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Over the past 40 years, much of mathematical �nance has been built on the

premise that stocks tend to move according to continuous-time stochastic processes,

particularly geometric Brownian Motion. However, fuzzy set theory has recently been

shown to hold promise as a model for �nancial uncertainty as well, with continuous

time fuzzy processes used in place of Brownian Motion. And, like Brownian Motion,

fuzzy processes also cannot be measured using a traditional Lebesque integral. This

problem was solved on the stochastic side with the development of Ito's calculus.

Likewise, the Liu integral has been developed to measure fuzzy processes. In this

thesis we will describe and compare the theoretical underpinnings of these models, as

well as "back-test" several variations of them on historical market data.
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CHAPTER I

INTRODUCTION

1.1 Overview and Rationale

Today's �nancial markets trade in a wide variety of �nancial instruments. These

are typically divided into underlying assets (commodities, foreign currency, stocks,

bonds) and derivatives whose values are based on some underlying asset. These

include basic options like call options and put options (the right to buy/sell an asset

at a certain price in the future), as well as more complex instruments like interest-

rate swaps and the now-infamous mortgage-backed securities. Derivatives have many

uses in modern �nancial markets, not only as speculative tools, but also as insurance

against uncertainty. A manufacturer of gold watches might want to insure himself

against a rise in the price of gold by purchasing a call option on gold, and a borrower

could protect themselves from a rise in interest rates by purchasing an interest rate

swap to lock in a particular rate. Because of their profusion and utility in today's

markets, the pricing of these derivatives has become a primary concern of modern

mathematical �nance.

Because a derivative's price is based partly on the future price of the underlying

asset, there is an element of uncertainty involved in pricing. For this reason, pricing

models typically include some amount of randomness. One of the most important

models, the Black Scholes Model [2], is based on the assumption that stock prices can
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be modeled using a stochastic process over a probability space. However, there are

several other approaches to options modeling, including the one proposed by Baoding

Liu [20]. Instead of the traditional probability measure, he de�nes the Credibility

Measure and a "fuzzy process" as a possible model for the movement of stock prices.

This thesis concerns itself with a theoretical and practical comparison of these two

models.

1.2 Organization of Thesis

We begin with a brief overview of probability measure and an introduction to

Brownian Motion and its applications in �nance in Chapter 2. This will introduce the

rationale and formula for the Black Scholes model. This portion of the thesis contains

a review of existing literature on the topic. In Chapter 3 we develop the Credibility

Measure as an alternative measure of uncertainty, and see that fuzzy processes can

also be used in �nancial modeling. This chapter concludes with the derivation of the

Liu model. While signi�cant literature exists on the topic of fuzzy processes ([20],

[14], [15], [18], [17], [16], [5]) this portion of the thesis represents a self-contained,

original axiomatic compilation. In Chapter 4, a quantitative comparison between the

Black Scholes and Liu model is performed, with results and implications discussed in

Chapter 5. In my review of the literature on fuzzy processes in �nance, we have not

encountered a similar comparison. As an appendix, we have included MATLAB code

used for my quantitative comparison.
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CHAPTER II

BLACK SCHOLES MODEL

2.1 Probability Measure

De�nition II.1 (σ-Algebra, [21]). A collection F of subsets of a set Ω is said to be

a σ-algebra in Ω if F has the following properties:

(1) Ω ∈ F .

(2) If A ∈ F then Ac ∈ F , where Ac is the complement of A relative to Ω.

(3) If A =
⋃∞
n=1An and if An ∈ F for n = 1, 2, 3, ...., then A ∈ F .

De�nition II.2 (Probability Space, [3]). A probability space is an ordered triple

(Ω,F , P ), where Ω is any non-empty set, F is a σ-algebra on Ω and P : F → [0, 1] is

a probability measure on F such that

(1) P (Ω) = 1 and P (∅) = 0

(2) for any countable collection {Ai}∞i=1 ⊂ F with Ai
⋂
Aj = ∅, i 6= j:

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (II.1)

We call Ω the sample space, the elements of F events and each element of Ω an

elementary event.
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In de�ning a random variable, we wish to assign a numerical value X(ω) ∈ [0, 1]

to every elementary element ω ∈ Ω.

De�nition II.3 (Measurable function, [21]). Let E be a set and F be a σ-algebra

on E. Then a function X : (E,F) → R is called (Borel) measurable if X−1(B) ∈ F

for all B ∈ BR, where BR is the Borel σ-algebra generated by open intervals in R.

De�nition II.4 (Random Variable, [3]). Let (Ω,F , P ) be a probability space. Then

a Borel-measurable mapping X : (Ω,F , P )→ R is a called random variable.

This allows us to measure the probability that the random variable will take on

values in any B ∈ BR.

De�nition II.5 (Independent Random Variables, [24]). Let (Ω,F , P ) be a probabil-

ity space, with Fi be a sub-σ-algebra for i in some non-empty index set I. Then the

σ-algebras Fi are said to be mutually P-independent if for every subset i1, ..., in ⊂ I

and every choice Aim ∈ Fim , 1 ≤ m ≤ n, we have:

P (Ai1 ∩ .. ∩ Ain) = P (Ai1) ∗ ... ∗ P (Ain) (II.2)

It should be noted that the more traditional de�nition of independence is that

two sets A and B are independent if P (A ∩ B) = P (A)P (B) and that these two

de�nitions are equivalent.

For the purposes of this thesis, we will be considering only discrete time processes

indexed by t ∈ N and continuous time processes indexed over R+ = [0,∞). In any
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case, our index set T will have a natural σ-algebra of Borel sets inherited from R.

Consequently, T × Ω will have a product σ-algebra [21, De�nition 7.1].

De�nition II.6 (Stochastic Process, [10]). Given a probability space (Ω,F , P ), an

index set T (T = N or T = [0,∞)) a stochastic process is a measurable function

X : T × Ω→ R.

In particular, if X is a stochastic process, then

(i) X(t, .) : Ω→ R is a random variable, denoted Xt.

(ii) X(., ω) : T → Ω is a measurable function.

De�nition II.7 (Sample path, [3]). Given a stochastic process X : T × Ω→ R and

ω ∈ Ω, the sample path of ω is a function t→ X(t, ω).

De�nition II.8 (Brownian Motion, [10]). A stochastic process B(t, ω) is called a

Brownian motion if it satis�es the following conditions:

(1) P{ω|B(0, ω) = 0} = 1.

(2) For any 0 ≤ s < t, Bt−Bs is a normally distributed random variable with mean

0 and variance t− s Here, by Bt −Bs we mean a function from Ω to R that to

each ω ∈ Ω assigns a value B(t, ω)−B(s, ω)., s.t. for any a < b

P{a ≤ Bt −Bs ≤ b} =
1√

2π(t− s)

∫ b

a

e−x
2

2(t− s)
dx (II.3)

5



(3) B(t, ω) has independent increments. This means that for any 0 ≤ t1 < t2 <

.. < tn, the random variables

Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1 (II.4)

are independent.

(4) Almost all sample paths of B(t, ω) are continuous functions. This means that

P{ω|B(., ω) is continuous } = 1 (II.5)

Brownian motion provides us with a good framework for describing the behavior of

a stock price - jumps in price occur (particularly in today's computer-driven markets)

nearly instantaneously, and with a large degree of randomness. However, there are

several problems with the use of standard Brownian motion to describe investments.

First, standard Brownian motion can take on negative values, whereas a stock price

does not. Second, �nancial markets do not operate completely randomly - the stock

price tends to "drift" in a certain direction despite its randomness in the short-term.

Thus the geometric Brownian motion was proposed, with the stock price tending to

follow the stochastic di�erential equation [11]:

dSt
St

= µdt+ σdWt (II.6)
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The dt term here represents the change in time over which we are observing the

stock, and mimics a standard di�erential equation. Over time, we see a change in the

price represented by the parameter µ, referred to as drift. This takes into account

the fact that, over time, stocks experience a constant pull upwards, measured as the

rate of return on a risk-less asset.

However, we also have our stock price a�ected by the term σdWt. The dWt here is

the stochastic part of the di�erential equation, and can be described as the change in

the path of a standard Brownian motion over an interval of length t as t→ 0+. This

stochastic element models the random behavior of the future stock price, with the

parameter σ denoting the magnitude of expected uncertainty. The σ used is known as

volatility, which is calculated as the standard deviation of the stock's rate of return,

and though constant in the basic model, can also vary over time and price.

Intuitively, the stochastic di�erential equation provides a good way of explaining

the relationship between the price of the stock and both the deterministic and Brow-

nian elements of its movement. However this equation is really an informal way of

expressing the integral

St+s − St =

∫ t+s

t

µ(Xu, u)du+

∫ t+s

t

σ(Xu, u)dBu (II.7)

where
∫ t+s
t

µ(Xu, u)du is a traditional Lebesgue integral taken over the deterministic

path of our stock's "drift" and
∫ t+s
t

σ(Xu, u)dBu is integrated over the path of a

standard Brownian motion. Because the path of a Brownian motion is nowhere

di�erentiable [10], standard integration cannot produce a solution to the di�erential
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equation. It was only with the work of Ito that such integrals became manageable

through the process of stochastic integration [19]. The steps for constructing the Ito

integral are given a very thorough treatment in Kuo, 2006 [10]. However, the basic

process can be understood in parallel to the construction of the Lebesgue integral

[21].

2.2 European Call Option

The most basic of stock options is the European call option, giving the bearer the

right to buy a given stock at a speci�ed price (called the "strike price" at a speci�c

date in the future (called the "expiration date"). If the price of the stock on the

expiration date (called the "spot price") is greater than the strike price, the bearer

can exercise the option, buy the stock at the strike price, and then sell it at the

current price, netting a gain of (price - strike) on the expiration date. An option that

can be exercised for a gain is called "in-the-money." On the other hand, if the stock

price is lower than the strike price, there is no gain in exercising the option, and it is

called "out-of-the-money." Thus the payo� on a European call option can be de�ned

by max[0, (P −K)]} for K =strike price and P =price at expiration (also referred to

as "spot price").

