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The development and investigation of a convergence diagnostic for Markov Chain Monte 

Carlo (MCMC) posterior distributions is presented in this paper. The current method is an 

adaptation of an existing convergence diagnostic based on the Cumulative Sum 

(CUSUM, Page 1954; Yu & Mykland, 1998; Brooks, 1998c) procedure. The diagnostic 

under development is seen to be an improvement over the technique upon which it is 

based because it offers a simple way to remove one of the two major assumptions made 

by the previous method, namely that the shape of the distribution under consideration is 

symmetric. Results are mixed, but there is some evidence to indicate that the new 

technique is sensitive to the degree of autocorrelation present and the stability of the 

chains. Also, the new diagnostic behaves differently than three existing convergence 

diagnostics. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Background 

 Bayesian approaches are commonly used in the fields of psychometrics and 

educational measurement (Levy and Mislevy, 2007). These approaches are based on 

Bayes’ Theorem (Kim & Bolt, 2007) that uses probability distributions to characterize 

uncertainty about parameters of interest in the modeling of real world problems. 

Essentially, Bayesian approaches begin by stating prior beliefs (in the form of probability 

distributions) about characteristics of the parameters and then allow observed data to 

update those beliefs. The prior distributions (priors) and the observed data combine to 

form posterior distributions (PDs) to represent the updated information. The PDs (which 

are typically multivariate) are conditional probability distributions that represent the 

model parameters given the observed data. These PDs are then used to gain estimates of 

the location and dispersion of the parameters in much the same way as estimating 

population parameters from sample statistics (Patz & Junker, 1999a). 

 The Markov Chain Monte Carlo (MCMC; Patz & Junker, 1999a & 1999b) 

procedure is a Bayesian method of estimating model and person parameters that has been 

gaining popularity in psychometric modeling applications for nearly two decades (Albert, 

1992). MCMC allows for the simulation of complex multivariate distributions by 

producing Markov chains that serve as the posterior distributions of the parameters of 
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interest (Chib & Greenberg, 1995). In particular, interest in applying the Metropolis-

Hastings algorithm (MH; Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, 1953; 

Hastings, 1970, Green, 1995) has steadily gained momentum in recent years. This 

approach is extremely versatile and despite initially being confined primarily to use in the 

field of physics has begun to be adopted in other areas. Of particular concern in the 

current paper is the promise this method holds for the field of psychometrics. Patz and 

Junker (1999a, 1999b) showed how this method of estimating parameters can be applied 

in complex psychometric modeling applications. Following this work, many researchers 

have begun to apply MCMC sampling techniques for problems faced in testing 

applications (for example, Kim & Bolt, 2007; De la Torre, Stark, & Chernyshenko, 2006; 

Sinharay, 2004; McLeod, Lewis, and Thissen, 2003; Glas and Meijer, 2003; Fox and 

Glas, 2001; Beguin and Glas, 2001; is a brief list). 

 An MCMC technique is an alternative to the Expectation-Maximization (EM) 

algorithm used in marginal maximum likelihood estimation (MMLE) approaches (Bock 

and Aiken, 1981), for example. While MMLE is widely accepted for use in high stakes 

situations, it is not always possible to extend the approach to new models. An advertised 

benefit of applying the MCMC procedure is that it can potentially resolve the 

intractability of parameter estimation for complex psychometric models by way of the 

generally accepted maximum likelihood procedure (Patz & Junker, 1999a). 

 However, there is still some hesitancy among experts and practitioners concerning 

whether or not MCMC procedures are acceptable approaches to estimation in 

psychometrics. For example, in operational settings MCMC is still often seen as less 
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desirable than traditional estimation techniques for largely practical reasons such as 

estimation time and supporting research (Luecht, 2010, personal communication). A 

more pressing theoretical concern for the use of MCMC has to do with the quality of the 

estimates obtained from MCMC procedures. Regarding the quality of the estimates, 

probably the most difficult fact to ascertain when employing an MCMC estimation 

procedure is whether or not the chains have converged to stable posterior distributions. 

The E-M algorithm has a similar problem. It is not always easy to tell whether the 

solution is just a local optimum.  

  Convergence is directly related to the stability and trustworthiness of model 

parameter estimates obtained. In MCMC, ideally it would be the case that the values used 

for the estimation of parameters are indistinguishable from random draws from a 

posterior distribution that accurately characterizes the parameter being estimated given 

the observed responses. Thus, it seems reasonable to expect the entries in the posterior 

distribution to act like values sampled directly from a given distribution (i.e., these are 

converged by definition). 

 Previous authors have demonstrated the complications faced when trying to 

characterize convergence of MCMC samplers (see Cowles and Carlin, 1996; Sinharay, 

2004 for summaries). As there is still currently no well accepted a priori method for 

determining how many iterations of a sampler are needed to produce converged chains, 

researchers must rely on ad hoc convergence diagnostics to evaluate the output of 

MCMC samplers. There are numerous diagnostic methods available to assess 

convergence of PDs. These convergence diagnostics rely on various strategies of 
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characterizing the output of MCMC samplers (Cowles & Carlin, 1996). The two general 

categories of convergence diagnostics are visual and quantitative. 

 Visual inspection techniques produce graphical representations of the Markov 

chains (or some transformation of them). These graphical representations are then 

‘visually inspected’ to determine if there are any obvious violations of what would be 

expected if the chain was indeed converged. For example, if there is a continually 

increasing trend in the values in the Markov chain, this would be an indication that the 

process has not settled to a stable location. Visual inspection is a commonly used and 

useful technique. The primary appeal of the technique is its ease of implementation. 

Visual inspection of convergence is inherently subjective in that convergence is decided 

by plotting the values of the posterior distribution and seeing if the distribution ‘looks’ 

converged. This method is less desirable than a situation in which we have a more 

objective criterion to provide evidence of convergence (or lack thereof) for a Markov 

chain. 

 Quantitative indices are based upon some underlying theory or framework which 

describes the behavior of the chain or multiple chains produced for each parameter being 

estimated. The end result is a numerical value that indicates convergence or lack thereof 

when compared to a criterion. Quantitative techniques range from simple to complex in 

terms of calculation and formulation, focus on bias or variance (or both), can apply to 

different types of MCMC samplers, and are based on any of several different 

characterizations (e.g., large sample normal theory, spectral analysis, etc). In this study, 

the quantitative indices that will receive direct consideration are the Raftery and Lewis 
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(RL; 1992) diagnostic, the Geweke (G; 1992) diagnostic, and the Heidelberger and 

Welch (HW; 1983) diagnostic. These methods will be discussed in detail in the Literature 

Review. One purpose of the current research is to compare these methods to a new 

method under development. 

 In a comparison study, Cowles and Carlin (1996) described 13 different 

convergence diagnostics. These methods are described (e.g., visual versus quantitative 

indicators) and explained in enough detail so as to allow for their differences to be 

evident. Each of these methods for assessing convergence is then compared in different 

estimation settings. The authors report a common finding of how the diagnostics often 

disagree with one another. While the work of these authors is a thorough treatment of the 

diagnostic techniques, the examples to which the methods are applied are not 

psychometric models so the inferences to be drawn by educational researchers may be 

limited. Comparisons of convergence diagnostics in psychometric examples may be 

informative in this regard. 

 More recently, Sinharay (2004) summarized and reviewed five methods of 

assessing convergence in the context of psychometric models. Methods were chosen that 

were both easy to understand and implement, so as to foster a greater understanding of 

how to assess convergence and why convergence is of such great importance. The 

contribution of Sinharay’s (2004) work to the field is straightforward; if MCMC is to 

gain even more momentum, psychometricians must make themselves aware of 

knowledge that allows for proper use of the MCMC technique. While this study 

addresses convergence in the context of psychometric models, there are some techniques 
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that it does not include which may be of interest to readers. Investigation of other 

methods than those included in this work is necessary for further implementation of 

MCMC methods. 

 When investigating convergence, a common conclusion is that different 

diagnostics tend to have different strengths and weaknesses (see Cowles and Carlin, 

1996, and Sinharay, 2004, for examples), hence, there is a great deal of disagreement 

among the methods when it comes to making claims of convergence. The commonsense 

recommendation of these authors is to use multiple diagnostics sensitive to various 

violations of convergence. Multiple indices of both general types (visual and quantitative) 

of diagnostics should be produced to provide assurance that a chain is suitable for use in 

estimation. In light of these facts, it may be advantageous to explore the possibility of 

developing and/or refining new techniques that offer the opportunity to do the job of 

assessing convergence in situations that are problematic for existing methods. 

Additionally, methods that combine both visual and quantitative components have the 

potential to be particularly informative. In particular, the purpose of the current research 

is to investigate the potential usefulness of a new version of an existing method of 

characterizing the convergence of posterior distributions obtained in MCMC estimation, 

the cumulative sum procedure (CUSUM, Yu and Mykland, 1996). The development of 

the method will be described, and the usefulness will be subsequently investigated by 

comparing it to several other established methods.
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Brief description of the new method 

 The method under consideration in this research is an extension of the cumulative 

sum (CUSUM) path plot procedure (Yu and Mykland, 1994). This technique was adopted 

by MCMC researchers from the field of Statistical Process Control (SPC; Page, 1954). 

As originally designed, the CUSUM procedure is an effective way of detecting small 

shifts in the mean of a distribution, and has been successfully used to monitor the output 

of production processes (Page, 1954) and psychometrics (person-fit; van Krimpen-Stoop 

and Meijer, 2000). Several investigators have had a hand in adapting this approach for 

use as a MCMC convergence diagnostic (Yu and Mykland, 1994, Brooks, 1998, Burke 

and Shu, 2010). 

 The cumulative sum procedure described by Page (1954) is a technique that is 

sensitive to changes in the mean of a distribution. Essentially, the value for each unit in a 

sample of production units is compared to the desired production mean (i.e., the value the 

unit is supposed to have as a result of the production process). When the selected sample 

units exhibit consecutive, same signed deviations from the production standard that 

exceeds a pre-specified threshold, it is an indication that the mean of the distribution is 

not stationary. On a surface level this looks to be an appealing method to characterize the 

entries of a posterior distribution in an MCMC sampling chain. However, in the case of 

production procedures we are in the desirable state of having a meaningful, clearly 

defined idea of what the mean and variance of that distribution should be. Adapting this 

approach to the modeling of psychometric model parameters requires some 

modifications. Most notably, there is no clear idea of what the value of the parameter 
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should be (i.e., the desired mean) under the null hypothesis, and there is no clear idea of 

what the variance should be so that thresholds can be established. 

 Yu and Mykland (1994) developed the CUSUM procedure as a visual method for 

assessing convergence. These authors applied the CUSUM to assessing convergence by 

plotting the observed values of an accumulating sum of the deviations (correcting them 

for the mean of the chain) for the elements in the Markov chain used to represent the PD. 

This plot is called the CUSUM path plot. These authors argued that the ‘smoothness’ (as 

opposed to ‘hairiness’) of the CUSUM plot and the distance it travels away from the 

mean are both indicative of the mixing rate. Mixing rate is the term used to describe how 

quickly the sampler is moving from its initial state to the underlying, stable distribution. 

These plots are compared to an ‘ideal’ path which is created by plotting a path based on 

an independent and identically distributed (i.i.d.) sequence. When the observed and 

‘ideal’ plots behave similarly, it is seen as an indication of convergence.  

 Brooks (1998c) modified the CUSUM approach by adding a quantitative measure 

of ‘hairiness’ to make the method more objective. Brooks explains how each value in the 

observed CUSUM path plot can be transformed into a 0, 1 indicator statistic, di, in an 

attempt to capture the essence of ‘hairiness’. Simply put, if a given element (Si) in a 

CUSUM sequence is larger than its two immediate neighbors (Si-1, Si+1) it satisfies this 

‘hairiness’ condition (because a plot of these points connected by line segments would 

require that the line segments have slopes with alternating signs); also, if a given element 

is smaller than its two immediate neighbors it satisfies this condition. If a given element 

is not larger or smaller than its two immediate neighbors, then it does not satisfy the 



9 

‘hairiness’ condition because the plot of these elements would appear smooth. Brooks 

(1998c) suggested that the values in a given CUSUM chain be transformed according to 

this rule, and then the accumulating average plotted over time, Dt. This value is 

interpreted as the proportion of times an element in the Markov chain is on the opposite 

side of the mean as the previous element. If the observed value of this summary of the 

indicator statistic falls within prescribed thresholds, then the chain is behaving as if 

‘converged.’ Brooks (1998c) bases his technique on the assumption that the distribution 

characterizing the CUSUM chain is symmetric. 

 Burke and Shu (2010) further modified the CUSUM approach by adapting 

Brooks’ (1998) technique in three ways. First, the large degree of linear dependence (a 

result of the Markov property) in the observed chain needs to be removed by using 

autocorrelations to thin the chain before it is characterized by the indicator statistic. This 

removal of linear dependence is necessary because the thresholds used in characterizing 

the accumulating average of the indicator statistic are based upon an assumption that the 

elements are independently and identically distributed (i.i.d.). The autocorrelations 

(dependencies among the elements in the Markov chain) affect the value of the indicator 

statistic. So, the Markov chain must be thinned, by taking every nth element, so that the 

remaining chain elements are not linearly dependent upon one another. Second, the chain 

of values to which the indicator statistic is applied is different than that proposed by 

Brooks (1998c). The indicator statistic is applied to the observed Markov chain, not the 

CUSUM chain. This results in a different expected value for the summary of the indicator 

statistic, Dt. This argument is presented in the Methods section. Third, contrary to Brooks 
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(1998c), no assumption needs to be made about the shape of the posterior distribution 

characterizing the Markov chain. An argument for the lack of needing an assumption 

about shape is provided in the Methods section. 

 The current version of the CUSUM procedure is in need of thorough 

investigation. The strengths and weaknesses of the technique as it relates to convergence 

diagnosis must be revealed. Also, the similarities and differences to existing techniques 

must be demonstrated. For the method to gain recognition, it must be shown that the 

technique provides a beneficial alternative to existing techniques. In order to show how 

the technique compares to existing methods, it is necessary to create a situation in which 

the chains being diagnosed for convergence have known characteristics.

Simulating Markov Chains 

 To provide for controlled comparisons among the diagnostics considered in this 

study, a method for simulating chains with controlled amounts of autocorrelation among 

elements and controlled movement of the mean is needed. In this way, it is known ahead 

of time how the chain is behaving so that the effectiveness of the methods can be 

compared accurately. 

 First, it is necessary to simulate the chains so that they can range from completely 

independent draws to strongly dependent draws. This range of dependency is 

accomplished by controlling the degree of autocorrelation present in the simulated chains. 

Second, it is also desirable to simulate chains where the mean is stable and those where 

the mean is fluctuating. The stability, or lack thereof, is controlled by the random 

sampling component of the simulated chains that will allow for control of the stability of 
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the mean of the simulated chains. This second component of the simulated chains is 

referred to as the balance of the random component of the simulated chains. A thorough 

description of the method of simulating chains will be provided in the Methods section.

Purpose of the current research 

 Increased use of the MCMC procedure in the future goes hand in hand with 

greater understanding of the details of its implementation. The current research focuses 

on quality control checks for the output of MCMC samplers. The purpose of this paper is 

to investigate the usefulness of a new method of characterizing the convergence of 

posterior distributions obtained in MCMC procedures. The specific goal of the currently 

proposed research is to describe, modify, and subsequently investigate the capability of a 

procedure (relatively un-researched in regards to psychometric models) to assess the 

stability of posterior distributions of model parameters estimated with MCMC methods. 

This document continues the work of Burke and Shu’s (2010) adaptation of the CUSUM 

method. In regards to the purpose of the current research, there remains a great deal of 

work to be done to compare and contrast the many methods for assessing convergence in 

the context of psychometric applications. Even with such work being done (Sinharay, 

2004), many convergence diagnostics remain relatively un-researched, especially in 

regards to psychometric models. In order for MCMC methods to continue to gain 

acceptance, evidence must be provided that estimates obtained from these procedures are 

stable and sensible. In general, this research aims to add to the wealth of growing 

evidence that MCMC estimation offers a practical alternative to more familiar forms of 

estimation (i.e., E-M) when confronted with complex dimensionality by addressing one 



12 

of the biggest concerns with the approach: How confident are we in saying that the 

posterior chains obtained from this procedure have converged to a stationary distribution?

