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WNT5A is a secreted glycoprotein that plays an important role in cellular 

differentiation, cell homeostasis and development.  It is also misregulated in numerous 

cancer cell types.  The Wnt5a gene generates multiple transcripts from distinct promoters 

and alternative splicing, leading to different protein isoforms.  Currently, little is known 

regarding the regulation of the Wnt5a alternative promoters.  The goal of this study was 

to characterize the expression of Wnt5a alternative promoters A and B during 

differentiation and cellular transformation.  TaqMan primer-probe sets, specific to 

promoter A and promoter B derived transcripts, were designed and characterized.  The 

level of promoter A and B specific transcripts were determined in normal human 

osteoblasts and the osteosarcoma cell line, SaOS-2, as a model for cancer progression.  

The level of promoter A and B transcripts were nearly equal in osteoblasts cells.  In 

contrast, there was a dramatic decrease in promoter B transcripts in osteosarcoma cells 

and an increase of 3.5 fold in promoter A transcripts, giving an A to B ratio of 2320 to 1. 

Wnt5a promoter A and promoter B luciferase reporter constructs were transfected into 

osteosarcoma cells.  Promoter A and promoter B activities were found to be nearly equal, 

suggesting that the lower level of promoter B transcripts in osteosarcoma cells is not due 

to altered levels of transcription factors.  Promoter A and promoter B specific transcripts 

were assayed in 3T3-L1 mouse fibroblasts, as a model for differentiation, in the 

following stages: exponential preadipocytes (EX PA), confluent preadipocytes (CON 

PA), two days after MDI treatment (D2 Post MDI) and in mature differentiated 
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adipocytes (Diff AD).  In EX PA and CON PA cells, both promoter A and promoter B 

transcripts increased followed by decreased transcript levels in D2 Post MDI cells.  While 

promoter A transcripts slightly increased in Diff AD, promoter B transcript levels 

remained at a low level.  Overall, these results suggest that Wnt5a promoter A and 

promoter B are differentially regulated.
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CHAPTER I 

INTRODUCTION 

Statement of problem 

 Cancers are among the most prevalent diseases that continue to affect humans.  

Cancer cells are known for their highly proliferative profile, and many factors have been 

shown to contribute to the development of cancer, including genetic and non-genetic 

molecular alterations.  Previous studies have shown that Wnt5a plays a role in several 

human cancers, including breast, colorectal, osteosarcoma, pancreatic, papillary thyroid, 

and melanoma (Katoh et al. 2009; Binder et al. 2008).  Wnt5a expression is often 

misregulated in cancer cells and its increased expression has been associated with 

metastasizing cancer cells (Ripka et al. 2007).  Wnt5a has been shown to be upregulated 

in pancreatic and melanoma cancer (Ripka et al. 2007; Weeraratna et al. 2002), whereas 

in colon and breast cancers Wnt5a was shown to be down regulated (Ying et al. 2008; 

Leris et al. 2005).  The misregulation of Wnt5a appears to involve non-genetic rather than 

genetic changes.  The mechanism for its misregulation is not clearly defined.  To further 

current understanding of Wnt5a regulation, my project goal was to characterize the 

regulation of two alternative Wnt5a promoters in both normal and transformed cells and 

during cellular differentiation.  This study is significant because it will provide insights
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into the alteration of Wnt5a gene expression during cancer progression and further our 

understanding of normal Wnt5a regulation. 

 

Wnt5a and signaling 

WNT5a is a part of the WNT family, a group of cysteine-rich glycoproteins, that 

signals through the cell surface Frizzle transmembrane proteins.  The Wnt signaling 

pathway plays a key role in cell proliferation, movement, differentiation, and polarity 

(Wang et al. 2009; Silver et al. 2009).  The Wnt signaling pathways include the canonical 

(Wnt/beta-catenin) and non-canonical pathways (Silver et al. 2009). 

The canonical pathway is activated by the binding of Wnt ligands to the Frizzle 

receptor and the low density lipoprotein related protein (LRP) co-receptor.  The Frizzle-

family receptors are transmembrane proteins encoded by the gene Frizzle (FZD).  Upon 

binding of Wnt ligands, beta-catenin is hypophosphorylated and translocated to the 

nucleus, where it binds to a family of transcription factors, lymphoid-enhancer-binding 

factor/T-cell-specific transcription factor (LEF/TCF), to activate target gene transcription 

(Nishita et al. 2010; Vidal-Puig et al. 2008).   

The non-canonical pathways, also known as beta-catenin-independent, are 

activated through stimulating intracellular calcium (Calcium Pathway) and activating of 

phospholipase C (PLC) and protein kinase (PKC) (PLP/CE pathway) (Imagawa et al. 

2008).  However, the detailed downstream signaling pathways for the non-canonical 

pathway is still not well understood.  Wnt5a is thought to signal through the non-
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canonical pathway via activating Rho-GTPases RhoA and Rac (Binder et al. 2007).  This 

pathway also exerts an antagonistic effect to the canonical pathway, but in recent 

literatures WNT5a has also been shown to signal in the canonical pathways (Nishita et al. 

2010; Silver et al. 2009).   As a result of its complex signaling pathways, it has been 

difficult to establish a model for the misregulation of Wnt5a in cancers.   

 

Wnt5a and development 

Wnt5a is involved in a variety of developmental and differentiation events.  When 

Wnt5a was functionally inactivated in mice, the outgrowth of limbs were greatly affected 

where truncated limbs and underdeveloped digits were produced as a result of decreased 

mesenchymal progenitor cell proliferation (Yamaguchi et al. 1999).  In one study, the 

expression of Wnt5a was critical in promoting differentiation of interneurons by targeting 

transcription factors D1x homeogenes (Paina et al. 2011).  In the case of Wnt5a 

deficiency, Wnt5a knockout mice displayed defects in the midbrain morphogenesis, such 

as impairment in midbrain elongation and rounded ventricle cavity (Anderson et al. 

2008).  Recent study also showed that Wnt5a deficient mice exhibit retardation in tooth 

development, leading to abnormal teeth formation (Lin et al. 2011).  Collectively, these 

studies suggest the critical role of Wnt5a in cell proliferation and development.   
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Wnt5a and mesenchymal stem cell differentiation 

Studies revealed that Wnt signaling pathways can determine the fate of 

mesenchymal stem cell differentiation into myoblasts, osteoblasts or preadipocytes 

(Vidal-Puig et al. 2008).  As a member of the Wnt family, WNT5a appears to be an 

important regulator of mesenchymal stem cells differentiation into osteoblasts and 

preadipocytes.  In one study, Wnt5a was shown to express at a higher level in human 

mesenchymal stem cells than preadipocytes (Bilkovski et al. 2010).  While the absence of 

WNT5a was shown to abolish osteogenesis from human mesenchymal stem cells, the 

presence of WNT5a inhibits the determination of preadipocyte differentiation from 

human mesencyhmal stem cells (Bilkovski et al. 2010).  Another study indicated that 

Wnt5a expression is necessary for chondrocyte and osteoblast differentiation in mouse 

endochondral skeletal morphogenesis (Wu et al. 2003).   

In the same mesenchymal cell lineage, Wnt5a has been shown to play an 

important role in promoting early stages of adipogenesis.  One study showed that when 

Wnt5a expression is knocked down, adipogenesis is impaired in 3T3-L1 mouse 

fibroblasts.  When 3T3-L1 cells were induced into preadipocytes, Wnt5a expression 

gradually decreased in the first 24 hours but increased after 4 days (Imagawa et al. 2008).  