In order to compute the actual pro�t made on the purchase of such an option, we

also have to take into account the cost of the option. And because the payo� will

not occur until the exercise date at some point in the future, we must consider the

potential interest that could have been earned had the price of the premium been

invested in a risk-free asset for that time period. Thus the pro�t on a call option is

8



given by:

Pro�t = max[0, (P −K)]− Future Value[Option Price] (II.8)

where the future value of money is simply the value of that amount invested at

the risk-free rate for the speci�ed period of time. It is generally calculated using

continuously-compounded interest, so that $A invested at a risk free rate r for t years

would have value $Aert [19].

2.3 Black Scholes Model

Binomial Option Pricing

Consider a stock S, priced at $55, which can take on one of two values at the end

of one year, say $65 and $45. We wish to determine the value of an option expiring

in one year, with strike price K = 50 and assuming a risk-free interest rate of .06. In

order to do this, we will create and price a "synthetic option" by borrowing at the

risk-free rate and purchasing an amount of stock so that, in one year, the payo� to

the synthetic option will be equal to the payo� from the call option. The Law of One

Price [19] states that positions with equal payo�s will have equal price, and so the

price of our synthetic option will be the same as the option we are interested in.

Since our stock can take on only two values, we know that there are two possible

payo�s for our option: Pu = $15 if the stock goes up and Pd = $0 if the stock goes

down (since the option will not be exercised). We want to buy ∆ shares of stock

and "borrow" $B at the risk-free rate r such that our portfolio has equal payo� (a

negative value for $B implies that we will be loaning that amount). Assuming our

9



stock pays a dividend of δ
year

, we see that our ∆ and B must satisfy the equations:

(∆ ∗ 45 ∗ eδ) + (B ∗ er) = 0 (II.9)

(∆ ∗ 65 ∗ eδ) + (B ∗ er) = 15 (II.10)

We can in fact solve for ∆ and B for a stock with current price $S over any period

h. Let Sd be the stock price after a downward move, Su be the price after an upward

move, Pd be the payo� of an option of strike price K after a downward move, Pu the

payo� after an upward move. For u = Su
S
and d = Sd

S
we have [19]:

∆ = e−δh
Pu − Pd
S(u− d)

(II.11)

B = e−rh
uPd − dPc

(u− d)
(II.12)

Call Price = ∆S +B (II.13)

And we see that, in our case (letting δ = 0), ∆ = 1
2
and B = $− 21.1897. Thus our

option would cost ∆S +B = $6.3103.

Needless to say, a single up/down movement per year is not realistic for any stock.

However, as the period h approaches zero, we see not only that the binomial model

begins to look more plausible, but also mimics the random walk on which Brownian

motion is based. It can be shown that, as h → 0+, the prices predicted by the

binomial model are the same as those predicted by the Black Scholes Model [7]. The

interested reader should consult MacDonald's Derivatives Markets [19] for a more
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thorough treatment of the binomial stock model.

Black Scholes Formula, [2]

The solution to the stochastic di�erential equation (II.6) yields a formula for

pricing call options and glsplput (and which can be modi�ed to price a variety of

other options). Inputs for the formula are given in the Table 1

Table 1. Notation for Black Scholes formula (II.14).

Symbol Meaning

S current stock price

K option strike price

σ volatility of stock (calculated as standard deviation of rate of return)

r continuously compounded risk-free annual interest rate

T time to expiration

δ annual dividend yield for stock

The price of a call option is then given by:

Price = Se−δTN(d1)−Ke−rTN(d2), where (II.14)

d1 =
ln( S

K
) + (r − δ + 1

2
σ2)T

σ
√
T

(II.15)

d2 = d1 − σ
√
T (II.16)
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and N(x) is the cumulative distribution function for the Normal distribution, de�ned

[19]

N(x) =
1

σ
√

2π

∫ x

−∞
exp

(
−t2

2

)
dt (II.17)

which represents the probability that a standard normal random variable will take

a value in the interval (−∞, x].

Assumptions of Black Scholes

The original Black-Scholes formula (II.14) is based on a set of assumptions about

the �nancial markets in which the option is traded.

(1) There is a constant, known interest rate at which it is possible to lend and

borrow cash.

(2) It is possible to buy and sell any amount, including fractions of shares, of stock.

(3) There are no transaction costs (such as brokerage fees or bid-ask spreads).

(4) The stock price follow geometric Brownian motion with a constant volatility

and a drift that is both constant and equal to the risk free rate.

While these assumptions render the formula somewhat impractical, more current

developments have been made to account for violations of these assumptions in the

real world. Newer models, for example, include a term for continuous dividend yield,

and other extensions have been made to handle discrete dividends and non-constant

12



volatility. Particularly, it has been theorized that a stock's volatility, rather than

remaining constant, behaves stochastically.

2.4 Stochastic Volatility

There are several extensions which allow for stochastic volatility within the orig-

inal Black Scholes framework. Hull and White [8] and Wiggins [28] developed early

extensions in which volatility behaves stochastically, but is uncorrelated to spot price.

These models have shown to behave similarly to Black Scholes, though with slightly

better accuracy on options with longer time to maturity [8], [28]. Another impor-

tant stochastic volatility model was then developed by Heston [6] who added the

assumption that volatilities are not only stochastic, but correlated with spot price.

These more sophisticated models can often provide a higher degree of predictive

accuracy than the original Black-Scholes model. However, the purpose of this thesis

is not forecasting, but rather to gain insight into the behavioral di�erences between

stochastic and fuzzy processes. Thus we restrict ourselves to models with constant

volatility for both simplicity and clarity.

Having now described the basic probabilistic models for option pricing, we move

to those models established through fuzzy set theory.
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CHAPTER III

LIU MODEL

3.1 Credibility Measure

Zadeh [29] initially introduced the possibility measure to deal with fuzzy events,

assigning a value between 0 and 1 to a fuzzy event based on its "grade of membership."

However, the possibility measure lacks the very useful property of self-duality (i.e.

Pos {A} + Pos {Ac} 6= 1 for all A ⊂ Ω), and so Liu and Liu [18] proposed the

credibility measure as an alternative way to measure fuzzy events.

It should be noted that the possibility and credibility "measures" referred to in

this thesis do not adhere to the countable additivity of traditional measure theory.

For this reason, we cannot use the framework of standard measure theory, and must

instead establish several useful properties axiomatically.

We construct credibility in terms of possibility, and thus some information about

the possibility measure is �rst necessary.

De�nition III.1. For a set Ω and its power set P(Ω), we de�ne a function Pos :

P(Ω)→ [0, 1] to be a possibility measure if:

(1) Pos {Ω} = 1

(2) Pos {∅} = 0

(3) Pos {
⋃
iAi} = supi Pos {Ai} for any countable collection {Ai} in P(Ω)
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De�nition III.2. For a set Ω and its power set P(Ω), we de�ne the necessity of a

set A ∈ P(Ω) to be Nec{A} = 1− Pos {Ac}.

In order to create a possibility measure, let us take a function µ : Ω→ [0, 1] with

sup
x∈Ω

µ(x) = 1. (III.1)

For example let Ω = [0, 2] and µ(x) = x
2
.

Theorem III.3 (Existence of a Possibility measure). Let µ : Ω→ [0, 1] is a function

satisfying (III.1). Then the function Pos : P(Ω)→ [0, 1] de�ned by

Pos {A} = sup
x∈A

µ(x) (III.2)

is a possibility measure.

Proof. 1. Pos {Ω} = supx∈Ω µ(x) = 1.

2. Pos {∅} = 0 by convention i.e. supx∈∅ µ(x) = 0.

3. We begin by letting

α = Pos

{⋃
i

Ai

}
= sup

x∈
⋃∞
i Ai

µ(x) (III.3)

and

β = sup
i
Pos {Ai} = sup(sup

x∈Ai
µ(x)). (III.4)
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Now assume, by way of contradiction, that α 6= β. If α < β then there must

be i0 such that supx∈Ai0 µ(x) > α = supx∈⋃Ai
µ(x) But this is impossible because

Ai0 ⊂
⋃
Ai.

We then consider the case of α > β. This implies that α + ε0 = β for some

ε0 > 0. α = supx∈⋃∞i Ai
µ(x) and so for ε0

2
there exists some x0 ∈

⋃∞
i Ai such that

|α− µ(x0)| < ε (or else α would not be the least upper bound). This implies that

µ(x0) > α− ε0
2
> β = sup(sup

x∈Ai
µ(x) for all i ∈ N). (III.5)

But x0 is in some Ai and so we have a contradiction. Thus we have α = β.

Theorem III.4. For A ⊂ B ⊂ Ω, Pos {A} ≤ Pos {B}.

Proof. Assume, by way of contradiction, that Pos {A} > Pos {B}, say Pos {A}+ε0 =

Pos {B} with ε0 > 0. Then for ε0
2
there must exist x0 ∈ A s.t |Pos {A}− µ(x0)| < ε0

2
.

Then for x0 ∈ A ⊂ B we have µ(x0) > supx∈B µ(x), a contradiction. Thus Pos {A} ≤

Pos {B}.

Corollary III.5. If Pos {A} < 1, then Pos {Ac} = 1.

Proof. (A
⋃
Ac) = Ω and so Pos {A

⋃
Ac} = Pos {Ω} = 1. But

Pos
{
A
⋃

Ac
}

= sup(Pos {A} ,Pos {Ac}) (III.6)

and Pos {A} < 1 so Pos {Ac} = 1.
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Now that we have constructed a Possibility Measure, we will use it to create a

Credibility Measure. First we outline the properties that we wish for our Credibility

Measure to have.

De�nition III.6 (Credibility Measure, [20]). For a set Ω and its power set P(Ω),

with A,B ∈ P(Ω) , we de�ne a function Cr : P(Ω)→ [0, 1] to be a credibility measure

if it satis�es the following conditions:

Axiom 1. Normality: Cr {Ω} = 1.

Axiom 2. Monotonicity: Cr {A} ≤ Cr {B} whenever A ⊂ B ⊂ Ω.

Axiom 3. Self-Duality: Cr {A}+ Cr {Ac} = 1 for any A ⊂ Ω.

Axiom 4. Maximality: Cr {
⋃
iAi} = supiCr {Ai} for any countable collection {Ai}

with supiCr {Ai} < 0.5.

We now show that a Credibility Measure exists.

