).  It could therefore be 

assumed that only time points greater than 60 HPC were suitable for analysis of 

reproductive success.  Expression values of target transcripts (∆CT) were correlated to 

reproductive success using Pearson’s product-moment correlation coefficient. 

 To test the association of the wounding and mite-infestation treatments on 

workers’ expression levels, ANOVA was performed within each time interval sampled 

using the adjusted mRNA concentrations (∆CT) in response to the factor of experimental 

group.  A post-hoc analysis (Tukey’s HSD) was then performed to investigate pairwise 

comparisons of each experimental group to further investigate the potential sources of 

variation. 

 Pearson’s product-moment correlation was performed on all 11 transcripts used in 

the full data set.  The raw CT data was used without any normalization to ensure that the 
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effect of the internal control would not influence the target gene's association with the 

other target genes across treatments and time points. 
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CHAPTER III 

 

RESULTS 

 

 

Reproduction and Time 

 

 The manual introduction of adult phoretic mites resulted in successful offspring 

production in nearly all cells where adults survived.  The first eggs/larvae were observed 

at 72 HPC except for a single egg deposited prior to 48 HPC.  Based on the assumption 

that adult mites produce their first offspring within the first 72 HPC, 77.5% of all mite-

infested cells containing live adults had at least one successful reproductive event.  On 

average, the number of offspring per foundress produced in each cell increased over the 

ten days examined (Table 1). 

 
Table 1. Mite offspring reproduction (measured in offspring/adult foundress mite) with increasing 

time (HPC) and mite-infestation levels. The fraction of cells exhibiting reproduction is indicated by 

brackets. The lower right portion of the table represents samples appropriate for analyses using 

reproduction as a variable. 

24 48 72 96 120 144 168 192 216 240

NTC 0 0 0 0 0 0 0 0 0 0
[0/8] [0/10] [0/10] [0/9] [0/9] [0/10] [0/8] [0/9] [0/12] [0/15]

Wound 0 0 0 0 0 0 0 0 0 0
[0/10] [0/10] [0/10] [0/12] [0/11] [0/10] [0/10] [0/10] [0/10] [0/15]

1 Mite 0 0 1 2 2.71 2.2 2.29 2.6 3.89 3.64
[0/10] [0/10] [5/11] [6/10] [7/10] [5/11] [7/10] [10/11] [9/10] [11/16]

2 Mites 0 0.5 0.69 1.83 1.72 2.06 2.88 1.67 2.04 2.5
[0/11] [1/10] [8/9] [9/11] [9/10] [8/10] [8/10] [6/10] [13/14] [11/11]

3+ Mites 0 0 0.44 0.67 1.42 1.48 1.55 1 1.25 1.57
[0/10] [0/10] [8/10] [7/11] [10/11] [7/10] [8/10] [8/10] [7/8] [8/9]

Reproduction expected under natural conditions

Hours Post-Capping (HPC)
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Reproduction and Mite-infestation 

 Mite-infested cells exhibited a pattern of decreasing mean offspring per adult mite 

as infestation increased from one to three or greater mites (Figure 2).  Averaging across 

all time points ≥72 HPC, mites in doubly mite-infested cells produced 79% of the per-

mite offspring found in singly infested cells.  Mites in highly infested cells were less than 

half as reproductively successful as in singly infested cells, producing 47% of offspring 

per adult mite.  However, the percentage of success in instances of multiple mite 

infestation was not constant over the duration of the sampling period.  The doubly mite-

infested cells varied from 52% to 126% per-mite reproduction with the 144 and 168 HPC 

time points showing surprisingly high relative success compared to the singly infested 

cells at 94% and 126%, respectively.  Highly mite-infested cells varied from 32% to 68% 

with the 144 and 168 HPC time points exhibiting the greatest success relative to the 

singly-infested groups. 
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Figure 2. Reproductive success (measured in offspring/adult foundress mite) with increasing time 

(HPC) and mite-infestation levels. 
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Preliminary Screening of Target Genes 

 An initial panel of primers encompassing immune, housekeeping, and pathogenic 

sequences was screened using pooled template cDNA.  Only primers exhibiting specific 

amplification, as described in the methods, were employed for further analysis in this 

study (Table 2).  The unused primer sets are listed in Table 7 in the Appendix. 

 
Table 2. Primer sequences of transcriptional targets successfully amplified in this study. 

Forward Reverse

Alpha Tubulin GCACGTGAAGATCTAGCAGCTC GCACCTTCTCCTTCACCTTCAG

RPS5 AATTATTTGGTCGCTGGAATTG TAACGTCCAGCAGAATGTGGTA

Abaecin CAGCATTCGCATACGTACCA GACCAGGAAACGTTGGAAAC

Apidaecin TTTTGCCTTAGCAATTCTTGTTG GTAGGTCGAGTAGGCGGATCT

Cactus CCTGGACTGTCTGGATGGTT TGGCAAACCCTTTCTCAATC

Defensin GCAACTACCGCCTTTACGTC GGGTAACGTGCGACGTTTTA

Hymenoptaecin CTCTTCTGTGCCGTTGCATA GCGTCTCCTGTCATTCCATT

PGRPLC710 TCCGTCAGCCGTAGTTTTTC CGTTTGTGCAAATCGAACAT

PGRPSC4300 GAGGCTGGTACGACATTGGT TTATAACCAGGTGCGTGTGC

PGRPSCnew CACAAAATCCTCCGCCATT ATGTCACCCCAACCCTTCTC

PPOact GTTTGGTCGACGGAAGAAAA CCGTCGACTCGAAATCGTAT

Relish GCAGTGTTGAAGGAGCTGAA CCAATTCTGAAAAGCGTCCA

Deformed Wing Virus GAGATTGAAGCGCATGAACA TGAATTCAGTGTCGCCCATA
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Overall Gene Expression Patterns 

 The age of the host worker bee was associated with a significant change in 

expression for all 11 cDNA targets studied (Table 3).  Treatment was associated with a 

significant change in expression for all targets (Table 3), expect for abaecin (ANOVA, p 

= 0.6).  Additionally, all interaction between treatment and time were significant (Table 

3), except for abaecin (p = 0.073) and DWV (p = 0.45). The mean for each gene in each 

experimental group is given in Table 8 in the appendix. 

 

Expression and Reproduction 

 There were few consistent, significant correlations between transcript abundance 

and mite reproductive success found across the samples (Table 4).  At 72 HPC, 

PGRPsc4300, and PGRPscNew showed a negative correlation to the measure of 

reproductive success (offspring/foundress mite).  PPOact showed a negative correlation 

to the total offspring number at this time point.  PGRPsc4300 showed a negative 

correlation with offspring number at 120 HPC.  Hymenoptaecin was negatively 

correlated with both per-mite reproductive success, as well as offspring number at 192 

HPC, and apidaecin was negatively correlated with per-mite fitness at 240 HPC. 
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Table 3. Two-way ANOVA analyses for the contribution of treatment, hours post-capping (HPC), 

and their interaction on the expression of the panel of target sequences. 