Research questions 

 Now that the modified CUSUM convergence diagnostic has been introduced and 

the goals for the current research have been provided, the specific research questions to 

be addressed are described. 

 The first research question that will be addressed is: What is the relationship of 

the degree of autocorrelation among chain elements, the balance of the random 

component in the chain simulator, and the value that the summary of the indicator 

statistic, Dt, takes on in the case where the indicator statistic is applied to the observed 

Markov chain? To answer this question, the distribution of the indicator statistic, Dt, for 

the case of the continuous uniform distribution as the random component of the chain 

simulator is derived. 

 The second research question that will be addressed is: What effect does thinning 

the Markov chain have on the ‘diagnosis’ of convergence/non-convergence for the 

CUSUM method and the method as directly applied to the Markov chains? Answering 

this question can be achieved by simulating chains with varying degrees of AC and 

balance and comparing the value of the summary of the indicator statistic for thinned and 

un-thinned chains for the two methods. This research question can also be addressed by 

applying the CUSUM convergence diagnostic and the current method to the thinned and 

un-thinned chains from real MCMC samplers with varying ratios of variances for the 

proposal and target distributions. 
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 The third research question that will be addressed is: How does the CUSUM 

method compare to the Geweke (1992), Heidelberger and Welch (1983), and Raftery and 

Lewis (1992) in terms of rates of convergence/non-convergence of simulated chains? 

This question can be answered directly. Specifically, chains of varying AC and balance 

will be generated and then convergence will be diagnosed by each method. The methods 

will be compared in terms of their agreement. The conditions for this simulation study 

will be described in the methods section 
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CHAPTER II 
 

LITERATURE REVIEW
 

Markov Chains and Monte Carlo procedures 

 Markov chains are random processes that produce sequences of random variables 

in which the elements of the chain have the Markov property (Sinharay, 2003). The 

Markov property implies that the value of each new element in the sequence is influenced 

only by the previous element. More formally, a Markov chain is a sequence of random 

variables, Mk, k= 1, 2,…, n, in which the value of each variable partially depends only on 

the previous variable (Patz & Junker, 1999a). Specifically, the conditional probability 

distribution for an element in the chain, P (Mk = x|Mk-1 = y), depends only on the 

preceding element. Markov chains can be used in conjunction with Monte Carlo 

experiments to produce numerical solutions to problems where analytical ones aren’t 

possible.  

 Monte Carlo integration (i.e. numerical integration using random numbers) 

provides posterior expectations of functions of the parameters being approximated 

(Sinharay, 2003). The term ‘Monte Carlo’ implies that there is repeated random sampling 

used to generate the values in the chain. Monte Carlo simulations use computational 

algorithms to repeatedly sample from probability distributions for the purpose of 

providing approximate solutions in situations where closed form solutions are impossible 

or intractable (Geyer, 1992). To obtain estimates of model parameters, a Markov chain is 
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constructed from which a sample of observations can be generated in a random fashion 

by the repeated simulation of random numbers. Taken together, Markov chains and 

Monte Carlo methods provide a powerful tool for psychometricians.

Markov Chain Monte Carlo (MCMC) 

 MCMC sampling is used for estimation of multivariate distributions (Chib & 

Greenberg, 1995) and has become very popular in the field of Bayesian Analysis, 

especially when dealing with highly dimensional statistical models (Patz & Junker, 

1999b). The multivariate distribution of interest in psychometric applications is the 

posterior distribution of the model parameters given the observed response data (Kim & 

Bolt, 2007). MCMC refers generally to a number of algorithms designed to sample from 

probability distributions in order to create a chain of random variables that will 

eventually be interpretable as random draws from a stable target distribution. The chain 

of values acts as a sample to provide an approximation of the distribution believed to 

describe the model parameters of interest. MCMC provides a way to repeatedly sample 

values from a convenient distribution that can eventually represent the joint posterior 

distribution of the unknown parameters of interest for a chosen psychometric model (Patz 

& Junker, 1999a). The sampled observations are then used to estimate the parameters of 

the model in use in much the same way that population parameters are estimated from 

sample statistics (Patz & Junker, 1999a).  

 In MCMC, each element of the Markov chain represents a unique state. When 

generating the next element in the chain, the current state is taken into consideration 

when making a decision about the transition to the next state. This decision is controlled 
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by the transition kernel. The transition kernel is a conditional distribution function, and 

describes the probability that the current state of the chain is equal to the sampled value 

given the value of the previous element (Chib & Greenberg, 1995). Thus, it describes the 

probability that the chain will move from its current state to the following step (Chib & 

Greenberg, 1995). For example, the transition kernel could take on the form, t[(0), (1)] 

= P[Mk+1 = (1)|Mk = (0)]. Here, 0 refers to the value observed for the parameter  at 

state 0, and 1 refers to the value of the parameter at the following state, 1. For a more 

specific example, Patz & Junker (1999a) demonstrate the transition kernel in the context 

of an IRT framework.

Logic of MCMC for estimating model parameters 

 The logic of MCMC for estimating model parameters lies in defining the 

transition kernel in such a way that the underlying stationary distribution, () (where  

is multivariate and describes all parameters of interest), of the chain is equal to the PD, 

f(X), we are trying to estimate (i.e., the distribution of the model parameters given the 

observed data). Thus, given a sufficient number of elements in the chain have been 

produced, the Markov chain will act as a random sample from the posterior distribution 

in question because the elements in the chain should be distributed in the same fashion as 

the posterior we are trying to estimate. For example, the mean of the values in the chain 

is treated as an estimate of the parameter in question. 
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 The general formula for MCMC estimation is: 

 

Ω|
|Ω ∙ Ω

|Ω ∙ Ω Ω
															 1  

 

where f (|X), represents the PD of the model parameters given the data, f (X|) 

represents the likelihood of the data given the model parameters, f () represents the 

prior distribution for the model parameters, and |Ω ∙ Ω Ω  is a normalizing 

constant to ensure that the PD is a proper probability density function (pdf). The term f is 

used to represent general functions of the terms in parentheses, (.), and will be used 

interchangeably with the more specific term, p, that represents pdfs. Typically, the model 

parameters and observed data are represented as vectors as this can be implemented for 

multivariate distributions. The likelihood of the data is related to the particular model 

employed and observed response data, and the priors are selected by the practitioner. The 

only stipulation on the particular model in place is that it is identifiable. So, if an 

identified model is used to describe the likelihood and priors are selected, the posterior 

only relies on calculation of the normalizing constant, but as has been shown, this is not 

necessary to implement a MCMC sampling procedure (Patz & Junker, 1999a and 1999b). 

In this case MCMC estimation can still be implemented because the PD is proportional to 

the product of the likelihood of the data given the parameters and the priors, which can be 

written as: 
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Ω| ∝ |Ω ∙ Ω 															 2  

 

where all the terms are similar to the previous equation, which is all the information 

necessary to evaluate the relative likelihoods of different sets of parameter values. As a 

result, an MCMC sampling procedure can proceed (Kim & Bolt, 2007).

Priors 

 MCMC is used in Bayesian frameworks, so it involves beliefs about the likely 

values those parameters are to take on, and these beliefs are implemented by way of prior 

distributions describing the model parameters. The specification of priors is commonly 

done in IRT applications with ML estimation (e.g. EAP and MAP in BILOG; Kim & 

Bolt, 2007). Priors allow us to incorporate information believed to be true about items 

and persons to aid in estimation of those parameters. The inclusion of priors is sometimes 

necessary, such as when the data are not very informative about the value of the 

parameters (e.g., the c parameter in the 3PL is a good example of this). In MCMC, the 

specification of priors is absolutely necessary (Kim & Bolt, 2007), however, they do not 

have to be specified in such a way as to be informative (i.e. indicate that any one value of 

the parameter is more likely than another). Informative priors are such that certain 

possible values have a greater probability of being observed (e.g., a normal prior is 

informative in that we expect to sample more values near the mean than near the tails). 

Non-informative priors are such that each and every possible value is equally likely. 

When non-informative priors are specified the resulting estimates are similar to those 
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obtained via maximum likelihood. These distributions are said to be non-informative in 

that the prior does not influence the value of the posterior towards any one value more 

than another, rather the data is providing most, if not all, of the information as the final 

estimate of the posterior.  

 There are several properties of priors that are of concern to practitioners of 

MCMC. Conjugacy, strength, and the number of levels at which to apply priors are three 

concerns worthy of describing briefly (Kim & Bolt, 2007). First, when priors have the 

property of conjugacy, the posterior density returned from the estimation procedure 

belongs to the same family of distributions as the prior. The implication is that the 

distributional form of the posterior has been correctly specified, and this is directly 

related to the computational efficiency of a sampler. When a conjugate prior is chosen, 

the sampler will be more efficient. Efficiency will be described in greater detail below. 

The possibility of incorporating conjugate priors is related to the particular model chosen 

and the observed data. Second, the strength of the prior is related to its specified variance. 

The term ‘hyper-parameter’ is used for the values specified for the parameters of the prior 

distribution. The PD is a combination of the likelihood of the data and the influence of 

the prior densities. As the variance of the prior shrinks, the influence of the prior usually 

increases, because it places a smaller range on the values expected to be observed. This 

reduction in variance of the prior in effect reduces the influence of the data on the 

posterior density of the parameters. However, with enough data, the influence of the prior 

wanes and eventually is minimized—for very large data sets. With a large variance, a 

wider range of values are expected with greater probability, allowing the data to be more 
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influential in the final posterior observed. Third, prior beliefs can be incorporated at 

multiple levels. For example, hyper-priors are prior distributions used to describe the 

possible values for the hyper-parameters in the priors. When there is less certainty about 

the values of hyper-parameters, hyper-priors can be used to reflect this uncertainty. The 

specification of hyper-priors acts to reduce the strength of the priors on the final estimate 

of the PD. 

 There are numerous variations of MCMC samplers. Two of the most commonly 

used MCMC samplers in psychometrics are Gibbs samplers and Metropolis-Hastings 

(MH) samplers. These are closely related and complementary techniques, and the Gibbs 

sampler has been shown to be a special case of the MH approach (Gelman, 1992).

Gibbs samplers 

 When an MCMC sampler is created that has the transition kernel defined by way 

of the complete conditional distributions, it is said to be a Gibbs sampler (Geman and 

Geman, 1984). The complete conditional distributions represent the probability of each 

model parameter given the data and all other model parameters. In practice, Gibbs 

samplers are commonly set up to estimate the posteriors for one parameter at a time, 

taking draws from univariate complete conditional distributions, 	 Ω X, Ω . Here, p 

represents the particular parameter, p, being estimated, X is the data, and -p represents 

all other model parameters. Each model parameter is estimated as if the other parameter 

values are fixed, which is not conceptually different than the ‘divide and conquer’ 
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strategy employed in MLE approaches (Patz & Junker, 1999a).Thus, the transition kernel 

in a Gibbs sampler takes the form: 

Ω , Ω Ω Ω , Ω Ω , 															 3 		

 

and has  () = p (|X) as its stationary distribution. A value for a given parameter is 

sampled from the complete conditional distribution for that parameter with all of the 

values for parameters upon which it is conditional fixed to their value from the previous 

step. Then, a value for another parameter is sampled treating all other parameters as 

fixed. Thus, each estimated model parameter is updated at each step. This process is 

continued until a sufficient number of iterations have occurred. The WinBUGS software 

package (Spiegelhalter, Thomas, Best, and Lunn, 2003) implements Gibbs samplers. 

 In a Gibbs sampler, it is required that the normalizing constants for each 

parameter can be calculated. As mentioned earlier, the normalizing constants represent 

the integration across the product of the complete conditionals and the prior distributions 

on those parameters with respect to the parameter in question. These are used to correct 

the complete conditional distributions in order to make them proper densities (i.e., 

probability distribution functions that have a total area of one). This same integration 

dilemma occurs with marginal maximum likelihood solutions—see, for example, Bock & 

Aiken (1981). It is sometimes possible to simplify the calculation of these normalizing 

constants. For example, Tanner and Wong (1987) provide a data augmentation approach 

to simplifying the calculation of the normalizing constants. However, if determining the 
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normalizing constants is not possible, then other MCMC techniques must be employed in 

which the constants are not necessary to carry out estimation. One way to avoid 

calculation of normalizing constants is to create a rejection sampler, which can be done 

within a Gibbs sampling framework (Ripley, 1987). Rejection samplers use proposal 

distributions, which are any convenient distribution from which to sample, to provide 

potential candidate members for the posterior distribution. The notation for the proposal 

distribution for values of a single parameter, p, is q (p*). The candidate value for the 

parameter in question is referred to as p*. A mechanism is put in place to accept 

candidate draws that exceed some minimum acceptance probability. This mechanism is a 

likelihood ratio where we define the acceptance probability  as,  

	 ∙
∗ ,

∗
															 4  

 

In this acceptance ratio, C is a fixed constant which subsumes the normalizing constant 

necessary for a Gibbs sampler to function. C is chosen to be as large as possible as long 

as 0 <  < 1. The value ∗ ,  again refers to the univariate complete conditional 

distribution for p*, and the proposal distribution,	 ∗ , is in the denominator. When a 

draw is made, we calculate the probability of its acceptance and compare it to a random 

outcome with probability equal to , for example. If the draw meets our criteria for 

acceptance (i.e., the flip is Heads), it is added to the posterior. If the draw does not meet 

the criteria, then it is discarded and another draw is made. This process is continued until 
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the desired number of elements of the posterior distribution has been achieved. The 

dimensionality of the model parameters and the similarity of the proposal distribution to 

the true posterior density affect the speed of rejection samplers. As dimensionality 

decreases and similarity of the proposal and posterior increase, the efficiency of the 

sampler increases. A particularly popular form of rejection sampling employs the 

Metropolis-Hastings algorithm (MH; Metropolis, Rosenbluth, Rosenbluth, Teller, and 

Teller, 1953; Hastings, 1970), and it has been shown that Gibbs samplers are a special 

case of the MH algorithm (Gelman, 1992).

Metropolis Hastings (MH) samplers 

 Rejection samplers can be implemented directly through the use of the MH 

algorithm (von Neumann, 1951; Patz & Junker, 1998a). Arguably the simplest approach 

to constructing a chain to estimate the posterior (Hanson and Cunningham, 1998), MH 

samplers only require the specification of priors, a choice of model to define the 

likelihood of the data given the model parameters, and the specification of a convenient 

proposal transition kernel. Similar to the rejection method just described, in MH to step 

from one state in the parameter space to the next we sample a candidate step, (*), from 

a convenient proposal transition kernel, q [(0),(1)] and take the step, (k) = (*) 

with acceptance probability: 

, ∗ 	
∗ ∗,

, ∗ , 1 ,															 5  
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and takes the step (k) = (k-1) otherwise. Stated simply, this new candidate value is 

compared to the previously accepted value to determine its acceptance into the chain, if 

not accepted, the previous value is retained. The transition kernel for a MH sampler is: 

,
, ,

1 , , ,															 6  

 

where  is a point mass at (0) , and 1 , , 	is the 

probability of not moving to the candidate step. This transition kernel for the MH 

algorithm has stationary distribution  () = p (|X). 

