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Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes,
which match or are compatible with all letters; partial words without holes are said to be full words
(or simply words). Given an infinite partial wordw, the number of distinct full words over the
alphabet that are compatible with factors ofw of lengthn, called subwords ofw, refers to a measure
of complexity of infinite partial words so-called subword complexity. This measure is of particular
interest because we can construct partial words with subword complexities not achievable by full
words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we
study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we
establish connections between subword complexity and recurrence in this more general framework.

1 Introduction

Let w be a (right) infinite word over a finite alphabetA. A subword ofw is a block of consecutive letters
of w. Thesubword complexityfunction, pw(n), counts the number of distinct subwords of lengthn in w.
Subword complexity is a well-studied topic and relates to dynamical systems, ergodic theory, theoretical
computer science, etc. [1,2,7,9,10]. Another topic of interest on infinite words is the one ofrecurrence.
An infinite word is said to be recurrent if every subword appears infinitely many times. In 1938, Morse
and Hedlund introduced many concepts dealing with recurrence [12]. Rauzy in [13] surveys subword
complexity and recurrence in infinite words, while Cassaigne in [8] surveys some results and problems
related to recurrence.

Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes,
which match, or are compatible with, all letters in the alphabet (full words are those partial words without
holes). Combinatorics on partial words is a relatively new subject [3, 4]; oftentimes the basic tools have

∗This material is based upon work supported by the National Science Foundation under Grant No. DMS–0754154. The
Department of Defense is also gratefully acknowledged.

http://dx.doi.org/10.4204/EPTCS.63.11
kaross
Typewritten Text

kaross
Typewritten Text

kaross
Typewritten Text
Made available courtesy of EPTCS: http://eptcs.org/***Reprinted with permission. No further reproduction is authorized without written permission from EPTCS.This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.***

kaross
Typewritten Text

http://eptcs.org/
http://libres.uncg.edu/ir/clist.aspx?id=565


72 Recurrent Partial Words

not yet been developed. In [6], Blanchet-Sadri et al. investigated finite partial words of maximal subword
complexity where the subword complexity function of a partial wordw over a finite alphabetA assigns to
each positive integer,n, the number,pw(n), of distinct full words overA that are compatible with factors
of lengthn of w. In [11], Manea and Tiseanu showed that computing subword complexity in the context
of partial words is a “hard” problem.

In [5], with the help of our so-called hole functions, we constructed infinite partial wordsw such that
pw(n) = Θ(nα ) for any real numberα > 1. In addition, these partial words have the property that there
exist infinitely many non-negative integersm satisfying pw(m+ 1)− pw(m) ≥ mα . Combining these
results with earlier ones on full words, we showed that this represents a class of subword complexity
functions not achievable by full words. We also constructedinfinite partial words with intermediate
subword complexity, that is between polynomial and exponential.

In this paper, we introduce recurrent infinite partial wordsand show that they have several nice
properties. Some of the properties that we present deal withconnections between recurrence and subword
complexity. Besides reviewing some basics in Section 2 and concluding with some remarks in Section 5,
our paper can roughly be divided into two parts: Among other things, Section 3 extends well-known
results on recurrent infinite full words to infinite partial words. Section 4 uses the results obtained
previously to prove new results. There, we study the relationship between the subword complexity of
an infinite partial wordw and that of its various completions; here a completion is a “filling in” of the
holes ofw with letters from the alphabet. In particular we ask when cana completion achieve maximal,
or nearly maximal, complexity? It turns out that this is intimately related to the notion of recurrence.

2 Preliminaries

For more information on basics of partial words, we refer thereader to [4]. Unless explicitly stated,A is
a finite alphabet that contains at least two distinct letters. We denote the set of all words overA by A∗,
which under the concatenation operation forms a free monoidwhose identity is the empty wordε .

A finite partial wordof lengthn overA is a functionw : {0, . . . ,n−1} → A∪{⋄}, where⋄ 6∈ A. The
union setA∪{⋄} is denoted byA⋄ and the length ofw by |w|. A right infinite partial wordor infinite
partial word overA is a functionw : N→ A⋄. In both the finite and infinite cases, the symbol at position
i in w is denoted byw(i). If w(i) ∈ A, theni is defined inw, and ifw(i) = ⋄, theni is a hole inw. If w has
no holes, thenw is afull word. A completionŵ is a “filling in” of the holes ofw with letters fromA. Two
partial wordsu andv are compatible, denotedu ↑ v, if there exist completions ˆu andv̂ such that ˆu= v̂.

A finite partial wordw overA is said to bep-periodic, if p is a positive integer such thatw(i) = w( j)
wheneveri and j are defined inw and satisfyi ≡ j mod p. We say thatw is periodic if it is p-periodic
for somep. An infinite partial wordw overA is calledperiodic if there exists a positive integerp (called
a period of w) and lettersa0,a1, . . . ,ap−1 ∈ A such that for alli ∈ N and j ∈ {0, . . . , p−1}, i ≡ j mod p
impliesw(i) ↑ a j . If w is an infinite partial word, then we define theshift σp(w) by σp(w)(i) = w(i + p).
The infinite partial wordw is calledultimately periodicif there exist a finite partial wordu and an infinite
periodic partial wordv (both overA) such thatw = uv. If w is a full ultimately periodic word, then
w= xyω = xyyy· · · for some finite wordsx,y with y 6= ε called aperiodof w (we also call the length|y|
a period). If|x| and|y| are as small as possible, theny is called theminimal periodof w.