Theorem III.7 (Existence of credibility Measure). Let Ω be a set, µ : Ω → [0, 1]

satisfying (III.1) and Pos be a function given by (III.2). Then a function Cr :

P(Ω)→ [0, 1] for A ∈ P(Ω), de�ned by

Cr {A} =
1

2
(Pos {A}+ 1− Pos {Ac}) (III.7)

is a credibility measure on Ω.

Proof. We now show that a function, de�ned by (III.7), satis�es the four axioms

above.
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Normality: Cr {Ω} = 1
2
(Pos {Ω}+ 1− Pos {∅}) = 1

Monotonicity: Take any A,B ∈ P(Ω) with A ⊂ B. Then, by (III.4) Pos {A} ≤

Pos {B}. We also have Bc ⊂ Ac and so

(1− Pos {Ac}) ≤ (1− Pos {Bc}). (III.8)

(Pos {A}+ 1− Pos {Ac}) ≤ (Pos {B}+ 1− Pos {Bc}) (III.9)

And thus Cr {A} ≤ Cr {B}

Self-Duality:

Cr {A}+ Cr {Ac} =

1

2
(Pos {A}+ 1− Pos {Ac}) +

1

2
(Pos {Ac}+ 1− Pos {A})

=
1

2
(2) = 1

Maximality(Cr {
⋃
iAi} = supiCr {Ai} for countable {Ai} with supiCr {Ai} <

0.5):

If Cr {
⋃
iAi} < 0.5 then

Pos

{⋃
i

Ai

}
< Pos

{
(
⋃
i

Ai)
c

}
. (III.10)
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Then by Corollary 1 we have

Pos

{
(
⋃
i

Ai)
c

}
= 1⇒ Cr

{⋃
i

Ai

}
=

1

2
Pos

{⋃
i

Ai

}
(III.11)

=
1

2
sup
i
Pos {Ai} = sup

i
Cr {Ai} (III.12)

And so we have

Cr

{⋃
i

Ai

}
= sup

i
Cr {Ai} (III.13)

We see that credibility is de�ned as the average of a subsets possibility and ne-

cessity.

Lemma III.8. Let Pos be possibility and Cr be given by (III.7). For A ⊂ Ω with

Cr {A} < 0.5, then Pos {A} < Pos {Ac}.

Proof. For Cr {A} = 1
2
(Pos {A} + 1 − Pos {Ac}) < 0.5 we have (Pos {A} + 1 −

Pos {Ac}) < 1 and so Pos {A} < Pos {Ac}.

Theorem III.9. [14] Possibility measures and credibility measures are uniquely de-

termined by each other via (III.7). Furthermore:

Pos {A} = (2Cr {A}) ∧ 1 (III.14)

for any A ⊂ Ω.
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Proof. We have already determined a credibility measure using possibility (III.7).

Now we wish to show that if two possibility measures, Pos1 {A} and Pos2 {A}, both

give the same credibility, then these possibility measures must be equal i.e. if for all

A ⊂ Ω

Cr {A} =
1

2
(Pos1 {A}+ 1− Pos1 {Ac}) and (III.15)

Cr {A} =
1

2
(Pos2 {A}+ 1− Pos2 {Ac}), (III.16)

then Pos1 {A} = Pos2 {A} .

Fix A ⊂ Ω

Case 1: (Pos1 {A} = 1 and Pos2 {A} < 1)

If Pos2 {A} < 1 then Pos2 {Ac} = 1 ⇒ Pos2 {A} − Pos2 {Ac} < 0. Then for

Pos1 {A} = 1 we have Pos1 {Ac} ≤ 1 ⇒ Pos1 {A} − Pos1 {Ac} ≥ 0. Then by our

assumption

1

2
(Pos1 {A}+1−Pos1 {Ac}) =

1

2
(Pos2 {A}+1−Pos2 {Ac}), which implies (III.17)

Pos1 {A} − Pos1 {Ac} = Pos2 {A} − Pos2 {Ac} (III.18)

and so we have

Pos1 {A} − Pos1 {Ac} ≥ 0 > Pos2 {A} − Pos2 {Ac} (III.19)
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This contradicts our assumption of equality. Similar reasoning works if Pos {A}1 <

1 and Pos {A}2 = 1.

Case 2: (Pos1 {A} < 1 and Pos2 {A} < 1): Pos1 {A} < 1 and so by Corollary 1

we have Pos1 {Ac} = 1. By the same reasoning, Pos2 {A} < 1 implies Pos2 {Ac} = 1.

By our assumption that

1

2
(Pos1 {A}+ 1− Pos1 {Ac}) =

1

2
(Pos2 {A}+ 1− Pos2 {Ac}), (III.20)

we now have Pos1 {A} − 1 = Pos2 {A} − 1 or Pos1 {A} = Pos2 {A}.

And so possibility is uniquely determined by credibility.

Now we wish to show Pos {A} = (2Cr {A})∧ 1. First consider the case Cr {A} <

0.5. This implies that Pos {A} < Pos {Ac}, and so by Corollary 1 Pos {Ac} = 1 and

so Pos {A} = 2Cr {A}. For Cr {A} ≥ 0.5, by (III.7) we must have Pos {A} = 1 and

thus Pos {A} = (2Cr {A}) ∧ 1.

De�nition III.10 (Fuzzy Variable [20]). A fuzzy variable is a function from a cred-

ibility space (Ω,P(Ω), Cr) to the set of real numbers. [16]

De�nition III.11 (Membership Function [20]). Let ξ be a fuzzy variable de�ned on

the credibility space (Ω,P(Ω), Cr). Then it's membership function is de�ned by

µξ(x) = (2Cr {ξ = x}) ∧ 1 (III.21)
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Theorem III.12 (Credibility Inversion Theorem, [17]). Let ξ be a fuzzy variable with

membership function µξ. Then for any B ⊂ R

Cr {ξ ∈ B} =
1

2

(
sup
x∈B

µξ(x) + 1− sup
x∈Bc

µξ(x)

)
(III.22)

Where Cr {ξ ∈ B} represents the "likelihood" that the fuzzy variable ξ will take a value

in B.

We have thus far shown that there exist unique relationships between a credibility

measure, possibility measure and membership function. Given one of these three, we

can uniquely determine the other two.

De�nition III.13. A fuzzy variable ξ is said to be normally distributed if it has

associated membership function:

µξ(x) = 2

(
1 + exp

(
π|x− α|√

6σ

))−1

(III.23)

De�nition III.14 (Independent Fuzzy Variables [13]). Fuzzy sets ξ1, .., ξn are said

to be independent if

Cr

{
n⋂
i=1

ξi ∈ Bi

}
= min

1≤i≤n
Cr {ξi ∈ Bi} (III.24)

for all Bi ∈ P(Ω).
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De�nition III.15 (Identically-Distributed Fuzzy Variables [13]). Two fuzzy variables

ξ and ν are said to be identically-distributed if

Cr {ξ ∈ B} = Cr {ν ∈ B} (III.25)

for all B ∈ P(Ω).

De�nition III.16 (Expected Value, [18]). For a fuzzy variable ξ, the expected value

is de�ned by

E [ξ] =

∫ +∞

0

Cr {ξ ≥ r} dr −
∫ 0

−∞
Cr {ξ ≤ r} dr (III.26)

so long as at least one of the integrals is �nite. If both integrals are in�nite, the

expected value is unde�ned.

Theorem III.17. [27] Let ξ be a continuous fuzzy variable with membership function

µξ. If the expected value exists, and there is a point x0 such that µξ(x) is increasing

on (−∞, x0) and decreasing on (x0,+∞), then

E [ξ] = x0 +
1

2

∫ +∞

x0

µξ(x)dx− 1

2

∫ x0

−∞
µξ(x)dx (III.27)

Proof. Consider x0 ≥ 0. Then by (III.12) we have

Cr {ξ ≥ r} =
1

2

(
sup

x∈R|x≥r
µξ(x) + 1− sup

x∈R|x<r
µξ(x)

)
(III.28)
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By our assumption, µξ(x0) > µξ(x)∀x ∈ R and so µξ(x0) = 1. Thus for 0 ≤ r ≤ x0

we have Cr {ξ ≥ r} = 1
2

(1 + 1− µξ(x)). For x0 < r we have supx∈R|x<r µξ(x) = 1

which implies Cr {ξ ≥ r} = 1
2
µξ(x). Likewise, x0 6∈ (−∞, 0) and so Cr {ξ ≤ r} =

1
2
µξ(x) for r < 0. We can now re-write

E [ξ] =

∫ +∞

0

Cr {ξ ≥ r} dx−
∫ 0

−∞
Cr {ξ ≤ r} dx (III.29)

=

∫ x0

0

Cr {ξ ≥ r} dx+

∫ +∞

x0

Cr {ξ ≥ r} dx−
∫ 0

−∞
Cr {ξ ≤ r} dx

=

∫ x0

0

(1− 1

2
µξ(x))dx+

∫ ∞
x0

1

2
µξ(x)dx−

∫ 0

−∞

1

2
µξ(x)dx

=

∫ x0

0

1dx−
∫ x0

0

1

2
µξ(x)dx+

∫ ∞
x0

1

2
µξ(x)dx−

∫ 0

−∞

1

2
µξ(x)dx

= x0 +

∫ ∞
x0

1

2
µξ(x)dx−

∫ x0

−∞

1

2
µξ(x)dx

Similar reasoning show this to be true for x0 < 0.

Lemma III.18. Let ξ be a continuous fuzzy variable with membership function µξ.

If the expected value exists, and there is a point x0 such that µξ(x) is increasing on

(−∞, x0) and decreasing on (x0,+∞), with µξ(x) symmetrical on the line x = x0 we

have E [ξ] = x0.

Proof. By (III.17), we know that E [ξ] = x0 +
∫∞
x0

1
2
µξ(x)dx−

∫ x0
−∞

1
2
µξ(x)dx. Likewise,

because µξ(x) is symmetrical about x0 we know that µξ(x0 + x) = µξ(x0− x)∀x ∈ R.
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This means that
∫∞
x0

1
2
µξ(x)dx =

∫ x0
−∞

1
2
µξ(x)dx and the proof is complete.

Theorem III.19. For a fuzzy variable ξ with normal membership function (III.23),

we have E [ξ] = α.

Proof. Using the theorem and lemma above, we need only to show that µξ(x) =

2
(

1 + exp
(
π|x−α|√

6σ

))−1

is increasing on (−∞, α), decreasing on (α,+∞) and sym-

metric about α. We begin by calculating the derivative of µξ(x).