 Proposal distributions, also referred to as ‘candidate generating densities’ and 

represented generally by q (x, y) (Chib & Greenberg, 1995), can be any proper density 

function (i.e. integrate to one over the range of y). When the Markov chain is at point x, 

the proposal distribution produces a candidate value y from q (x, y).Typically, in MH 

applications the proposal density will not satisfy the condition of reversibility (the 

probability of going from state x to state y is equal to that of going from y to x), which is 

necessary if the chain is to converge to the invariant distribution (Chib & Greenberg, 

1995). Thus, not every candidate from the proposal density can be accepted. To control 

the reversibility of the process, some candidates will have to be excluded from the chain 

(i.e. some of the moves from state x to state y will not be allowed).This is why the 

acceptance ratio  is used. This probability  (x, y) < 1 is called the probability of move 

(Chib & Greenberg, 1995), and controls entry of candidates into the chain. Thus, the 
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probability of moving from state x to state y is the product of q (x, y) and  (x, y).Thus, in 

MH algorithm applications, the acceptance ratio functions to ensure that a chain produced 

will have the necessary quality of reversibility. 

 The MH algorithm allows for sampling from a probability density function that is 

proportional to the posterior probability density function, and does not require that the 

normalizing constant be known. When the normalizing constant does not need to be 

known, then all that needs to be known is the likelihood function based on the model 

under consideration and the priors on the parameters of the model. The posterior density 

is proportional to the product of these two known quantities. In many psychometric 

applications of MCMC—especially multidimensional applications—it tends to be true 

that calculation of the normalizing constants is impossible or intractable, so the MH 

algorithm extends the reach of researchers interested in applying it to estimation 

problems. As with other rejection samplers, MH makes use of a more convenient 

distribution to create a proposal transition kernel to provide potential candidates for entry 

into the Markov chain. These candidates are then evaluated as to the likelihood of their 

membership as compared to the previously accepted member of the chain (this is done by 

way of a likelihood ratio that includes the density of the candidate in the numerator, and 

the density of the previous step in the denominator; if the density of the candidate is 

larger than that of the previous element, the candidate is always accepted, if not the 

candidate is accepted with probability equal to the value of the ratio). If the candidates 

are deemed ‘acceptable’ members then they are entered as part of the sample. If not, the 

previous entry is retained (i.e., entered again) and another candidate is generated. For an 
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efficient sampler, the acceptance rate should neither be too high or too low. Tuning of the 

acceptance rates is related to the dimensionality of the model being estimated as well as 

the appropriateness of the proposal distribution. In most psychometric applications, the 

dimensionality of models is high, which makes a pure MH approach challenging. In its 

favor, MH is a robust sampling technique. It allows for fairly general unimodal target 

posteriors, but the tradeoff is that it can be fairly inefficient (Hanson and Cunningham, 

1998). It is possible to incorporate MH steps within a Gibbs sampler (Patz & Junker, 

1999a).

MH within Gibbs 

 The Gibbs technique and the MH technique can be combined to work together in 

a sampler (Patz & Junker, 1999a) and still produce a stable underlying distribution,  

(), which is equal to the posterior distribution, p (|X). As its name implies, we use a 

Gibbs strategy to sample from the complete conditionals where possible and use single 

iterations of the MH algorithm to deal with the cases where the complete conditionals are 

unknown. Patz and Junker (1999a) describe the implementation of a MH within Gibbs 

sampler. Using the proposal distribution for the parameter in question, q (0, 1), try to 

draw p
k from the complete conditional distribution, p (p| -p

k-1, X) by drawing p* 

from q (p
k-1, p) and accepting with probability equal to: 

, ∗
| ∗ , ∗ , ∗ ,

| , , , ∗ , 1 ,															 7 	
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otherwise set p
k equal to p

k-1. When the proposal distribution is symmetric, it cancels 

out of the acceptance probability, simplifying the calculation. 

Considerations when constructing a sampler 

 When constructing a sampler, there are many things that should be taken into 

consideration. The selection of proposal distribution, the blocking of parameters, the 

acceptance rate, burn-in, mixing rate, and covariance structure of the model parameters 

are all important factors in the decisions to be made. Each of these will receive further 

treatment before proceeding with discussions of efficiency and convergence. 

 One of the most important choices to be made when constructing an MCMC 

sampler is the choice of the proposal distribution used to produce candidate elements for 

the Markov Chain. The characteristics of the proposal distributions that are important to 

consider are the shape that the distribution has, as well as the values of the parameters for 

the distribution. The choice of the specific form of the proposal distribution for use in an 

MCMC sampler has a great deal of influence on the behavior of the chains produced 

(Hanson and Cunningham, 1996, Chib and Greenberg, 1995). Proposal distributions have 

a great deal of influence on the efficiency of the sampler, the acceptance rates of 

candidate elements and the degree of AC present in the chain. For example, the location 

and scale parameters of the proposal distribution control the tuning of the sampler. 

Choosing the right location and choosing the variability we see in generated candidates 

can both influence how often candidates are accepted into the chain. Acceptance rate then 

has a great deal of influence on the behavior of the chain, which will be discussed below. 

In addition, the particular family that the proposal distribution belongs to directly 
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influences the behavior of the chain. For example, Chib and Greenberg (1995) describe 

five families of candidate generating densities. Two of these five general types of MH 

samplers are random walk samplers and independence samplers. A random walk MH is 

created by specifying that the proposal distribution is symmetric and centered at the value 

of the previous accepted candidate with a variance chosen to influence the acceptance 

probability in a desired fashion (Hanson and Cunningham, 1998). A common choice is a 

normal distribution with mean equal to the value of the previous state; X ~ N (Mk-1, c2), 

where c2 is the variance chosen specifically to provide a desirable acceptance rate 

(Sinharay, 2003). Alternatively, an independence MH chooses a proposal distribution that 

is not necessarily symmetric (which typically means that there is not as great a degree of 

simplification of the acceptance probabilities) and is centered not at the previous value 

accepted into the chain, but rather at some estimate of the of the parameter being 

estimated (using the raw score to create an estimate of ability, for example; Chib and 

Greenberg, 1995). In this sense, the candidates generated are independent of the previous 

step. A very convenient common proposal density is a continuous uniform distribution 

centered at the current state of the chain with a finite width (restricted support, Chib and 

Greenberg, 1995). The fact that MH samplers are so robust makes this a typical choice 

which is usually successful. 

 Another consideration when constructing a sampler is whether or not to block 

parameters. Blocking entails grouping parameters that will be updated together at each 

step of the sampling. In the simplest case, each parameter is seen as independent from 

every other parameter, thus they are each updated independently via their own proposal 
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distribution which only reflects that parameter. Treating each parameter as independent 

from all other parameters simplifies the form of the acceptance probability. Blocking 

parameters simply means simulating multiple parameters simultaneously from a 

multivariate proposal distribution with the inclusion of a specified covariance structure 

describing the relationships among the parameters (as compared to treating each 

parameter in a univariate sense). The decision to block parameters is a trade-off between 

efficiency and accuracy. When large blocks of parameters can be incorporated via 

multivariate candidate distributions or complete conditional distributions it makes 

sampling more efficient. Small blocks of parameters mean that there are more individual 

sampling steps taken (which can reduce efficiency) but it allows for easier tuning of the 

sampler via analysis of acceptance rates (Patz & Junker, 1999a). In an IRT setting, Patz 

and Junker (1999a&b) describe the procedure for blocking parameters together to 

improve the efficiency of a sampler. For example, in IRT applications, it is convenient to 

block model parameters by individual persons and individual items. In the case of a 3PL, 

each person parameter,  can be treated as one dimensional and each vector of item 

parameters,  can be treated as 3 dimensional. Each item and person will then have a 

respective sampling distribution. In the example provided, the 3PL is used for the sake of 

simplicity. MMLE works very well for this sort of estimation problem. When the 

dimensionality becomes more complex, MCMC is in an advantaged position. 

 Another concern when constructing a sampler is the acceptance rate for proposed 

candidates. The number of proposed candidates that get accepted into the chain 

influences the behavior of the sampler. The acceptance rate is used as an index to tune the 
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sampler to obtain optimal efficiency (tuning is done specifically by manipulating the 

location and spread of the proposal density). When the acceptance rate is too high or too 

low it can have a negative impact on the efficiency of the sampler to produce a chain 

suitable for use as an estimate of the posterior distribution. For example, the acceptance 

rate is commonly ‘tuned’ by adjusting the variance of the proposal distribution. When the 

variance is large, proposed candidates can vary greatly from the previous value. A large 

variance results in a low acceptance rate because large differences can exist between a 

new proposed value and the previously accepted value which influences the value of the 

acceptance ratio. Specifying a variance that is too large can result in ‘sticky’ samplers 

where the same value is retained on multiple successive steps and it induces a large 

degree of autocorrelation. When new values are accepted, it is possible that large jumps 

can occur, resulting in incomplete exploration of the parameter space. On the other hand, 

when the variance of the proposal distribution is too small, the new candidates are very 

similar to the previous step leading to a high acceptance rate. This type of sampler is slow 

to explore the parameter space because it takes small steps though the distribution. 

Specifying a variance that is too small also leads to a high degree of dependence among 

elements in the chain, which affects the mixing rate, and ultimately convergence to the 

stable underlying distribution. When the variance of a proposal distribution is called large 

or small, it is always relative to the variance of the target distribution. An ideal sampler 

will have a proposal distribution whose variance closely matches that of the target 

distribution. Acceptance rates between 25% (multivariate cases) and 50% (univariate 

cases) often produce efficient samplers, all other things being held constant (Patz & 
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Junker, 1999a, Hanson and Cunningham, 1998). 

 Another important consideration when constructing a sampler is determining the 

length of the burn in. Burn-in refers to the beginning portion of a chain that is discarded. 

The initial sampled values are not considered to provide good estimates of the 

parameters, due to strong autocorrelations. That is, the initial estimates are strongly 

related to earlier values in the MCMC chains, and possibly influenced by choices of 

starting values. Therefore, the initial n0 burn-in values in the chain are discarded before 

any attempt to characterize the posterior distribution is made (Hanson and Cunningham, 

1998). The post-burn-in draws are only regarded as a sample from the invariant posterior 

distribution after the chain has moved sufficiently far away from its arbitrary initial state 

(Chib & Greenberg, 1995). It is known that treating the length of the burn in as an 

increasing function of the first order serial correlation is a useful heuristic in many 

situations (Chib & Greenberg, 1995). A simple strategy is to use the AC as a guide to 

decide how many elements to remove from the beginning of the chain. First, determine 

the lag necessary so that the AC for the observed chain in question goes to zero. Second, 

remove at least that many elements from the beginning of the chain (Raftery and Lewis, 

1992b). 

 Another consideration when constructing a MCMC sampler is the mixing rate of 

the chains. The mixing rate describes the speed with which the Markov chain is moving 

towards the equilibrium distribution. Fast mixing chains require shorter run lengths 

before achieving stability. Slow moving chains require longer run lengths before 

achieving stability. Mixing rate is directly related to convergence. In fact, the CUSUM 
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path plot convergence diagnostic incorporates the notion of mixing rates in its treatment 

of convergence. Mixing rate can be thought of as the number of steps necessary before 

the chain reaches the underlying stationary distribution and can be treated synonymously 

with efficiency.

Efficiency 

 “The statistical efficiency of an MCMC sequence is defined as the reciprocal of 

the ratio of the number of MCMC trials needed to achieve the same variance in an 

estimated quantity as are required for independent draws from the target probability 

distribution (Hanson and Cunningham, 1998, p. 373).” There are many things that affect 

the efficiency of a sampler. 

 Efficiency is related to the AC and can be estimated from it. Efficiency is defined 

in terms of the variance of an estimated quantity. When a strong degree of AC is present 

among a sequence of variables it reduces the apparent variability of those observations. 

When the AC is strong, more elements would have to be discarded to leave only 

independent elements. When more elements have to be discarded to leave only 

independent elements, it is indicative that more elements would have to be generated. 

Hanson and Cunningham (1998) show how the statistical efficiency of a sampler can be 

calculated from the AC present in a chain. Autocorrelation tells us about the degree of 

dependence among a string of consecutive numbers. In MCMC, the AC is a naturally 

occurring byproduct of the way in which the method works. Essentially, typical MCMC 

estimation for psychometric purposes builds AC into the resulting chain. This AC is 

informative about the behavior of the chain, but can also be a hindrance to estimation of 
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parameters and inference based upon them. AC is closely tied to mixing rate, decisions 

about burn in, sampler tuning, parameter estimation, and assessment of convergence. As 

AC increases, convergence slows (Kim & Bolt, 2007). A high degree of AC can be 

caused by poor parameterization and/or over parameterization. Over parameterization is 

capable of producing ‘ridges’ (i.e., local maxima) in the likelihood surface. AC adds 

difficulty to the estimation of variances associated with the parameter in question. A 

strong degree of positive linear relationship means that variance is underestimated. 

Corrections for this exist, however (CODA; Best, Cowles, and Vines, 1996). When the 

acceptance rate is too high or too low, large amounts of AC will exist in the chain (Chib 

& Greenberg, 1995) 

 Also, the relationship between the degree of correlation among parameters and 

whether or not that dependence is taken into account in the sampling mechanism can 

affect efficiency. For example, if several model parameters are highly correlated, but the 

sampling mechanism treats them as independent, this will result in an inefficient sampler. 

As stated earlier, blocking parameters can improve efficiency when the relationship 

among those parameters can be accurately captured in the proposal mechanism. When 

there are dependencies among parameters, this can be handled by proposing values for 

each group of associated parameters based on a proposal distribution that incorporates the 

covariance matrix representing the dependencies that exist. For example, Hanson and 

Cunningham (1998) developed a method to estimate the covariance matrix of the 

posterior distribution in order to aid in sampling efficiency with success. Additionally, 

Patz and Junker (1999a) provide an example of how re-parameterizing the model so that 
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the covariance matrix has zeroes on the off diagonals and is isotropic (i.e., all variables 

have similar variances). Thus, re-parameterization of a model in such a way that would 

allow construction of a sampler that specifies all parameters as independent will be more 

efficient than a sampler based on a model whose parameterization allows for dependence. 

 Also, the degree of similarity between the proposal distribution and the target 

posterior has a great influence on the efficiency of a sampler. For example, to develop an 

efficient sampler, the shape of the proposal distribution should match that of the target 

distribution. Correct specification can improve accuracy up to the point of a sampler 

producing independent draws from the target pdf (Chib & Greenberg, 1995). 

Misspecification can result in extreme inefficiency (e.g., specifying a normal proposal 

when target is exponential means you will do a poor job of estimating the tails of the 

target distribution). 

 In addition to correctly specifying the shape of the target distribution, the 

variability must also be correctly specified. The variability of the proposal distribution 

has a great deal of influence on the characteristics of a sampler (e.g., AC, acceptance 

rates, etc). For the utmost efficiency, the variance of a proposal distribution should be 

similar to that of the underlying target distribution. The influence of this similarity upon 

acceptance rates and AC is covered thoroughly in the Methods section. However, it is 

worthwhile to briefly address how the ratio of proposal distribution variance to target 

distribution variance can affect the behavior and appearance of a chain. Hanson and 

Cunningham (1998) show that when proposal variance is smaller (e.g., ¼ of the target 

distribution variance), the resulting chain takes on the characteristics of Brownian motion 
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(a purely random walk). When the variance of the proposal distribution matches that of 

the target distribution, the resulting chain looks more like an independent sampler. When 

variance of the proposal distribution is much larger than that of the target distribution, the 

resulting chain will have many elements that are equal to one another for successive 

iterations then there will be a large ‘jump’ in the value of the following element. This 

type of chain is often referred to as a ‘sticky’ sampler (Hanson and Cunningham, 1998). 

 The efficiency of a sampler is indicative of how long it might take for a sampler 

to converge to the stationary distribution. However, trying to assess convergence of the 

sampler is an entirely different matter than influencing its efficiency.

Convergence 

 Ideally, a chain used for estimation should be indistinguishable from a sequence 

of random draws from a distribution with known form. Cowles and Carlin (1996) point 

out that there are different connotations of convergence. In a very simple sense, once a 

single element is chosen from the target distribution, technically all following elements 

will be from the target. Thus, it could be argued that convergence occurs at a given step 

in the chain, and all subsequent draws are by definition converged. In a more thorough 

sense, convergence is taken to mean that the sampler has successfully explored the 

complete parameter space of the posterior distribution and has roughly revealed its shape 

and configuration (which is much more likely to happen with unimodal target densities). 