Defensin2 F value P-value PGRPlc710 F value P-value

Treatment 8.49 < 0.0001 Treatment 11.77 < 0.0001

HPC 16.92 < 0.0001 HPC 6.86 < 0.0001

Treatment*HPC 3.47 < 0.001 Treatment*HPC 3.50 < 0.001

Abaecin F value P-value PGRPsc4300 F value P-value

Treatment 0.63 0.6 Treatment 5.06 0.0021

HPC 13.23 < 0.0001 HPC 19.99 < 0.0001

Treatment*HPC 1.69 0.073 Treatment*HPC 3.77 < 0.0001

Hymenoptaecin F value P-value PGRPscNEW F value P-value

Treatment 14.24 < 0.0001 Treatment 21.50 < 0.0001

HPC 41.69 < 0.0001 HPC 38.60 < 0.0001

Treatment*HPC 4.24 < 0.0001 Treatment*HPC 3.66 < 0.0001

Apidaecin F value P-value PPOact F value P-value

Treatment 51.67 < 0.0001 Treatment 4.72 0.0034

HPC 81.84 < 0.0001 HPC 24.58 < 0.0001

Treatment*HPC 7.14 < 0.0001 Treatment*HPC 2.51 0.0044

Relish F value P-value DWV F value P-value

Treatment 11.19 < 0.0001 Treatment 31.30 < 0.0001

HPC 12.24 < 0.0001 HPC 8.94 < 0.0001

Treatment*HPC 5.14 < 0.0001 Treatment*HPC 1.00 0.45

Cactus F value P-value

Treatment 15.39 < 0.0001

HPC 12.24 < 0.0001

Treatment*HPC 2.82 0.0014  
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Table 4. Correlation of cDNA targets and per-mite fitness (offspring/foundress mite) and total 

offspring number using Pearson product-moment correlation. Associated p-values are indicated as 

follows: p < 0.05*, p < 0.01**. 

 

Defensin2 -0.478 0.154 0.148 0.008 -0.001 -0.307 -0.396 0.020

Abaecin -0.107 0.086 0.052 -0.041 0.289 -0.366 -0.115 -0.204

Hymenoptaecin -0.496 0.390 -0.029 0.210 -0.486 * -0.456 * -0.113 -0.248

Apidaecin -0.472 0.115 -0.236 -0.001 0.076 -0.378 -0.486 * -0.274

Relish -0.455 0.084 -0.333 0.183 0.050 -0.289 -0.372 -0.230

Cactus -0.135 0.341 -0.460 0.337 0.104 -0.077 -0.038 0.051

PGRPlc710 -0.345 0.155 -0.202 0.011 0.159 -0.132 -0.289 -0.232

PGRPsc4300 -0.779 ** 0.027 -0.185 -0.449 * -0.208 0.187 -0.408 -0.138

PGRPscNEW -0.575 * 0.162 0.013 0.261 -0.019 0.194 -0.408 -0.138

PPOact -0.254 -0.603 ** -0.218 -0.136 -0.240 0.267 -0.227 -0.148

DWV -0.275 0.300 -0.136 0.149 -0.355 0.006 -0.109 -0.142

offspring/adult offspring #

72 HPC 120 HPC 192 HPC 240 HPC

offspring/adult offspring # offspring/adult offspring # offspring/adult offspring #

 
 

Expression and Mite-infestation 

 Given the influence of host age (HPC) as a factor in worker immune response, all 

comparisons between cell treatment groups were performed within their respective time 

past-capping (Table 5).  Mean values and graphical displays are included in Appendix A 

(Table 8) and Appendix B (Figures 3-15), respectively.  
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Table 5. Overall comparison of treatment groups within each of the sampling time points for all 

putative targets. F and P values were determined using one-way ANOVA, and letters represent the 

pairwise differences (α = 0.05) of all post-hoc analyses between the four groups examined (Tukey 

HSD). 
 

24 HPC 72 HPC

F value P-value NTC Wound 1 Mite 3+ Mites F value P-value NTC Wound 1 Mite 3+ Mites

RPS5 165.33 < 0.0001 A B A A RPS5 2.36 0.087 A A A A

Alpha Tubulin 17.77 < 0.0001 A B A A Alpha Tubulin 3.32 0.03 A AB AB B

Defensin2 5.12 0.0051 A B A A Defensin2 3.51 0.025 A AB AB B

Abaecin 6.39 0.0016 A B A AB Abaecin 1.36 0.27 A A A A

Hymenoptaecin 8.48 < 0.001 A B A A Hymenoptaecin 20.50 < 0.0001 A B B C

Apidaecin 36.91 < 0.0001 A B A A Apidaecin 19.51 < 0.0001 A B B B

Relish 31.88 < 0.0001 A B A A Relish 6.41 0.0013 A B AB B

Cactus 11.72 < 0.0001 A B A A Cactus 6.59 0.0011 A C AB BC

PGRPlc710 6.72 0.0012 A B A A PGRPlc710 0.55 0.65 A A A A

PGRPsc4300 15.10 < 0.0001 A B A A PGRPsc4300 3.49 0.025 A AB B AB

PGRPscNEW 9.91 < 0.0001 A B A A PGRPscNEW 4.43 0.0093 A B AB AB

PPOact 0.69 0.57 A A A A PPOact 3.16 0.036 A AB AB B

DWV 6.20 0.0018 A B AB B DWV 5.44 0.0034 A A AB B

120 HPC 192 HPC

F value P-value NTC Wound 1 Mite 3+ Mites F value P-value NTC Wound 1 Mite 3+ Mites