µ′ξ(x) =

√
2
3
π(α− x)e

π
√

(α−x)2√
6σ

σ
√

(α− x)2

(
e
π
√

(α−x)2√
6σ

)2 (III.30)

This equation is positive for x ∈ (−∞, α) and negative for x ∈ (α,+∞) and equals

zero at x = α. Likewise, looking at µξ(x), we see that µ(α + x) = µ(α − x)∀x ∈ R

and so the proof is complete.

De�nition III.20 (Variance, [18]). Let ξ be a fuzzy variable with �nite expected

value α. Then the variance of ξ is de�ned by Var [ξ] = E [(ξ − α)2] .

Example III.21. Let ξ be a fuzzy variable with normal membership function

µξ(x) = 2

(
1 + exp

(
π|x− α|√

6σ

))−1

(III.31)
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Then the variance of ξ is calculated:

Var [ξ] = E
[
(ξ − e)2

]
=

∫ ∞
0

Cr
{

(ξ − α)2 ≥ r
}
dr

=

∫ ∞
0

Cr
{

(ξ ≥ α +
√
r) ∪ (ξ ≤ α−

√
r)
}
dr

=

∫ ∞
0

Cr
{

(ξ ≥ α +
√
r)
}
dr

=

∫ ∞
0

(
1 + exp

π
√
r√

6σ

)−1

dr

=
12σ2

π2

∫ ∞
0

r

1 + exp r
dr

=
12σ2

π2

π2

12
= σ2

3.2 Liu Process

De�nition III.22 (Fuzzy Process, [17]). Let T be an index set and let (Ω,P , Cr)

be a credibility space. A fuzzy process is a function from T x (Ω,P , Cr) to the set of

real numbers.

De�nition III.23 (Independent Increments, [17]). A fuzzy process Xt is said to have

independent increments if

Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtk −Xtk−1
(III.32)

are independent fuzzy variables for any times t0 < t1 < ... < tk.
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De�nition III.24 (Stationary Increments, [17]). A fuzzy process Xt is said to have

stationary increments if, for any given t > 0, the Xs+t−Xs are identically distributed

fuzzy variables for all s > 0.

De�nition III.25 (Liu Process, [17]). A fuzzy process Ct is said to be a Liu process

if:

(1) C0 = 0,

(2) Ct has stationary and independent increments,

(3) every increment Cs+t−Cs is a normally distributed fuzzy variable with expected

value αt and variance σ2t2 whose membership function is

µ(x) = 2

(
1 + exp

(
π|x− α|√

6σ

))−1

(III.33)

The Liu process takes parameters α (called the drift co-e�cient) and σ (called

the di�usion coe�cient), and for α = 0 and σ = 1 we have a "standard Liu process."

We see that the Liu process bears a strong resemblance to the probabilistic Brownian

motion discussed earlier. Both start at 0, and have independent, stationary incre-

ments which are "normally" distributed over their respective measure spaces. The use

of normally distributed variables is not arbitrary. It is based on the Maximum En-

tropy Principle, [9], which directs us to choose the appropriate distribution (given the

known parameters) which maximizes the amount of entropy. By maximizing entropy,

we minimize the amount of "known" information that is built into our distribution.
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For a discrete random variable with n outcomes, entropy is de�ned to be [22],

H = −
n∑
i=1

pi log pi (III.34)

Where pi represents the probability of the ith outcome. The discrete case can be

extended to continuous probability distributions with probability density function

p(x) by the formula [22]

H = −
∫ +∞

−∞
p(x) log p(x)dx (III.35)

It can then be shown that, given a distribution with two parameters, the normal

distribution maximizes entropy [25]. In a similar spirit, Li and Liu [12] de�ne the

entropy of a continuous fuzzy variable ξ to be

H[ξ] =

∫ +∞

−∞
S(Cr {ξ = x})dx (III.36)

where S(t) = −t ln t− (1− t) ln (1− t).

Theorem III.26. [15]For a continuous fuzzy variable ξ with two �nite parameters,

expected value α and variance σ2

H[ξ] ≤
√

6πσ

3
(III.37)

with equality if ξ is a normally distributed fuzzy variable with the given expected value

and variance.
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Theorem III.27 (Existence, [17]). There is a Liu process.

3.3 Liu's Stock Model

The primary assumption of Liu's model for pricing european options is that stock

prices tend to follow a geometric Liu process. The geometric Liu process provides two

modi�cations to the original Liu process which make it more suitable for the modeling

of stock prices. First, the geometric process, like stock prices, will never take on a

negative value. Second, the process includes a constant "drift" term, which re�ects

the belief that stock prices, like the market as a whole, will trend slightly upwards

over time regardless of short-term �uctuations.

De�nition III.28 (Geometric Liu Process, [17]). Let Ct be a standard Liu process.

Then αt+ σCt is a Liu process, and the fuzzy process

Gt = exp(αt+ σCt) (III.38)

is called a geometric Liu process.

In applications to stock modeling, α is the constant drift of the stock, and σ rep-

resents the di�usion or volatility of the stock, traditionally calculated as the standard

deviation of the stock's rate of return [19]. Using these assumptions, we can obtain a

model for the risk-free bond price Xt and stock price Yt given by:

dXt = rXtdt (III.39)

dYt = αYtdt+ σYtdCt (III.40)
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These "fuzzy di�erential equations" mimic the stochastic di�erential equations on

which the Black-Scholes model was built, in that they combine the deterministic

element of constant drift with the uncertainty of a fuzzy/brownian process. Likewise,

fuzzy processes cannot be handled using the tools of standard calculus, and so Liu

developed the Liu Integral and Liu Formula to �nd solutions to fuzzy di�erential

equations. We describe brie�y the Liu Integral and direct the interested reader to

[20].

De�nition III.29 (Liu Integral). Let Xt be a fuzzy process and let Ct be a standard

Liu process. For any partition of [a, b] with a = t1 < t2 < ... < tk+1 = b we write the

mesh as

∆ = max
1≤i≤k

|tk+1 − tk|

We then de�ne the Liu integral of Xt with respect to Ct as

∫ b

a

XtdCt = lim
∆→0+

k∑
i=1

Xti(Cti+1
− Cti) (III.41)

We noted earlier that the payo� of a European call option at time T is (YT −

K)
∨

0, where YT is the price at time t. Thus the current value of the option (taking

into account time value of money at a continuously compounded interest rate r) is

exp(−rT )(YT − K)
∨

0. Using Liu's model for the expected value of (YT − K) we

de�ne the option price to be:
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De�nition III.30. [20] The European call option price f for Liu's stock model is

f(Y0, K, α, σ, r) = exp(−rT )E [(Y0 exp(αT + σCT )−K)] (III.42)

Solving (III.42) we get the integral form below.

Theorem III.31. [20]The price of a European call option based on Liu's stock model

is

f(Y0, K, α, σ, r) = Y0 exp(−rT )

∫ +∞

K/Y0

1

1 + exp
(

π√
6σT

(ln(x)− αT )
)dx (III.43)

Proof. Using the de�nition of expected value for a fuzzy variable (III.16), we see that

f(Y0, K, α, σ, r) = exp(−rT )E [(Y0 exp(αT + σCT )−K)]

= exp(−rT ) ∗ [

∫ +∞

0

Cr
{

(Y0 exp(αT + σCT )−K)+ ≥ x
}
dx

+

∫ 0

−∞
Cr
{

(Y0 exp(αT + σCT )−K)+ ≤ x
}
dx

= exp(−rT ) ∗
∫ +∞

0

Cr
{

(Y0 exp(αT + σCT )−K)+ ≥ x
}
dx

= Y0 exp(−rT ) ∗
∫ +∞

0

Cr

{
(exp(αT + σCT )− K

Y0

)+ ≥ x

}
dx

= Y0 exp(−rT ) ∗
∫ +∞

K
Y0

Cr {(exp(αT + σCT )) ≥ u} du

= Y0 exp(−rT ) ∗
∫ +∞

K
Y0

exp( πα√
6σ

)

exp( πα√
6σ

) + exp(π ln(x)√
6σT

)
dx

= Y0 exp(−rT )

∫ +∞

K/Y0

1

1 + exp
(

π√
6σT

(ln(x)− αT )
)dx
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As was the case with Black-Scholes, the Liu model is a somewhat simpli�ed version

of real-world market behavior. For this reason, several extensions of the Liu model

have been created.

3.4 Gao's Stock Model

One feature of stock price paths is the behavior of "mean reversion." This occurs

when a stock has a tendency to move back towards a certain mean price, with the rate

of movement proportional to the di�erence between the current price and mean. This

type of behavior was �rst modeled by Black and Karasinski [1], and Gao presents the

fuzzy counterpart [5]. The Gao model is based on the fuzzy di�erential equations:

dXt = rXtdt (III.44)

dYt = a(b− Yt)dt+ σdCt (III.45)

We see, as usual, Xt, the price of a risk-less asset, moving simply according to interest

rate and time. However, instead of de�ning the deterministic (non-fuzzy) element of

the stock price simply in terms of overall drift, we instead show that it varies according

to a (a type of drift) and the term (b− Yt) indicating that the stock has a tendency

to move back towards some central price. We can then solve to determine the prices

of call and put options using this model.
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For simplicity, let Q1 =
√

6π(1−exp(−aT )))
(πa)

and Q2 = K − b− exp(−aT )(Y0 − b).

Theorem III.32. [20] The price of a European call option for Gao's stock model is

given by

exp (−rT )

[
Q1 ∗ ln

(
1 + exp

Q2

Q1

)
−Q2

]
(III.46)

for T the expiration date and K the strike price.
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CHAPTER IV

QUANTITATIVE COMPARISON

4.1 Purpose

The purpose of the quantitative comparison is two-fold. First, we are interested in

testing whether or not the models provided by Liu and Gao are functional in the most

basic sense. Do they predict prices which remain close to the actual values of call

options? Second, we are interested in comparing the fuzzy models to the traditional

stochastic models. Because the Liu model, in particular, uses the same parameters

and market assumptions as Black Scholes, we hope that a comparison of the two will

provide some insight into the di�erences and similarities between fuzzy and stochastic

continuous-time processes.