This definition is a preferable notion of convergence in that we have more information 

concerning estimates of the parameter of interest. 
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 Convergence implies that the distribution is stable, which means that the 

distribution can be described well by its parameters. For example, a stable distribution 

should have location and dispersion parameters that can be adequately described by a 

single value each. So, if a sample is being drawn from a stable distribution it would mean 

that the mean and variance do not fluctuate any more than is to be expected due to 

sampling error. 

 In MCMC samplers, convergence relies upon several conditions. First, the model 

describing the likelihood must be an identified model. By identification we mean that 

there exists a unique set of parameter values relating to some set of observed data. In 

other words, there are not multiple sets of parameters that could describe the data equally 

well (in which case there would be indeterminacy). Different values of model parameters 

should lead to unique probability distributions for the observed variables. Sinharay (2004, 

and references therein) points out that many psychometric models have identifiability 

problems that make parameter estimation troublesome. For example, the well-known 3 

parameter logistic IRT model (3PL; Hambleton and Swaminathan, 1985) is known to 

have identification problems due to the association between ‘discrimination’ and 

’pseudo-guessing’ parameters, and has been claimed to be slightly over-parameterized 

(Holland, 1990). It is not uncommon in practice to run into problems with parameter 

calibration for this (3PL) model. 

 Second, an appropriate sampling mechanism must be put in place. Two of these 

methods (and the combination of them) have already been discussed in some detail. 

There are two general criteria for creating an appropriate sampling mechanism. The first 
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criterion is that it must be the case that the sampler constructed is known to have a stable 

underlying distribution that is equal to the PD we are trying to estimate (which is done 

via the transition kernel). The second criterion for implementing a successful MCMC 

sampling mechanism is that the method must satisfy the requirements for creating an 

ergodic string of states. This additional criterion will be described below. 

 Third, an appropriate chain length must be observed. The length must be long 

enough to overcome the effect of some arbitrary starting value. Also, the chain must be 

long enough to provide a stable estimate of the parameter and its variability (i.e., enough 

elements must be observed to ‘rough out’ the parameter space). Simply put, the more 

elements in the chain, the better the quality of the estimate we expect to see, but at a point 

the estimates will not be of any greater quality by including more sample entries. 

 The primary challenge in assessing convergence in MCMC is that convergence is 

from one distribution to another distribution. Adding to the complexity of assessing 

convergence is that we only produce a sample on which to base our assessment (we only 

see a piece, or one possible realization, of the distribution). Thus, sampling error is mixed 

in with our estimates of the parameters. This sampling error is referred to as Monte Carlo 

Standard Error (MCSE; Geyer, 1992).MCSE is the error introduced due to the fact that 

we are sampling from a distribution. This sampling error needs to be taken into account. 

It is easy to deal with MCSE because running the chain to more steps always reduces the 

sampling error. A rule of thumb is that MCSE should be less than 5% of the standard 

error of estimate (i.e., the standard deviation of the observed values) (Spiegelhalter, 

Thomas, Best, and Lunn, 2003). 
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 Convergence is only guaranteed if a sampler produces a chain that is ergodic. 

Generally speaking, ergodicity is defined to mean that a system observed over a long 

enough duration will produce new states that are similar to previous states. In 

probabilistic systems, ergodicity means that in the limit new states will be independent of 

the initial states. This characteristic is important because an ergodic chain has only one 

stationary distribution. If in application we define an ergodic chain, we have confidence 

that the resulting estimates produced from a chain that has run long enough will be 

suitable for inference. Once a chain has reached this state, any further sampling will 

produce a chain that is invariant from the current chain. 

 A Markov Chain is ergodic if each and every element is aperiodic, irreducible, 

and positive recurrent. First, aperiodicity means that a state in a Markov chain is 

reproduced at irregular intervals. That is, there will be no regularity with which a given 

element in the chain will be equal to a previous state (i.e., a particular state does not occur 

systematically, rather it occurs randomly). Second, a Markov chain is irreducible if any 

state in the chain can be reached from any other state. In other words, you could go from 

observing any one element to any one other element. With a converged chain, every 

element should be a plausible member of some distribution. So, a sampling mechanism 

drawing from a distribution could produce any element at each step regardless of the 

previous step. Third, a chain is said to be positive recurrent if a state in a Markov chain 

has a non-zero probability of occurring again in a future state. In other words, an element 

in a converged chain has a chance of being observed again if the sampler were continued.
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Assessing convergence 

 Now that convergence has been defined and the conditions necessary for it to be 

observed have been described, it is important to discuss how convergence is assessed. 

There are two general categories for describing approaches to assessing convergence 

(Cowles & Carlin, 1996). These general categories are theoretical treatments of 

convergence and diagnostic approaches applied to the output of MCMC samplers. 

 In theoretical treatments of convergence, analysis of the transition kernel is 

necessary to predetermine the number of iterations necessary for a sampler to achieve 

convergence (within a pre-specified tolerance) to the stationary distribution. While 

promising, these approaches involve complicated mathematics and ‘laborious’ 

calculations which must be revised in light of each model considered. These methods also 

tend to produce bounds that are quite ‘loose’ and would require far more iterations than 

are typically practical (Cowles & Carlin, 1996). 

 Diagnostic approaches are far more common. Generally speaking, diagnostics 

examine the output of samplers in an attempt to determine whether or not the chains are 

behaving as might be expected if convergence had been achieved. No claim is made that 

the diagnostics clearly indicate whether or not a chain has converged, rather the 

diagnostics provide evidence in support of claims that the chains may or may have not 

converged. In the case where there is not a method to determine that the chain is indeed 

converged, it must be determined whether or not a chain has the qualities expected if it 

were indeed converged. It may not be possible to get at the truth of whether or not a chain 

has converged, but it should at least be addressed whether or not a chain appears to have 
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converged. 

 Cowles and Carlin (1996) point out that many researchers deem all diagnostic 

attempts to assess convergence as ‘fundamentally flawed’. This is because it is not 

possible to know what the underlying stationary distribution is, therefore, the chain is 

being compared to something other than the true distribution to which it is converging (if 

it has indeed been constructed and implemented correctly). Additionally, the diagnostics 

used typically analyze the output of the sampler (or compare multiple outputs of the 

sampler) in an attempt to determine if the sampler has moved to the true posterior 

density. In other words, it is not possible to compare the sample to the true posterior 

(because if the true posterior was known there would be no need for MCMC in the first 

place) so we assess convergence by looking at the product of the sampler only. Despite 

this criticism of being fundamentally unsound, the authors argue that a ‘weak diagnostic’ 

is better than no diagnostic at all. If the diagnostic can at least be used to rule out chains 

that may in a brief examination appear to be converged, then it can help guard against 

improper estimates and further inference. 

 There are numerous ways in which diagnostics can differ in their approach to 

assessing convergence. For example, Cowles and Carlin (1996) distinguish among 13 

diagnostics according to seven dimensions. The dimensions used to distinguish among 

diagnostics are: whether the method is visual or quantitative, whether they are applied to 

single or multiple chains, the theoretical foundation on which the method is based, 

whether the diagnostics focus on univariate or multivariate distributions for the 

parameters, whether the diagnostics characterize convergence in terms of bias or 
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variance, the types of sampler to which the method can be applied, and the ease of 

implementation. 

 There are two general forms of the post hoc diagnostics. Cowles and Carlin 

(1996) distinguish between visual and quantitative methods for assessing convergence. 

These methods approach the assessment of convergence from different standpoints, and 

are known to perform differently from one another.

Visual diagnostics 

 Visual methods involve graphical representations of Markov chains or some 

transformation of them. Common visual methods include, but are not limited to, time 

series plots, running mean plots, AC plots, and CUSUM path plots. 

 Time series plots (Sinharay, 2003) are probably the most common way to check 

for convergence. These are simply plots of the value of each element in the chain (on the 

y-axis) and the number of the step (on the x-axis). Each point is connected by a line 

segment so that the ‘path’ the chain has traversed is evident. While not foolproof, it can 

indicate situations where the chain has clearly not converged (e.g., continually increasing 

trend, wandering up and down over different parts of the chain) or provide an estimate of 

the number of burn in iterations to remove. If multiple chains are run, it is an easy way to 

investigate if they are in agreement. Simply plot them all on one graph to inspect their 

similarity (if they all begin to overlap at a certain point and remain similar, it is evidence 

in favor of convergence). Plotting the log of the posterior density over the course of the 

chain can be informative as well (Sinharay, 2003). If there is an increasing trend it can be 

taken as evidence that the chain is moving towards the mode of the parameter space. If 
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there is a decreasing trend, then the sampler may have explored a part of the space with 

little area and is moving towards a potentially more dense area. 

 Mean plots, as the name implies, represent the mean of the chain at various points 

in the sequence. A plot of the running mean provides visual evidence about the stability 

of the location of a chain. At every nth step of the chain, the mean is calculated and 

plotted. If a chain has converged, there should be little change in the means at each nth 

step. Mean plots are very simple indicators and can easily identify cases where 

convergence has clearly not been achieved. However, it ignores important aspects of 

convergence like variance, for example. 

 AC plots provide indirect evidence about convergence. Inspection of the plots of 

ACs for each parameter’s chain is informative about the behavior of the sampler. The 

greater the degree of AC, the longer it will take a sampler to fully explore the parameter 

space. Slow moving chains or multiple chains that stay in different areas of the sample 

space can be due to high AC or multiple modes, so it is common practice to view time 

series plots in light of observed AC. 

 CUSUM path plots were originally created to be a simple way of assessing chains 

diagnostically. Cumulative sum plots represent accumulating deviations from the mean. 

When there are a large consecutive number of same signed deviations about the mean, 

the resulting CUSUM plots will be smooth and will ‘wander’ away from the mean of the 

overall chain. The smoothness of the CUSUM path plots and the excursions from the 

mean are indicative of mixing rate, which is indirectly informative about convergence. 

When plotted against an ‘ideal path’, these plots can provide information about the 
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behavior of a chain over time. The current method under development is a modification 

of the CUSUM path plots and will be discussed in greater detail shortly.

Quantitative diagnostics 

 Generally speaking, quantitative diagnostics differ from visual diagnostics in that 

convergence is represented by way of a statistical test or confidence interval. They 

involve representing convergence in numerical form. A chain (or chains) is transformed 

into the numerical representation for the sake of comparison to a null hypothesis. The 

null hypothesis is meant to represent the case of convergence. Thus, these approaches 

attempt to treat convergence as a form of hypothesis testing. When the null hypothesis is 

rejected, then we favor the alternative hypothesis that the chain(s) has not converged. 

 Given that the purpose of the current research is to compare a modified version of 

the CUSUM diagnostic, the following description of several quantitative diagnostics will 

focus on those that have characteristics similar enough to the CUSUM so as to render 

them amenable to direct comparison. In particular, the Raftery and Lewis (1992) 

diagnostic, the Heidelberger and Welch (1983) diagnostic, and the Geweke (1992) 

diagnostic will be described. 

 The Raftery and Lewis (RL; 1992) method is intended to diagnose convergence as 

well as provide bounds on the variance of estimates of quantiles of functions of 

parameters. This approach uses as input the output of any MCMC sampler that is at least 

‘Nmin’ iterations long (where ‘Nmin’ is the minimum number of iterations to achieve the 

desired level of accuracy of estimation if the samples were independent). After providing 

q, the quantile of interest to be estimated (perhaps .025), and r, the accuracy desired (say 
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+.005), the required probability, s, of obtaining the accuracy desired, and a convergence 

tolerance, , (which is usually .001) the pre-written code provides the values for: 1) 

‘nprec’, which is the total number of iterations that should be run, 2) ‘nburn’, which is the 

number of iterations to throw away as burn in, and 3) ‘k’, indicating the number of 

intervening iterations to discard when making inference based on the chain (‘k’ is a 

thinning estimate). The largest obtained value of ‘nprec’ should be used for all chains. 

 This diagnostic is based on two-state Markov chain theory as well as sample size 

estimation based on binomial variance. A binary sequence is created, Z, as a 0/1 indicator 

equal to the length of the chain, determined by whether or not the value in the original 

chain is less than a particular cutoff. The approach returns an index, ‘I’. If the index is 

greater than 5 it is an indication that there are problems with convergence. Raftery and 

Lewis (1992) emphasize that the strength of this method lies in being able to specify the 

desired accuracy of estimation at each quantile of the distribution desired. Thus, the 

specification of accuracy at selected quantiles of the PD allows for the estimation of the 

shape of the target distribution very well. Thus, it allows for good estimation of center 

and spread, two critical components of good estimation. 

 Critics have emphasized that different input chain values for the exact same 

parameter can result in largely variable estimates of ‘nprec’. Also, RL is a univariate 

procedure, which may be overlooking the complexities present when trying to 

characterize multivariate quantities. Additionally, this technique provides an estimate, 

‘k’, of the thinning that should be done. MacEachern and Berliner (1994) point out that 

any estimation procedure is degraded by throwing away iterations. This particular 
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criticism is not unique to the RL diagnostic, and will be revisited in the Methods section. 

 Geweke (1992) used methods from spectral analysis to approach the assessment 

of convergence for Gibbs samplers. When the purpose of the analysis is to estimate the 

mean of a function of the model parameters being estimated after each step of the 

sampler, g ((k)), the Markov chain can be treated as a time series. The method assumes 

that the MCMC procedure and the “….function g imply the existence of a spectral 

density Sg() for this time series that has no discontinuities at frequency zero (Cowles & 

Carlin, 1996, p.886).” When the assumption holds, the expected value of g () can be 

estimated by: 

̅
∑

															 7  

 

and the asymptotic variance is Sg(0)/n. The numerical standard error (NSE) is the square 

root of this variance, and can be interpreted as an estimate of the standard error of the 

mean (Cowles & Carlin, 1996). 

 Essentially the Geweke approach (G) tests whether or not the mean at the 

beginning of the chain is equal to the mean at the end of the chain. Two subsections of 

the chain are taken, reasonably separated by some distance to assure their independence, 

and transformed into a value conceptually similar to a z score. The mean at the beginning 

of the chain is subtracted from the mean at the end of the chain, and this difference is 

divided by the asymptotic standard error of the difference. The diagnostic is calculated by 
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taking the difference between means of the first 10% and the last 50% of the elements in 

the chain and dividing by the pooled estimate of dispersion. When a chain produces 

values between -1.96 and 1.96, the interpretation is that the means from the beginning 

and end of the chain are not different from one another, thus it is seen as evidence that the 

chain has converged (because the mean is stable). 

 This method assesses both bias and variance, is readily available in a free 

software package (CODA; Best, Cowles, and Vines, 1995), is univariate (but can be 

extended to a multivariate treatment with ease), and requires only a single chain for its 

implementation. The primary disadvantage is that the value of the statistic is sensitive to 

the specification of the spectral window (Cowles & Carlin, 1996). 

 The Heidelberger and Welch (HW; 1983) diagnostic tests whether or not the last 

part of a Markov chain has achieved stationarity, and it assesses whether or not a pre-

specified level of accuracy has been achieved. It is based on Brownian bridge theory and 

spectral analysis, is a univariate approach, only requires a single chain, assesses both bias 

and variance, and is applicable to any type of MCMC sampler (Cowles & Carlin, 1996). 

It is a comprehensive procedure that combines the procedures for detecting 

nonstationarity presented in Schruben (1982) and Schruben, Singh, and Tierney (1983). 

These procedures use a spectral analysis approach to estimate the variance of the sample 

mean, and rely on the Cramer-von Mises statistic (von Mises, 1931) to test the null 

hypothesis that the chain is stationary. Essentially, a confidence interval is created that 

has a pre-specified half-width, . This diagnostic is freely available in the BOA software 

package in R (Smith, 2001). 
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 The HW diagnostic applies the stationarity test of Schruben (1982) and Schruben 

et al (1983) in an iterative fashion. If the null hypothesis is rejected for the whole chain, 

the first 10% of chain elements are removed, and the test is repeated. If the null 

hypothesis is rejected again, another 10% of the elements from the beginning of the chain 

are removed and the procedure repeated. This process continues until the null hypothesis 

is not rejected or half of the iterations have been eliminated. If half of the elements have 

been eliminated, the chain will need to be run longer, and the process started again. When 

a portion of a chain is deemed stationary, a half-width test is performed. With the spectral 

density estimate of the standard error of the mean, an estimated half-width is created. If 

this estimate is less than  times the sample mean of the retained portion of the chain, 

then the process stops. The sample mean and confidence interval are reported.