RPS5 15.21 < 0.0001 A B A A RPS5 1.15 0.34 A A A A

Alpha Tubulin 21.84 < 0.0001 A B A A Alpha Tubulin 0.37 0.77 A A A A

Defensin2 1.98 0.13 A A A A Defensin2 1.69 0.19 A A A A

Abaecin 1.65 0.19 A A A A Abaecin 0.78 0.51 A A A A

Hymenoptaecin 4.21 0.012 A B AB B Hymenoptaecin 5.67 0.0029 A A AB B

Apidaecin 94.86 < 0.0001 A B A A Apidaecin 1.32 0.28 A A A A

Relish 5.46 0.0034 A B A AB Relish 1.44 0.25 A A A A

Cactus 24.72 < 0.0001 A C AC B Cactus 0.33 0.81 A A A A

PGRPlc710 3.80 0.018 AB B A A PGRPlc710 1.29 0.29 A A A A

PGRPsc4300 1.90 0.15 A A A A PGRPsc4300 1.02 0.4 A A A A

PGRPscNEW 9.53 < 0.001 A B A A PGRPscNEW 1.11 0.36 A A A A

PPOact 5.12 0.0047 AB B A A PPOact 0.06 0.98 A A A A

DWV 4.83 0.0063 A AB AB B DWV 10.10 < 0.0001 A AB BC C

240 HPC

F value P-value NTC Wound 1 Mite 3+ Mites

RPS5 4.26 0.0094 A AB AB B

Alpha Tubulin 4.28 0.0093 A A AB B

Defensin2 8.61 < 0.0001 A A A B

Abaecin 0.09 0.97 A A A A

Hymenoptaecin 1.76 0.17 A A A A

Apidaecin 6.13 0.0013 A B AB AB

Relish 3.19 0.032 A AB AB B

Cactus 1.54 0.22 A A A A

PGRPlc710 13.73 < 0.0001 A B A A

PGRPsc4300 3.47 0.023 A AB AB B

PGRPscNEW 15.72 < 0.001 A B A A

PPOact 3.97 0.013 A B A AB

DWV 12.52 < 0.0001 A B B B

TukeyHSD Pairwise Comparisons TukeyHSD Pairwise Comparisons

TukeyHSD Pairwise Comparisons TukeyHSD Pairwise Comparisons

TukeyHSD Pairwise Comparisons
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 At 24 HPC, the expression of the internal control, RPS5, in the artificially 

wounded group had a 269-fold decrease in expression relative to the non-treatment 

control (ANOVA, p < 0.0001, TukeyHSD, p < 0.0001).  Relative to the non-treatment 

control, the mRNA concentrations (∆CT)  of the artificially wounded group showed a 

consistent pattern of upregulation in every immunity-related gene at this time point.  

Defensin expression was increased in the artificially wounded workers 115-fold relative 

to the non-treatment control (TukeyHSD, p = 0.0084).  Abaecin expression was increased 

in the artificially wounded workers 81-fold relative to the non-treatment control 

(TukeyHSD, p = 0.025).  Hymenoptaecin expression was increased in the artificially 

wounded workers 55-fold relative to the non-treatment control (TukeyHSD, p = 0.0071).  

Apidaecin expression was increased in the artificially wounded workers 271-fold relative 

to the non-treatment control (TukeyHSD, p < 0.0001).  Relish expression was increased 

in the artificially wounded workers 107-fold relative to the non-treatment control 

(TukeyHSD, p < 0.0001).  Cactus expression was increased in the artificially wounded 

workers 608-fold relative to the non-treatment control (TukeyHSD, p = 0.0011).  

PGRPlc710 expression was increased in the artificially wounded workers 77-fold relative 

to the non-treatment control (TukeyHSD, p = 0.0035).  PGRPsc4300 expression was 

increased in the artificially wounded workers 72-fold relative to the non-treatment control 

(TukeyHSD, p < 0.0001).  PGRPscNew expression was increased in the artificially 

wounded workers 28-fold relative to the non-treatment control (TukeyHSD, p = 0.0013).  

PPOact expression was not affected by any treatment (ANOVA, p = 0.57).  The DWV 

transcript was significantly increased in the artificially wounded workers (TukeyHSD, p 

= 0.0021) as well as in the highly mite-infested workers (TukeyHSD, p = 0.0049). 



40 

 At 72 HPC, there were no significant changes in scaled RPS5 expression based on 

treatment (ANOVA, p = 0.087).  The expression of defensin was increased in the highly 

mite-infested group relative to the non-treatment control with an approximate 4-fold 

increase (TukeyHSD, p = 0.015).  The expression of hymenoptaecin was increased by all 

treatments.  Relative to the negative control, there was a 9-fold increase in the artificially 

wounded group (TukeyHSD, p < 0.0001), a 12-fold increase in the singly mite-infested 

group (TukeyHSD, p < 0.0001), and a 82-fold in the highly mite-infested group 

(TukeyHSD, p < 0.0001).  The expression of apidaecin was also increased by all 

treatments.  There was a 68-fold increase in the artificially wounded group (TukeyHSD, 

p < 0.0001), a 30-fold increase in the singly mite-infested group (TukeyHSD, p = 

0.00023), and a 74-fold in the highly mite-infested group (TukeyHSD, p < 0.0001).  

There was a significant increase in relish expression in the artificially wounded and the 

highly mite-infested groups.  Artificial wounding increased expression 5-fold 

(TukeyHSD, p = 0.0038) while highly infested cells underwent a 9-fold increase in 

expression (TukeyHSD, p = 0.0026).  There was a significant increase in cactus 

expression in the artificially wounded and the highly mite-infested groups.  Artificial 

wounding increased expression 12-fold (TukeyHSD, p = 0.0013) while highly infested 

cells underwent a 10-fold increase in expression (TukeyHSD, p = 0.021).  PGRPsc4300 

expression showed a 67-fold decrease in the singly mite-infested group relative to the 

non-treatment control (TukeyHSD, p = 0.014).  PPOact expression showed a 11-fold 

decrease in the highly mite-infested group relative to the non-treatment control 

(TukeyHSD, p = 0.045).  DWV transcripts were increased only in the highly mite-

infested cells (TukeyHSD, p = 0.0030). 
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 At 120 HPC the expression of RPS5 was again lowered by artificial wounding 

with a 4-fold decrease relative to the non-treatment control (TukeyHSD, p < 0.0001).  

Hymenoptaecin expression was significantly increased in the artificially wounded and the 

highly mite-infested groups.  Artificial wounding increased expression 5-fold 

(TukeyHSD, p = 0.033) while highly infested cells underwent a 11-fold increase in 

expression (TukeyHSD, p = 0.012).  Apidaecin expression was increased in the 

artificially wounded workers 244-fold relative to the non-treatment control (TukeyHSD, 

p < 0.0001).  Relish expression was increased in the artificially wounded workers 5-fold 

relative to the non-treatment control (TukeyHSD, p = 0.0058).  Cactus expression was 

significantly increased in the artificially wounded and the highly mite-infested groups.  

Artificial wounding increased expression 57-fold (TukeyHSD, p < 0.0001) while highly 

infested cells underwent a 6-fold increase in expression (TukeyHSD, p = 0.036).  

PGRPscNew expression was increased in the artificially wounded workers 11-fold 

relative to the non-treatment control (TukeyHSD, p < 0.001).  DWV expression was 

increased in the highly mite-infested workers 14-fold relative to the non-treatment control 

(TukeyHSD, p = 0.0032). 