Given a partial wordw over A, a finite partial wordu is a factor of w if there exists somei ∈ N

such thatu= w(i) · · ·w(i + |u|−1). We adopt the following notations for factors:w(i.. j) (resp.,w[i.. j),
w(i.. j], w[i.. j]) denotesw(i +1) · · ·w( j −1) (resp.,w(i) · · ·w( j −1), w(i +1) · · ·w( j), w(i) · · ·w( j)). On
the other hand, a finite full wordu is asubwordof w, denotedu✁w, if there exists somei ∈ N such that
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u ↑ w[i..i + |u|). In the context of this paper, subwords are always finite and full. We denote by Subw(n)
the set of all subwords ofw of lengthn, and by Sub(w) =

⋃
n≥0 Subw(n) the set of all subwords ofw.

Note thatpw(n) is precisely the cardinality of Subw(n). Furthermore, if ˆw is a completion ofw, then
pŵ(n)≤ pw(n), since Sub̂w(n)⊂ Subw(n).

The following result extends well-known necessary conditions for a function to be the subword com-
plexity function of an infinite full word [9].

Theorem 1. The following are necessary conditions for a function pw from N to N to be the subword
complexity function of an infinite partial word w over a finitealphabet A:

1. pw is non-decreasing;

2. pw(m+n)≤ pw(m)pw(n) for all m,n;

3. whenever pw(n)≤ n or pw(n+1) = pw(n) for some n, then pw is bounded;

4. if A has k letters, then pw(n) ≤ kn for all n; if pw(n0) < kn0 for some n0, then there exists a real
numberκ < k such that pw(n)≤ κn for all n sufficiently large.

3 Recurrent Partial Words

Recurrence is a well-studied topic in combinatorics on infinite full words. We turn our attention to
the study of infinite recurrent partial words. We call an infinite partial wordw recurrent if every u ∈
Subw(n) occurs infinitely often inw; that is, there are infinitely manyj ’s such thatw( j + i) ↑ u(i) for
i ∈ {0, . . . ,n− 1}. We call an infinite partial wordw uniformly recurrent, if for every u ∈ Subw(n),
there existsm∈ N such that every factor of lengthm of w hasu as a subword, that is,u✁w[0..m−1],
u✁w[1..m], . . . . Clearly, a uniformly recurrent partial word is recurrent. The following proposition gives
a few equivalent formulations of recurrence.

Proposition 1. Let w be an infinite partial word. The following are equivalent:

1. The partial word w is recurrent;

2. Every subword compatible with a finite prefix of w occurs at least twice;

3. Every subword of w occurs at least twice.

Proof. It is clear that(1) implies both(2) and(3), whereas(3) implies(2) since any subword compatible
with a finite prefix ofw is itself a subword ofw. To show that(2) implies(1), for the sake of contradiction
suppose some wordv∈ Subw(n) appeared only finitely many times inw. Suppose the last occurrence of
v starts at positioni. Then for all j > i, v is not compatible withw[ j.. j +n). Now let û be a completion
of the prefix of lengthi +n of w such that ˆu[i..i +n) = v. Then by(2), û must appear at least twice inw.
In particular, there exists some positionj > 0 such that ˆu↑ w[ j.. j + i+n). But thenv↑w[ j + i.. j + i+n),
contradicting the fact that the last occurrence ofv started at positioni. Hence, every subword ofw must
appear infinitely many times.

Theorem 2. If w is an infinite recurrent partial word with a positive but finite number of holes, then w is
not ultimately periodic.

Proof. For the sake of contradiction, supposew is ultimately periodic. Then we can writew= xyyy· · ·
wherey is a finite full word such that|y| is the minimal period ofw. Let j be the position of the last
hole inx. Let z= ax[ j +1..|x|)yn = avyn wheren≥ |y| and the lettera is chosen so thata 6= y( j ′), where
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j ′ = |y|−1−|v| mod |y|. Sincew is recurrent andz is a subword ofw, zoccurs infinitely many times in
w. In particular, it occurs somewhere inu= yω , where|y| is the minimal period ofu. Thus, there exists
i ∈ {0, . . . , |y|−1} such thatu(i) · · ·u(i + |z|−1) = z. Sincey(i) = a 6= y( j ′), we havei 6= j ′.

Seti′ =(i+ |v|+1) mod |y|, y1 = y(0) · · ·y(i′−1), andy2 = y(i′) · · ·y(|y|−1). We gety= y1y2 = y2y1,
and soy1 andy2 are powers of a common wordy′. Thusy|y

′| = (y′)|y|. However, 1≤ |y′| < |y|. Then
u= yω = (y|y

′ |)ω = ((y′)|y|)ω = (y′)ω is |y′|-periodic, which contradicts the minimality of period|y|.