CUSUM path plots

 The focus of the current research is on a modification of the CUSUM technique 

for assessing convergence. Therefore, the method deserves a thorough description before 

the modifications are discussed. The original method of using CUSUM path plots and the 

later addition of incorporating a quantitative component will be described here, and the 

new modifications to the technique currently under investigation will be provided in the 

Methods section. 

 Yu and Mykland’s (1996) technique developed to assess convergence comes from 

a related method in the field of Statistical Process Control (SPC). SPC is often used to 

control production processes to achieve a desired output within some desired margin of 

error (e.g., to ensure that each tea bag produced by a company has the proper amount of 
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tea in it). The CUSUM procedure (Page, 1954) is sensitive to consecutive strings of 

positive or negative deviations about the center of a distribution. The CUSUM procedure 

is an effective method for detecting small shifts in the mean of a distribution, and has 

been successfully used in the field of SPC (Page, 1954) as well as psychometrics (person-

fit; van Krimpen-Stoop and Meijer, 2000). 

 The procedure, as originally adapted as a convergence diagnostic, is potentially 

capable of characterizing convergence in terms of detecting trends of consecutive 

positive (and/or negative) deviations about the mean in a posterior chain. The underlying 

nature of the CUSUM procedure provides a unique alternative characterization of 

convergence. This technique focuses directly on the posterior chains, and characterizes 

each element in the chain as a deviation about the mean of those values. These deviations 

are then considered from a global perspective in terms of their behavior across the chain. 

This characterization of the elements in a production sequence provides an intuitive way 

to address the convergence of Markov chains. This technique was developed over a 

decade ago by Yu and Mykland (1998). These authors proposed a slight modification of 

the CUSUM as described for SPC by Page (1954) so that it becomes more appropriate in 

the context of evaluating convergence. 

 Visual inspection of the posterior chains is a common means of determining 

convergence (as it is informative about behavior of the chain over time). However, the 

traditional sequential plots provide less information about the mixing behavior of the 

posterior chain than might be desirable. Mixing behavior describes the shift from the 

chain’s initial state towards the stationary distribution presumed to be the end result of 
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the sampling procedure. In this spirit, Yu and Mykland (1996) proposed graphing a 

meaningful transformation of the observed chain (e.g., accumulating deviations about the 

mean) over time to investigate the chain’s behavior. Specifically, the values in the chain 

are transformed into a chain of accumulating deviations about the mean. Each element in 

the observed Markov chain has the mean subtracted from it, and then these deviations are 

summed sequentially across the chain (the first element is added to the second, the new 

second element is added to the third and so on). These accumulating deviations are 

plotted and the points are connected by line segments. The smoothness of the CUSUM 

plot and the distance it travels away from the mean are both indicative of the mixing rate. 

If the resulting plot is smooth (with many consecutive line segments having positive 

slopes, for example) and makes large excursions away from the mean, then the chain is 

mixing slowly and a large number of steps will be required before the chain reaches it 

stationary distribution. 

 Specifically, given a sequence of observations obtained from an MCMC 

procedure, X1, … , Xn, begin by discarding the first n0 observations as burn in. After 

removing the burn in, the average of the observations in each chain is calculated. Then an 

accumulating deviation from the mean, , is calculated and plotted over the length of the 

chain to visualize the CUSUM path. A benchmark path is also plotted for comparison 

(this is described later). These CUSUM paths are similar to traditional sequential plots, 

but have the nice feature of beginning and ending at zero, and emphasize consecutive 

same signed deviations about the mean. Consecutive same signed deviations from the 

mean are an indication that the mean of the distribution is changing. 
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 The method as originally proposed was to first calculate the mean of the posterior 

beyond the burn in chain, ̂ ,: 

̂ 	
1

														 8  

 

where n is the full length of the chain, n0 is the portion of the chain that is discarded as 

burn in, and (xi) is the one-dimensional summary statistic that is being monitored (in 

most applications, this is representing the observed value of element i in the chain).The 

value ̂  is simply the mean value of the observed chain beyond the burn-in. The value ̂  

is then used to characterize each element in the chain as a deviation to be summed 

sequentially over the length of the chain to obtain the CUSUM,	 : 

	 ̂ , 	 1, … , 															 9  

 

where all notation is the same as in the previous equation. Simply put, each observation 

in the chain has the value of the mean subtracted from it, and these deviations about the 

mean are summed at each step over the length of the chain. These  values are then 

plotted for the length of the chain (excluding the burn in) and connected by line 

segments. 

 Yu and Mykland (1998) explained that smooth CUSUM plots that took large 

excursions away from the mean were indicative of slow mixing behavior for the chain, 
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while jagged (or ‘hairy’) CUSUM plots that stayed close to the mean were indicative of 

fast mixing behavior. These authors also suggested that observed CUSUM plots be 

compared to ideal, or ’benchmark’, plots. These ideal plots are based on a simulated i.i.d. 

sequence from a normal distribution with mean and variance equal to that of the observed 

Markov chain. The i.i.d. sequence is then transformed into a CUSUM path plot. The ideal 

paths allow for the assessment of the behavior of the observed CUSUM paths through 

direct comparison in the same graphic device by acting as a rough version of a null 

hypothesis. These ideal paths are second order approximations to an ideal CUSUM path 

from the target distribution (Yu and Mykland, 1998). If the observed and ideal paths are 

similar, it is taken as evidence that the observed plot is behaving in a similar fashion as a 

converged sequence. 

 Of critical importance in this paper, Yu and Mykland (1998), expanding on Lin’s 

(1992) work with the behavior of partial sums in mixing sequences, argued that when 

there was rapid mixing of the distributions (i.e., when the chain is moving quickly to the 

stationary posterior we want to estimate) the CUSUM plot would be very ‘hairy.’ In other 

words, the plot would essentially be connecting points on the plot by line segments with 

alternating positive and negative slopes, hence the ‘hairy’ description of the resulting 

plot. In terms of assessing convergence, a fast mixing sequence is an indication that a 

shorter chain is necessary to reach a stationary distribution. Of course, this is only true 

when that ‘hairy’ plot stays very close to the overall mean of the chain. Taken together, a 

‘hairy’ plot with a small excursion is a sign that the sampling procedure is moving 

quickly from its initial starting values and settling in to the presumed underlying 
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distribution. The CUSUM plot also provides evidence about these excursions. 

 For an example of what these authors mean by ‘hairy’, see the plots immediately 

below. 

Figure 1: Example of a ‘hairy’ plot 

 

 The first of these two plots is a time-series plot for a sequence of values generated 

from MH within Gibbs sampler. The second plot is the CUSUM path plot for the same 

sequence. There are two things in the second plot that indicate fast mixing. First, the 

‘hairiness’ of the plot above is evidenced by the fact that for the most part the CUSUM 
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observations are connected by line segments with alternating positive and negative 

slopes. Second, in terms of excursion, these values tend to alternate evenly on either side 

of the center of the observed values, and don’t tend to spend extended amounts of time on 

any one side of the mean. Thus, when the points are plotted and connected by line 

segments, it results in a series of successive line segments that typically alternate in the 

signs of their slope while also staying close to the value of the mean. This pattern is 

indicative of a chain that is mixing rapidly, and this is a characteristic of chains that are 

moving to convergence. In this example, the chain used was deemed converged by a 

variety of other criteria.

Quantifying ‘hairiness’ 

 In a modification of this work, Brooks (1998c) adds a quantitative measure of 

‘hairiness’ to this method of characterizing the posterior chain obtained from an MCMC 

sampler in an effort to reduce the subjectivity of Yu and Mykland’s (1998) method. 

Brooks (1998c) explains how the posterior, when characterized by way of Yu and 

Mykland’s (1998) CUSUM path plot, can be transformed again into an indicator statistic 

that tries to capture the essence of ‘hairiness’. Simply put, if a given element (Si) in a 

CUSUM sequence is larger than its two immediate neighbors (Si-1, Si+1) it satisfies this 

‘hairiness’ condition; also, if a given element is smaller than its two immediate neighbors 

it satisfies this condition. If a given element is not larger or smaller than its two 

immediate neighbors, then it does not satisfy the ‘hairiness’ condition. If the current 

element under consideration, Si, is larger or smaller than its two immediate neighbors, a 

plot of these three points joined by two line segments would require that the line 
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segments have differently signed slopes. More formally, the indicator statistic, di, can be 

stated as: 
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 Brooks (1998c) then describes how this indicator statistic can be evaluated as an 

accumulating average. More specifically, the summary of the indicator statistic, Dt, is: 

1
1
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 This summary of the indicator statistic is simply the proportion of elements in the 

CUSUM sequence that are characterized as being either larger or smaller than their 

immediate neighbors (i.e., the proportion of all Si values in a chain classified by the 

indicator statistic as di = 1) Brooks (1998c) notes that the sum of the di values can be 

interpreted as the number of times that (xi) crosses ̂ . Dt is calculated at each successive 

step of the chain, and can be plotted to inspect its behavior over the length of a chain. For 

Dt to function as a formal diagnostic, its characteristics must be evaluated under the 

assumption that the sequence is i.i.d. and symmetric about its mean. When these 

conditions are met, it is argued that the expected value of this statistic is ½ (see Brooks, 

1998c for a proof). So, when a chain being inspected has reached convergence, its di 



55 

sequence should be centered at ½. Therefore, a hypothesis test can be performed, where 

the null hypothesis under consideration is that the expected value of di is equal to ½. This 

can be achieved by treating Dt as a binomial outcome with a mean of ½ and a variance of 

¼(t - n0 - 1). 

 This hypothesis test can be expressed in graphical form by plotting the value of Dt 

across the length of the chain. By plotting the Dt statistic over time against thresholds 

determined by a confidence band about the expected value of the statistic under the 

assumption that the null hypothesis is true (i.e., for a converged, i.i.d., symmetric 

distribution) the proportion of elements in the chain that satisfy the conditions that 

Brooks (1998c) associates with ‘hairiness’ can be seen. When the plot of a Dt sequence 

from an observed posterior falls within the boundaries implied by the null hypothesis of a 

stationary distribution, the chain from which it is derived is indistinguishable from a 

converged chain. 

 Brooks (1998c) bases this claim on the assumption that the summary of the 

indicator statistic can be described by a binomial distribution. The boundaries implied by 

the null hypothesis of a stationary distribution can be approximated by, 

1
1
															 12  

 

where p is equal to P(di=1), q is equal to 1 – p, t is the total number of elements in the 

chain, and n0 is the number of elements in the burn-in. This can be interpreted as a 100(1-
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/2) % confidence interval because Dt will be approximately normal for large values of t 

by the law of large numbers. While observing a plot of Dt that falls within these 

boundaries is not necessarily indicative of convergence, a plot that falls outside the 

boundaries is indicative of lack of convergence. In other words, if a CUSUM sequence is 

characterized by way of the indicator statistic and the plot of its accumulating average for 

these indicator statistics falls within the boundaries implied by the confidence interval, 

then we have evidence to suggest that this particular pattern of ones and zeroes is 

converged. This ability to indicate chains which are not behaving as if they are converged 

can be used to ensure against the misuse of MCMC output in inferential settings. 

 In the case of MCMC chains it is typically not the case that the di sequence is 

i.i.d. because it is based on a dependent sequence of values from the Markov chain. Also, 

it is often not the case that the distributions in question are not symmetric about the mean. 

So, the bounds described above are not exact but only a rough approximation. In order to 

remove the two assumptions upon which the method rests (and make the bounds exact 

rather than approximate), Brooks (1998c) proposes two modifications. First, to remove 

the assumption that the sequence being characterized by the method is i.i.d., the observed 

Markov chain can be thinned. Thinning the chain to remove the dependence among 

elements makes the first assumption ‘approximately’ true. Second, to remove the 

assumption of symmetry, it is argued that P(di=1) can be modified to reflect the 

asymmetry of the distribution in question. The modification is done by integrating across 

the transition kernel. Specifically, the number of observations expected to be greater than 

the mean is used to weight the transition kernel from the mean to the upper limit, and the 
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number of observations below the mean is used to weight the transition kernel from the 

lower limit up to the mean. 

 Brooks (1998c) argues that his quantification of Yu and Mykland’s (1998) 

CUSUM path plot is a significant improvement over the original method. The new 

method removes some of the subjectivity involved in the original method and offers a 

quantitative assessment of how close an observed sequence is to convergence. Rather 

than simply assessing mixing rate, the approach is now capable of providing a hypothesis 

test for the convergence of Markov chains. Also, the method can be extended to 

determining the length of the burn in as well as estimating a thinning parameter for 

obtaining approximately i.i.d. sequences for use in drawing inferences.

Studies comparing diagnostics 

 Two studies will be addressed directly. Results of Cowles and Carlin (1996) and 

Sinharay (2003 and 2004) will be reported. Then general findings of attempts to assess 

convergence will be discussed. 

 Cowles and Carlin (1996) used both a Gibbs sampler and a reversible jump 

sampler to create Markov chains, and then applied 13 different convergence diagnostics 

to the output of the samplers. In this study, the emphasis was not on comparing the 

methods directly; rather it was to describe how each sampler characterized a chain. It is 

evident from this study that the different diagnostics weren’t always applicable to the 

output of the samplers, the diagnostics often disagreed with one another, and there was no 

clear indication of which diagnostic made the most sense to apply to a chain. Even when 

a diagnostic was put into use in a situation that it was designed to be sensitive to, it did 
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not always succeed. This finding is especially alarming in that the chains assessed in this 

paper were from low-dimensional, highly idealized situations. If the techniques fail in 

these relatively simple settings, it does not bode well for their performance in more 

realistic, high dimensional problems. Additionally, a number of the diagnostics are not 

easily implemented due to their problem specific nature. Cowles and Carlin (1995) in 

their summary call for more research into the theoretical and applied aspects of MCMC 

algorithms. 

 These authors claim that multiple diagnostics (both visual and quantitative) 

should be employed and multiple chains be run for each parameter to be estimated. This 

‘blanket’ type approach will help prevent a researcher from ‘blindly’ making statements 

about the quality of a chain (or chains) for estimation purposes. Indeed, it is 

recommended that the visual and quantitative diagnostics be considered simultaneously 

by adding the quantitative indices to the plots of the time series, for example. In addition, 

it is wise to consider multiple parameters simultaneously so as to shed light on the 

relationships among model parameters that may be influencing the estimation procedure. 

 These authors also advocate making revisions to the way a sampler is created to 

ensure that quality estimation is performed. Reference is made to strategies for creating 

the Markov chain that may help avoid some of the potential pitfalls known to exist. For 

example, Mykland, Tierney, and Yu (1995) insert an independent MH step every so often 

within a very long Gibbs sampling chain. In effect, when an independent MH candidate is 

accepted, this is equivalent to running multiple chains and allows for the application of 

diagnostics requiring multiple chains, but can also be treated as one very long chain 
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(which is preferred over multiple shorter chains). 

 Similarly, the authors encourage researchers to consider multiple models, multiple 

types of samplers, and a good deal of ‘up front’ work to investigate the target distribution 

before applying MCMC techniques. By taking the time to investigate the data from 

multiple perspectives, it is possible to gain a clearer picture of likelihood or posterior 

surface. 