 At 192 HPC, there were no significant changes in RPS5 expression based on 

treatment (ANOVA, p = 0.34).  Hymenoptaecin was the only immunity-related gene with 

a significant difference in expression due to treatment.  In the highly mite-infested group 

expression was increased 6-fold relative to the non-treatment control (TukeyHSD, p = 

0.016).  DWV replication was increased in both mite-infested groups relative to the 

negative control (TukeyHSD, 1 mite:NTC p = 0.02, 3+ mites:NTC p < 0.0001). 

 At 240 HPC, there was a 2-fold decrease in RPS5 expression in the highly mite-

infested group (TukeyHSD, p = 0.0063).  Defensin expression was increased in the 
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highly mite-infested workers 3-fold relative to the non-treatment control (TukeyHSD, p < 

0.0001).  Apidaecin expression was increased in the artificially wounded workers 22-fold 

relative to the non-treatment control (TukeyHSD, p = 0.0012).  Relish expression was 

increased in the highly mite-infested workers 6-fold relative to the non-treatment control 

(TukeyHSD, p = 0.02).  PGRPlc710 expression was increased in the artificially wounded 

workers 22-fold relative to the non-treatment control (TukeyHSD, p < 0.0001).  

PGRPsc4300 expression was increased in the highly mite-infested workers 5-fold relative 

to the non-treatment control (TukeyHSD, p = 0.031).  PGRPscNew expression was 

increased in the artificially wounded workers 22-fold relative to the non-treatment control 

(TukeyHSD, p < 0.001).  PPOact expression was increased in the artificially wounded 

workers 22-fold relative to the non-treatment control (TukeyHSD, p = 0.014).  DWV 

expression was increased in the artificially wounded workers, singly mite-infested group, 

and highly mite-infested group relative to the non-treatment control (TukeyHSD, p = 

0.012, < 0.0001, and < 0.0001, respectively). 

 

Correlations in Immune-gene Responses 

 The strongest correlations were found between the three peptidoglycan receptors 

and nearly every other immune gene measured in this study (Table 6).  The target with 

the least significant correlation to all other transcripts was DWV.  
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Table 6. Correlation matrix of each cDNA target using Pearson product-moment correlation on raw 

CT values.  Associated p-values are indicated as follows: p < 0.05*, p < 0.01**, p < 0.001***, p < 

0.0001****.  
Def Aba Hym Api Rel Cac 710 4300 New PPO

Defensin2

Abaecin 0.15 *

Hymenoptaecin 0.22 ** 0.51 ****

Apidaecin -0.04 0.4 **** 0.69 ****

Relish 0.51 **** 0.35 **** 0.47 **** 0.21 **

Cactus 0.28 **** 0.23 *** 0.43 **** 0.41 **** 0.41 ****

PGRPlc710 0.41 **** 0.23 *** 0.51 **** 0.31 **** 0.58 **** 0.45 ****

PGRPsc4300 0.19 ** 0.33 **** 0.63 **** 0.55 **** 0.49 **** 0.47 **** 0.61 ****

PGRPscNEW 0.28 **** 0.22 * 0.41 **** 0.32 **** 0.53 **** 0.44 **** 0.72 **** 0.52 ****

PPOact 0.16 * 0.16 * 0.44 **** 0.5 **** 0.27 **** 0.44 **** 0.48 **** 0.59 **** 0.34 ****

DWV 0.27 *** -0.11 0.19 ** 0.02 0.12 0.15 * 0.03 0 -0.05 0.1  
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CHAPTER IV 

 

DISCUSSION 

 

 

 My study showed that mites do not decrease expression of innate immune-gene 

responses in their honey bee hosts relative to uninfested cells, which contradicts previous 

findings (Gregory et al. 2005, Yang and Cox-Foster 2005).  Methodologically, I 

demonstrated that manual introduction of mites can be performed with minimal 

disturbance in order to mimic natural measures of reproduction and survival.  My results 

support my hypotheses that both mite number and host age affect innate immune 

responses.  While I predicted immunosuppression by mites to be characterized by a 

pattern of diminishing returns of immune-gene responses with increasing mite number, 

this was not the case.  The data showed a complex, time-dependent interaction with host 

responses increasing with mite infestation, counter to my initial prediction.  In general, 

the extent of host immune-gene responses to mite infestation increased as the bee 

developed from its larval to pupal stage.  My experiments suggest that the mite-bee 

interaction involves more variables than previously anticipated and the assertion that 

mites repress honey bee immunity has to be carefully considered in light of bee 

development, timing of mite reproductive events, accompanying viral replication, and 

widespread responses to stressors including physiological wounding created at mite 

feeding sites. 



45 

Mite Introduction and Reproductive Patterns 

 The reproductive patterns of the experimental mites were comparable to natural 

patterns (Martin 1994, Ifantidis 1997).  Thus, the artificial introduction of mites did not 

appear to interfere with normal offspring production, as had been described before 

(Martin 1995).  Additionally, the individual, per-mite fitness decreased as initially 

introduced mite numbers increased.  This finding closely matches results of previous 

studies of multiple mite infestation which show a cost of individual fitness due to intra-

species competition (Fuchs and Langenbach 1989, Martin 1995).  

 Mortality status of offspring was not assessed unless the body of the offspring 

was visibly dried because the samples had to be processed quickly to prevent sample 

degradation.  Additionally, the presence of nymphal mites undergoing the immobile 

molting phases of the proto- and deutochrysalis further complicate the ability to confirm 

offspring successfully surviving to maturity (Ifantidis 1983, Martin 1994).  Therefore, I 

might have counted some dead mite offspring as alive and consequently overestimated 

the relative success of individual mites. However, the observed timing and overall 

production of offspring was concordant with the current understanding of the mite 

reproductive phase as it progresses sequentially after cell-capping (Martin 1994).   

 The numbers of mite offspring produced in the artificially mite-infested cells were 

comparable to those previously described under natural conditions (Martin 1994, 1995).  

The latest time points sampled in this study, at 240 HPC, had a mean of 3.6 offspring 

produced when a single foundress was present in a cell.  Under the assumption that only a 

single male is produced per cell, the number of female mites present in these cells is 
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closer to 2.6.  Given that the mortality of mite offspring was not measured, it is likely that 

some immobile nymphs at this final time point might have actually been dead.  Based on 

the assumption that the mortality of nymphal offspring is 48.3% (Martin 1994), the 

number of surviving female offspring at 240 HPC might have been as low as 1.28 in my 

study.  This result is comparable to the 1.3 surviving female offspring per singly-infested 

cell at 230 HPC observed in Martin (1995). 