Contrary to these findings, another study showed that Wnt5a levels remained unchanged 

when human mesenchymal stem cells were differentiated into adipocytes.  Together, how 

Wnt5a expression is regulated during mesenchymal stem cell differentiation, including 
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adipogenesis is not well understood.  Nor are there any published studies on differential 

usage of the alternative Wnt5a promoters. 

 

Wnt5a and cancer 

Wnt5a expression is altered in many cancers, showing both overexpression and 

downregulation.  Previous studies indicated that Wnt5a is downregulated in colorectal 

cancer, leukaemias and neuroblastoma (Silver et al. 2009).  Other studies showed that 

decreased expression of Wnt5a inhibits cell growth, migration, and invasiveness of breast 

carcinomas and prostate cancer cells (Jonsson et al. 2002; Bjartell et al. 2011).   

Overexpression of Wnt5a has also been detected in many cancers associated with 

metastatic behavior, such as gastric cancer (Kurayoshi et al. 2006), melanoma skin 

cancer (Weeraratna et al. 2002), osteosarcoma (Enomoto et al. 2009) and pancreatic 

cancer (Ripka et al. 2007).  When Wnt5a was constitutively expressed in a nonmetastatic 

melanoma cell line, the cell shapes changed to be thin and irregular, and showed 

increased motility and invasion.  In contrast, when the Wnt5a/Frizzled-5 receptor 

signaling pathway was disrupted, the melanoma cells showed a significant decrease in 

their invasion (Weeraratna et al. 2002).  While the level of Wnt5a transcripts was found 

to be increased in the osteosarcoma cell line, Wnt5a and its receptor Ror2 were 

demonstrated to increase the invasive properties of osteosarcoma in a later study (Yokota 

et al. 2003; Enomoto et al. 2009) 
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The paradoxical results from these studies suggest that Wnt5a can be either 

oncogenic or tumor suppressing, depending on the cancer types.  In spite of the important 

role of Wnt5a misregulation in cancer, the molecular basis for Wnt5a overexpression and 

down regulation is not clearly understood. 

 

Mechanism of Wnt5a misregulation in cancer 

 Based on current published data, Wnt5a expression during cancer progression 

does not involve genetic change; rather it could be due to non-genomic change, such as 

DNA methylation (Wang et al. 2007).  Wnt5a has been detected in various cancer tissues, 

and the hypermethylation of WNT5a has been detected in early stages of colorectal 

cancer, myeloid and acute lymphoblastic leukemia (Roman-Gomez et al. 2007.  On the 

contrary , Wnt5a has also been found to be hypomethylated in prostate cancer tissues 

(Wang et al. 2007).  

 Alternatively, evidence from the literature indicates the altered expression of 

Wnt5a in certain cancers involves specific signaling pathways and transcription factors.  

The overexpression of transcription factor, CUTL1, was found to promote cancer cell 

motility and invasiveness by binding to the Wnt5a regulatory sequence and upregulating 

the transcription (Michl et al. 2005; Ripka et al. 2007).  Recent studies also showed that  

NF-kappaB and tumor necrosis factor-alpha (TNF-alpha) are involved in the increase of 

Wnt5a expression in bone marrow stromal cells (Rauner et al. 2011). 
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The Wnt5a gene structure and alternative promoters 

Previous literatures revealed that alternative promoters are commonly used in 

human genes and the average human gene contains 3.1 promoters (Cheong et al. 2006; 

Turner et al. 2008).  The common use of alternative promoters allows diverse gene 

regulations mechanisms to occur, initiating complex activities in the cell.  One example 

from the literature is guanine nucleotide binding protein (GNBP).  GNBP contains ten 

potential alternative promoters that generate transcripts and it has been shown to be 

involved in metabolic regulation and development (Weinstain et al. 2007).  Fibroblast 

growth factor receptor 1 (FGFR1), a cancer driver gene, contains seven alternative 

promoters that are differentially expressed in several diseases including myeloid 

leukemia and myeloid hyperplasia (Roumiantsev et al. 2004).   In spite of the growing 

interests in the use of alternative promoters, little is known about how they are 

differentially regulated.  In relation to this study, nothing is known regarding the 

differential utilization of Wnt5a alternative promoters. 

The human and mouse Wnt5a genes are compared in Table 1 and Figure 1.  Both 

genes have five introns and share similar alternative promoters.  The mouse Wnt5a 

generates six transcripts, whereas human generates eight transcripts.   This study is 

focused on transcripts Wnt5a-201 and Wnt5a-005 for the human and Wnt5a-001 and 

Wnt5a-002 for the mouse.  The structures of these transcripts are shown in Figure 1.  The 

promoters associated with these transcripts as referred to as promoter A (201 and 001) 

and promoter B (005 and 002).  These alternative transcripts give rise to proteins with 
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distinct N-termini.  The promoter A transcript includes 15 and 20 additional amino acids 

for human and mouse, respectively (Table 1).  Both promoter A and promoter B derived 

transcripts contain five exons, except the exon 1 sequences are unique to each 

transcription start site, A and B.  As shown, promoter A (human and mouse) includes 

exon 1a, whereas promoter B includes exon 1b.  These sequences can be used to generate 

unique primers for quantitative RT-PCR analysis. 

  

3T3-L1 cell line and adipogenesis 

 As previously discussed, WNT5a is involved in mesenchymal cell differentiation, 

including adipogenesis.  As a model for adipogenesis, we chose to use the mouse cell line 

3T3-L1.  Using these cells, we investigated the differential utilization of the Wnt5a 

alternative promoters A and B during differentiation.   3T3-L1 mouse fibroblasts belong 

to the mesenchymal stem cell lineage.  Studies suggested that when mesenchymal stem 

cells differentiate into preadipocytes and become committed to the adipocyte lineage, 

they lose the ability to differentiate into other cells in the mesenchymal stem cell family, 

such as myoblasts and osteoblasts (Vidal-Puig et al 2008).  

 3T3-L1 cells can be grown in culture as preadipocytes at subconfluent levels.  To 

induce differentiation, the cells are allowed to become confluent and grow two additional 

days.  At this point, the cells are treated with a mixture of insulin, glucocorticoid, 

dexamethasone and 1-methyl-3-isobutyl xanthane (MIX).  Insulin enhances the 

expression of transcription factor PPARδ.  MIX inhibits cAMP phosphodiesterase, which 
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in turn increases cAMP and ultimately increases transcription factor, C/EBPβ, 

expression.  The presence of the synthetic glucocorticoid, dexamethasone increases the 

level of C/EBPδ.  All these transcription factors are required for adipogenesis.  As a 

result, the confluent 3T3-L1 undergo two more cell divisions and differentiate into 

mature adipocytes. 