 Sinharay (2003 and 2004) investigated several convergence diagnostics in the 

context of two psychometric examples. The practical motivation for this study is that any 

inference to be derived on the basis of estimated parameters is only justifiable if those 

estimated parameters are sensible. That is to say, the method for estimating the 

parameters must be valid in both principle and application. Any breakdown in the 

estimation procedure has potentially dire consequences for inferences to be made. In the 

context of MCMC estimation, the technique has been shown to be sound in principle, but 

there are few universal guidelines for exactly how to proceed in application. Thus, the 

research (comparing convergence diagnostics) is justified by way of argument that 

convergence diagnostics are an ideal source of information when trying to determine 

whether or not a sampler is behaving as it should. The focus of this research is not 

necessarily to determine when MCMC algorithms converge; rather it attempts to 

demonstrate the differences that exist when applying multiple diagnostics to assessing 

convergence. 

 To aid in the understanding and accessibility of the research, Sinharay (2004) 

limits the diagnostics investigated to those that are conceptually easier to understand and 



60 

that are easily implemented. This research includes the RL, HW and G diagnostics 

described previously. One motivation for the current research is to extend the analysis of 

these three diagnostics and to do it along with the inclusion of the CUSUM method as 

well as the technique being developed in this research. 

 A generally agreed upon finding is that no one method works well all the time. 

Multiple diagnostics should be applied to any chain intended to be used as the basis for 

an estimate. Diagnostics address necessity, and not sufficiency of qualities for a chain to 

be deemed converged.

Constructing the posteriors 

 When the chains have been constructed, some work still remains to be done 

before moving forward with estimation and inference. Thinning the chain, checking 

model fit, and performing model comparisons are all considerations that should be 

undertaken (Kim & Bolt, 2007). 

 Thinning the chain involves removing some of the elements from the final 

sequence. Thinning is not to be confused with burn in. Thinning should be done after the 

burn in has been removed Thinning is done to deal with the AC built into the chain by the 

MCMC procedure. For example, taking every nth element from the chain reduces the 

amount of AC among the remaining elements, rendering them at least somewhat linearly 

independent. Thinning will received additional treatment in the methods section. 

 Evaluating model fit is prudent before proceeding with any inference based on the 

MCMC estimates. A benefit of engaging in MCMC sampling is that it is possible to use 

posterior predictive checks. Generally speaking, it is possible to create additional 
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posterior distributions from different data sets than those used to produce the parameters. 

This allows comparison of any of a relevant set of discrepancy statistics for the original 

data and the new data to determine whether or not the outcomes in the observed data are 

likely to happen given what is observed in the replicate datasets. This is similar to a re-

sampling approach. 

 Model comparisons are very easy to implement in an MCMC framework. Two 

model comparison indices are the Pseudo-Bayes Factor criterion (PBFC) and the 

Deviance Information Criterion (DIC). A Bayes Factor criterion forms a ratio of 

likelihoods involving the data conditional upon either of two potential models. The value 

of the ratio tells you which model fits the data better (with the customary caveat that it 

doesn’t tell you if the model fits well, just better than the other model under 

consideration). The Bayes Factor criterion can be approximated by a Pseudo-Bayes factor 

criterion. An example of this is the Conditional Predictive Ordinate (CPO). The CPO at 

the level of the individual item response is given as: 

	
1 1
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where K is the total number of states in the chain, k represents the particular state in the 

chain, and |Ω is the conditional likelihood of the data given the parameters at state 

k. To summarize across all item responses, the CPOs can be multiplied and the log then 

taken of the product. A model producing a higher log product is preferred over one 
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producing a lower log product. The DIC is similar to Akaike Information Criterion and 

Bayesian Information Criterion in that it is based on the -2 log likelihood and model 

complexity is taken into account when assessing fit. Models with more parameter should 

fit better, so when comparing models with different numbers of parameters the model 

with more parameters is penalized more. 

Why use MCMC 

 Now that a description of MCMC has been given and some of the important 

considerations that need to be addressed when implementing the technique have been 

discussed, it is worthwhile to briefly describe why MCMC should be used. In addition to 

discussing its strengths and utility, some of the weaknesses of the method will also be 

addressed. 

 When an analytical solution to a function is impossible or intractable, sampling 

strategies like MCMC allow for numerical solutions to calculations that are otherwise 

unobtainable. In psychometric settings the models used are often complex and have a 

high degree of dimensionality. MCMC allows the user to reduce complex 

multidimensional problems to a sequence of lower dimensional problems (Cowles & 

Carlin, 1996). Thus, the traditionally accepted approach of Marginal Maximum 

Likelihood Estimation is stymied by these complexities and an alternative is needed. For 

example, the E-M algorithm can become difficult to implement with complicated models. 

Not only is the method itself easier to implement, MCMC extends easily to more 

complicated modeling situations. For example, when data is missing and augmentation is 

needed, this is straightforward to do in MCMC (Patz & Junker 1999b). 
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 Also, in MCMC we are estimating distributions, not single point estimates. The 

fact that the entire posterior is available provides richer information about parameter 

estimates, although a point estimate is often the final destination for most practitioners in 

EM. For example, a histogram of the posterior distribution can be very informative when 

estimating parameters. 

 Finally, MCMC is relatively indifferent to the presence or absence of conjugate 

structure between the likelihood and the priors (Cowles & Carlin, 1996). Thus, even if 

the priors are mis-specified, MCMC samplers are still likely to converge to the stable, 

underlying distribution. So, even if we have little or no idea what kind of distribution we 

are trying to estimate, we can still proceed with estimation. 

 The MCMC method also has some weaknesses. The primary drawback of the 

method is that it isn’t entirely clear when and if these methods reach the stationary chain 

that is supposed to represent the true joint posterior distribution for the parameters we 

wish to estimate. Convergence here is much more general than in competing estimation 

procedures such as MLE, where convergence is to a point. Convergence in MCMC is to a 

distribution (of which only a sample is ever observed). Adding to the difficulty of making 

statements about convergence is the reality that samples estimated in this fashion 

typically are linearly dependent upon one another. The result is longer estimation runs (as 

the procedure is limited in its efficiency in exploring the parameter space) and an unclear 

estimate of the variance of the chains produced (the strong linear dependence results in 

underestimated values of the variance). The large amount of AC (dependence within a 

chain) and cross correlation (dependence across chains of separate parameters) can be 
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caused by poorly or overly parameterized models. Re-parameterizing a model is not 

unique to MCMC settings, but does potentially pose additional problems before 

estimation can be deemed trustworthy. 

 MCMC is also computationally demanding. Run times for MCMC samplers can 

easily extend to hours and days. In situations where time is of the essence, MCMC 

approaches may be prohibitively time-consuming and therefore impractical. Although, as 

computing speed increases, the fact that MCMC is computationally demanding will 

become less of a concern. 

 MCMC is less well understood than MLE approaches. So, in cases where existing 

software is available using an MLE approach, it obviates the need to take an approach 

like this, and can save a considerable amount of time. Also, in high stake testing 

situations where the results of testing must be legally defensible, much work remains to 

be done to guarantee the legitimacy of MCMC procedures to the public at large.

Motivation for the current research 

 MCMC is being used as a method of estimation and as a result it is important that 

it is used correctly. Part of using MCMC correctly is having solid evidence to know that 

chains are converged and estimation can be substantiated. Many complex models exist 

and more are being developed for which MLE approaches will be difficult to implement. 

Because of the increased commonality of its use, there is an increasing need to be sure 

that the estimates obtained via MCMC are stable and trustworthy. The estimates must be 

stable and trustworthy if it is to be applied in real testing situations. 
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 Despite convergence diagnostics having been characterized as ‘fundamentally 

unsound’, it is still necessary to investigate the characteristics of the chain associated with 

its suitability to act as a sample on which to base an estimate that is then to be used for 

inference regarding examinee responses. If convergence cannot be solved for in an a 

priori theoretical fashion, the next best thing is a diagnostic (or group of them) that can 

rule out potentially ‘bad’ chains. Although it is never possible to say with certainty that a 

finite sample from an MCMC algorithm is representative of an underlying stationary 

distribution, convergence diagnostics “…may offer a worthwhile check on the 

algorithm’s progress (Cowles & Carlin, 1995, p. 903).” If researchers are to use MCMC 

methods and interpret the results, it is desirable that (at the very least) the output should 

look somewhat like what would be expected if indeed stability had been achieved and the 

sample obtained was indistinguishable from one obtained from a sensible distribution. 

Convergence diagnostics are formalized statements of ‘what we would expect to see.’ 

 Existing convergence diagnostics aren’t perfect, and no one method is a panacea. 

All methods developed to date work well in some situations and not in others. Not all 

methods are easily implemented or efficient. Methods have different theoretical 

justifications which may or may not make sense in a given context. The relatively limited 

literature describing convergence diagnostics doesn’t always address when certain 

diagnostics are more or less appropriate and/or successful. It is commonly noted that both 

visual and quantitative techniques should be used (Cowles & Carlin, 1996, Sinharay, 

2004). This suggestion is a good motivation to develop a method that incorporates both 

visual and quantitative components, like the CUSUM or the technique being developed. 
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Visual inspection of the chains is commonly done; however, this is a time intensive 

prospect. A method that identifies chains which are likely suspect can greatly simplify the 

demand on the researcher. 

 Existing studies comparing and contrasting convergence diagnostics aren’t 

exhaustive. The particular sampling methods are typically not compared directly to one 

another. There is a dearth of these types of studies in general, and especially for those 

relating specifically to psychometric applications. Thus, the particular goals of this 

research endeavor are to describe the development of a new convergence diagnostic 

(based on modifications of the CUSUM diagnostic), describe the development of a 

technique to generate chains without running a sampler, describe clearly the relationship 

between AC, balance, and the expected value of the indicator statistic under 

development, and to compare this method to other comparable diagnostics with simulated 

chains as well as with chains from real samplers. 

 The importance of modifying the existing CUSUM technique rests on removing 

the assumption of an underlying symmetric distribution. A straightforward way to modify 

the technique that alleviates the need for an assumption of symmetry will make the 

technique more widely applicable, and is discussed thoroughly in the Methods section. A 

technique for generating chains will also be described thoroughly in the Methods section. 

Generating chains allows for a convenient descriptive mechanism by which to discuss the 

relationship between AC, balance, and the expected value of the summary of the 

indicator statistic, Dt. Also, generating chains allows for a controlled simulation study to 
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directly compare methods of assessing convergence. 
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CHAPTER III 
 

METHODS 
 
 

 The primary goal of this study is to modify and subsequently investigate a 

convergence diagnostic for posterior distributions obtained through MCMC estimation 

and compare it to some existing diagnostics. The new method under consideration is 

based on the cumulative sum (CUSUM) procedure of Yu and Mykland (1998) and the 

subsequent modifications made by Brooks (1998c). In particular, it will be shown that 

this new index is similar to the aforementioned index discussed by Brooks without 

requiring that the posterior distribution be symmetric. 

 In order to achieve the goal of this study, two things must be accomplished. First, 

the method under development must be thoroughly described so as to allow for a 

complete understanding of its implementation and implications of use. For example, the 

properties of the convergence diagnostic must be described for the cases of independent 

versus dependent sequences of elements and for the cases of stable versus unstable 

generating distributions for the sequences of elements. Second, a method for simulating 

chains with controlled amounts of autocorrelation among elements and controlled 

movement of the mean is needed. In this way, it is known ahead of time how the chain is 

behaving so that the effectiveness of the methods can be compared accurately. It is 

necessary to simulate the chains so that they can range from completely independent 

draws to completely dependent draws. This is accomplished by controlling the degree of 
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autocorrelation present in the simulated chains. It is also desirable to simulate chains 

where the mean is stable and those where the mean is fluctuating. This stability, or 

balance, is controlled by the random sampling component of the simulated chains that 

will allow for control of the stability of the mean of the simulated chains.

Modification of the CUSUM procedure 

 The motivation of this research is to develop a convergence diagnostic that is 

directly informative about the stability of the distribution producing a Markov chain. If a 

technique can be developed that is sensitive to a conditional distribution that is 

unchanging, the implication is that the next random draw in the sequence must be from 

the same distribution. The current diagnostic is different than the CUSUM indicator 

statistic developed by Brooks (1998c). The primary modification is that the quantitative 

indicator statistic, di, and its summary, Dt, should be applied to the observed Markov 

chain, rather than the CUSUM chain. Because the indicator statistic is no longer 

computed using the CUSUM chain, the expected value of the summary of the indicator 

statistic under the null hypothesis of an i.i.d. sequence must be derived. In addition, 

unlike the statistic described by Brooks (1998c), the assumption of symmetry for the 

distribution describing the chain under consideration of the indicator statistic is no longer 

necessary. Additionally, this study will also consider the effect of thinning of the chains 

before characterization by way of the indicator statistic. 

 The first modification to Brooks’ (1998c) method is the particular chain to which 

the indicator statistic is applied. The current technique applies Brooks (1998c) di statistic 

to the observed Markov chain rather than the CUSUM chain. This affects the expected 



70 

value of the indicator statistic under the null hypothesis (i.e., an i.i.d., stationary sequence 

is achieved) in addition to its properties. When the indicator statistic is applied to the 

observed Markov chain, the expected value of di is equal to 2/3 rather than 1/2. Brooks 

(1998c) makes the argument that the sum of the indicator statistic, di, can be interpreted 

as the number of times that the CUSUM plot crosses the mean. Thus, in the case of a 

converged, symmetric distribution it would be expected that each new observation is 

equally likely to be above or below the mean. However, this interpretation is due to the 

fact that the indicator statistic is applied to the CUSUM chain, which is an accumulating 

sum of mean centered values. However, when the indicator statistic is applied to the 

observed chain, it is not necessary that any of the values actually cross the mean to be 

coded as a 1, it simply needs to be greater than or less than its two immediate neighbors 

in the chain. The indicator statistic is only concerned with rank ordering, and does not 

directly involve comparison to the mean when applied to the observed Markov chain. The 

rank ordering of the elements is indicative of the stability of the distribution used to 

generate them. Applying the indicator statistic directly to the observed Markov chain is 

providing information about the probability of observing particular rank orderings of the 

chain elements, and this is indicative of the stability of the random process generating the 

chain elements. 

 The justification for the value of 2/3 comes from an argumentative proof. When 

any group of three i.i.d. variables is considered in terms of their rank orderings (as is 

done with di), the middlemost element is capable of taking on the 1st ranking (largest 

value), the 2nd ranking (neither the largest or smallest value), or the 3rd ranking (smallest 
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value). When there is a converged i.i.d. sequence each rank ordering is equally possible 

for any of the three variables under consideration. When an observation takes on a 1st or 

3rd place ranking in relation to the observations immediately before and after it, it 

satisfies the condition of being set equal to 1 for the indicator statistic. When an 

observation takes on a 2nd place ranking in relation to the observations immediately 

before and after it, it satisfies the condition of being set equal to 0 for the indicator 

statistic. Considering these facts, for any i.i.d. sequence of three, each element is equally 

likely to take on each of the possible rankings of 1st, 2nd, or 3rd. In other words, it is 

expected that two out of the three equally likely possible rankings of the sequentially 

middlemost value to satisfy the condition of being coded a 1, while one in three outcomes 

would be coded a 0. Thus, rather than centering the threshold about the value of 1/2 as 

previously suggested, it is argued that the expected value of the Dt statistic under the null 

hypothesis is 2/3. So, when we apply the indicator statistic to the observed Markov chain, 

we have a different expectation about what value it should take on if the process has 

indeed converged. 

 The second modification to Brooks (1998c) has to do with the thresholds about 

the summary of the indicator statistic. Under the null hypothesis, the standard error of the 

estimator of the indicator statistic, p, is given as, : 

	
1
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where t indicates the step in the sequence, and all other terms are as described previously. 

The thresholds are estimated in a similar fashion as that suggested by Brooks (1998c). 

The only difference is the value that p (i.e., P(di=1)) is expected to take on under the null 

hypothesis. Thus the threshold is centered about a different value (2/3 rather than 1/2), 

and this also affects the width of the interval, as this is a binomial variable and takes on 

maximum variance at the value of P(di=1) = .5. This results in a slightly more 

conservative set of bounds than that originally proposed as p (1-p) will decrease in size as 

p moves away from .5. 