 It is not uncommon for infertility rates of mites to exceed 20% depending on the 

subspecies of host as well as mite (Rosenkranz 2010).  The 77.5% success rate in this 

study supports the hypothesis that manual introduction of collected mites into cells does 

not affect reproductive rates.  The number of previous reproductive cycles experienced 

by a given foundress mite was unknown, which is a difficult factor to determine in 

studies relating to mite reproduction (Rosenkranz et al. 2010).  The random collection of 

phoretic mites should have overcome the potential issue of including mites of a non-

natural reproductive status in the introductions. 

 

Effects of Wounding and Mite-Infestation on Honey Bee Gene Expression 

 The cuticular wounding of either the positive control or the highly-infested mite 

groups affected the expression of RPS5, an internal control, at 24 HPC, 120 HPC, and 

240 HPC.  In order to make meaningful comparisons among and between groups, it is 

crucial to use an internal control that is not affected by treatment.  In my study, RPS5 was 

selected because it has previously been found to be constitutively expressed in larval and 

adult honey bees (Evans and Wheeler 2000, Evans 2006).  Initial screens of beta actin, 
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the internal gene used in the mite immunosuppression study by Yang and Cox-Foster 

(2005), also showed downregulation in the highly mite-infested groups at 240 HPC.  

Alpha tubulin was also inconsistent as an internal control and exhibited downregulation 

at 72 HPC where no differences were observed in RPS5.  Additionally, RPS5 was more 

robust and had higher levels of expression overall.  Therefore only RPS5 was used as an 

internal control.  While it can be assumed that measuring individual targets relative to an 

internal control should be informative about expression levels, careful consideration 

should be given when coming to conclusions about expression levels.  The effect of 

wounding on all housekeeping genes tested in my experiment implies that selection of an 

internal control for injured worker bees is a sensitive process.  When measuring gene 

expression in the presence of increasing mite load this is also important because the 

physical injury of multiple feeding sites will potentially lead to a lowered expression of 

multiple housekeeping genes. 

 My study showed a complex pattern of immune-gene expression, dependent on 

mite load and host development time, as well as their interaction. While the time effects 

in the negative control group revealed the complex natural dynamics of the developing 

host immune system (Laughton et al. 2011), the interaction effects required a separate 

comparison among the experimental groups at every investigated time point.  At 24 HPC 

the artificially wounded bees showed a significant increase in the AMP responses 

(defensin, abaecin, hymenoptaecin, apidaecin), their associated, intermediate 

transcription factors (relish, cactus), and the three receptor proteins (PGRPlc710, 

PGRPsc4300, PGRPscNew). 

 PPOact, a precursor transcript to the melanizing agent ProPO, was not affected by 

wounding at 24 HPC.  It is surprising that PPOact levels did not differ between any 
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treatments in the presence of natural or artificial wounding, as phenol oxidase is expected 

to be involved in melanization as well as hemolymph clotting (Chrisophides et al. 2004).  

It is possible that PPOact was downregulated in response to wounding in a manner 

similar to RPS5 or that expression of this enzyme occurs at greater levels with increasing 

bee development time.  Laughton et al. (2011) describe an increase in workers’ phenol 

oxidase levels only after adult eclosion.  Artificial wounding by capillary needles should 

not increase bee mortality or microbial infection relative to mite feeding (Herrmann et al. 

2005).  In spite of this, the introduction of artificial wound sites in my experiment was 

consistently performed immediately after cell-capping which might predate the initiation 

of feeding sites by mites.  This advanced timing could explain the strong gene expression 

responses in most immune-genes found in artificially wounded bees at such an early time 

point. 

 Mite-infested bees showed low levels of immune-gene expression nearly identical 

to the negative control cells at 24 HPC.  The low expression of immune genes indicates 

that mite infestation did not elicit an active immune response at this time. This result 

might be due to immune suppression (Gregory et al. 2005, Yang and Cox-Foster 2005).  

However, several other explanations exist.  First, the manually introduced mites in my 

study may have not yet initiated feeding at 24 HPC.  It is expected that mites will feed as 

early as 5 HPC (Rosenkranz et al. 2010).  The majority of adult mites can't survive more 

than 36 hours without feeding (Garedew et al. 2004).  Additionally, although the positive 

control treatments were successful in that they did not increase the mortality of 

developing workers, the depth of the capillary needle was potentially variable and was 

not controlled for.  The artificial wounds were performed on bees at the same time as 
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mite introductions, and may have initiated a faster response in upregulation in the honey 

bee larvae than the wounding caused induction of the mite feeding site. 

 After 72 HPC there was a similar pattern in artificially wounded and highly-

infested bees where each group exhibited increased expression of defensin, 

hymenoptaecin, apidaecin, relish, and cactus.  These genes represent both the Toll and 

Im`d pathway.  At this time the singly mite-infested bees did not differ from the non-

treated bees in defensin, relish, or cactus expression.   The strong immune responses in 

only those bees receiving artificially-induced wounds and high mite loads supports the 

alternative hypothesis that cuticle wounding alone, rather than mite feeding, initiates 

activation of immune-genes in a non-specific manner.  The necessity for multiple feeding 

sites in multiply mite-infested cells increases overall damage to workers, which could 

explain why bees in this group, rather than the singly mite-infested cells, have higher 

expression levels of innate responses.  72 HPC is a biologically important time for mite 

reproduction because it immediately follows the depositing of the first egg by the 

foundress.  The decreased expression of PGRPsc4300 in the singly mite-infested bees at 

this point could signal the onset of immunosuppression, but this pattern is not seen in the 

multiply mite-infested group. 

 There is no evidence of differing mRNA levels in defensin or abaecin expression 

at the 120 hour time point between any of the groups.  The artificial wounding group 

exhibited expression levels that were similar to the non-treatment control for the 

remaining immune genes studied.  The similarity between positive and negative control 

groups suggests that the observed upregulation of immune genes is only temporary, a 

trend that is already indicated at 72 HPC. A true positive control of repeated wounding 

was not experimentally possible. Therefore, it is difficult to interpret whether the 
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upregulation of immune genes in the later samples is due to the continued physical injury 

by mite feeding or other mite-specific factors.  Looking at the overall trend of defensin 

expression, the mite-infested groups appear to initiate increased expression relative to the 

non-treated bees in nearly every instance except for 120 HPC.  The lack of difference in 

the artificial wound control may be due to error in the determination of ΔCT values based 

on the housekeeping gene.  As in the 24 HPC samples, the absolute transcription level of 

RPS5 was significantly lower in the wounding group than in all other groups.  The AMPS 

defensin and apidaecin at 120 HPC showed no difference between the negative control 

and the mite-infested groups.  However, the AMP hymenoptaecin sustained its increased 

levels with wounding and mite infestation treatment here.  This might be due to 

modulation of the immune system with mite presence.  The transcription factors relish 

and cactus appear to be lower relative to the negative control than previously measured at 

72 HPC.  These transcription factors are known to regulate AMPs (Christophides et al. 

2004). 