  

Project overview 

 Wnt5a plays an important role in cellular development and differentiation and it 

has been shown to be misregulated in various cancers (Silver et al. 2009).  The Wnt5a 

gene contains distinct alternative promoters that generate multiple transcripts and 

functional proteins.  Although many studies have looked at the total Wnt5a transcripts, 

little is known about the regulation of the alternative promoters.  The objective of this 

study is to examine the Wnt5a alternative promoter A and promoter B expression during 

cancer progression and cellular differentiation using osteoblasts, osteosarcoma and 3T3-

L1 cells.  In this study, we 1) selected the unique primer-probe sets that amplify Wnt5a 

promoter A and promoter B transcripts, 2) determined the transcript levels in osteoblasts, 

osteosarcoma and 3T3-L1, and 3) analyzed the activities of separated promoters A and B 

in osteosarcoma cells. 
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Table 1. Comparison of human and mouse Wnt5a genes 

 Human Mouse 

Location Chromosome #3 
55, 499, 743-55, 523, 973 

reverse 

Chromosome #14 
29, 317, 936-29, 340, 633 

forward 
Number of 

total 
Transcripts2 

8 6 

Transcript 
size 

(Name)3 

6042 bp (WNT5A-201) 
1299 bp (WNT5A-005) 

7009 bp (Wnt5a-001) 
3650 bp (Wnt5a-002) 

Proteins 
Produced2 6 2 

Protein 
Length 

(AA) and 
ID4 

380 residues (ID 
#417310) 

365 residues (ID 
#420104) 

380 residues (ID 
#064878) 

360 residues (ID 
#107891) 

N-terminus 
of protein3, 5 MKKSIGILSPGVALG (15) 

MAGSAMSSKFFLVALAIFFS
… 

MKKPIGILSPGVALGTAGGA 
(20) 

MSSKFFLMALATFFSFAQV
V… 

 
 
 

Exons and 
Introns 
(bp)3,6 

 

WNT5A-201 
Exons: 324, 134, 251, 

293, 4835 
Introns: 6061, 1220, 4684, 

3786 
WNT5A-005 

Exons: #1b-63, #5-558 
Introns: #1-412 

 
Wnt5a-001 

Exons: 1365, 134, 251, 
293, 4966 

Introns: 5706, 1184, 
4894, 3903 
Wnt5a-002 

Exons: #1-19, #5-2953 
Intron: #1-399 

 
 
Source is from Ensemble: Human WNT5A ENSG00000114251 and Mouse Wnt5a ENSMUSG00000021994. 2 

The total number of transcripts or proteins generated from the Wnt5a genomic region. 3The two human and mouse 
transcripts that will be analyzed in this study.  Transcript ID is preceded by ENST00000264634 for human or 
ENSMUST000000063465 for mouse.  4 Protein lengths derived from the two transcripts that will be analyzed.  ID 
number is preceded by ENSP000000497027 for human or ENSMUSO00000112272 for mouse.  5Italicized amino 
acid (AA) sequence and the number in parenthesis indicate the additional AA’s and N-terminus on the longer 
transcript (3). The AA sequence of the longer transcript includes all the AA’s shown and is continuous.  Bottom 
sequence includes the N-terminus and first 20 AA of the shorter transcript (3). 6 Only the unique exons and introns 
for the shorter transcript are included; all others are identical to the longer transcript.  (Modified from Katula et al. 
submitted) 
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Figure 1.  Gene structure of human (A) and mouse (B) alternative promoter A 
and promoter B transcript units.  The solid boxes indicate exon sequences.  The 
lines are intron sequences.  The open boxes are non-coding exon sequences.  The 
arrows under the gene structure indicate the relative positions of the transcript primers 
proposed in this study.  The arrows above the gene structure indicate the location of 
the commercial primers used to detect total Wnt5a transcripts. 
 
A. Human 
	  

 
 
 
 
B. Mouse 
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CHAPTER II 
 

MATERIAL AND METHODS 
 
 

Cell line and cell cultures 

In this study, mouse 3T3-L1 preadipocytes, mouse NIH3T3 fibroblasts and 

human osteosarcoma, SaOS-2, cell lines were utilized.  The Set 1 3T3-L1 mouse 

fibroblast cell line was obtained from Dr. Yashomati Patel’s lab (Biology, UNCG).  The 

3T3-L1 cells were grown in high glucose Dulbecco’s modified Eagle’s medium (DMEM) 

containing either 10% fetal bovine serum (FBS) or 10% calf bovine serum (CBS) and 1% 

penicillin/streptomycin (5000 I.U./mL and 5000 µg/mL), depending on the stage of 

differentiation.  The NIH3T3 cells were grown in DMEM containing 10% calf bovine 

serum.  The osteosarcoma cell line, SaOS-2, was obtained from the American Type 

Culture Collection (ATCC).  The cells were grown in McCoy’s 5a Medium containing 

15% fetal bovine serum and 1% penicillin/streptomycin (5000 I.U./mL and 5000 µg/mL).  

All cells were cultured in a 37°C and 5% CO2 humidified incubator. 

 

Differentiation of 3T3-L1 into adipocytes 

Initially, the cells were grown in DMEM medium containing 10% fetal bovine 

serum.  For the purpose of adipocyte differentiation study, cells were fed with DMEM 
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medium containing 10% calf bovine serum and 1% penicillin/streptomycin (5000 

units/µL and 5000 µg/mL).  To begin the adipocyte differentiation study, 3T3-L1 cells 

plated in a T-75 flask were grown to approximately 80% confluency.  The cells were 

collected with trypsin treatment and replated in ten 10 cm dishes.  When the cells were 

approximately 60% confluent, one plate of cells was used for RNA isolation.  These cells 

were labeled “exponential preadipocyte” (EX PA).  After the cells reached approximated 

90% confluency on day 3, the medium was changed and the cells were grown for two 

additional days.  RNA was isolated from cells on the first day of the two days.  These 

served as the time point for “confluent preadipocytes” (CON PA).  The remaining cells at 

two days post confluent were treated with MDI to promote differentiation.  

MDI contains 5 µM of 3-isobutyl 1-methyl-xanthine, 1.7 nM insulin and 1 nM 

dexamethasone.  RNA was isolated from cells two days after MDI treatment.  This 

sample represents the two day post MDI (D2 Post MDI) RNA.  After the two days 

treatment with MDI, the medium was removed and replaced with DMEM containing 

10% fetal bovine serum plus 0.45 nM of insulin.  The cells were allowed to grow until 

differentiation was apparent.  For Set 1, RNA was isolated from differentiated adipocytes 

on day 7, following MDI treatment.  This sample represents the “Diff AD” RNA. 

  

RNA isolation and cDNA synthesis 

 In this study, RNA was isolated from different cultured cells (3T3-L1, NIH3T3 

and SaOS-2) with the SV Total RNA Isolation System (Promega, Inc).  First, the medium 
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was removed from the cells and 5 mL of phosphate-buffer saline (PBS) was added and 

removed.  In some experiments, 5 mL PBS was added to the cells and the cells were 

scraped from the plate.  The cell solution was centrifuged for 5 minutes at setting number 

4 in a clinical centrifuge.  The PBS was removed and the cell pellet was quickly frozen in 

liquid nitrogen and stored at -80 °C.  In other experiments, 175 µL of the RNA Lysis 

Buffer from the RNA isolation kit was added to the pelleted cells and resuspended.  The 

cell lysate was stored at -80 °C.   

 For the RNA isolation, the frozen cell pellets were resuspended in 175 µL RNA 

Lysis Buffer.  The frozen cell lysates already in the RNA Lysis Buffer were allowed to 

thaw on ice.  From this point on, the procedure was identical, following the 

manufacturer’s protocol.  

 The concentration and quality of the RNA were determined by reading the optical 

density (O.D.) values at 260 nm and 280 nm of 2 µL purified RNA, utilizing a nanodrop 

plate reader and the TakeThree Session program from the Gene5TM BioTek (Synergy2) 

reader.  1-3 µg of RNA was converted to cDNA using the QuantiTech Reverse 

Transcription Kit (Qiagen) or Maxima First Strand cDNA Synthesis Kit (Fermenta Life 

Science) according to manufacturer’s instruction. 

 

Primer-probe selection and characterization 

For promoter A transcripts, the exon 1a sequences of mouse and human were 

fused with exon 2.  For promoter B transcripts, the exon 1b sequences were fused with 
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exon 2.  Forward primer selection was restricted to the exon 1a and exon 1b sequences.  

The reverse primer selection was restricted to exon 2.  In addition, the probe selection 

was restricted to sequences in exon 1a or 1b or flanking the exon 1 (a or b) and exon 2 

splice junction. 