⁄ ∙ 															 15  

 

This equation shows how the thresholds are calculated. The threshold values are plotted 

on the same graph as the observed value of Dt across the chain. This allows for direct 

visual comparison of the observed chain to thresholds representing the null hypothesis 

throughout the length of a chain. Also, as further evidence that this value of 2/3 is the 

expected value in the case of convergence; data will be generated from several well-

known distributions (both symmetric and asymmetric) and characterized by way of the 

indicator statistic. In all of these cases, the value of Dt goes to 2/3 as the number of 

observations increase. 

 The third modification of Brooks (1998c) is specific to the assumptions made 

about the shape of the posterior distribution. Brooks (1998c) showed how it was possible 

to remove the assumption of symmetry from his technique. However, this involves 
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integrating across ranges of the transition kernel which may not be straightforward. The 

current research provides an alternative way to remove the assumption of symmetry. 

While it was argued that the shape of the posterior has an influence on the expected value 

of the summary of the indicator statistic under the null hypothesis, this is not true when 

the indicator statistic is applied to the Markov chain rather than the CUSUM chain. The 

current approach makes no assumption about the shape of the posterior; only that the 

posterior distribution could be characterized by a cumulative distribution function (CDF). 

This assumption is justified because the indicator statistic di is characterizing the 

elements by their rank orderings. 

 CDFs are informative about the likelihoods of particular rank orderings. A CDF 

represents the percentile ranks of the values of a random variable, and percentile ranks 

are by definition uniform distributions. Under the condition that the null hypothesis is 

true, any proper density function that accurately characterizes the posterior would have 

the same expected value for the summary of the indicator statistic. Thus, any distribution 

that can be characterized by a CDF should be accurately described by the null thresholds 

of this indicator statistic, which only takes into consideration the rank order of the 

Markov chain elements. The probability density function (PDF) describes the absolute 

relationship that the values of a random variable can take on; however, the CDF is simply 

concerned with and represents the rank ordering of the values of the random variable. So, 

if a Markov chain has converged to a stable distribution, the rank orderings of the 

sequences will be predictable. Thus, the summary of the indicator statistic should be 

informative about the process producing observed elements in a Markov chain.  
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 The last modification to the method proposed by Brooks (1998c) has to do with 

the method used for thinning the observed sequence. Recall that the boundaries suggested 

by Brooks (1998c) are based upon the null hypothesis that we have an independent set of 

draws. If a posterior chain is to be used as the basis for a parameter estimate, something 

must be done to ensure that the chain is at least an approximately i.i.d. string of 

observations before being transformed into the indicator statistic, otherwise the null 

boundaries are not appropriate and any attempt to diagnose lack of convergence will be 

misleading. Yu and Mykland (1998) point out that the MCMC procedure builds in a great 

deal of linear dependence among the observations. To deal with this, the degree of 

autocorrelation present in the observed chain is used to determine how many elements 

must be removed to achieve a non-significant autocorrelation at lag 1, and thins the chain 

accordingly to leave a linearly independent sequence. For example, if at lag 15, the 

correlation between observations is not significantly different than zero, then by taking 

only every fifteenth element of the observed posterior for inclusion in the thinned 

posterior, a linearly independent sample of observations will be obtained. This linearly 

independent group should also be identically distributed if the sampling is done 

appropriately and the chain has had enough time to adequately explore the sampling 

space. The thinning is done using the autocorrelation function in R, (ACF; http://www.r-

project.org/). For example, the autocorrelation for an observed chain beyond burn in is 

shown below in Figure 2, before and after thinning via the ACF. This chain was produced 

using a MHA within Gibbs sampling procedure. Plots of the autocorrelation functions for 

stationary Markov chains reveal that they often display exponential behavior 
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(decelerating curves). The behavior of the autocorrelations is governed by the fact that 

each element of a Markov chain is dependent only upon the previous state (Hanson and 

Cunningham, 1998). Thus, when the lag is small (i.e. elements are close together in the 

chain), the AC tends to be high. The AC is reduced as more intervening elements exist. 

Figure 2: Observed autocorrelations in a chain before and after thinning
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  In Figure 2 ‘Before’, the autocorrelation plot shows the great degree of linear 

dependence that exists among observations close together in an observed chain from the 

MCMC sampling procedure using a MH within Gibbs sampler. In this example, the 

correlation is clearly not significantly different from zero at a lag of 15. So, to obtain a 

linearly i.i.d. subsample, observations are removed from the chain by choosing a random 

element that is close to the mean and then taking every fifteenth element after that for 

selection into the thinned chain. When the autocorrelation is again calculated for the 

chain after thinning, it can be seen in Figure 2 ‘After’ that the chain is now a linearly 

independent string of observations (i.e., at a lag of 1, the correlation is not significantly 

different than zero). The process of thinning is done so that the boundaries proposed by 

Brooks represent an approximate null hypothesis to which the value of an observed chain 

can be compared. If the plot of the value of Dt over the length of the observed chain falls 

within those boundaries, the current chain is behaving similarly to what we would expect 

a sequence generated from a converged distribution to do. Brooks (1998c) also proposes 

a method for estimating the thinning parameter; however, this method involves 

integration of the transition kernel, which may not be feasible. The method for thinning 

currently provided is simple to implement.

The problem with thinning 

 However, previous work in a related field has provided evidence that the current 

technique is at least partially flawed. Particularly, thinning of the chains is undesirable 

because any sub-sampling of the posterior distribution can be shown to degrade the 

quality of the estimate obtained (MacEachern and Berliner, 1994). The logic of this 
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criticism is that the purpose of engaging an MCMC framework is to produce an estimate. 

Convergence techniques typically address bias of the observed Markov chain. Thus, any 

activity that introduces bias into the final estimate is contrary to the concept of assessing 

convergence in this fashion. Additionally, even if the logic of this argument is flawed, it 

is not desirable to have a biased estimate of a parameter if there is no need to do so. 

 To address this potential flaw in reasoning, further investigation into the use of 

the CUSUM as a convergence diagnostic is required. It is reasonable to attempt to modify 

the technique such that thinning is not necessary. This requires that the relationship 

between the degree of dependency and the value that the summary of the indicator 

statistic takes on be clearly explicated. If this relationship is known, it is possible to use 

the technique without thinning the Markov chain. A slightly different version of the 

current method for assessing convergence attempts to make characterizations about 

convergence without thinning the observed posterior distribution. The motivation for 

taking this approach comes from a criticism of the practice of sub-sampling the MCMC 

sample. Put simply, any subsample of the sampled chain will produce a poorer estimate 

of the parameter than the full chain. MacEachern and Berliner (1994) demonstrated this 

fact by way of a simple proof. Additionally, it is a wasteful practice to generate a sample 

of n elements only to end up using less than all n elements. (A potential alternative would 

entail thinning the chain in order to assess convergence, but then using all elements of a 

chain to estimate model parameters.)
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AC and Dt 

 In the absence of thinning, an important technical challenge faced by this 

approach is to understand the influence of autocorrelation (AC) on the value of the 

summary of the indicator statistic. Understanding the effect of thinning is important 

because the MCMC procedure results in a linearly dependent sequence of elements To 

understand the influence of autocorrelation it is necessary to first understand how to 

describe the probability that the indicator statistic, d , takes on a value of 1. When 

considering 3 elements in a chain (let’s call them X1, X2, and X3, respectively), there are 

two patterns of rank orderings for these three variables that would result in a d  value of 1. 

The first of these two patterns is when X2 is greater than X1 and X3 is less than X2. The 

second of these two patterns is when X2 is less than X1 and X3 is greater than X2. We can 

write these patterns as: 

1 , , , , 															 16  

 

  The value that the indicator statistic takes on can be described as the integration 

across particular ranges of the three elements under consideration. Again, to fully 

describe the probability that the indicator statistic d  takes on a value of 1, we need to 

think about the integration for the situation where the second element under consideration 

is the smallest as well as where it is the largest. In regards to the second of three elements 

under consideration being the smallest, this involves integrating the first element across 

the full range of values it can take on, then integrating the second element from the lower 
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bound up to the value of the first element, and then integrating the third element from the 

value of the second element up to the upper limit. For the case where the second element 

is the largest, the bounds for the integration change slightly. When the second element is 

the largest of the three elements under consideration, this again involves integrating the 

first element across the full range of values it can take on, then integrating the second 

element from the value of the first element up to the upper bound of the second element, 

and then integrating the third element from the lower bound up to the value of the second 

element. In general this can be expressed as 

1 | 	 |

| 	 | 															 17  

 

 When a sequence under consideration is i.i.d., it is simple to express the expected 

value of Dt by way of expected rank orderings of the elements under consideration. 

However, when the sequence shows dependence of the type commonly encountered in 

MCMC settings, it is not so easy to express the expected value of the summary of the 

indicator statistic. To understand the influence that linear dependence will have on the 

expected value of Dt it is helpful to thoroughly consider the mechanism developed for 

simulating chains.
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Simulating chains 

 The simulated chains must be realistic representations of those obtained from 

MCMC samplers. Thus, there must be some degree of dependence among the elements, 

as this is a common occurrence when using MCMC estimation. To achieve this, each 

element in the chain will be set equal to the previous value plus some random component 

generated from known distributions. Additionally, the chains need to be simulated in such 

a way that allows the mean to move in a predictable fashion. 

 The formula used to simulate these chains is given by: 

	 ∙ 	 	 1 , 														 18  

 

The value of c ranges between 0 and 1. When c takes on a value of one, there is a strong 

degree of autocorrelation present in the chain. When c takes on a value of zero, there is 

no significant autocorrelation in the chain. The value of d will be manipulated so as to 

control whether or not the random component added to the simulated chain values are 

more or less likely to be positive or negative. This is in essence controlling whether or 

not the mean of the chain values is moving up or down. As for the fluctuation of the 

means, there will be two conditions. In one case, the random component of the formula 

used to simulate chains will be devised so that the mean of the sequence will move 

randomly up or down with equal probability. This imitates a random walk where the 

mean is equally likely to move up or down. In the other case, the random component of 

the formula used to simulate chains will be devised so that the mean will be more likely 
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to move up (or down) over time. When these random components added to the previous 

chain element are equally likely to be positive or negative, it will be called a ‘balanced’ 

proposal. When these random components added to the previous chain element are more 

likely to be positive (or negative), it will be called an ‘unbalanced’ proposal distribution. 

 With this in mind, we define the probability density function (pdf) for any 

element in the chain, Xi, as uniform with lower and upper bounds of cXi–(1-d) and cXi + 

d, respectively. Thus, the pdf is: 

	
1

1
1															 19  

 

 In the case of a continuous uniform distribution with lower and upper bounds of 

cXi - (1-d) and cXi + d, respectively, this integration can be written as (with a slight 

change in notation to make things more general): 

1 1 1 1 	

1	 1	 1 	 															 20  

 

 Solving these integrals with various values in the range of c and d, we can see the 

influence of autocorrelation and balance on the value of the summary of the indicator 

statistic. When the autocorrelation is strong (c = 1), a balanced random component leads 
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to a value of the summary of the indicator statistic of .5. In this case, each new element is 

strongly influenced by the previous value (in fact it is a random variable centered at the 

value of the previous element) and is equally likely to be larger or smaller than the 

previous element. In terms of convergence, the type of chain produced by this 

arrangement of c and d is a true ‘random walk’ in that the mean of the chain is likely to 

wander up and down and not settle in to a specific location. In other words, each and 

every segment of the chain is likely to have a different mean. This is the antithesis of 

‘convergence.’ When the autocorrelation is strong (c = 1) and the random component is 

unbalanced, the value of the summary of the indicator statistic will be less than .5, and 

will move to 0 when the random component is completely unbalanced (i.e., the random 

component is always positive (or negative)). In this case, each new element is strongly 

influenced by the value of the previous element, but the mean of the chain is more than 

likely to be increasing (or decreasing). In terms of convergence, the chains produced by 

this arrangement of c and d are ones which have not settled in to a stable location and are 

still on the move (i.e. still in the burnin). When there is no autocorrelation present in the 

simulated chain (i.e., c = 0), then regardless of the balance of the random component, the 

summary of the indicator statistic will be equal to .67. When making use of an MCMC 

sampler, this is the ideal case that one would like to see. This indicates a set of 

completely independent draws with a stable mean and variance.

Research questions revisited 

 Now that the modified CUSUM convergence diagnostic has been introduced and 

the goals for the current research have been provided, the specific research questions to 
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be addressed will be stated. In addition to the research questions, the proposed analyses 

that will attempt to provide answers to those questions are included. 

 The first research question that will be addressed is: What is the relationship of 

the degree of autocorrelation among elements, the balance of the random component in 

the chain simulator, and the value that the summary of the indicator statistic, Dt, takes on 

for the current method? To answer this question, a closed form solution for the value of 

the summary of the indicator statistic, Dt , for the case of the continuous uniform 

distribution as the random component of the chain simulator will be presented. This 

clearly defines the relationship among the degree of autocorrelation (c), the degree of 

balance of the random component (d), and the value of the summary of the indicator 

statistic, Dt. It will be shown that the degree of autocorrelation present in the chain has a 

mediating effect on the influence of balance on the value of the indicator statistic. Again, 

when there is no thinning of the chain, we need to have a clear understanding of how the 

indicator statistic is likely to behave. 

 The first question will also be verified empirically by simulating chains as 

described previously. In simulation study 1, a 6 by 5 fully crossed factorial design will be 

used. The first factor is the value of c, which is the proportion of the previous chain 

element contributing to the following element in simulation. There are six levels of this 

factor, and they are c = 0, .25, .5, .75, .9, and 1. When c is equal to 0, there is no 

dependence among chain elements. When c is equal to 1, there is a strong degree of 

dependence among elements in the chains. The second factor is the degree of balance 

present in the random component of the chain simulator. There are five levels of this 
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factor, ranging from 0 to 1 in increments of .25. When d is equal to .5, the random 

component of the chain simulator is equally likely to be positive or negative. When d is 

equal to .25 or .75, the random component generates values that are twice as likely to 

negative or positive, respectively. When d is equal to 0 or 1, the random component is 

always negative or positive, respectively. The dependent variables will be the value of the 

summary of the indicator statistic proposed in this paper and the value of the summary of 

the indicator statistic proposed by Brooks (1998c). The length of the sequence used for 

each condition will be 10,000, and there will be 25 replications of each condition. The 

purpose of this simulation is to demonstrate empirically that the value of the summary of 

the indicator statistic being developed in this paper is affected by the amount of 

autocorrelation present in the chains and the stability of the location of the chains. 

 The second research question that will be addressed is: What effect does thinning 

the Markov chain have on the ‘diagnosis’ of convergence/non-convergence for the 

summary of the indicator statistic being developed? Answering this question can be 

achieved by simulating chains with varying degrees of AC and balance and comparing 

the value of the summary of the indicator statistic for thinned and un-thinned chains when 

applied to these chains. In simulation study 2, a 6 by 3 by 2 fully crossed factorial design 

will be used. The first factor is the degree of autocorrelation present in the generated 

sequence as controlled by c, and it will have five levels ranging from strong 

autocorrelation to an independent sequence (c = 0, .25, .5, .75, .9, 1). The second factor is 

the degree of balance in the random component of the generated sequences of values, and 

there will be three levels; balanced (d = .5, random component added to previous element 
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in the sequence is equally likely to be positive or negative), imbalanced (d = .75, random 

component added to previous element in sequence is twice as likely to be positive as it is 

negative), and completely imbalanced (d = 1, random component added to previous 

element in the sequence is always positive). The third factor is the method being used to 

characterize the sequence, and it has two levels. The first level is the method that thins 

the chains before characterization by way of the current method, and the second level is 

the method that does not thin the chains before calculating the summary of the indicator 

statistic. The dependent variable is the value that the summary of the indicator statistic 

being developed in this research takes on. The sequences used for this simulation will be 

10,000 elements long, and there will be 25 replications of each condition. (This research 

question should also be informed by the first research question.) The second question can 

also be addressed by applying the new convergence diagnostic to the thinned and un-

thinned chains from real MCMC samplers with varying ratios of variances for the 

proposal and target distributions. Simulation study 3 will be a 3 by 2 fully crossed 

factorial design. The first factor is the ratio of standard deviations for the proposal and 

target distribution, and it will have three levels. The first level will have the standard 

deviation of the proposal distribution as ¼ of the standard deviation of the target 

distribution. The second level will have the standard deviation of the proposal 

distribution equal to that of the target distribution. The third level will have the standard 

deviation of the proposal distribution four times larger than that of the target distribution. 