4.2 Procedure

In order to evaluate the models, we set up a simple experiment using MATLAB

and an on-line stock price database (Yahoo Historical Stock Data). Using interest

rate data from the Federal Reserve and daily closing prices from the Yahoo Database,

we pick a starting date and strike price and calculate both Black-Scholes and Liu

prices for options expiring on each day following (the hypothetical expiration dates),

up to a speci�ed cut-o� date. In order to account for dividend payments, we use

the "Adjusted Closing" price, which adjusts for dividend payments and stock splits.

Since we are using historical data, we are also able to easily calculate the actual
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value of these options, had they been purchased on the starting date. If the closing

price is greater than the strike price, the value is simply $ exp (−rT ) ∗ (Strike −

Closing Price), and if the closing price is less than the strike, the option will not

be exercised and so the value is $0. What this yields (for each stock) is two lists of

predicted values (one for Black-Scholes and one for Liu) and a list of actual values.

On each day, the di�erence between predicted and actual values is calculated, and

used to generate two measures of accuracy:

De�nition IV.1. The Root Mean Squared Error(RMSE) is de�ned as

√∑
(Actual− Predicted)2

n
(IV.1)

where n is the total number of observations.

De�nition IV.2. The Mean Absolute Error(MAE) is de�ned as

∑
|Actual− Predicted|

n
(IV.2)

While these two calculations both measure essentially the same thing (the average

magnitude of the errors), the RMSE squares the terms before taking an average and

a square root, and thus tends to give more weight to errors of high magnitude. The

MAE, on the other hand, behaves linearly, placing equal weight on errors regardless

of size. RMSE tends to be slightly larger than MAE. In terms of data, this yields

an MAE and RMSE for both the Black Scholes and the Liu models for our stock for

each trading day in our period.
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Because there are many potential confounding factors that could in�uence a

stock's behavior over a particular period, we seek to make our results more robust

by using a large variety of stocks and calculating average errors over this group for

each model. For this analysis, we choose the "S&P 100", a subset of the S&P 500

representing large-cap stocks across most major industries. Likewise, to account for

external in�uences on the market as a whole, we choose multiple time periods from

a 5 year interval during which the S&P 100 list remained the same. We will use time

periods with lengths between 30 and 240 days (incremented by 30). Starting dates

are generated randomly within the MATLAB script.

Note on Gao Model

During the preliminary analysis, it became clear that the Gao model outperformed

both Liu and Black-Scholes substantially and consistently. However, since it takes

more parameters than the two more simple models (along with volatility, it assumes

that the stock tends to revert to some long-term mean at a speci�ed reversion rate), we

felt that its results would not provide much relevant information for the comparison

and so this data was excluded.

4.3 Data Analysis

Our overall time-frame (2007-2011) is divided into periods of lengths of 30-240

days at 30 day increments (i.e. 30, 60, .. , 210, 240). For each of these periods, this

yields data which includes:
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(1) The length of the time period.

(2) Average RMSE (over all stocks) for the Liu and Black-Scholes models

(3) Average MAE (over all stocks) for the Liu and Black-Scholes models

The �rst step of our analysis will be comparing RMSE and MAE of the fuzzy models

with those of Black-Scholes. This will be done by averaging RMSE and MAE for each

model over each time period. We will also use this data to perform statistical tests

for signi�cant di�erences, using both parametric and nonparametric methods. This

will be followed by a qualitative discussion of model performance and tendencies.

As an example, we have provided the following table to explain the data collected

during a single N = 30 day trial. Regarding notation, BSi,j refers to the predicted

Black-Scholes price for an option on Stock i expiring on Day j (likewise for Liui,j).

We de�ne Actuali,j to be the actual price of an option on Stock i expiring on Day j,

and for the error terms at the bottom of the table, we have:

BSRMSEk =

√∑N
j=1(Actualk,j −BSk,j)2

N
(IV.3)

LiuRMSEk =

√∑N
j=1(Actualk,j − Liuk,j)2

N
(IV.4)

BSMAEk =

∑N
j=1 |Actualk,j −BSk,j|

N
(IV.5)

LiuMAEk =

∑N
j=1 |Actualk,j − Liuk,j|

N
(IV.6)
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Table 2. Example 30-Day Trial

Day Stock 1 Stock 2 ... Stock 100

Day 1 (BS1,1, Liu1,1, Actual1,1) (BS2,1, Liu2,1, Actual2,1) ... (BS100,1, Liu100,1, Actual100,1)

Day 2 (BS1,2, Liu1,2, Actual1,2) (BS2,2, Liu2,2, Actual2,2) ... (BS100,2, Liu100,2, Actual100,2)

... ... ... ... ...

Day 30 (BS1,30, Liu1,30, Actual1,30) (BS2,30, Liu2,30, Actual2,30) ... (BS100,30, Liu100,30, Actual100,30)

RMSE BSRMSE1
, LiuRMSE1

BSRMSE2
, LiuRMSE2

... BSRMSE100
, LiuRMSE100

MAE BSMAE1
, LiuMAE1

BSMAE2
, LiuMAE2

... BSMAE100
, LiuMAE100

The average MAE (AMAE) and RMSE (ARMSE) for this trial are then calculated

as

BSARMSE =

∑100
i=1BSRMSEi

100
(IV.7)

BSAMAE =

∑100
i=1BSMAEi

100
(IV.8)

LiuARMSE =

∑100
i=1 LiuRMSEi

100
(IV.9)

LiuAMAE =

∑100
i=1 LiuMAEi

100
(IV.10)

So our single 30-day trial yields one ARMSE and one AMAE, averaging the respective

error terms for each stock. We then perform 145 trials for each time period, producing,

for example, 145 30-day ARMSE's and 145 30-day AMAE's.

4.4 Hypothesis Testing

In order to compare average RMSE and MAE, we will be using both parametric

and nonparametric hypothesis tests. Because of the large sample size, we feel comfort-
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able assuming normality in order to use a paired, two sample T -test. However, some

of the data does show skew (particularly in RMSE), and thus the non-parametric

Wilcoxon signed-rank test was also used. In the results, we denote the p-values from

the T -test as pT and the p-values from the signed-rank test as ps. We will compare

the average error terms for each model, and choose a one-sided test depending on the

direction of this relationship. Let µBSR−LiuR be the mean di�erence in ARMSE over

all 30 day periods (i.e. BSARMSE−LiuARMSE). For X̄BSR−LiuR > 0 we construct the

hypotheses:

H0 : µBSR−LiuR = 0

HA : µBSR−LiuR > 0

For the sign-rank test, the hypotheses are the same, except mean (µ) is replaced by

median. The inequality would be reversed if the sample mean/median of the Liu

errors is greater than the sample mean/median of the Black Scholes. We will likewise

perform the same test on the AMAE over all periods of each length, and each of these

tests will be performed for each time period.
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CHAPTER V

RESULTS

Each trial (30, 60, 90, 120, 150, 180, 210, and 240 days, respectively) contains

observations from N = 145 random starting dates, with calculations made for hypo-

thetical options with three di�erent strike prices: Price0, the price of the stock on

the starting date, as well as Price0 − $1 and Price0 + $1. These strike prices were

chosen in order to observe the behavior of these models on options of varying degrees

of "moneyness" - i.e. the extent to which it is "in-the-money" or "out-of-the-money."

For example, an option to buy a stock at a higher price than it is selling today will

not be worth as much tomorrow as an option to buy that stock at a lower price. One

consequence of this is that stocks with higher strike prices are more likely to expire

"out-of-the-money" (i.e. the strike price is higher than the spot price and the option

is worth $0), particularly at the beginning of the time period. This means that there

should be less di�erence between the Black-Scholes and Liu error terms at higher

strike prices regardless of the length of the time period under consideration. While

it might seem useful to alter the strike prices in proportion to the stock's price, this

does not re�ect reality. Stocks with very low prices are often in uncertain �nancial

circumstances, subject to bankruptcy or buyout, and thus their volatility is not pro-

portional to their price (likewise a high share price can often indicate a less volatile

stock).

40



5.1 Visual Example

In order to help the reader visualize the process taking place, we have graphed

some sample data from a single stock (CPB - Caraco Pharmaceutical Laborities,

chosen randomly) over a 240 day trial. The �rst graph (1) displays the Liu and

Black-Scholes option predictions against the actual value that option took on each

given day. The second graph (2) shows simply the error terms (Predicted− Actual)

for each model over the same time period.
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Figure 1. CPB Call Option, Actual and Predicted Values

Figure 2. CPB Call Option, Error Terms over Time
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5.2 Data for Each Trial

Here we report the data from each individual trial (30, 60, 90, 120, 150, 180, 210

and 240 days, respectively), including the "BS-Liu" term, which denotes the extent

to which Liu outperformed Black-Scholes if positive, and vice versa if negative.

30 Day Trial

Table 3. ARMSE for 30 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 1.92486 1.67162 .25323 1.52793E-08 8.00E-06

Price0 1.71410 1.56573 .14834 .001143 0.2914

Price0 + 1 1.6896 1.60751 .08210 .030167 0.03016736

Table 4. AMAE for 30 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 1.76327 1.50026 .26301 9.65095E-10 1.30E-07

Price0 1.50726 1.31171 .19555 .1.87E-5 0.0118

Price0 + 1 1.46332 1.31489 .14842 .000288 0.0002879
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The Liu model outperforms Black-Scholes over all strikes and both measures of

error. This di�erence is lower (and less signi�cant) at the higher strike price.