 After 192 hours the lack of differences in expression due to wound or mite 

treatments for defensin, apidaecin, relish, and cactus could be due to changes in host 

physiology or modulation by the mites.  The increased mRNA concentrations of 

hymenoptaecin in association with highly mite-infested hosts shows that selected groups 

of genes do not undergo the same interactions, even under similar circumstances.  This 

might imply that some response peptides are expressed differentially in a time-dependent 

fashion.  It is also around this time point that mRNA concentrations for all genes 

previously affected by wounding appear to dissipate. 

 The final time point of the experiment, 240 HPC, shows a significantly higher 

level of mRNA for defensin, relish, and PGRPsc4300 in the highly mite-infested groups 
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than in both control groups.  Increased defensin transcripts in these bees give evidence of 

a specific response to an aspect of mite infestation.  The associated increase of the 

transcription relish is likely related to its predicted coregulation of defensin.  The increase 

in expression of defensin to mite presence at this time point is relevant in light of 

previous findings because it examines a nearly identical time point (Gregory et al. 2005).  

Furthermore, the effect of this response can’t be explained by wounding alone.  The 

effect of artificial wounding reappears at this time point in apidaecin, PGRPls710, 

PGRPscNew, and PPOact.  Thus, in contrast to the results at intermediate time points, the 

response to wounding seems to be long-lasting. 

 The patterns of immune-gene responses revealed by my study can be considered 

in light of the Varroa life cycle to gain further understanding of this close bee-mite 

relationship.  Each foundress mite produces a single feeding site which is shared only by 

her progeny (Donze and Guerin 1994).  Cells with multiple foundresses will therefore 

have multiple feeding sites.  As feeding sites are continually visited by mites throughout 

the course of interaction, the worker hosts will have more time to evoke an immune 

response.  When compared to the artificially wounded hosts, which showed immediate 

up-regulation of immune-gene responses within the first 24 hours after treatment, the 

mite-infested hosts displayed a slower reaction that took place over the series of ten days 

subsequent to cell-capping.  While the artificially wounded bees upregulated immune 

responses faster than mite-infested bees, the location and diameter of the capillary 

wounds mimics actual mite feeding patterns.  AMP expression at 72 HPC indicates that 

upregulation of host immune-genes matches or even exceeds the artificially wounded 

bees.  Therefore, at 120 HPC, the apparent lack of response in cells containing mites 

relative to the negative control could potentially be interpreted as immunosuppression 
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associated with mites.  Biologically, this is a meaningful time interval in the mite's life 

cycle because the first egg has typically been deposited prior to 70 HPC (Rosenkranz et 

al. 2010, Donze and Guerin 1994, 1997, Martin 1994, Ifantidis 1983).  Female mite 

larvae are then deposited at 92, 118, 144, and 172 HPC (mean values, Martin 1994).  It 

has been hypothesized that immune-gene suppression could aid in maintaining feeding 

sites; this is potentially a requisite mechanism for offspring to successfully feed (Gregory 

et al. 2005).  If the pattern of individual mite reproduction relates to modulation of host 

immunity, it would follow that timing immune-gene suppression to correspond with the 

deposition of mite offspring in order to impart a fitness advantage.  If the salivary 

excretions of the foundress mite suppress normal immune response in the host just prior 

to the feeding of the first offspring's feeding as a mobile immature at approximately 90 

HPC, this timing mechanism could offset a range of normal responses that occur due to 

piercing the host's cuticle (Ifantidis 1983).  The anomalous presence of down-regulation 

in the singly-infested group just prior to this time point, 72 HPC, strengthens this 

hypothesis.  The host’s normal reaction to wounding which involves melanization and a 

potential range of other effects that might compromise feeding sites makes modulation a 

potentially crucial strategy to feed the rapidly developing mite offspring.  At 120 HPC 

the expression of defensin in the bees with mites might give evidence to an alternative 

hypothesis of timed immunosuppression.  Defensin does not appear to be up or down-

regulated in bees with mites relative to the negative control at 120 HPC.  However, 

defensin expression does continue to respond by increasing in mite-infested bees relative 

to the controls, as is evident in the time points sampled at 192 and 240 hours. 

 The findings of Gregory et al. (2005) showed a trend of increasing defensin 

expression as mite number increased.  Because neither time nor presence of offspring was 



53 

accurately controlled for in the study, there is a possibility that increasing mite number 

actually represented both foundresses as well as their nymphal offspring.  If offspring 

were calculated into mite number one would expect the increase in total mite load to 

increase in a time-dependent manner.  Therefore, the pattern of increasing defensin levels 

in Gregory et al. (2005) might actually capture a similar trend to those evident in my 

study where older bees nearing emergence exhibit a stronger response of defensin.  The 

importance of time as a determining factor for immune responses in honey bee workers is 

made evident in my study.  Additionally, a recent study reiterates time-dependent 

immune responses and shows that workers challenged with needles showed increasing 

expression of AMPs with age (Laughton et al. 2011) 

 Martin (1994) describes a “dramatic increase in the mortality of the 3
rd

 and 4
th

 

offsprings” of Varroa, which are deposited around 118 and 144 HPC.  This increased 

mortality of mite offspring laid later in the reproductive cycle might be caused by 

hardening of the host cuticle (Martin 1994).  Alternatively, my results suggest that 

increased expression of immune-genes in host bees, which might include increased 

melanization, are affecting the survival of mite offspring.  The increased expression of 

defensin, relish, and hymenoptaecin in the worker hosts at these time points may 

represent a re-initiation of normal immune-gene responses. 

 

Deformed Wing Virus 

 DWV is associated with mite infestation and its levels are an important covariate 

in this study because DWV itself could stimulate particular immune genes and its levels 

may measure the effectiveness of the bees’ immune system.  However, no strong 
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correlations were found between DWV and the immune-genes surveyed in my study.  It 

is relevant to discover increased levels of viral replication in the positive control.  This 

suggests that wounding, irrespective of mites, does increase DWV susceptibility.  

Analyses of DWV CT values without RPS5 normalization also show the wound group to 

be significantly increased in viral level eliminating the possibility that the housekeeping 

control is creating an artifact in the results.  If the effect is real, it is possible that DWV is 

able to take advantage of a stress response in the workers.  This might be due to 

prioritization of energy expenditure on healing over microbial defense, but the 

mechanism is not known based on this study. 