The unique sequences for promoter A and B were analyzed using the software, 

TaqMan Quantification, to identify suitable primer and probe sets.  Mouse and human 

Wnt5a promoter transcript sequences were entered into the software, and the melting 

temperature and the GC base pair content (for forward, reverse primers and probe) were 

taken into account during the designing process for each transcript.  The primer-probe 

sets were synthesized by Applied Biosystems, Inc.  The selected primer-probe sets are 

shown in Table 2. 

 

Real time quantitative PCR (qRT-PCR) 

For a general qRT-PCR reaction, a 10 µL reaction was prepared containing 

TaqMan 1X buffer, primer-probe and cDNA.  For most of the qRT-PCR assays, the 

cDNA samples were first diluted 1:5 in water.  Each specific primer-probe and cDNA 

reaction was run in triplicate from a Master Mix.  Essentially, a Master Mix is prepared 

containing a 29.7 µL mixture of specific primer-probe and TaqMan 1X buffer and 3.3 µL 

of cDNA sample.  10 µL of this reaction mix is pipetted into 3 individual wells on the 

reaction plate.  qRT-PCR was conducted in StepOne Real Time PCR System thermal 
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cycling block from Applied Biosystems.  The standard amplification condition were 

95°C for 15 seconds and 60°C for 1 minute for 40 cycles.   

 

Determination of amplification efficiency 

Promoter A and promoter B primer-probes must have similar amplification 

efficiencies for successful quantification of the specific transcript levels.  We determined 

amplification efficiency by running a five-point dilution series standard curve, using the 

PCR products previously generated.  An initial amplification using standard conditions 

was run for both mouse and human primer-probe sets to determine product length.  The 

PCR products were then analyzed on a 2% DNA agarose gel to confirm correct product 

sizes.  Confirming the correct product sizes, the PCR product was purified using Qiagen 

QIAquick PCR purification kit according to the instruction manual.  The O.D. values of 

the purified PCR product were read at 260 and 280 nm and used for determining the 

concentration.    

An initial amplification test was performed using 1µL of the purified PCR 

product in a 10µL qRT-PCR reaction to determine the CT	  (ΔΔCT)	  value	  or	  cycle	  number.  

These cycle numbers then served as a basis for determining the dilution series of the 

standard curve.  A standard curve for PCR product would require a minimum of 5-log 

dilution series with 5 concentration points.  An example of a standard dilution will be 1, 

1:10, 1:100, 1:1,000, 1:10,0000.  
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Once the cycle number was known from the initial test, the range for five 

concentration points were adjusted such that the CT value was between 10 and 32 cycles 

with 3.3 cycles per 1:10 dilution.  Each concentration consisted of three replicas, 

resulting in a total of 30 wells (5 dilutions X 3 replicas X 2 promoter targets).  The data 

generated were entered into Microsoft Excel.  The 3 replica- CT values were averaged and 

used to plot the standard curve. 

Each concentration point was plotted on the x-axis, and the averaged CT value was 

plotted on the y-axis.  Efficiency value was calculated using the equation:  

E = 10^(-1/slope) – 1.   According to Applied Biosystems’ protocol, efficiency values 

between 90 and 100% were considered acceptable (Applied Biosystems, 2008).   

 

Analysis of promoter A and promoter B specific transcripts during 3T3-L1 differentiation 

The staged 3T3-L1 cells were obtained from Dr. Yashomati Patel’s lab (UNCG 

Biology): exponential preadipocyte (EX PA), confluent preadipocyte (CON PA), 

confluent preadipocyte two days after MDI induction (D2 Post MDI), and mature 

adipocyte (Diff AD).  RNA was purified from the cells and converted to cDNA as 

previously described.  The cDNA was diluted 1:5 in water and used for qRT-PCR.  

Primers used for amplification include promoter A and promoter B primer-probe sets, 

GAPDH (Mm03302249_g1) and ribosomal protein large, PO pseudogene, RPLPOP 

3(Mm01974474_gH).  
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For a single real time PCR reaction composing EX PA, CON PA, D2 Post-MDI 

and Diff AD stages, the following are required: 1) EX PA stage’s cDNA with promoter A 

primer (3x replicas), promoter B primer (3x replicas), GAPDH (3xreplicas), ribosomal 

protein (3x replicas); 2) CON PA stage’s cDNA with promoter A primer (3x replicas), 

promoter B primer (3x replicas), GAPDH (3x replicas), ribosomal protein (3x replicas); 

3) D2 Post MDI stage’s cDNA with promoter A primer (3x replicas), promoter B primer 

(3x replicas), GAPDH (3x replicas), ribosomal protein(3x replicas); and 4) Diff AD 

stage’s cDNA with promoter A primer (3x replicas), promoter B primer (3x replicas), 

GAPDH (3x replicas), ribosomal protein (3x replicas); 5) Promoter A standard 5 dilution 

points (3x replicas); 6) Promoter B standard 5 dilution points (3x replicas).  A total of 78 

wells were used for a complete quantification.   

CT values generated from the promoter A and promoter B PCR amplification for 

the standard curve was graphed in Microsoft Excel to generate a standard curve with 

transcript numbers on the x-axis and cycle numbers on the y-axis.   Transcript numbers 

were determined using the known mass amount per reaction and molecular weight of the 

PCR product.  A linear equation was generated from the standard curve.  The linear 

equation allowed us to determine the transcript numbers amplified from promoter A and 

promoter B specific primer-probes by plugging the average CT number into y.   
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Analysis of promoter A and promoter B specific transcripts in osteoblast and 

osteosarcoma 

 
The osteoblasts RNA samples (Catalog C-12720) were purchased from 

PromoCell.  The RNA isolated from the osteosarcoma cells, SaOS-2, and the purchased 

osteoblasts RNA was converted to cDNA and used for qRT-PCR.  

The osteoblasts and osteosarcoma qRT-PCR reactions were set up the same 

fashion as 3T3-L1 with GAPDH (Hs99999905) as internal control.  An assay set 

comparing osteoblast to SaOS-2 RNA consisted of the following: 1) Promoter A PCR 

five diluted concentration points (3x replicas); 2) Promoter B PCR five diluted 

concentration points  (3x replicas); 3) Osteoblast cDNA with promoter A primer (3x 

replicas), promoter B primer (3x replicas), GAPDH (3x replicas); 4) Osteosarcoma 

cDNA with promoter A primer (3x replicas), promoter B primer (3x replicas), GAPDH 

(3x replicas).  A total of 48 wells were used in a complete quantification.  The data were 

analyzed as for 3T3-L1 cells. 

 

Transient transfection and luciferase assay 

Osteosarcoma cancer cells, SaOS-2, were grown to 80% confluency in 24-well 

plates at 2 x 104 cells per well.  Promoter A and promoter B luciferase constructs were 

individually transfected into SaOS-2 cells along with the Renilla control vector (phRL-

SV40) using NanoJuice Transfection Kit (Novagen).  0.5 µL NanoJuiceCore and 0.75 µL 

NanoJuice Booster were used per 20µL transfection mix.  Transfection was performed 
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according to the manufacturer’s protocol.  24-48 hours after transfection, cells were 

collected.  The medium was removed from each well and 500 µL of PBS was added and 

removed to wash the cells.  150 µL of Passive Lysis Buffer (Promega, Inc) was added to 

each well and the plate was incubated at room temperature on a shaker.  The cell lysate 

were assayed for firefly and Renilla luciferase activity utilizing the Dual-Luciferase 

Reporter assay system (Promega, Inc).  20 -30 µL samples from each well were 

transferred to a 96 well black-welled plate.  The samples were assayed for firefly and 

Renilla luciferase activity on a Synergy 2 multimode microplate reader (BioTek). 
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CHAPTER	  III	  
	  

RESULTS	  
	  
	  
Custom design primer and probe sets 
 
 

To amplify the specific transcripts generated by Wnt5a alternative promoter A 

and promoter B in both human and mouse, TaqMan primer-probe sets for qRT-PCR were 

custom designed in conjunction with a previous lab member (Joyner-Powell, N).   The 

primer-probe sets were designed according to the approach described in the Materials and 

Methods section.  The forward primers for both promoter transcripts were located within 

the unique exon sequence 1a and 1b (Figure 1).   The sequences of the forward and 

reverse primer and probes are shown in Table 2.  The probe sequences are homologous to 

sequences either in exon 1 (a or b) plus exon 2, the first and second exons thus flanking 

the splice junction, for the primer-probe sets for mouse promoter A, human promoter A 

and human promoter B.  The probe sequence for mouse promoter B is located in exon 2.  