60 Day Trial

Table 5. ARMSE for 60 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 2.56435 2.25535 .28916 6E-09 3.37E-08

Price0 2.38238 2.16196 .19699 5.81E-05 9.11103E-06

Price0 + 1 2.33658 2.18659 .12535 .003025 0.4889

Table 6. AMAE for 60 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 2.31568 1.98591 .30964 4.09E-10 1.01E-10

Price0 2.09504 1.82020 .25128 8.65E-07 2.5894E-08

Price0 + 1 2.02845 1.80423 .19997 2.31E-05 0.0053

We again see Liu outperforming Black-Scholes, with a decreasing performance as

strike increases. However, the di�erences are of a slightly greater magnitude than

those from the 30 day trial.
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90 Day Trial

Table 7. ARMSE for 90 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 2.95889 2.75404 .20485 2.06E-08 2.83E-06

Price0 2.80372 2.68368 .12005 .00111 0.0606

Price0 + 1 2.76366 2.71021 .05346 .07779 0.9745

Table 8. AMAE for 90 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 2.63206 2.39631 .23575 5.07E-10 3.35E-08

Price0 2.44470 2.26261 .18209 5.22E-06 4.90E-04

Price0 + 1 2.38414 2.24866 .13548 .00031 0.0208

Liu again outperforms Black-Scholes, with results very similar to those from the

30 day trial.
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120 Day Trial

Table 9. ARMSE for 120 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 3.46909 3.27759 .191501 2.28E-10 3.96E-08

Price0 3.31661 3.19266 .12395 5.83567E-05 0.004

Price0 + 1 3.25896 3.18850 .07046 .01188 0.2146

Table 10. AMAE for 120 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 3.08833 2.83781 .25052 9.13E-13 1.66E-10

Price0 2.905288 2.69522 .210064 1.74E-08 1.94E-06

Price0 + 1 2.82790 2.65580 .17211 1.83E-06 2.62E-04
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150 Day Trial

Table 11. ARMSE for 150 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 3.9225 3.8284 .09410 0.00014 7.81E-04

Price0 3.7970 3.75662 0.04037 .06828 0.3584

Price0 + 1 3.74651 3.74665 -0.00014 .49783 0.5589

Table 12. AMAE for 150 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 3.4860 3.3063 .17970 1.22E-10 5.67E-08

Price0 3.32953 3.18051 .14903 8.12E-07 1.17E-04

Price0 + 1 3.25826 3.13904 .11922 4.23E-05 0.0044

By this point, we have seen the BS −Liu values dipping back towards 0 for both

RMSE and MAE. As we will see, this trend continues as our time periods grow. It is

also worth noting that the BSRMSE −LiuRMSE decrease began at the 120-day point,

whereas this decrease didn't occur until the 150-day trials for BSMAE−LiuMAE. We

speculate that this is due to RMSE's higher sensitivity to large errors, which occur
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with greater frequency at later times (a forecast for 30 days in the future will usually

be more accurate than one looking 150 days out).

180 Day Trial

Table 13. ARMSE for 180 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 4.23541 4.34606 -0.11064 .00754 0.4718

Price0 4.09850 4.24894 -0.15045 .000402 5.54E-04

Price0 + 1 4.03509 4.21470 -0.17958 2.52E-05 1.93E-07

Table 14. AMAE for 180 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 3.76579 3.73047 .03531 .101204 0.002

Price0 3.60026 3.58468 .015581 .28848 0.136

Price0 + 1 3.51812 3.52289 -0.00477 .43058 0.7166
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210 Day Trial

Table 15. ARMSE for 210 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 4.67945 5.22188 -0.54243 1.43E-05 6.61E-06

Price0 4.56543 5.13321 -0.56778 4.72E-06 3.24E-11

Price0 + 1 4.51409 5.09813 -0.58404 2.15E-06 1.12E-15

Table 16. AMAE for 210 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 4.16009 4.41924 -0.25914 .000505 0.6736

Price0 4.01559 4.28161 -0.26602 .000264 0.2166

Price0 + 1 3.94428 4.22084 -0.27655 .000118 0.0209

At this point, we see that Black-Scholes is outperforming Liu over all strike prices

and both measures of error.
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240 Day Trial

Table 17. ARMSE for 240 Day Trial

Strike BS ARMSE Liu ARMSE BS-Liu pT ps

Price0 − 1 4.88025 5.54879 -0.66854 1.35E-06 4.89E-13

Price0 4.75448 5.43733 -0.68285 6.71E-07 8.03E-16

Price0 + 1 4.69039 5.37933 -0.68895 4.59E-07 3.78E-17

Table 18. AMAE for 240 Day Trial

Strike BS AMAE Liu AMAE BS-Liu pT ps

Price0 − 1 4.33682 4.70318 -0.36636 2.6E-05 8.24E-06

Price0 4.18421 4.54965 -0.36544 1.85E-05 1.93E-07

Price0 + 1 4.10179 4.46923 -0.36743 1.28E-05 6.25E-09

5.3 Discussion

Performance over Short Time Periods

Perhaps the most striking result of the data analysis is the extent to which the

Liu model consistently outperforms the Black-Scholes model over short time periods.

While Black-Scholes is certainly not the most sophisticated or accurate model for
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option prices in use today, it is it's similarity to the Liu model which is of particular

interest. Both models assume that option prices are a�ected only by the risk-free

interest rate and a constant volatility, with the interest-rate creating a deterministic

movement and the volatility acting on an uncertain process. And in both cases, that

uncertain process behaves according to a distribution which takes mean and vari-

ance as parameters and maximizes entropy within the respective measure. By design,

the only di�erence between the two models is that the Black-Scholes model uses the

probability measure, whereas the Liu model is based on the credibility measure. For

this reason, we believe the most useful and promising outcome of this research is

in investigating whether more sophisticated probability models might be improved

by assuming a fuzzy process instead. For example, a model developed by Heston [6]

assumes that volatility, instead of remaining constant, behaves according to a stochas-

tic process as a function of both current and long-term mean volatility. In terms of

the previously mentioned stochastic di�erential equation (2.1), Heston theorized that

volatility could be modeled by the equation:

dvt = φ(ω − vt)dt+ ε
√
vtdBt (V.1)

where vt is volatility at time t, ω is the long-term mean volatility, φ is the rate at

which volatility tends to revert to that mean, and ε is the volatility of the process

used to determine volatility of the stock. It's possible, based on the results of this

study, that volatility might be more accurately modeled (at least under certain cir-

cumstances) replacing the Brownian movement (dBt) with a Liu process. Another

51



popular model, called GARCH (generalized auto-regressive conditional heteroskedac-

ity), assumes variance to vary according to vt rather than it's root [4]:

dvt = φ(ω − vt)dt+ εvtdBt (V.2)

Here we see another opportunity to investigate the possibility that replacing the

Brownian process with a fuzzy process might yield more accurate forecasts.

Performance over Longer Time Periods

As the time periods got longer, the Liu model's accuracy began to deteriorate, with

Black-Scholes outperforming Liu signi�cantly at times over 180 days. This indicates

both a potential limitation on the applicability of fuzzy processes, as well as possible

evidence of a �aw in the overall rationale for using this type of process to model

�nancial behavior. The Liu error terms tend to increase exponentially as the time

period increases past 180 days.

Other Relationships

Another direction for future research is an investigation of the relationship be-

tween model performance and variables other than time, such as interest rate and the

di�erence between current price and strike price (referred to as the "moneyness" of the

option - i.e. the extent to which it is "in-the-money" or "out-of-the-money"). While

the options in my research do vary in interest rate and moneyness in order to provide

more robust overall results, the particular relationships between these variables and

overall accuracy was not closely analyzed.
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The other major question that arises is "WHY does the Liu model behave the way

it does?" By looking at Figure 4 (3) we can compare the distributions of normally

distributed fuzzy and random variables (both random and fuzzy variables are "stan-

dardized" with mean= 0 and standard deviation/di�usion= 1). We see that the fuzzy

distribution places less weight on values close to the mean, which could contribute to

the di�erence in performance we see between the two.

Figure 3. Normal Fuzzy vs. Normal Random

We feel that a deeper analysis of this property, as well as the fact that the credibil-

ity measure averages two di�erent values for a particular set (both possibility (III.1)

and necessity (III.2)), might yield insight into the di�erences in behavior between

random and fuzzy processes.
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CHAPTER VI

CONCLUSION

In this thesis, we have provided a review of existing literature on continuous-

time stochastic processes and their application in creating the Black-Scholes formula

for pricing European call options. Likewise, we have compiled information on fuzzy

processes into a stand-alone, axiomatic foundation for Liu's fuzzy model for option

prices. This provides not only insight into the model, but also a comparison of the

fundamental similarities and di�erences between fuzzy and stochastic continuous-

time processes. We then performed a comparison between the actual results of these

two models using recent historical stock data. While the average error terms of both

models are signi�cantly larger than those produced by more sophisticated models, the

Liu model tended to outperform Black-Scholes over shorter time intervals. Though

this does not suggest the Liu model as a replacement for more modern techniques,

it is signi�cant in that the primary di�erence between the two models is the use of

a stochastic vs. fuzzy continuous-time process. Since many modern models are built

on stochastic processes, it seems promising to consider adapting some of these models

to fuzzy processes as well.
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APPENDIX A

MATLAB CODE

Single Iteration

The �rst program listed does the computations for a single starting date over a

given list of stocks. As parameters, it takes a starting date, the length of the period,

the interest rate on the starting date, a "reversion" parameter for the Gao model

(which was not included in the results), and a single stock or list of stocks.
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1 function [stocks, diagnostic] = date_offset(start, date_offset, strike_offset, reversion, interest_rate, varargin)

2 %%THE PROGRAM IS ORGANIZED INTO FIVE STEPS AS FOLLOWS:

3 %

4 %STEP 1 − BRING IN THE NECESSARY STOCK DATA FOR THE SPECIFIED STARTING DATE

5 %AND TIME PERIOD FOR ALL STOCKS IN LIST

6 %Data is brought in using the Yahoo Historical Stock Database and MATLAB's

7 %urlread command.

8 %

9 %STEP 2 − CALCULATE MODEL PRICES FOR HYPOTHETICAL OPTIONS EXPIRING ON DAY 1, 2,

10 %.., N FOR EACH STOCK

11 %The first part of this step is to estimate the volatility of each stock

12 %using the first 20 days of the time period under consideration. Volatility

13 %is defined as the standard deviation of the rate of return over this

14 %period.

15 %Once we have volatility, we use volatility, interest rate, current price

16 %and strike price to estimate option values using the Liu and Black−Scholes

17 %models.

18 %

19 %STEP 3 − CALCULATE ACTUAL VALUE OF THESE HYPOTHETICAL OPTIONS

20 %The value of any given option at time T is simply max[e^(−rT)*(Price −

21 %Strike), 0]. The actual value for these options is calculated for days 1,

22 %2, ... , N.