To extend the above theorem to the case wherew has infinitely many holes we must introduce some
additional restrictions. We would like to impose some constraints on the number of holes and their
distribution insidew. The motivation for these is the fact that any infinite partial word with a large
number of holes exhibits a behavior similar to the one of the trivial partial word w = ⋄ω , which is
recurrent and periodic.

Next we define the gap function which quantifies the spacing between consecutive appearances of
the hole symbol in a partial word. LetH(n)−1 be the position of thenth hole in an infinite partial word
w (we also say thatH(n) is thehole functionof w). Then leth(n) = H(n)−H(n− 1), for n ≥ 2, be
defined as thegap functionof w. For example, the infinite partial word

⋄⋄a⋄a⋄aaa⋄aaaaa⋄aaaaaaaaaaa⋄aaaaaaaaaaaaaaaaaaaa⋄ · · ·

has holes at positionsH(n)− 1 = ⌈24(n−1)/5⌉ − 1 and the distance between the 5th and 6th holes is
h(6) = H(6)−H(5) = 16−10= 6. This is actually an example of an infinite partial word (regarded as
a partial word over the alphabet{a,b}) having a complexity function not achievable by any full word.

Corollary 1. Let w be a recurrent partial word with infinitely many holes for which there exists N> 0
such that h(n) < h(n+1) for all n ≥ N. Then w is not ultimately periodic.

Proof. For the sake of contradiction, supposew is ultimately periodic. Then we can writew= xy1y2 · · · ,
where for alli, j > 0, yi andy j are compatible factors of lengthp with p being the minimal period. We
will refer to y1,y2, . . . as they factors. By choosing sufficiently largen≥ 3, we can ensure thath(n)> 3p.
Thus, there existsj > p such that bothy j andy j+1 are full words. Letv= xy1y2 · · ·y j−1. Thenv contains
at least two holes. Without loss of generality, assume thatv(l) = v(l ′) = ⋄, for somel < l ′.

Let i l = (p−|v|+ l) mod p andi l ′ = (p−|v|+ l ′) mod p. Then choose a completion ˆv of v such that
v̂(l) 6= y j(i l ) andv̂(l ′) 6= y j(i l ′). Let u= v̂yjy j+1 andmbe sufficiently large so thath(m)> 2|u|. Sincew
is recurrent, the subwordu must occur at some position to the right ofH(m)−1. So suppose it occurs
at positioni. Then if we letz= w[i..i + |u|) thenz contains at most one hole. By the choice ofi l andi l ′ ,
at least one of ˆv(l) or v̂(l ′) is incompatible with the corresponding symbol inz. Thus they factors inu
cannot align with they factors inz. Also, at least one of they factors inz is full. Analogous to the proof
of Theorem 2, we conclude thaty j · · ·y j+p−1 is periodic with periodp′ < p, wherep′ is the length of the
offset. This contradicts the minimality ofp and, therefore, no ultimately periodic words with the desired
property exist.

Let w be an infinite partial word. We defineRw(n), therecurrence functionof w, to be the smallest
integerm such that every factor of lengthm of w contains at least one occurrence of every subword of
lengthn of w. The following theorem extends a well-known result on full words to partial words (see [2]).

Theorem 3. Let w be a uniformly recurrent infinite partial word. Then thefollowing hold:

1. Rw(n+1)> Rw(n) for all n ≥ 0;
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2. If for each n> 0 there exists an index i such that w[i..i+n) is a full word then Rw(n)≥ pw(n)+n−1
for all n ≥ 0;

3. If w has a positive finite number of holes or an eventually increasing gap function, then Rw(n)≥ 2n
for all n ≥ 0.

Proof. The proof of(1) is identical to that for full words. For(2), let n≥ 0 and setm= Rw(n). Then
there exists an indexi such thatv= w[i..i +m) is a full word. Since|v| = m, v contains every subword
of w of lengthn. But any full word of lengthm contains at mostm−n+1 distinct subwords of length
n. Hence,pw(n) ≤ m− n+ 1. Therefore,Rw(n) ≥ pw(n)+ n− 1 for all n ≥ 0. For (3), note that the
conditions onw together with Theorem 2 and Corollary 1 imply thatw is not ultimately periodic. Thus
by Theorem 1(3),pw(n)≥ n+1 for all n≥ 0. Since(3) implies(2), we getRw(n)≥ pw(n)+n−1≥ 2n
for all n≥ 0.

The following theorem captures the fact that a uniformly recurrent word cannot achieve maximal
complexity.

Theorem 4. Let w be a uniformly recurrent infinite word. Then there exists N such that pw(n) < kn for
all n ≥ N, where k is the alphabet size.

Proof. By Theorem 1(4), we only need to show thatpw(n) < kn for somen. We split the proof into two
cases. Ifpw(1) < k then we are done. Thus supposepw(1) = k. Then lett = Rw(1). For the sake of
contradiction, supposew achieves maximal complexity, that is,pw(n) = kn for all n≥ 0. Thenw contains
the subwordat , wherea∈ A. Hence,|at | = t = Rw(1) impliesb✁at for someb∈ A,b 6= a, which is a
contradiction.