 The data showed a trend of increased DWV replication with increasing mite 

number.  The only group to exceed the positive control in DWV replication was the 

highly mite-infested group; the singly mite-infested host cells never surpassed the 

artificially wounded workers.  This could be associated with the increased number of 

feeding sites, thus wound number, in the highly infested bees.  Alternatively, multiple 

foundresses could inoculate the bee host with more virus. Future research could address 

this open question by investigating my mite samples and relating their virus titers to that 

of their hosts.  

 

Patterns of Expression and Correlation 

 Successful mite reproduction was negatively correlated with a few immune genes 

at different time points. These patterns suggest that suppression of the end product in 

honey bee immune-genes could potentially be a mechanism to increase fecundity.  It 

could be that either successful mites can actively lower immune function in their hosts. 
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Alternatively, the natural variability in host immune function allows mite reproduction in 

some cases but not in other individuals that have naturally higher levels of gene 

expression. The latter would indicate that selective breeding of mite-resistance could be 

successful at the physiological level by selecting for high immune-gene expression. 

Specifically, the negative correlation between the peptidoglycan receptor PGRPsc4300 

and mite reproduction could imply a mechanism of suppression induced by Varroa that 

prevents initiation of the Toll pathway at the detection level.  Interestingly, a recent study 

on the effect of the microsporidian Nosema ceranae on a panel of 33 A. mellifera 

immune-genes found PGRPsc4300 to be the most responsive gene target to fungal 

infection (Huang et al. 2012).  The recognition targets of this protein might include a 

wide range of pathogen-associated molecular patterns, and in turn it plays part in 

regulating the initiation of the Toll cascade (Christophides et al. 2004, Huang et al. 2012).  

Over all samples, PGRPsc4300 was also found to be correlated with the AMPs 

hymenoptaecin, abaecin, apidaecin, and PPOact, as expected based on the functional 

links in the Drosophila immune pathways (Schmid-Hempel 2005). 

 

Conclusions 

 The overall patterns in the data of my study counter previously described patterns 

of immunosuppression by mites (Gregory et al. 2005, Yang and Cox-Foster 2005).  

Instead of decreasing the expression of immune-genes in the hosts, mite infestations lead 

to an increase in the expression of innate immune responses over multiple response 

pathways.  Assessing the dynamics of the host-pathogen interactions proved challenging 

because developmental processes may cause expression changes in many genes, 
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irrespective of parasitism. However, my results show how important the time dimension 

is for understanding host immune responses to parasite attack. 

 The early, increased expression in nine out of ten immune-genes in response to 

artificial wounding might indicate a widespread, non-specific response to trauma in the 

form of cuticle piercing.  It is also possible that piercing of the cuticle slows other vital 

cellular responses in order to divert resources to the immunes system, which would also 

explain the lowered levels of housekeeping genes in wounded bees.  The only screened 

pathogen in this study, DWV, supports the hypothesis that wounding creates a stress 

response that ultimately increases immune activity with development due to higher levels 

of microbial replication. 

 The coevolutionary origins of the intimate Varroa-bee relationship have allowed 

for great specialization of both host and parasite.  While Varroa is relatively new to Apis 

mellifera, the differential, host-specific invasion preferences between the drone and 

worker larvae is evidence of this mite’s successful ability to adapt and respond to its 

environment.  Under this reasoning, it would be expected that mechanisms for immune 

suppression would be tailored to maximize fitness.  My study showed an increased 

response in immunological defenses, rather than a depressed one, in mite-infested bees 

that were nearing adulthood.  There is room in my data for an immunosuppressive effect 

at time points in the honey bees’ development that corresponds to mite reproduction.  

This follows the biologically meaningful reproductive cycle of mites that follows a strict 

schedule.  Further characterization of honey bee immunity will no doubt play an 

important role in unraveling the interactions of mites and bees at the molecular level.  As 

it has been demonstrated that mites are harmful in large part due to pathogen 
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transmission, further understanding of this additional variable is needed to understand 

host timing of immune-gene responses and potential parasite manipulations.  The 

consequences of selective pressures and evolutionary history should be considered when 

proceeding with future studies on the Varroa-honey bee relationship. 
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APPENDIX A. 

 

TABLES 

 

 
Table 7. Primer sequences of transcriptional targets initially screened, but not investigated, in this 

study. 

Forward Reverse

AmEater CATTTGCCAACCTGTTTGT ATCCATTGGTGCAATTTGG

Dscam3-7 TTCAGTTCACAGCCGAGATG ATCAGTGTCCCGCTAACCTG

Domeless TTGTGCTCCTGAAAATGCTG AACCTCCAAATCGCTCTGTG

BQCV TTTAGAGCGAATTCGGAAACA GGCGTACCGATAAAGATGGA

Defensin1 TGCGCTGCTAACTGTCTCAG AATGGCACTTAACCGAAACG

IAPVF1aR1 GCGGAGAATATAAGGCTCAG CTTGCAAGATAAGAAAGGGGG

Basket AGGAGAACGTGGACATTTGG AATCCGATGGAAACAGAACG

Bgluc19452 GGACAACCACCTTTTGAACG AGGAGCTTCCTCTGCACTGA

Dorsal-1 AAATGGTTCGCTCGTAGCAC TCCATGATATGAGTGATGGAAA

Tab GCTATCATGCAGCTGTTCCA ACACTGGGTCAGCCAATTTC

PlS18 TTCACGGCTAACAAAATTAAACA TTCGCAGAAGTTCCGGTTAC

FungFFR1 GTTAAAAAGCTCGTAGTTG CTCTCAATCTGTCAATCCTTATT

Bact774_1391 CCATTTGCTTCAGGGAAGAG CAAGCCAGCGTATGCTGTAA
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Table 8. Means of qPCR data across measured treatment groups within each of the sampling time 

points for all putative targets. Values of housekeeping genes RPS5 and alpha tubulin were scaled to 

represent original mRNA concentrations (2^(-CT)).  All values for the 11 target transcripts are 

adjusted using RPS5 as internal control (2^(-∆CT)) prior to log-transformation. 