The locations of primer and probe sequences within the cDNA sequences are shown in 

Figure 2. 

The primer-probe sets were initially tested to confirm the correct sizes of the 

promoter A and promoter B PCR products.  The PCR products generated from the qRT-

PCR reactions were run on a 2% DNA agarose gel (Figure 3A and B).  These results
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confirmed that both human and mouse custom designed primers-probes amplified qRT-

PCR products of the expected size.    
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Figure 2. Location of mouse and human primer-probe sets in exon 1 (a or b) plus 
cDNA sequences.  Forward primer sequence is shown in red. Reverse primer sequence is 
shown in blue.  Probe sequence is shown in Green.  Asterisk * indicates the splice 
junction between exons.  A. Mouse promoter A cDNA.  B. Mouse promoter B cDNA.  C. 
Human promoter A cDNA.  D. Human promoter B cDNA.   
 
      A.     
             Forward       Probe 

  10         20         30         40         50 
            CTTCGCTCGG GTGGCGACTT CCTCTCCGTG CCCCCTCCCC CTCGCCATGA 
            GAAGCGAGCC CACCGCTGAA GGAGAGGCAC GGGGGAGGGG GAGCGGTACT 
    
    
                
              *     60         70         80         90        100 
            AGAAGCCCAT TGGAATATTA AGCCCGGGAG TGGCTTTGGG GACCGCTGGA 
            TCTTCGGGTA ACCTTATAAT TCGGGCCCTC ACCGAAACCC CTGGCGACCT 
   Reverse 
    
  
                   110        120        130        140        150 
            GGTGCCATGT CTTCCAAGTT CTTCCTAATG GCTTTGGCCA CGTTTTTCTC 
            CCACGGTACA GAAGGTTCAA GAAGGATTAC CGAAACCGGT GCAAAAAGAG 
 
                   160        170        180        
            CTTCGCCCAG GTTGTTATAG AAGCTAATTC TTGGTG 
            GAAGCGGGTC CAACAATATC TTCGGTTAAG AACCAC 
    	  
      B.     

     Forward                   *                 Probe 
                    10         20         30         40         50 
            ACTTGTTGCT CCGGCCCAGA AGCCCATTGG AATATTAAGC CCGGGAGTGG 
            TGAACAACGA GGCCGGGTCT TCGGGTAACC TTATAATTCG GGCCCTCACC 

Reverse   
 

                    60         70         80         90        100 
            CTTTGGGGAC CGCTGGAGGT GCCATGTCTT CCAAGTTCTT CCTAATGGCT 
            GAAACCCCTG GCGACCTCCA CGGTACAGAA GGTTCAAGAA GGATTACCGA 
   
  
                   110        120        130        140        150 
            TTGGCCACGT TTTTCTCCTT CGCCCAGGTT GTTATAGAAG CTAATTCTTG 
            AACCGGTGCA AAAAGAGGAA GCGGGTCCAA CAATATCTTC GATTAAGAAC 
 
 
            GTG 
            CAC 
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C.    
                                  Forward  

                   260        270        280        290        300 
            TCCGCTCGGA TTCCTCGGCT GCGCTCGCTC GGGTGGCGAC TTCCTCCCCG  
            AGGCGAGCCT AAGGAGCCGA CGCGAGCGAG CCCACCGCTG AAGGAGGGGC 
   
 Probe 
                   310        320     *  330        340        350 
            CGCCCCCTCC CCCTCGCCAT GAAGAAGTCC ATTGGAATAT TAAGCCCAGG 
            GCGGGGGAGG GGGAGCGGTA CTTCTTCAGG TAACCTTATA ATTCGGGTCC 
   Reverse 
     
                   360        370        380        390        400 
            AGTTGCTTTG GGGATGGCTG GAAGTGCAAT GTCTTCCAAG TTCTTCCTAG 
            TCAACGAAAC CCCTACCGAC CTTCACGTTA CAGAAGGTTC AAGAAGGATC 
 
	  
	  
	  	  	  	  	  	  	  D.	  
   
     
              Forward                        Probe                 * 
                    10         20         30         40         50 
            CTCCTCTCGC CCATGGAATT AATTCTGGCT CCACTTGTTG CTCGGCCCAG 
            GAGGAGAGCG GGTACCTTAA TTAAGACCGA GGTGAACAAC GAGCCGGGTC 
  
 
                    60         70         80         90        100 
            AAGTCCATTG GAATATTAAG CCCAGGAGTT GCTTTGGGGA TGGCTGGAAG 
            TTCAGGTAAC CTTATAATTC GGGTCCTCAA CGAAACCCCT ACCGACCTTC 
                  Reverse 
 
                   110        120        130        140        150 
            TGCAATGTCT TCCAAGTTCT TCCTAGTGGC TTTGGCCATA TTTTTCTCCT 
            ACGTTACAGA AGGTTCAAGA AGGATCACCG AAACCGGTAT AAAAAGAGGA 
  
 
                   160        170        180     
            TCGCCCAGGT TGTAATTGAA GCCAATTCTT GGTG 
            AGCGGGTCCA ACATTAACTT CGGTTAAGAA CCAC 
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Table	  2.	  	  Wnt5a custom designed mouse and human primer-probe sets  

	   Sequence 
(5’   3’)	  

Length 
(base)	  

Product Size 
(bp) 

Mouse 
Promoter A 

   

Forward GTGGCGACTTCCTCTCCGT 19 
Reverse AGTGGCTTTGGGGACCG 17 
Probe CCCCTCGCCATGAAGAAGCCCA 22 

 
85 

Mouse 
Promoter B 

   

Forward ACTTGTTGCTCCGGCCC 17 
Reverse CGGTCCCCAAAGCCACT 17 
Probe AGAAGCCCATTGGAATATTAAGCCCGG 27 

 
62 

Human 
Promoter A 

   

Forward TCGGGTGGCGACTTCCT 17 
Reverse TAACCTTATAATTCGGGTCCTCAAC 25 
Probe CGCCCCCTCCCCCTCGCCATGAAG 24 

 
77 

Human 
Promoter B 

   

Forward CCTCTCGCCCATGGAATT 18 
Reverse CTTCAGGTAACCTTATAATTCGGG 24 
Probe CTGGCTCCACTTGTTGCTCGGCC 23 

 
71 
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Figure 3.  Wnt5a qRT-PCR product sizes.  A. Human primer-probe sets. Lane 1–
Applied Biosystems primer-probe for Wnt5a detects both promoter A and promoter B 
transcripts, 101bp.  Lane 2 – Promoter A primer-probe set, 77bp.  Lane 3 – Promoter B 
primer-probe set, 71bp.  B. Mouse primer-probe sets. Lane 1 – Applied Biosystems 
primer-probe set for Wnt5a, 158bp.  Lane 2 – Promoter A primer-probe set, 85bp.  Lane 
3 - Promoter B primer-probe set, 62bp.  MW – 100 bp molecular weight marker. 
	  