It is natural to extend the above theorem to partial words with finitely many holes.

Corollary 2. Let w be a uniformly recurrent infinite partial word with finitely many holes. Then there
exists N such that pw(n)< kn for all n ≥ N, where k is the alphabet size.

Proof. ChooseN such that j ≥ N implies w( j) 6= ⋄. Then letv = σN(w). Then uniform recurrence
implies that Sub(w) = Sub(v). Hence,pw(n) = pv(n) and thus Theorem 4 gives us the result.

To extend the result to partial words with infinitely many holes we must introduce some additional
restrictions. In essence too many holes still allows us to achieve maximal complexity. A trivial example
is w= ⋄ω .

Corollary 3. Let w be a uniformly recurrent infinite partial word for whichthere exists n0 such that
n ≥ n0 implies h(n) ≤ h(n+ 1) and limn→∞ h(n+ 1)− h(n) = ∞. Then there exists N> 0 such that
pw(n)< kn for all n ≥ N, where k is the alphabet size.

Proof. The proof is very similar to that of Theorem 4.

The following result illustrates the relationship betweena recurrent partial word and its completions.

Proposition 2. Let w be an infinite partial word having a finite number of holesor an eventually increas-
ing gap function. Then w is recurrent if and only if every completion ŵ is recurrent.
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Proof. First supposew is recurrent. Let ˆw be any completion ofw. Proposition 1 implies that we only
need to show that each subword of ˆw appears at least twice. Chooseu∈ Subŵ(n). Supposew has a finite
number of holes. Then there existsN > 0 such thatj ≥ N implies w( j) 6= ⋄. Sincew is recurrent,u
appears starting at some positioni ≥ N, that is,u = w[i..i + n). But note that ˆw[i..i + n) = w[i..i + n).
Hence, the subwordu occurs twice in ˆw(i)ŵ(i +1) · · · and thus ˆw is recurrent.

Now supposew has an eventually increasing gap function. Sincew is recurrent, we see that there
exists a wordv such thatuvu∈ Sub(w). Let m= |uvu| and chooseN such that for allj ≥ N we have
h( j) > m. Recurrence implies thatuvuappears starting at some positioni greater thanH(N). Suppose
uvu↑ zwherez= w[i..i +m). Thenz contains at most one hole. Hence, at least one ofu= w[i..i +n) or
u= w[i +m−n..i +m) holds. Sincew is recurrent,uvuhas to appear again inw, and sou must appear
one more time in a factor ofw that contains no holes. Without loss of generality, assume thatw[i′..i′+n)
is the desired full word. Thenw[i′..i′+n) = ŵ[i′..i′+n). Henceu= ŵ[i′..i′+n) so thatu appears at least
twice in ŵ. Hence, ˆw is recurrent.

Now suppose every completion is recurrent. Chooseu∈ Sub(w). Then there exists a completion ˆw
such thatu∈ Sub(ŵ). Sinceŵ is recurrentu occurs again at an index different from where it appeared
initially in w. Supposeu= ŵ[i..i+ |u|). Sinceŵ is a completion ofw we see that ˆw[i..i+ |u|) ↑w[i..i+ |u|).
Henceu occurs twice inw so thatw is recurrent.

4 Completions of Infinite Partial Words

We investigate the relationship between the complexity of an infinite partial wordw and the complexity
achievable by a given completion ˆw. Our main question is given an infinite partial wordw how much
complexity can be preserved while passing to a completion?

Theorem 5. Let w be an infinite recurrent partial word. Then there existsa completion of w,ŵ, such
that Sub(w) = Sub(ŵ).

Proof. The set Sub(w) is countable, so choose some enumeration of its elementsx0,x1,x2, . . .. Choosen0

so thatx0✁w[0..n0]. Sincex1 occurs infinitely often inw, we can find somen1 > n0 so thatx1✁w(n0..n1].
Similarly we can find somen2 > n1 so thatx2✁w(n1..n2] and so on for eachxi . Now we completew[0..n0]
so that it containsx0 as a subword,w(n0..n1] so that it containsx1, and so on to get ˆw. By construction
Sub(w)⊂ Sub(ŵ) and we have Sub(ŵ)⊂ Sub(w).

Another question is to ask when a completion with maximal complexity exists. We know by Theo-
rem 5 that it is sufficient that the original partial wordw be recurrent. In the case wherew has infinitely
many holes, this turns out to be necessary as well.

Theorem 6. Let w be a partial word with infinitely many holes. Then w is recurrent if and only if there
exists a completion̂w such that Sub(w) = Sub(ŵ).