24 HPC 72 HPC

NTC Wound 1 Mite 3+ Mites NTC Wound 1 Mite 3+ Mites

RPS5 1E-07 4E-10 1E-07 1E-07 RPS5 1E-08 9E-09 3E-08 1E-08

Alpha Tubulin 1E-09 4E-11 8E-10 2E-09 Alpha Tubulin 4E-09 1E-09 1E-09 6E-10

Defensin2 8E-04 0.094 0.001 0.026 Defensin2 0.034 0.037 0.023 0.127

Abaecin 6.888 559.8 5.353 8.717 Abaecin 1.986 8.093 3.91 42.73

Hymenoptaecin 1.398 77.45 0.799 1.15 Hymenoptaecin 0.153 1.396 1.903 12.54

Apidaecin 0.729 197.7 0.251 0.32 Apidaecin 0.062 4.176 1.835 4.569

Relish 0.003 0.374 0.004 0.003 Relish 0.007 0.033 0.013 0.065

Cactus 0.002 0.987 0.002 8E-04 Cactus 0.008 0.09 0.016 0.078

PGRPlc710 0.039 2.637 0.059 0.044 PGRPlc710 2.419 0.14 0.136 0.216

PGRPsc4300 0.039 2.824 0.04 0.061 PGRPsc4300 3.369 0.102 0.051 0.171

PGRPscNEW 0.028 0.787 0.021 0.04 PGRPscNEW 0.14 0.117 0.022 0.112

PPOact 6E-04 0.043 6E-04 8E-04 PPOact 0.384 0.056 0.05 0.036

DWV 4E-06 0.663 12.04 0.143 DWV 1E+07 294.7 916.3 9423

120 HPC 192 HPC

NTC Wound 1 Mite 3+ Mites NTC Wound 1 Mite 3+ Mites

RPS5 2E-07 4E-08 1E-07 1E-07 RPS5 3E-08 5E-08 5E-08 5E-08

Alpha Tubulin 2E-09 3E-10 4E-09 2E-09 Alpha Tubulin 2E-10 3E-10 5E-10 4E-10

Defensin2 0.001 0.003 0.002 0.002 Defensin2 0.047 0.009 1.258 0.038

Abaecin 0.223 0.27 1.248 0.673 Abaecin 0.533 1.866 118.5 1.196

Hymenoptaecin 0.039 0.184 0.215 0.423 Hymenoptaecin 0.125 0.053 1.339 0.796

Apidaecin 0.003 0.651 0.004 0.004 Apidaecin 0.43 0.326 1.099 0.067

Relish 0.003 0.013 0.004 0.004 Relish 0.008 0.009 0.155 0.012

Cactus 4E-04 0.021 8E-04 0.002 Cactus 0.071 0.024 0.124 0.01

PGRPlc710 0.038 0.205 0.037 0.044 PGRPlc710 0.349 0.24 0.27 0.618

PGRPsc4300 0.006 0.037 0.008 0.012 PGRPsc4300 0.291 0.021 0.027 0.037

PGRPscNEW 0.002 0.021 0.002 0.003 PGRPscNEW 0.322 0.093 0.187 0.273

PPOact 6179 0.057 7E-05 3E-04 PPOact 0.017 0.026 0.003 0.005

DWV 0.867 76.15 6.48 11.86 DWV 8417 31.32 97.58 265

240 HPC

NTC Wound 1 Mite 3+ Mites

RPS5 3E-08 8E-09 4E-08 2E-08

Alpha Tubulin 2E-10 1E-10 2E-10 3E-11

Defensin2 0.005 0.014 20.19 1.524

Abaecin 0.258 0.961 3.904 15.21

Hymenoptaecin 0.016 0.137 0.117 0.123

Apidaecin 0.004 0.082 0.07 0.085

Relish 0.01 0.057 0.372 0.548

Cactus 0.005 0.014 0.205 0.141

PGRPlc710 0.049 1.11 0.154 0.102

PGRPsc4300 0.004 0.02 0.128 0.116

PGRPscNEW 0.057 0.394 0.036 0.042

PPOact 8E-05 0.003 4E-04 7E-04

DWV 4E-04 0.018 271.1 194.1

Mean Expression Values Mean Expression Values

Mean Expression Values Mean Expression Values

Mean Expression Values
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APPENDIX B. 

 

FIGURES 

 
Figure 3. Boxplot showing expression levels of the antimicrobial peptide defensin with increasing 

host development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses. 
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Figure 4. Boxplot showing expression levels of the antimicrobial peptide abaecin with increasing host 

development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 5. Boxplot showing expression levels of the antimicrobial peptide hymenoptaecin with 

increasing host development time in hours post-capping.  The non-treatment control (blue) was 

compared to the artificially wounded positive control (green), singly mite-infested (orange), and 

highly mite-infested (red) cells.  The black bar indicates the mean for each group with the box and 

whisker representing the inner-quartile range and overall range, respectively.  Points considered as 

potential outliers are represented by open circles; however, all data were included in statistical 

analyses.
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Figure 6. Boxplot showing expression levels of the antimicrobial peptide apidaecin with increasing 

host development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 7. Boxplot showing expression levels of the transcription factor relish with increasing host 

development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 8. Boxplot showing expression levels of the transcription factor cactus with increasing host 

development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 9. Boxplot showing expression levels of the pathogen recognition protein PGRPlc710 with 

increasing host development time in hours post-capping.  The non-treatment control (blue) was 

compared to the artificially wounded positive control (green), singly mite-infested (orange), and 

highly mite-infested (red) cells.  The black bar indicates the mean for each group with the box and 

whisker representing the inner-quartile range and overall range, respectively.  Points considered as 

potential outliers are represented by open circles; however, all data were included in statistical 

analyses.
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Figure 10. Boxplot showing expression levels of the pathogen recognition protein PGRPsc4300 with 

increasing host development time in hours post-capping.  The non-treatment control (blue) was 

compared to the artificially wounded positive control (green), singly mite-infested (orange), and 

highly mite-infested (red) cells.  The black bar indicates the mean for each group with the box and 

whisker representing the inner-quartile range and overall range, respectively.  Points considered as 

potential outliers are represented by open circles; however, all data were included in statistical 

analyses.
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Figure 11. Boxplot showing expression levels of the pathogen recognition protein PGRPscNew with 

increasing host development time in hours post-capping.  The non-treatment control (blue) was 

compared to the artificially wounded positive control (green), singly mite-infested (orange), and 

highly mite-infested (red) cells.  The black bar indicates the mean for each group with the box and 

whisker representing the inner-quartile range and overall range, respectively.  Points considered as 

potential outliers are represented by open circles; however, all data were included in statistical 

analyses.
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Figure 12. Boxplot showing expression levels of the phenol oxidase precursor PPOact with increasing 

host development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 13. Boxplot showing expression levels of deformed wing virus with increasing host 

development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 14. Boxplot showing expression levels of the housekeeping gene RPS5 with increasing host 

development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses.
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Figure 15. Boxplot showing expression levels of the housekeeping gene alpha tubulin with increasing 

host development time in hours post-capping.  The non-treatment control (blue) was compared to the 

artificially wounded positive control (green), singly mite-infested (orange), and highly mite-infested 

(red) cells.  The black bar indicates the mean for each group with the box and whisker representing 

the inner-quartile range and overall range, respectively.  Points considered as potential outliers are 

represented by open circles; however, all data were included in statistical analyses. 