	  

	  	  	  	  	  	  	   	  
A. Human         B. Mouse 
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For successful quantification of transcript levels, promoter A and promoter B 

primer-probes must have similar amplification efficiencies.  We determined amplification 

efficiency by running a four or five-point dilution series standard curve, using the PCR 

products previously generated (Figure 3A and B).  The standard curve generated from 

this reaction (Figure 4A and B) allowed us to calculate the efficiency value of the primers 

by using the equation, E = 10^(-1/slope) – 1.   We obtained efficiency values of 94.5% 

for promoter A and 94.3% for promoter B from human custom designed primer-probe 

sets (Table 3).  The mouse custom designed primers showed efficiency values of 99.5% 

for promoter A and 92% for promoter B.  These amplification efficiency values are 

within the range of 90 – 100 ±10%, indicating that our custom designed primer-probe 

sets are suitable for further experimentation (Applied Biosystems, 2008). 
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Figure 4. Custom designed Wnt5a primer-probe efficiency curves.  Purified PCR 
products generated from qRT-PCR amplification (Figure 2) were diluted from 101 to 104 

or 105 and amplified using the human (A) and mouse (B) specific primer-probe sets for 
promoter A and promoter B.  The Applied Biosystems primer-probe for Wnt5a is also 
shown.  
 

A. 

	  
	  

B. 
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Table 3. Wnt5a custom designed primer-probe amplification efficiency values 
	  
	  

	   Human	   Mouse	  
Promoter A 94.5 ±10 % 99.50 ±10 % 
Promoter B 94.3 ±10 % 92.0 ±10 % 

	  

Mouse Wnt5a promoter A and promoter B transcript levels during differentiation of 3T3-

L1 cells 

The levels of promoter A and promoter B generated transcripts were analyzed 

during cellular differentiation of 3T3-L1 mouse fibroblasts into adipocytes.  3T3-L1 cells 

at different periods of differentiation were obtained from Dr. Yashomati Patel’s lab from 

UNCG Biology Department.  These are referred to as Set 1.  The second set, Set 2, was 

RNA isolated from 3T3-L1 cells at different periods of differentiation, and they were 

obtained from Dr. Ron Morrison’s lab from the UNCG Nutrition Department.  These 

RNA samples were converted to cDNA. 

In the Set 1 experiment, 1 µg of RNA extracted from the cells was utilized per 

cDNA synthesis reaction.  The amplification reaction was 20 µL and the cDNA was 

diluted 1:5.  Hence, each qRT-PCR reaction contained the equivalent of 0.01 µg of RNA.  

The PCR cycle numbers generated from a five-point dilution series for promoter A and 

promoter B were used to generate the standard curve with known molecule numbers of 

PCR template on the x-axis and cycle numbers (CT) on the y-axis (Figure 4).  The 

standard curve equation allows us to calculate the absolute copy numbers of the promoter 

A and promoter B specific transcripts generated from the PCR reaction (Table 4).   



30	  
	  

The transcript copy numbers are compared in the graph shown in Figure 6A and 

B.  Set 1 Promoter A transcripts increased in the confluent cell stage (CON PA) in 

comparison to exponential preadipocytes (EX PA), decreased in the cell stage two days 

after MDI treatment (D2 Post-MDI) and increased again in the differentiated adipocytes 

stage (Diff AD).   

Promoter B transcript levels in Set 1 were similar in exponential (EX PA) and 

confluent (CON PA) preadipocytes (Figure 6B).  Promoter B transcripts decreased two 

days after MDI treatment (D2 Post-MDI), and remained low in differentiated adipocytes 

(Diff AD).  The ratios of promoter A to promoter B transcripts at the different stages of 

cellular differentiation were determined (Figure 7).  In exponential preadipocytes (EX 

PA), there was approximately 10-fold more promoter A transcripts than promoter B 

transcripts.  The ratio of A to B transcripts continued to increase at each stage.  In the 

differentiated adipocytes (Diff AD), there were approximately 120-fold more promoter A 

transcripts than promoter B. 
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Figure 5.  Mouse Wnt5a promoter A and promoter B PCR standard curves.  A. 
Promoter A specific transcript PCR standard curve.  B. Promoter B specific transcript 
PCR standard curve.  X-axis is the absolute copy number of the PCR product in the 
reaction and y-axis is the cycle number. 
 
 
A. 

 

 

B. 
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Table 4. Comparison of 3T3-L1 Set 1 and Set 2 transcript levels. Numbers represent 
number of transcripts per 0.01µg of RNA   

	  

 EX PA1 CON PA2 D1 Post 
MDI3 

D2 Post 
MDI3 Diff. AD4 

Set 1 
Promoter A 5.20E+06 9.31E+06 ⎯ 2.10E+06 8.42E+06 

Set 1 
Promoter B 4.11E+05 4.20E+05 ⎯ 5.21E+04 6.65E+04 

Set 2 
Promoter A 

⎯ 3.76E+06 8.47E+05 1.05E+06 2.85E+06 

Set 2 
Promoter B 

⎯ 1.37E+06 2.03E+05 1.86E+05 1.82E+05 

1. Exponentially growing preadipocytes (3T3-L1) 
2. Confluent preadipocytes (3T3-L1) 
3. One day (D1) and two days (D2) after MDI treatment  
4. Differentiated adipocytes 
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Figure 6.  Promoter A and Promoter B transcript levels during the course of 3T3-L1 
cellular differentiation, from preadipocytes to adipocytes.  Set 1 RNA samples: 
Exponentially growing preadipocytes (EX PA), Confluent preadipocytes (CON PA), Two 
days after MDI treatment (D2 Post-MDI), and Differentiated Adipocytes (Diff AD).  

 
 

 A. 

 
 
 
 

B. 
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Figure 7. Mouse Wnt5a promoter A to promoter B transcript number ratios during 
differentiation of 3T3-L1 cells. The transcript numbers in Table 4 were used to 
determine the A/B ratio at each stage.   

	  

	  
  

To confirm the results from Set 1, we used RNA graciously provided by Dr. Ron 

Morrison (UNCG, Department of Nutrition).  These RNA samples were derived from 

confluent preadipocytes (CON PA), one day after MDI treatment (D1 Post MDI), two 

days after MDI treatment (D2 Post MDI) and differentiated adipocytes (Diff AD).  

Promoter A specific transcripts generated from Set 2 showed similar changes in levels 

during the course of cellular differentiation as in Set 1.  A decrease level in transcripts 

was measured after MDI induction (D1 and D2 Post MDI), and an increase of transcript 

numbers in mature differentiated adipocytes (Diff AD) (Figure 8A).   

After MDI induction, the level of promoter B transcripts decreased significantly 

and remained at the same low level in the mature adipocytes (Diff AD) (Figure 8B).  The 

ratio of promoter A to promoter B transcripts numbers during different stages of 3T3-L1 
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differentiation was similar to Set 1 in that the ratio increased from preadipocytes to 

mature adipocytes.  However, the ratio values were approximately 10-fold less.  This was 

due to there being approximately 10X more promoter B transcripts and the lower level of 

promoter A transcripts in Set 2 than Set 1 (See Figures 7 and 9). 
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Figure 8.  Transcript numbers in 0.01µg of RNA derived from Wnt5a promoter A 
and promoter B during the course of 3T3-L1 differentiation, Set 2. Set 2 RNA 
samples: Confluent preadipocytes (CON PA), One day after MDI treatment (D1 Post-
MDI), Two days after MDI treatment (D2 Post-MDI) and Differentiated Adipocytes (Diff 
AD).   