Proof. The forward implication is simply a consequence of Theorem 5. For the backward implication,
suppose there exists a completion ˆw such that Sub(w) = Sub(ŵ). We show that the prefix of length
H(n)− 1 of ŵ occurs twice for everyn ≥ 1. Choosea ∈ A such thata 6= ŵ(H(n)− 1). Thenv =
ŵ[0..H(n)− 1)a ∈ Sub(w) = Sub(ŵ). Hencev must occur somewhere in ˆw. But it cannot occur as a
prefix sincea 6= ŵ(H(n)− 1). Thus there existsi > 0 such that ˆw[i..i +H(n)) = v. But thenŵ[i..i +
H(n)−1) = ŵ[0..H(n)−1) so thatŵ[0..H(n)−1) appears twice. Thus every prefix of ˆw occurs twice
and thus ˆw is recurrent and since Sub(w) = Sub(ŵ), w is recurrent as well.
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The proof really relies on the fact thatw has infinitely many holes. The theorem is not true in the
case of finitely many holes. For example, choosew = ⋄aω andŵ = baω . Then Sub(w) = Sub(ŵ) but
w is not recurrent sinceb occurs only once. However, we note thatσ(w) is recurrent. This fact actually
holds more generally. First we call an infinite partial wordw ultimately recurrentif there exists an integer
p ≥ 0 such thatσp(w) is recurrent. With this definition in hand we can extend Theorem 6 to the case
when we may not have infinitely many holes.

Corollary 4. Let w be an infinite partial word with at least one hole. If there exists a completion̂w of w
such that Sub(w) = Sub(ŵ), then w is ultimately recurrent. In factσH(1)(w) is recurrent, where H(n) is
the hole function.

Proof. We claim that ifH(1)−1 is the position of the first hole andp= H(1) thenσp(w) is recurrent.
Let v= σp(w). By Proposition 1, it suffices to show that every finite prefix of any completion ofv occurs
twice in v. Thus supposez is a full word such thatz↑ v[0..n). Choose a completionu of w[0..n+ p)
so thatz= u[p..n+ p). In addition, we require that the hole at positionH(1)− 1 be filled in such a
way thatu(H(1)−1) 6= ŵ(H(1)−1). Thenu∈ Sub(ŵ). However, we see that the way we filled in the
hole atH(1)−1 prohibitsu from occuring as a prefix of ˆw. Thus there exists an indexi > 0 such that
u= ŵ[i..i +n+ p). But thenz= u[p..n+ p) = ŵ[i + p..i +n+ p) ↑ v[i..i +n) so thatz appears twice in
v. Hencev is recurrent. Thusw is ultimately recurrent.

Let RSubw(n) denote the set of recurrent subwords of lengthn of a finite or infinite partial wordw.
Let RSub(w) =

⋃
n≥1 RSubw(n). Let rw(n) = |RSubw(n)| anddw(n) = pw(n)− rw(n). In other words,

dw(n) counts the number of non-recurrent subwords of lengthn. Note thatdw(n) is non-decreasing. The
following proposition captures the fact that in an ultimately recurrent partial word with finitely many
holes almost every subword is recurrent.

Proposition 3. Let w be an infinite partial word with finitely many holes. Thenw is ultimately recurrent
if and only if dw(n) is bounded.

Proof. Supposew is ultimately recurrent. Then there existsp such thatσp(w) is recurrent. We claim that
dw(n)≤ p. Note that any subword beginning at an index≥ p must be recurrent. Thus any non-recurrent
subword must appear starting at a position less thanp. Each positioni with 0≤ i < p contributes finitely
many distinct subwords of lengthn.

Now supposedw(n) is bounded. Sincedw(n) is non-decreasing, there exist a constantC and an
integern such thatC = dw(n) = dw(m) for all m≥ n. Since there are onlyC non-recurrent subwords
of lengthn and each appears only finitely many times inw, there exists anN such that none of these
non-recurrent subwords appear starting at positionsi ≥ N. We claim thatw′ = σN(w) is recurrent. For
the sake of contradiction, supposew′ is not. Then there must exist a non-recurrent wordv in Sub(w′).
Assume without loss of generality that|v|= m≥ n. Now we break the proof into two cases. If the prefix
of lengthn of v was a non-recurrent subword ofw, then this would contradict the choice ofN. So suppose
that the prefix of lengthn of v is not a non-recurrent subword ofw. Note that each lengthn non-recurrent
subword contributes at least one distinct lengthm non-recurrent subword. In additionv is distinct from
each of these since the prefixes of lengthn do not match. Thusdw(m)> dw(n), a contradiction.

The case whenw has infinitely many holes is markedly different. In particular dw(n) cannot be
positive and bounded. This is captured in the following proposition.

Proposition 4. Let w be a partial word with infinitely many holes. Then dw(n) is either identically zero
or unbounded.
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Proof. For the sake of contradiction, suppose there exists a constant C such that 1≤ dw(n) ≤ C for
all n > 0. Then there exists ann and av such thatv ∈ Subw(n)\RSubw(n). Sincev ∈ Sub(w) there
exists an indexi such thatv ↑ w[i..i + n). Sincew has infinitely many holes, there exists anm such
that w[n..m] has at leasth holes wherekh > C. Sincev is not recurrent, each of the completions of
vw[n..m] is non-recurrent. Hence if we letj = |vw[n..m]| we see thatdw( j) = pw( j)− rw( j)≥ kh >C, a
contradiction.