23

24 %STEP 4 − CALCULATE ERROR TERMS (ROOT MEAN SQUARED ERROR (RMSE) AND MEAN ABSOLUTE ERROR (MAE)

25 %FOR EACH STOCK

26

27 %STEP 5 − AVERAGE THESE ERROR TERMS FOR THE WHOLE LIST OF STOCKS

28

29 function f=gao_call(price,strike,rate, time,volatility,drift,reversion,level)

30 Q=(sqrt(6)*pi.*(1−exp(−reversion.*time)))/(pi.*reversion);

31 P=strike−level−((exp(−reversion.*time))*(price−level));

32 f=exp(−rate*time)*(Q*log(1+exp(P/Q))−P);

33

34

35 %This function outputs the price of a European Call using Gao's Fuzzy Mean Reversion Model

36 %Inputs are similar to Liu/Black Scholes, but constant, linear "drift" has been replaced by a rate of reversion ...

and a "level" to which the price tends to revert

37 %Q and P variables are simply used for simplicity

38 end

39

40 function f=liu_call(price, strike, rate, time, volatility, drift)

41 y=@(x) price*exp(−rate.*time)./(1+exp((log(x)−drift*time)*(pi/(sqrt(6)*volatility*time))));

42 f=quad(y,strike/price,100);

43

44 %Function outputs price of a European Call based on Liu's model
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45 %second line states function for the expected value of a Call with the given parameters

46 %third line integrates function from lower bound of (strike/price) to upper bound of positive infinity ...

(although a real number is used to approximate)

47 end

48

49 stocks = struct([]); %initialize data structure

50 diagnostic=struct('Gao_RMSE', {0}, 'BlackScholes_RMSE', {0}, 'Liu_RMSE', {0}, 'Gao_AbsErr', {0}, ...

'BlackScholes_AbsErr', {0}, 'Liu_AbsErr', {0}, 'Ave_Gao_RMSE', {0}, 'Ave_BlackScholes_RMSE', {0}, ...

'Ave_Liu_RMSE', {0}, 'StDev_Gao_RMSE', {0}, 'StDev_BlackScholes_RMSE', {0}, 'StDev_Liu_RMSE', {0}, ...

'Ave_Gao_AbsErr', {0}, 'Ave_BlackScholes_AbsErr', {0}, 'Ave_Liu_AbsErr', {0}, 'Gao_Over_Percentage', {0}, ...

'BS_Over_Percentage', {0}, 'Liu_Over_Percentage', {0}); %initialize diagnostic structure

51 N=20; %counter for iterations in volatility calculation

52 OFFSET=strike_offset; %fix strike offset based on input parameters

53 RATE=interest_rate; %fix interest rate based on input parameters

54 REVERSION=reversion; %rate of reversion for Gao mean−reversion

55

56 %%INITIALIZE DATES

57 %For the starting date, we convert the date string into date vector format,

58 %then isolate the beginning day (bd), beginning month (bm) and beginning

59 %year (by) so that they can be input using the url for the stock data.

60

61 start_D=datevec(start);

62 bd=num2str(start_D(3));

63 bm=num2str(start_D(2)−1);

64 by=num2str(start_D(1));

65

66 %Ending date is calculated as the beginning date plus the number of days

67 %specified for the length of the time period. The date is broken apart into

68 %ending day (ed), ending month (em) and ending year (ey) similar to the

69 %beginning date.

70

71 end_date=datenum(start_D)+date_offset;

72 end_D=datevec(end_date);

73 ed=num2str(end_D(3));

74 em=num2str(end_D(2)−1);

75 ey=num2str(end_D(1));

76

77

78 % this portion of code is used to determine if a frequency of data

79 % reporting was requested other than "daily" − since my analysis uses daily

80 % value, this is not changed throughout

81

82 temp = find(strcmp(varargin,'frequency') == 1); % search for frequency

83 if isempty(temp) % if not given

84 freq = 'd'; % default is daily

85 else % if user supplies frequency

59



86 freq = varargin{temp+1}; % assign to user input

87 varargin(temp:temp+1) = []; % remove from varargin

88 end

89 clear temp

90

91 %here we determine the type of input used to specifiy the stock(s) to be

92 %analyzed. for the purposes of this analysis, a .txt file containing a list

93 %of ticker symbols is used

94

95 if isempty(strfind(varargin{1},'.txt')) % If individual tickers

96 tickers = varargin; % obtain ticker symbols

97 else % If text file supplied

98 tickers = textread(varargin{1},'%s'); % obtain ticker symbols

99 end

100

101 h = waitbar(0, 'Please Wait...'); % create waitbar

102 idx = 1; % idx for current stock data

103

104 % cycle through each ticker symbol and retrieve historical data

105 for i = 1:length(tickers)

106

107 % update waitbar to display current ticker

108 waitbar((i−1)/length(tickers),h,sprintf('%s %s %s%0.2f%s', ...

109 'Retrieving stock data for',tickers{i},'(',(i−1)*100/length(tickers),'%)'))

110

111 % download historical data using the Yahoo! Finance website

112 [temp, status] = urlread(strcat('http://ichart.finance.yahoo.com/table.csv?s='...

113 ,tickers{i},'&a=',bm,'&b=',bd,'&c=',by,'&d=',em,'&e=',ed,'&f=',...

114 ey,'&g=',freq,'&ignore=.csv'));

115

116 if status

117 % organize data by using the comma delimiter

118 [date, op, high, low, cl, volume, adj_close] = ...

119 strread(temp(43:end),'%s%s%s%s%s%s%s','delimiter',',');

120

121

122 stocks(idx).Ticker = tickers{i}; % obtain ticker symbol

123 stocks(idx).Date = date; % save date data

124 %disp(date);

125 stocks(idx).Open = str2double(op); % save opening price data

126 stocks(idx).High = str2double(high); % save high price data

127 stocks(idx).Low = str2double(low); % save low price data

128 stocks(idx).Close = str2double(cl); % save closing price data

129 stocks(idx).Volume = str2double(volume); % save volume data

130 stocks(idx).AdjClose = str2double(adj_close); % save adjustied close data

131 stocks(idx).Days=(datenum(date)−datenum(start)); %converted dates into days since start
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132 stocks(idx).Years=((datenum(date)−datenum(start))/365); %convert days into years for interest calculations

133

134 %===============================================================

135 %Now we flip the vectors so that Day 1 corresponds to index 1

136 %===============================================================

137

138 stocks(idx).Date = flipud(stocks(idx).Date);

139 stocks(idx).Open = flipud(stocks(idx).Open);

140 stocks(idx).High = flipud(stocks(idx).High);

141 stocks(idx).Low = flipud(stocks(idx).Low);

142 stocks(idx).Close = flipud(stocks(idx).Close);

143 stocks(idx).Volume = flipud(stocks(idx).Volume);

144 stocks(idx).AdjClose = flipud(stocks(idx).AdjClose);

145 stocks(idx).Days = flipud(stocks(idx).Days);

146 stocks(idx).Years = flipud(stocks(idx).Years);

147

148 %==============================================================

149 %Volatility is calculated for use in modeling calculations

150 %==============================================================

151

152 %this portion of code protects the program should an error in data

153 %collection force an error in the volatility calculation. should

154 %this occur, all values for that particular cycle are set to 0 and

155 %we move on to the next starting date in our analysis

156

157 if numel(stocks(idx).Close)<N+1

158 disp('BROKE LOOP − VOLATILITY');

159 diagnostic.Ave_Gao_RMSE=0;

160 diagnostic.Ave_BlackScholes_RMSE=0;

161 diagnostic.Ave_Liu_RMSE=0;

162 diagnostic.Ave_Gao_AbsErr=0;

163 diagnostic.Ave_Liu_AbsErr=0;

164 diagnostic.Ave_BlackScholes_AbsErr=0;

165 close(h)

166 return;

167 end

168

169 %this step calculates the volatility using the first 20 days of

170 %data for the particular stock

171

172 closing=stocks(idx).AdjClose; %create vector of closing prices for volatility ...

calculation

173 log_change = log(closing(2:N+1)./closing(1:N)); %create rate of return vectors for volatility

174 stdev = std(log_change); %std dev of rate of return

175 vol = stdev*sqrt(252); %normalize for yearly volatility based on 252 ...

trading days in years
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176 stocks(idx).Volatility=vol; %save volatility in stock structure

177 idx = idx + 1; % increment stock index

178

179 clear log_change stdev vol

180 end

181 % clear variables made in for loop for next iteration

182 clear date op high low cl volume adj_close temp status

183

184

185 % update waitbar

186 waitbar(i/length(tickers),h)

187 end

188

189 %========================================================================

190 %Now we calculate predicted values of options, using a loop to cycle

191 %through stock tickers, then an inner loop that cycles through days,

192 %pricing options for each day

193 %=======================================================================

194

195 k=1;

196 l=numel(stocks(k).Days);

197 s=length(tickers)+1;

198 while k < s

199 j=1; %initialize counter for number of days in period

200 PRICE=stocks(k).AdjClose(1); %set the stock's price to the price on day 1

201 STRIKE=PRICE + OFFSET; %set the option's strike price based on user input

202 VOLATILITY=stocks(k).Volatility; %retrieve stock's volatility from data structure

203 l=numel(stocks(k).Years);

204

205 %the "over" counters are used to keep track of times that the model

206 %over−priced an option

207

208 LIU_OVER=0;

209 GAO_OVER=0;

210 BS_OVER=0;

211 while j < l

212

213 %prices are calculated for an option expiring on day(j)

214

215 [call, put]=blsprice(PRICE, STRIKE, RATE, stocks(k).Years(j), VOLATILITY, 0);

216 liu=liu_call(PRICE, STRIKE, RATE, stocks(k).Years(j), VOLATILITY, RATE);

217 gao=gao_call(PRICE, STRIKE, RATE, stocks(k).Years(j), VOLATILITY, RATE, REVERSION, PRICE);

218

219 %actual value of option, had it been purchased, is calculated

220

221 actual=(exp(−.06*stocks(k).Years(j)))*(stocks(k).AdjClose(j)−stocks(k).AdjClose(1));
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222 if actual>0

223 stocks(k).Actual(j)=actual;

224 else

225 actual=0;

226 stocks(k).Actual(j)=actual;

227 end

228

229 %temporary values are stored in data structure

230

231 stocks(k).BlackScholes(j)=call;

232 stocks(k).Liu(j)=liu;

233 stocks(k).Gao(j)=gao;

234 stocks(k).BlackScholes_Error(j)=actual−call;

235 stocks(k).Liu_Error(j)=actual−liu;

236 stocks(k).Gao_Error(j)=actual−gao;

237 stocks(k).BlackScholes_AbsError(j)=abs(actual−call);

238 stocks(k).Liu_AbsError(j)=abs(actual−liu);

239 stocks(k).Gao_AbsError(j)=abs(actual−gao);

240 if (actual−call)<0

241 BS_OVER=BS_OVER+1;

242 end

243 if (actual−liu)<0

244 LIU_OVER=LIU_OVER+1;

245 end

246 if (actual−gao)<0

247 GAO_OVER=GAO_OVER+1;

248 end

249 j=j+1;

250 end

251

252 stocks(k).Gao(1)=0; %otherwise the price on day 0 (which should be 0) returns NaN

253 stocks(k).Gao_Error(1)=0; %prevents NaN values in Error, RMSE

254

255 %===============================================================

256 %Here we calculate the Root Mean Squared Error for each model

257 %−This is done by summing the square of each day's error term, then

258 %−taking an average, and then the square root of this average.