	  
	  
A. 

	  
	  
	  
	  

 B.  
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Figure 9. Mouse Wnt5a promoter A to promoter B transcript number ratios in 3T3-
L1.  The transcript numbers in Table 4 were used to determine the A/B ratio at each 
stage. 

	  
	  

	  
 

Human Wnt5a alternative promoter A and promoter B transcript levels in osteoblasts and 

osteosarcoma cells 

 
Human Wnt5a promoter A and promoter B transcripts were quantified using the 

same procedure as for the 3T3-L1 cells.  1 µg of RNA extracted from the osteosarcoma 

cells and osteoblasts were utilized per cDNA synthesis reaction and for the qRT-PCR 

reaction.  The qRT-PCR cycle numbers generated from a five-point dilution series for 

promoter A and promoter B specific PCR products were used to generate the standard 

curve (Figure 10 A and B) with known molecule numbers on the x-axis and cycle 

numbers on the y-axis.  The standard curve equation allowed us to calculate the absolute 
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copy numbers of the promoter A and promoter B specific transcripts generated from the 

qRT-PCR reactions (Figure 8A and B; Table 6). 

In osteoblasts cells, the level of promoter A and promoter B transcripts are nearly 

equivalent (6.5x 105 versus 4.4 x 105) (Figure 12; Table 5).  In contrast, there are nearly 

2.33x 103 more promoter A than promoter B transcripts in osteosarcoma cells (Figure 11 

B; Table 5).  In fact, promoter B transcripts were nearly undetectable by qRT-PCR. 

The ratio of promoter A to promoter B transcript numbers in osteoblast and 

osteosarcoma cells is shown in Figure 12.  In osteoblasts, the ratio is nearly 1, whereas in 

osteosarcoma cells, the ratio is 2320:1. 
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Figure 10. Human Wnt5a specific promoter A and promoter B PCR standard curve.  
A. Promoter A specific transcripts PCR standard curve.  B. Promoter B specific transcript 
PCR standard curve.  X-axis is the absolute copy number of the PCR product in the 
reaction and y-axis is the cycle number. 

 
A. 

 
 

B. 
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Figure 11. Numbers of Wnt5a promoter A and promoter B specific transcripts in 
osteoblasts and osteosarcoma RNA.  Number of Wnt5a promoter A and promoter B 
specific transcripts per 0.25 µg RNA. 
 

A. 

 
 

B. 
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Table 5. Wnt5a promoter A and promoter B specific transcripts in 0.25 µg of 
osteoblast and osteosarcoma RNA. 

 

 Osteoblast  Osteosarcoma  

Promoter A  6.46E+05  2.35E+06  

Promoter B  4.43E+05  1.01E+03  

A/B ratio  1.46E+01  2.32E+03  

 

 

Figure 12. Ratio of Wnt5a promoter A to promoter B transcripts in osteoblast and 
osteosarcoma RNA.  The transcript numbers in Table 5 were used to determine the A/B 
ratio. 
 
 

 
	  
	  
	  

 
 

 

 



42	  
	  

Activity of separated promoter A and promoter B in osteosarcoma cells  

Luciferase reporter constructs containing different lengths of human promoter A 

and promoter B upstream sequences were constructed (Katula et al. 2012, submitted) 

(Figure 13). These reporter constructs were transfected into osteosarcoma cells, SaOS-2, 

along with the Renilla control vector, and the promoter activities were expressed as 

Firefly/Renilla relative light units. 

After 48 hours, the cell lysates were collected and assayed for firefly and 

Renilla luciferase activity and the ratio of Firefly/Renilla determined.   For promoter A 

constructs, activity levels varied 2-4 fold.  The reduction in activity for constructs p1358 

and p773 suggests a loss of positive acting sequences between 1707 and 1358 base pairs.  

The increase between p773 and p420 indicates the loss of negative acting sequence in this 

sequence region.  The promoter B constructs expressed at a similar level, indicating the 

sequences for maximum expressions are located within the first 356 base pairs, although 

it is possible that there are negative acting sequences between 1981 and 1257 base pair.  

Most importantly, the level of expression from promoter A and promoter B are nearly 

equal.  This indicates that the lack of promoter B transcripts in osteosarcoma cells (Figure 

12B) is not due to a reduction in promoter B specific transcription factors. 
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Figure 13. Wnt5a human promoter A and promoter B luciferase reporter constructs 
(Katula et al. 2012 submitted).  The numbers are base pair upstream from the first 
nucleotide of the cDNA indicated with the NCBI accession number and is represented by 
the black line.  The boxes are sequences downstream of the first nucleotide.  The 
indicated Hid III and BglII sites were used for cloning.  The scale bar applies only to the 
Wnt5a sequences and not the vector.  The promoter B construct includes a 41 base pair 
intron, unique to the promoter B transcripts. 
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Figure 14. Relative activity levels of human Wnt5a promoter A and promoter B 
deletion constructs in osteosarcoma, SaOS-2 cells.  Each of the constructs shown in 
Figure 11 were transfected into SaOS-2 cells.  pGL4 is the reporter vector without any 
insert. The levels of Renilla and firefly luciferase activity were determined and promoter 
activity expressed as the ratio of firefly to Renilla relative light units.  The bars are +/- 
S.E.M. 
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CHAPTER IV 
 

DISCUSSION 
 
 

Overview 

WNT5a is a secreted glycoprotein that has been shown to be involved in cellular 

development, differentiation and homeostasis.  The Wnt5a gene generates multiple 

transcripts through alternative splicing and different transcription start sites.  These 

transcripts generate different protein isoforms, which are likely to have distinct functions.  

Previous studies have shown that Wnt5a expression is often misregulated during cancer 

progression and increases in metastasizing cancer cells (Silver et al. 2009).  However, the 

molecular mechanisms underlying Wnt5a altered expression are not well understood. 

Also, nothing is known regarding the utilization of the Wnt5a alternative promoters 

during cellular development.  In this study, we examined the transcripts derived from 

Wnt5a transcription start sites termed promoter A and promoter B during cellular 

differentiation by measuring the specific transcripts in different stages of 3T3-L1 mouse 

fibroblasts as they differentiate into adipocytes.  We also measured the specific transcript 

levels during cancer progression using normal human osteoblasts and osteosarcoma cells 

as a model.  In general, our results suggest that the Wnt5a alternative promoters A and B 

are differentially regulated.  We found that promoter A is expressed at a higher level than 



46	  
	  

promoter B and that promoter B transcript levels vary to a greater degree than promoter 

A transcripts. 

 

Custom designed primer-probe sets for Wnt5a alternative promoter A and promoter B 

To amplify specific transcripts derived from promoter A and promoter B, we 

designed TaqMan primer-probe sets for both mouse and human.  Since promoter A and 

promoter B transcripts share the same exon 2, 3, 4, and 5 sequences, the forward primers 

were designed within the unique exon 1a and 1b sequences to amplify target transcripts.  