The infinite partial wordw being ultimately recurrent does not imply anything about the growth of
dw(n) by itself. However, we can relate the growth ofpw(n) and rw(n). Intuitively we can think ofw
being ultimately recurrent as capturing the fact thatw has a large proportion of recurrent subwords. We
would expect thatrw(n) is a good approximation ofpw(n). In fact, it turns out thatpw(n) = Θ(rw(n)).

Proposition 5. Let w be an ultimately recurrent infinite partial word. Then there exists a constant C such
that rw(n)≤ pw(n)≤Crw(n) for all n sufficiently large. In other words, pw(n) = Θ(rw(n)).

Proof. SupposeN is such thatσN(w) is recurrent. Considerdw(n) for n> N. Then every non-recurrent
subword of lengthn must start at some positioni, 0≤ i < N, and must be compatible with a factor of
the formw[i..i + n). We can break the factor into two parts:w[i..N) which may have a non-recurrent
completion, andw[N..i + n) where every completion is recurrent. If there areh holes inw[i..N), there
are at mostkh completions ofw[i..N). Any completion ofw[N..i +n) must be recurrent, each has length
at mostn, so there are at mostrw(n) such completions. Hence there are at mostkhrw(n) distinct non-
receurrent subwords of lengthn starting at positioni. Since there are exactlyN possible starting positions
for non-recurrent subwords, we see thatdw(n) ≤ Nkhrw(n). Since pw(n) = rw(n) + dw(n), the result
follows.

One might expect that ifw has a large proportion of recurrent subwords then it might beultimately
recurrent. However, this is not true in general. Consider the word w that is all a’s except forb’s at
positionsH(n)− 1 = n2 − 1. Then it is easy to check thatpw(n) is linear. Also, it is clear that every
subword containing at most oneb is recurrent. There aren+1 such lengthn words. Hence bothrw(n)
and pw(n) are linear. However,w is not ultimately recurrent since any subword with at least two b’s
occurs exactly once. Thus the requirement that a word be ultimately recurrent is too restrictive. In fact
we can also find a partial word with infinitely many holes such that the same property holds. All that
is required is to let the hole function beH(n) = ⌈αn⌉ with α > 2 being a real number, and then notice
that pw(n) is asymptotically linear. Then as before every word with at most oneb is recurrent so that
rw(n) = n+1. Hencepw(n) ≤Crw(n) for a suitable constantC∈ R.

The above proposition has an easy corollary. We know that we can always find a completion that
contains all the recurrent subwords. Thus ifw is ultimately recurrent then there exists a completion ˆw
whose complexity function is of the same order of growth as that of w.

Corollary 5. Let w be an ultimately recurrent infinite partial word. Then there exists a completion̂w
such that pw(n) = Θ(pŵ(n)).

Intuitively, the “closest” that a complexity function can be to another is to be within a constant of that
function. Thus, if we could not attain maximal complexity with a completion, the best we could hope for
is “off by a constant” complexity. The following proposition shows that this is not possible in general.

Proposition 6. Let w be a partial word with infinitely many holes. Ifŵ is a completion of w such that
pw(n)≤ pŵ(n)+C for all n> 0 and some constant C, then Sub(w) = Sub(ŵ) and thus pw(n) = pŵ(n).
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Proof. For the sake of contradiction, assume there existedv ∈ Subw(n) with v 6∈ Subŵ(n). Thenv ↑
w[i..i+n) for somei. Now using the fact thatw contains infinitely many holes, we can chose an indexm
such thatwn · · ·wm has at leasth holes wherekh >C. Then there are at leastkh completions ofvwn · · ·wm.
Sincepw(n)− pŵ(n) ≤C at least one of these completions, call itu, must also be a subword of ˆw. But
then sincev is a prefix ofu we would necessarily havev∈ Sub(ŵ), a contradiction.

Thus a completion ˆw must satisfy eitherpw(n) = pŵ(n) or the functionf (n) = pw(n)− pŵ(n) must
be unbounded. The above result actually holds more generally. What allows us to prove the above
proposition is that we are able to use the holes to create “enough” subwords to overcome the constant
C. Thus if we havepw(n) ≤ pŵ(n)+ϕ(n) for some increasing functionϕ , then as long as the holes are
spaced close enough together we must havepw(n) = pŵ(n). Thus the closer spaced the holes become,
the farther away a non-maximal completion must be in terms ofcomplexity.

Proposition 7. Let w be an infinite partial word with hole function H(m). If ŵ is a completion of w such
that pw(n) ≤ pŵ(n)+ϕ(n) for all n > 0 and some increasing functionϕ satisfyinglimn→∞

ϕ(H(n))
kn = 0,

then pw(n) = pŵ(n).

Proof. The proof follows the same general strategy as that of Proposition 6. For the sake of contradiction,
suppose there existedv∈ Subw(n) such thatv 6∈ Subŵ(n). Thenv ↑ w[i..i +n) for somei. Let j be the
smallest integer such thatH( j)≥ i+n. Then choosem> j such thatkm− j > ϕ(H(m)). Then there are at
leastkm− j distinct completions ofvw[i +n..H(m)). Since they have length less thanϕ(H(m)) andϕ is
increasing we see that at least one of them, call itu, must be contained in Sub(ŵ). But sincev is a prefix
of u we see thatv∈ Sub(ŵ), a contradiction.