259 %==============================================================

260

261 BS_sum=sum((stocks(k).BlackScholes_Error).^2)/numel(stocks(k).Days);

262 BS_root=sqrt(BS_sum);

263 stocks(k).BlackScholes_RMSE=BS_root;

264 diagnostic.BlackScholes_RMSE(k)=BS_root;

265 L_sum=sum((stocks(k).Liu_Error).^2)/numel(stocks(k).Days);

266 L_root=sqrt(L_sum);

267 stocks(k).Liu_RMSE=L_root;
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268 diagnostic.Liu_RMSE(k)=L_root;

269 G_sum=sum((stocks(k).Gao_Error).^2)/numel(stocks(k).Days);

270 G_root=sqrt(G_sum);

271 stocks(k).Gao_RMSE=G_root;

272 diagnostic.Gao_RMSE(k)=G_root;

273 diagnostic.Liu_Over_Percentage(k)=LIU_OVER/numel(stocks(k).Days);

274 diagnostic.Gao_Over_Percentage(k)=GAO_OVER/numel(stocks(k).Days);

275 diagnostic.BS_Over_Percentage(k)=BS_OVER/numel(stocks(k).Days);

276

277

278 stocks(k).Gao(1)=0; %otherwise the price on day 0 (which should be 0) returns NaN

279 stocks(k).Gao_Error(1)=0; %prevents NaN values in Error, RMSE

280

281 %=================================================================

282 %Now we calculate Mean Absolute Error for each model

283 %=================================================================

284

285 diagnostic.Gao_AbsErr(k)=mean(stocks(k).Gao_AbsError);

286 diagnostic.Liu_AbsErr(k)=mean(stocks(k).Liu_AbsError);

287 diagnostic.BlackScholes_AbsErr(k)=mean(stocks(k).BlackScholes_AbsError);

288

289

290

291 %these counters keep track of the model with lowest RMSE for each

292 %stock

293

294 if (G_root < BS_root) && (G_root < L_root)

295 stocks(k).Winner='GAO!';

296 end

297

298 if (L_root < BS_root) && (L_root < G_root)

299 stocks(k).Winner='Liu!';

300 end

301

302 if (BS_root < L_root) && (BS_root < G_root)

303 stocks(k).Winner='Black−Scholes';

304 end

305 k=k+1;

306 end

307

308 %=========================================================================

309 %Now we take an average (and standard deviation) of the RMSE and MAE over

310 %all stocks and store it in the diagnostic data structure for use in

311 %analysis

312 %==========================================================================

313 diagnostic.Ave_Gao_RMSE=mean(diagnostic.Gao_RMSE);
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314 diagnostic.Ave_BlackScholes_RMSE=mean(diagnostic.BlackScholes_RMSE);

315 diagnostic.Ave_Liu_RMSE=mean(diagnostic.Liu_RMSE);

316 diagnostic.StDev_Gao_RMSE=std(diagnostic.Gao_RMSE);

317 diagnostic.StDev_Liu_RMSE=std(diagnostic.Liu_RMSE);

318 diagnostic.StDev_BlackScholes_RMSE=std(diagnostic.BlackScholes_RMSE);

319 diagnostic.Ave_Gao_AbsErr=mean(diagnostic.Gao_AbsErr);

320 diagnostic.Ave_Liu_AbsErr=mean(diagnostic.Liu_AbsErr);

321 diagnostic.Ave_BlackScholes_AbsErr=mean(diagnostic.BlackScholes_AbsErr);

322

323 diagnostic.Ave_Liu_Over_Percentage=mean(diagnostic.Liu_Over_Percentage);

324 diagnostic.Ave_Gao_Over_Percentage=mean(diagnostic.Gao_Over_Percentage);

325 diagnostic.Ave_BS_Over_Percentage=mean(diagnostic.BS_Over_Percentage);

326

327 close(h) % close waitbar

328 end
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Aggregated Data over Multiple Iterations

The second program is used for running multiple 30 day trials at di�erent (ran-

domized) starting dates. It takes only the number of trials as a parameter, produces

N random starting dates within the time-frame speci�ed, runs the "date o�set" pro-

gram for each one, and then aggregates the information and outputs it to an Excel

spreadsheet for analysis. Modi�cations of this were used for trials of di�erent lengths.
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1 function [M30, DATA_30, INTEREST] = MACRO_30(numtrials)

2

3 %%BRINGING IN INTEREST RATE DATA

4 %Data is read from an excel file, and stored in a vector indexed with the

5 %first cell containing the interest rate from "Day 1" of our analysis

6

7 int_rate_vector =xlsread('interest_rate_2008_2012.xlsx');

8 INTEREST=int_rate_vector;

9

10 %%RANDOMIZING DATES

11 %Using their MATLAB serial numbers, I randomly select n "dates" (integers

12 %in the correct range of serial numbers) from which to use as starting

13 %points of my test periods.

14 n=numtrials;

15 date=randi([733409,734720],1,n);

16

17 %%OTHER INPUTS

18 %The number of trials is taken as a parameter of the function, while the

19 %strike offset vector is (currently) a fixed vector running from −1 to 1.

20 strike=[−1:1];

21

22 %%THE LOOP

23 %The goal is run my model analysis function n times for each strike price,

24 %and then write this data to an excel workbook, with a seperate worksheet

25 %for each strike price.

26 for k=1:numel(strike)

27 for i=1:n

28 activeDate=date(i);

29 dateTest=date(i);

30 if weekday(dateTest) == 7 %Here I'm making sure that I don't start on a Saturday ...

(7) or Sunday (1)

31 activeDate=activeDate+2; %for my interest rate calculation by moving the ...

starting date off

32 end %the weekends

33 if weekday(dateTest) == 1

34 activeDate=activeDate+1;

35 end

36

37 int_rate_date=(activeDate−733408); %My interest rate data has data point 1 set to ...

January 2, 2008

38

39 while int_rate_vector(int_rate_date)> 998 %Since interest rate data is not available on ...

weekends/market holidays

40 int_rate_date=int_rate_date+1; %their value in the vector is NaN. All NaN's were ...

converted to the number
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41 end %999 so that I can bump the date up a day when I land ...

on these.

42 temp_rate=int_rate_vector(int_rate_date)/100;

43 [STOCKS, SUMMARY]=date_offset(activeDate, 30, strike(k), .1,temp_rate, 'SP100.txt'); %stock loop is run ...

for each strike

44

45 %%DATA STORAGE

46 %Data from each iteration of the stock loop is stored in the

47 %DATA_30 structure

48

49 DATA_30(k).BS_RMSE(i)=SUMMARY.Ave_BlackScholes_RMSE;

50 DATA_30(k).Liu_RMSE(i)=SUMMARY.Ave_Liu_RMSE;

51 DATA_30(k).BS_MAE(i)=SUMMARY.Ave_BlackScholes_AbsErr;

52 DATA_30(k).Liu_MAE(i)=SUMMARY.Ave_Liu_AbsErr;

53 end

54

55 %Now that I have done all the calculations for this strike, I'd

56 %like to store all this data on a worksheet labeled with that

57 %particular strike.

58

59 strikestr=num2str(strike(k));

60 sheetname = genvarname(strikestr);

61 xlswrite('30_day_data', rot90(DATA_30(k).BS_RMSE,3), sheetname, 'A2');

62 xlswrite('30_day_data', rot90(DATA_30(k).Liu_RMSE,3), sheetname, 'B2');

63 xlswrite('30_day_data', rot90(DATA_30(k).BS_MAE,3), sheetname, 'C2');

64 xlswrite('30_day_data', rot90(DATA_30(k).Liu_MAE,3), sheetname, 'D2');

65

66 end

68



APPENDIX B

GLOSSARY
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GLOSSARY

call option An option to buy a stock, on a speci�ed date, at a speci�ed price. Put

options have value when the true price is higher than the strike price at maturity.

1, 11, 34

continuously-compounded interest Normal compound interest re-invests inter-

est earned during each compounding period, so that interest may be earned

on it during the next period. Continuously-compounded interest occurs in the

special case where the compounding period becomes in�nitesimally small. 9

expiration date For a European option, the expiration date is the date on which

the option can be exercised. 8, 34

grade of membership The "grade of membership" represents our belief that a cer-

tain event or outcome is possible. 14

in-the-money An option that is "in-the-money" can be exercised for a net gain.

For a call option, this means that the spot price is greater than the strike price,

and vice versa for a put option. 8, 40

out-of-the-money An option that is "out-of-the-money" can not be exercised for

a net gain, and is thus not exercised. An "out-of-the-money" option is worth

nothing. 8, 40
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put option An option to sell a stock, on a speci�ed date, at a speci�ed price. Put

options have value when the true price is lower than the strike price at maturity.

1

spot price The price of an option's underlying stock on the date of expiration. 8,

13

strike price The price listed on an option, at which the underlying asset can be

bought/sold at expiration. 8, 34, 40

synthetic option A synthetic option is a combination of �nancial instruments which

has the same payo� pro�le of another instrument. For our purposes, we consider

the special case of synthetic puts and calls, which are created by �nancing a

position in the underlying asset through borrowing at the risk-free rate. 9
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