The unique exon 1b in promoter B sequence is relatively short, 47 bp in human and 52 bp 

in mouse.  However, TaqMan primer sets contain a probe that adds specificity in the 

detection process.  This probe contains the fluorescent tag and must hybridize to its 

specific sequence before a signal can be detected by the instrument.  After the probe is 

annealed to the target sequence, the dye on the probe is removed by the Taq DNA 

polymerase, allowing it to generate fluorescent signals.  Hence, even if the forward and 

reverse primers amplified a nonspecific genomic sequence, these would not be detected 

by the instrument, as the probe would only bind to the correct PCR product.  Also, the 

PCR products generated from the reaction were run on a 2% DNA agarose gel, and the 

results confirmed that our custom designed primer-probe sets were specific and amplified 

the correct fragment sizes (Figure 2).  As such, we are confident that our custom designed 

TaqMan primer-probe sets are detecting promoter A and promoter B transcripts.   
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For a direct comparison of transcript molecules in a given sample it was necessary 

to confirm that the primer-probe sets had the required amplification efficiencies.  We 

determined the efficiency of the custom designed primer-probe sets by running a five 

point dilution standard curve (Applied Biosystems).  According to Applied Biosystems, 

amplification efficiency values between 90 and 100 ±10% are considered efficient.  Our 

results showed that the human promoter A and promoter B primer-probe sets have nearly 

equal efficiency values of 94% (Table 3).  For mouse promoter A, the primer-probe set 

has a higher efficiency value of 99% than the 92.5% from promoter B, but both values 

are still within the range of acceptable efficiency values.  These results confirmed that 

both mouse and human promoter A and promoter B primer-probe sets are suitable for 

comparative studies. 

 

Promoter A and promoter B are differentially regulated during 3T3-L1 differentiation 

As mentioned in the background, Wnt5a has been shown to be expressed in both 

preadipocytes and mature adipocytes (Imagawa et al. 2008).  Although total WN5a levels 

were examined, nothing has been published regarding the transcripts derived from the 

Wnt5a alternative promoters.  In this study, we determined the level of Wnt5a alternative 

promoters A and B transcripts during adipocyte differentiation. 

Our data indicate that promoter A and promoter B are differentially regulated 

during adipocyte differentiation.  Promoter A transcript levels increased in exponential 

preadipocytes and confluent preadipocytes, but decreased two days after MDI treatment 
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and increased in differentiated adipocytes.   In contrast, promoter B transcript levels 

increased in exponential preadipocytes and confluent preadipocytes, decreased two days 

after MDI treatment and remained at a low level in differentiated adipocytes.   

We determined the ratio of A to B transcripts and found that the proportion of A 

transcripts increased continually.   In mature adipocytes, there were nearly 120X more A 

transcripts than B, whereas, in growing preadipocytes, there were 10X more A transcripts 

than B.  These data suggest that the promoter A derived protein isoforms play a greater 

role in mature adipocytes and that both A and B protein isoforms have functions in 

growing adipocytes.  However, this is only speculative as it is not known if the levels of 

protein isoforms correspond to the mRNA levels.   

It is not clear why the determined levels of promoter B transcripts were nearly 10 

fold higher in Set 2 than Set 1 and that promoter A transcripts were 2 to 3 fold lower.  

Together, this leads to smaller differences between A and B in Set 2.  For example, the 

A/B ratio in Set 2 was 2X and 16X in confluent and in mature adipocytes respectively, 

whereas for Set 1, it was 10X and 120X.  It is possible that these differences are due to 

the uniqueness of the cell lines, as the two labs obtained their 3T3-L1 cells from a 

different source.  In addition, there is the possibility that the levels of Wnt5a methylation 

differ in each cell line due to different periods of cell growth.  For example, the lower 

level of promoter B expression in the 3T3-L1 cells from Dr. Patel’s lab could be due to 

more DNA methylation in the promoter B associated CpG islands.  Nevertheless, the 

ratio of A/B from both sets showed a similar pattern of transcript levels, in which both 
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promoter A and promoter B transcript levels decreased after MDI treatment and promoter 

A transcripts increased in mature adipocytes while promoter B transcripts were at a very 

low level. 

 

Wnt5a alternative promoter A and B are differentially regulated in osteoblast and 

osteosarcoma cells 

We examined the level of promoter A and promoter B transcripts in normal 

human osteoblasts and the human osteosarcoma cell line, SaOS-2, as a model for cancer 

progression.  While Wnt5a expression has been shown to be altered in many cancers 

(Silver et al. 2009), the utilization of the alternative promoters during cancer progression 

has not been investigated.  Our results indicated that Wnt5a alternative promoter A and 

promoter B transcript levels are nearly equal in osteoblasts cells.   The similar level of 

promoter A and promoter B transcripts in osteoblast gives the transcript A/B ratio of 1.46 

to 1.  In contrast, promoter B transcripts showed a dramatic decrease in osteosarcoma, 

giving a higher transcript A/B ratio of 2320 to 1.  This result suggests that the increase 

level of promoter A transcripts has functional importance during cancer progression, 

whereas the promoter B transcripts were nearly diminished in osteosarcoma cells.  These 

results are consistent with other findings, where total Wn5a are constitutively expressed 

in the osteosarcoma cancer cells, SaOS-2 (Enomoto et al 2009).   
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Decrease in promoter B transcript levels in osteosarcoma cells is unlikely due to changes 

in transcription factors 

 
In the osteoblast and osteosarcoma qRT-PCR experiment, both promoter A and 

promoter B are expressed at the same level in normal human osteoblasts RNA, with A/B 

ratio close to one.  In contrast, in osteosarcoma cells, promoter B transcript levels 

decreased significantly, resulting in a 1600 fold increase in the A/B ratio.  One 

explanation for the decrease in promoter B transcript level is that transcription factors 

specific to promoter B sequences are reduced in osteosarcoma cells.  However, based on 

our results, this explanation is unlikely.   We transfected the osteosarcoma cells, SaOs-2, 

with luciferase  reporter constructs containing different amounts of promoter A and 

promoter B sequences and found there is no significant difference between the expression 

level of promoter A and promoter B.  If there was a decrease in promoter B specific 

transcription factors in osteosarcoma cells, the expression level of promoter B constructs 

should be reduced relative to expression from the promoter A constructs.  Therefore, our 

results suggest the decreased level of promoter B transcripts is not due to reduced 

transcription factors.  An alternative explanation is that promoter B sequences are being 

epigenetically modified such as DNA methylation.  In fact, the DNA sequences 

associated with the Wnt5a promoter A have been shown to be subjected to methylation 

from DNA (Wang et al. 2007).  There are five putative CpG islands in the promoter B 

upstream sequence regions, and our lab is currently analyzing methylation activities in 

the promoter B region.   
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Functional importance of the Wnt5a alternative promoters 

In general, our results suggest that the Wnt5a alternative promoters A and B are 

functionally important.  First, both human and mouse have conserved promoter A and B 

transcription start sites.  Second, both promoters were found to be active in two different 

cell types, fibroblasts and osteoblasts.  Third, the level of transcripts from promoters A 

and B vary. 

As previously discussed, alternative promoters are common in the human genome 

and provide for diverse gene regulatory patterns at different developmental stages, in 

different cell types and under different environmental conditions.  Wnt5a is involved in a 

variety of developmental events such as tissue homeostasis and cell differentiation.  Thus, 

our results showing differential expression of the Wnt5a alternative promoters are not 

unexpected. 

The mechanisms by which the Wnt5a alternative promoters are regulated are not 

known.  Our results suggest that epigenetic regulation may play a role.  It is interesting to 

note that DNA methylation status of alternative promoters of the same gene may differ 

(Cheong et al. 2006).  CpG islands are associated with both Wnt5a promoter A and 

promoter B upstream sequences, which could contribute to the differential regulation of 

the promoters. Our lab is currently analyzing DNA methylation of the CpG-islands in the 

promoter B region. 

It is known that the transcripts generated from Wnt5a gene produces different 

protein isoforms.  However, little is known regarding the distinct functions of these 
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protein isoforms.  The transcripts derived from promoter A and promoters B are known 

to give rise to distinct protein isoforms (see Table 1).  In this study, we did not address 

the question of whether variations in promoters A and B transcript levels correlate with 

changes in protein levels.  Regardless, it is critical to address this question and to 

examine unique function of the Wnt5a protein isoforms.
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