The situation is different for infinite partial words with finitely many holes. Ifw has finitely many
holes then for each completion there exists a constantC such thatpw(n) ≤ pŵ(n)+C. However, ifC is
small enough then it turns out thatw is actually ultimately recurrent.

Proposition 8. Let w be an infinite partial word with exactly h holes where1≤ h< ∞. If there exists a
completionŵ of w such that pw(n)≤ pŵ(n)+C for all n> 0 and some constant C satisfying C≤ kh−2,
then w is ultimately recurrent.

Proof. We show thatv=σH(h)(w) is recurrent. We show that every finite prefix ofv occurs at least twice.
Considerv[0..n). Then there arekh distinct completions ofw[0..H(h))v[0..n). SinceC ≤ kh−2 at least
two of these completions must be subwords of ˆw. Thus at least one is not compatible with a prefix of
ŵ. Let u be this subword. Then there must exist somei > 0 such thatu= ŵ[i..i + |u|). Sincev[0..n) is a
suffix of u this implies that there existsj > 0 such thatv[0..n) = v[ j.. j +n) so that every finite prefix of
v occurs twice.

The following is a strengthening of Theorem 6.

Theorem 7. Let w be a partial word with infinitely many holes. Then w is recurrent if and only if there
exists a completion̂w and constant C such that pw(n)≤ pŵ(n)+C for all n> 0.

Proof. The forward implication is a direct consequence of Theorem 6. For the backward implication, if
pw(n)≤ pŵ(n)+C then Proposition 6 implies that Sub(w) = Sub(ŵ). Then Theorem 6 implies thatw is
recurrent.
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Intuitively Theorem 7 shows us that we cannot get too close (i.e off by a constant) to the complexity
of w with a completion unlessw is recurrent. In fact the conditions in the previous theorems are actually
stronger than what is needed. In order to show recurrence ofwwe only need to be able to find completions
ŵ that stay close topw(n) for arbitrarily largen. This is made precise in the following lemma.

Lemma 1. Let w be a partial word with infinitely many holes. Suppose that for each N> 0 there exists
a completionŵ such that pw(n) = pŵ(n) for all n ≤ N. Then w is recurrent.

Proof. By Proposition 1 it suffices to show that each subword appearsat least twice. We argue by
contradiction. Suppose there exists a subwordv∈ Subw(n) that appears only once. Sayv ↑ w[i..i +n).
Sincew has infinitely many holes there exists a smallest indexj ≥ i+n such thatw( j) = ⋄. Now choose a
completionŵ such thatpw(m) = pŵ(m) for all m≤ j +1. Choosea∈ A such thata 6= ŵ j . Then consider
u= vw[i+n.. j)a. Then|u| ≤ j +1 so thatu is a subword of ˆw. Thusu must appear somewhere in ˆw. But
it cannot appear starting at positioni. Thus there must exist another positioni′ such thatu= ŵ[i′..i′+ |u|).
But thenv ↑ w[i′..i′+n) so thatv appears twice inw, a contradiction.

We can now use the above lemma to prove a stronger version of Theorem 7.

Corollary 6. Let w be a partial word with infinitely many holes. Suppose there exists a constant C such
that for each N> 0 there exists a completion̂w such that pw(n) ≤ pŵ(n)+C for all n≤ N. Then w is
recurrent.

Proof. We reduce the proof to an application of Lemma 1. For eachn > 0, we find a completion ˆw
such thatpw(n) = pŵ(n) which allows us to apply the lemma. Fixn. Now chooseN such that all
subwords ofw of lengthn appear inw[0..N). Now chooseM such thatw[N..M) has at leasth holes where
kh >C. Then choose ˆw such thatpw(m)≤ pŵ(m)+C for all m≤ M. Now we claim thatpw(n) = pŵ(n).
Choosev ∈ Subw(n). Now completew[0..N) such thatv appears as a subword. Call this completed
subwordu. Then there are at leastkh > C completions ofuw[N..M). Hence sincepw(n) ≤ pŵ(n)+C
at least one completion must be a subword of ˆw. Sincev is a prefix ofu this impliesv∈ Sub(ŵ). Thus
Subw(n) = Subŵ(n) and hencepw(n) = pŵ(n). All that remains is to apply the lemma to conclude that
w is recurrent.

A similar argument provides a generalization of Proposition 7.

Proposition 9. Let w be an infinite partial word with hole function H(m) and letϕ be an increasing
function. If for each N> 0 there exists a completion̂w such that pw(n)≤ pŵ(n)+ϕ(n) for all n ≤ N and

limn→∞
ϕ(H(n))

kn = 0, then pw(n) = pŵ(n) and w is recurrent.

Another question that one may ask is how the complexity of a completionpŵ(n) relates to the recur-
rence functionrw(n) for the original partial wordw. If the complexity of all completions is bounded by
rw(n) (up to a constant) then it turns out thatw is actually ultimately recurrent. The following theorem
states this rigorously.

Theorem 8. Let w be an infinite partial word. Then w is ultimately recurrent if and only if for each
completionŵ there exists a constant C such that pŵ(n)≤ rw(n)+C for all n> 0.

Proof. Supposew is ultimately recurrent. Then there existsC such thatσC(w) is recurrent. Then consider
any completion ˆw. Any subword starting at an indexi ≥ C is contained in RSub(w). Thus the only
possible subwords in Sub(ŵ)\RSub(w) must occur starting at positions 0≤ i <C. There are at mostC
such subwords. Thuspŵ(n) ≤ rw(n)+C. Now suppose for each completion ˆw there exists a constantC
such thatpŵ(n) ≤ rw(n)+C for all n> 0. The intuition of the proof is as follows. Ifw is not ultimately
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recurrent we can find as many non-recurrent subwords as we like. This allows us to find a completion ˆw
that contains all the recurrent subwords and havepw(n)− rw(n) be unbounded.

For the sake of contradiction, assumew is not ultimately recurrent. Then let{wn} be an enumeration
of the elements of RSub(w). Sincew is not ultimately recurrent we can choose a non-recurrent subword
v0. Let i0 be an index such thatv0 is not a subword ofσi0(w). Completew[0..i0) so that it containsv0

as a subword. Now choosej0 such thatw0 is a subword ofw[i0.. j0). Completew[i0.. j0) so thatw0 is
a subword. Now sincew is not ultimately recurrent there exists a non-recurrent subword v1 appearing
in σ j0(w) with |v1| ≥ |v0|. Choosei1 such thatv1 is not a subword ofσi1(w). Completew[ j0..i1) such
that v1 appears as a subword. Now choosej1 such thatw1 is a subword ofw[i1.. j1) and complete it
so thatw1 appears as a subword. Continuing on in this way we see that ˆw contains all the recurrent
subwords and infinitely many non-recurrent subwords. Now fixa C. Choosem= |vC|. Then eachvi

for 0 ≤ i ≤ C contributes (by extending to the right) a lengthm subword. In addition each of these is
non-recurrent. Also they are all distinct since otherwise they would have to have matching prefixes, a
contradiction. Hencepŵ(m) ≥C+1+ rw(m). Thus for this completion there exists no constantC such
that pŵ(n)≤ rw(n)+C for all n> 0, a contradiction.

We can actually strengthen the above theorem. The proof above shows that ifw is ultimately recurrent
then the sameC works for all completions ˆw. In other words the bound is uniform across completions.
We state this in a corollary.

Corollary 7. Let w be an infinite partial word. If w is ultimately recurrent, then there exists a constant
C such that p̂w(n)≤ rw(n)+C for all n> 0 and all completionŝw of w.

Oftentimes if every completion of an infinite partial wordw has a certain property, thenw has it as
well. In particular this property holds with respect to ultimate recurrence.

Proposition 10. Let w be an infinite partial word. Then w is ultimately recurrent if every completion̂w
is ultimately recurrent.

Proof. If w is not ultimately recurrent, then the completion constructed in the proof of Theorem 8 is not
ultimately recurrent.

We now introduce the notion of amost complex completion. The motivation is that this concept helps
us understand the role of recurrent subwords in completions. Letwbe an infinite partial word. We say that
ŵ is a most complex completion ofw if for all completionsw̄ of w and alln> 0 we havepw̄(n)≤ pŵ(n).
In general a most complex completion of an infinite partial word may not exist. However, assuming that
w possesses such a completion we have the following result which states that a most complex completion
must contain all the recurrent subwords. The intuition hereis straightforward. In a rough sense one gets
the recurrent subwords ofw for free. We can delay putting them in the completion for arbitrarily long,
and they still occur after that for us to capture. Thus it is not difficult to construct a completion of higher
complexity if this is not the case.

Proposition 11. Let w be an infinite partial word. If̂w is a most complex completion, then RSub(w) ⊂
Sub(ŵ).

5 Conclusion

Intuitively all the above work culminates to show that completions can achieve complexities equal (or
“close”) to that of the original partial word if and only if the word is recurrent or ultimately recurrent.
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Another interesting avenue of research would be to investigate whether a relation exists between the
growth of rw(n) and that ofpw(n). Although it would be nice, the answer seems to be no. Given any
constantδ < 1 we can find a partial word with infinitely many holes such thatrw(n)

pw(n)
→ δ . Also, even if

we impose the restriction thatrw(n) be linear then we still have a fair bit of freedom with the complexity
of pw(n). In particular we can make it so that asymptoticallypw(n) attains any polynomial complexity.
We can also attain some intermediate complexities, i.e. functions of the form 2

√
n. The construction

of these examples is actually quite simple. You just have a word that is alla’s with holes at positions
H(n)−1. Since the hole functions in all of our constructions are eventually increasing we see that any
word with at least twob’s is not recurrent. Since there are exactlyn+1 words of lengthn with at most
oneb we see thatrw(n) = n+1. By controlling the growth ofH(n) we can control the growth ofpw(n).
The slowerH(n) grows the fasterpw(n) grows.
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