The second factor is the method being used to characterize the sequence, and it has two 

levels. The first level is the method that thins the chains before characterization, and the 
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second level is the method that does not thin the chains before calculating the summary 

of the indicator statistic. The dependent variable will be the value that the summary of the 

indicator statistic takes on. Each Markov chain will be run to 10,000 steps, and there will 

be ten replications of each condition of this study. 

 The third research question that will be addressed is: How does the new method 

compare to the Geweke (1992), Heidelberger and Welch (1983), Raftery and Lewis 

(1992), and Brooks (1998c) in terms of rates of convergence/non-convergence? This 

question can be answered in a straightforward way. In simulation study 3, chains of 

varying AC and balance will be generated and then convergence will be diagnosed by 

each method. The conditions for this simulation study will include three factors, and it is 

a 6 x 3, x 2 fully-crossed, factorial design. The first factor is the degree of autocorrelation 

present in the simulated chain. It will have six levels ranging from no autocorrelation to 

very strong autocorrelation (c = 0, .25, .5, .75, .9, and 1). The second factor will be the 

degree of balance in the proposal distribution. This factor will have three levels ranging 

from completely balanced to completely imbalanced as described  previously for the 

second research question. Controlling the amount of balance will be accomplished by 

making it such that the balanced condition has a random component that is equally likely 

to add a positive or negative value to the next element in the chain, the imbalanced 

condition is twice as likely to add a positive value to the next element in the chain, and 

the completely imbalanced condition is always going to add a positive value to the next 

element in the chain. The third factor is the range of values for the random component 

added to the next element in the chain. This factor will have four levels (range = .1, .5, 1, 
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5). This fully crossed combination of factor levels results in a 6 x 4 x 3 design meaning 

there will be 72 conditions. Each sequence of elements will then be characterized by each 

of the diagnostics. The dependent variables for this study will be the degree of 

consistency of diagnosis by the different methods (as represented by Cohen’s Kappa). 

Each sequence generated will have 10,000 elements, and there will be 25 replications of 

each condition. 
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CHAPTER IV 
 

RESULTS 
 
 

 The results of the five studies addressing the three research questions will be 

presented. Where appropriate for each study, the relevant data will be portrayed in both 

graphs and tables. For the sake of economy, graphs for all twenty five replications of 

each unique combination of factor levels will not be presented. Instead, an example will 

be provided for each unique combination of factor conditions to portray the trends 

observed in the data. All data relevant for explaining the trends seen in the studies will be 

presented and described so as to accurately portray the effects of the manipulations upon 

the dependent variables of interest. The results will be presented in the order they were 

proposed.

Findings for research question 1 

 The first research question attempts to describe the influence that the degree of 

balance in the random component, d, and the degree of autocorrelation, c, have on the 

value of the summary of the indicator statistic, Dt. The factor d represents the degree of 

balance present in the random component of the chain simulator. There are five levels of 

this factor, ranging from 0 to 1 in increments of .25. When d is equal to .5, the random 

component of the chain simulator is equally likely to be positive or negative. When d is 

equal to .25 or .75, the random component generates values that are twice as likely to 

negative or positive, respectively. When d is equal to 0 or 1, the random component is 
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always negative or positive, respectively. There are six levels of the factor c, and they are 

c = 0, .25, .5, .75, .9, and 1. When c is equal to 0, there is no dependence among chain 

elements. When c is equal to 1, there is a strong degree of dependence among elements in 

the chains.  

  The analytical solution based on the integration across ranges of three variables 

representing the two possible patterns that satisfy the indicator statistic being to one is 

provided first. The simulated solutions will be presented afterward. After each set of 

results is presented a description of the important trends will be provided. In particular, 

the effect of c and d on the value of Dt will be the primary focus. 

 To begin, a reminder of the levels of the conditions may be helpful. The values of 

d correspond to the degree and direction of balance for the conditions. When d is equal to 

0, it represents a completely imbalanced chain that is always decreasing in the random 

component because the random component is constrained to always be negative. When d 

is equal to .25, it represents a partially imbalanced condition that is more likely to 

decrease rather than increase in the random component because the random component is 

twice as likely to be negative rather than positive. When d is equal to .5, it represents a 

balanced condition that is equally likely to increase or decrease in the random component 

because the random component is equally likely to be positive or negative. When d is 

equal to .75, it represents a partially imbalanced condition that is more likely to increase 

rather than decrease in the random component because the random component is twice as 

likely to be positive rather than negative. When d is equal to 1.0, it represents a 

completely imbalanced chain that is always increasing in the random component because 
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the random component is constrained to always be positive. The AC factor, c, represents 

the proportion of each element in the chain that contributes to the value of the following 

element. For example, when c is equal to .5, then one half of the current value is added to 

the random component to determine the next element in the chain. Thus, c is controlling 

the amount of autocorrelation present in the chains. When c is equal to 0, the chain 

produced for any level of d will be i.i.d. sequences. As c increases to 1, the 

autocorrelation increases among the elements in the chains. 

 The formula for the closed form solution for the value of Dt was presented in the 

methods. The solution for the integration across ranges of the three random variables 

under consideration for transformation to the indicator statistic, di, is presented in three 

tables. These findings are presented in three tables for the sake of clarity. An important 

finding is that the value of Dt differs depending on the degree of balance, the amount of 

autocorrelation present, and the particular pattern satisfying the indicator statistic being 

set equal to one. In Table 1, the closed form solution is presented for the pattern where 

the second element under consideration is the largest of the three elements (LHL). In 

Table 2, the closed form solution is presented for the pattern where the second element 

under consideration is the smallest of the three elements (HLH). In Table 3, the closed 

form solution for the sum of both patterns is presented (BOTH). Each table has the levels 

of factor c represented as rows, and levels of factor d represent the columns. After each 

table is presented it is described in detail.
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Table 1: Values of Dt for combinations of balance (d) and AC factor (c) for HLH
D 

      
c 0 .25 .5 .75 1.0
   

0.0 .333 .333 .333 .333 .333
   

.25 .352 .335 .314 .289 .258
   

.50 .313 .316 .297 .254 .188
   

.75 .201 .269 .277 .222 .107
   

.90 .092 .225 .262 .202 .047
   

1.0 .000 .188 .25 .188 .000

 

 Table 1 provides evidence for the fact that the degree and direction (increasing 

versus decreasing) of the imbalance, as well as the degree of autocorrelation have an 

influence on the value of the summary of the indicator statistic, Dt. When c is equal to 

zero (i.e. converged chain), all conditions of d are equal to one another for the value of 

Dt. The value that Dt takes on (.33) is also what would be expected for an i.i.d. sequence 

when considering this pattern (HLH). As c increases to 1, the value that Dt takes on for a 

given level of c differs depending on the level of d and the direction of the imbalance. For 

the HLH pattern in general, Dt decreases in value as c goes from 0 to 1 and does so to a 

greater degree when imbalance is present. Additionally, the direction of the imbalance 

(positive, d > .5, or negative, d < 0) influences the rate of decrease for Dt. The complete 

imbalance conditions (d = 0 and 1) decrease at the greatest rate as c increases, but when 

the pattern HLH is being considered the decrease is greater across levels of c for positive 

imbalance than it is for negative imbalance. When the imbalance is negative (d = 0), the 
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pattern is a bit different, and will be described shortly. The partial imbalance conditions 

(d =.25 and .75) decrease at a lesser rate than the complete imbalance conditions as c 

increases. However, the trend still holds that when the pattern HLH is being considered 

the decrease is greater across levels of c for positive imbalance than it is for negative 

imbalance. When the random component is balanced, the rate of decrease of Dt is the 

smallest. There are two cases that do not follow the pattern as described here. When d is 

equal to 0 or .25 (negative imbalance) and c is equal to .25, Dt increases in value 

compared to the other conditions. When c is equal to .25 and d is equal to 0 and .25, Dt is 

equal to .352 and .335, respectively. These two exceptions imply that as the analytical 

solution is stated, it would be expected to code more elements as ones according to the 

indicator statistic when there is as mild a degree of autocorrelation for a chain that is 

imbalanced in a decreasing direction when considering the pattern HLH. 

 Table 2 presents the results of the analytical solution for the pattern LHL. Table 2 

is similar to the results presented in Table 1.
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Table 2: Values of Dt for combinations of balance (d) and AC factor (c) for LHL
D 

      
c 0 .25 .5 .75 1.0
   

0.0 .333 .333 .333 .333 .333
   

.25 .258 .289 .314 .335 .352
   

.50 .188 .254 .297 .316 .313
   

.75 .107 .222 .277 .269 .201
   

.90 .047 .202 .262 .225 .092
   

1.0 .000 .188 .25 .188 .000

 

  The results in Table 2 are identical to those of Table 1 except for the fact that the 

pattern of decreases in the value of Dt are greater now when the imbalance is positive 

rather than negative (d > .5). Table 2 again provides evidence for the fact that the degree 

and direction (increasing versus decreasing) of the imbalance, as well as the degree of 

autocorrelation have an influence on the value of the summary of the indicator statistic, 

Dt. When c is equal to zero all conditions of d are equal to one another for the value of Dt. 

The value that Dt takes on (.33) is also what would be expected for an i.i.d. sequence 

when considering this pattern (LHL). As c increases to 1, the value that Dt takes on for a 

given level of c differs depending on the level of d and the direction of the imbalance. For 

the LHL pattern in general, Dt decreases in value as c goes from 0 to 1 and does so to a 

greater degree when imbalance is present. Additionally, the direction of the imbalance 

(positive, d > .5, or negative, d < 0) influences the rate of decrease for Dt. The complete 

imbalance conditions (d = 0 and 1) decrease at the greatest rate as c increases, but when 
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the pattern LHL is being considered the decrease is greater across levels of c for negative 

imbalance than it is for positive imbalance. The partial imbalance conditions (d =.25 and 

.75) decrease at a lesser rate than the complete imbalance conditions as c increases. 

However, the trend still holds that when the pattern LHL is being considered the decrease 

is greater across levels of c for negative imbalance than it is for positive imbalance. When 

the random component is balanced, the rate of decrease of Dt is the smallest and is 

identical to the HLH pattern presented in Table 1. There are two cases that do not follow 

the pattern as described here. When the imbalance is positive (d is equal to 1 or .75) and c 

is equal to .25, Dt increases in value compared to the other conditions. When c is equal to 

.25 and d is equal to 1 and .75, Dt is equal to .352 and .335, respectively. These two 

exceptions imply that as the analytical solution is stated, it would be expected to code 

more elements as ones according to the indicator statistic when there is as mild a degree 

of autocorrelation for a chain that is imbalanced in an increasing direction when 

considering the pattern LHL. Taken together, the findings presented in Tables 1 and 2 are 

informative in that it was not anticipated that the particular patterns satisfying the 

indicator statistic shared a relationship with the boundaries of the continuous uniform 

distribution. 

 Table 3 presents the solution for both patterns. It represents the expected value of 

Dt for the combinations of c and d summed for the HLH and LHL patterns.
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Table 3: Values of Dt for combinations of balance (d) and AC factor (c) for BOTH

D 
      
c 0 .25 .5 .75 1.0
      

0.0 .667 .667 .667 .667 .667
   

.25 .610 .624 .628 .624 .610
   

.50 .500 .570 .594 .570 .500
   

.75 .308 .491 .554 .491 .308
   

.90 .139 .427 .524 .427 .139
   

1.0 .000 .375 .500 .375 .000

 

  When both patterns are combined together, the relationship between the direction 

of imbalance and the pattern under consideration is no longer evident. When c is equal to 

0, all levels of imbalance have Dt equal to .667. This value is what would be expected 

when characterizing three i.i.d. variables with the indicator statistic. The value of Dt 

decreases as c goes from 0 to 1, and this decrease is larger as the degree of imbalance 

increases. The complete imbalance conditions (d = 0 and 1) decrease at the greatest rate 

as c increases. The partial imbalance conditions (d =.25 and .75) decrease at a lesser rate 

than the complete imbalance conditions as c increases. When the random component is 

balanced, the rate of decrease of Dt is the smallest. 

  In summary, the analytical solutions for Dt produced somewhat unexpected 

results. It was not anticipated that the value of Dt would depend on the relationship 

between the direction of the imbalance and the particular pattern satisfying the indicator 
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statistic being equal to one. When d is such that the imbalance is negative, Dt shows a 

greater change across levels of c for the pattern LHL and a lesser change across levels of 

c for the pattern HLH. When d is such that the imbalance is positive, Dt shows a greater 

change across levels of c for the pattern HLH and a lesser change across levels of c for 

the pattern LHL. Also in respect to the relationship between the direction of imbalance 

and the particular pattern being satisfied, it was not expected that any combination of 

experimental conditions would produce a value of Dt greater than .33 for a single pattern 

satisfying the indicator statistic. When c is equal to .25, positive imbalance is associated 

with larger than expected values of Dt for the pattern LHL. When c is equal to .25, 

negative imbalance is associated with larger than expected values of Dt for the pattern 

HLH. These findings will be revisited in the Discussion. 

  The simulated solutions for the value of Dt as described in simulation study 1 will 

now be presented. The simulated solutions to the value of Dt were obtained as detailed in 

the Methods section when the first research question was presented. Table 4 presents the 

Dt values for all levels of d and c. The value in each cell of the table was obtained by 

averaging the final value of Dt for the 25 replications of each condition. The standard 

deviations are presented in parentheses.
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Table 4: Mean Dt values (SD) for all levels of d and c

d 
      
c         0         .25         .5        .75        1.0 
      

0.0 .668(.004) .666(.004) .667(.004) .668(.003) .667(.004)
   

.25 .627(.005) .625(.003) .625(.004) .624(.004) .627(.005)
   

.50 .584(.004) .584(.005) .585(.003) .585(.004) .584(.004)
   

.75 .541(.005) .542(.005) .541(.004) .542(.005) .542(.004)
   

.90 .520(.005) .517(.006) .516(.005) .512(.005) .517(.005)
   

1.0 .000(.000) .374(.005) .503(.005) .375(.005) .000(.000)

 

 Table 4 shows that the simulated solutions differ somewhat from the analytical 

solutions. This disparity is indicative of a potential mistake in one of the solutions, and 

will be further explained in the discussion. Something that stands out in Table 4 is the 

consistency of the simulated mean values across levels of balance. For each level of c 

between 0 and .9, the mean values of Dt for each level of d are very similar to one 

another, and none are greater than one standard deviation away from any other. When c is 

equal to 0 this outcome is expected because the chains generated are i.i.d. samples from a 

stable distribution. However, as c increases from .25 to 1 it was expected that the degree 

of imbalance would influence the value of the summary of the indicator statistic. The 

anticipated effect of d is only evident when c is equal to 1. When c is equal to one, the 

mean values of Dt observed depend on the level of imbalance present and are clearly 

different than one another considering the standard deviations Thus, for the simulated 
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chains, the balance factor did not affect the chains as anticipated across all levels of c. 

The anticipated pattern of results, which is essentially that seen in Table 3 for the 

analytical solutions, is only partially seen in Table 4 for the simulated solutions. This 

result was unexpected and will receive more attention briefly when viewing plots of the 

chains.  

  Table 5 presents the Dt values for all levels of d and c for the CUSUM chains. 

The value in each cell of the table was obtained by averaging the final value of Dt for the 

25 replications of each condition. The standard deviations are presented in parentheses. 

Table 5 is presented to demonstrate the difference between the new method and that 

proposed by Brooks (1998c).

Table 5: Mean Dt values (SD) for all levels of d and c for the CUSUM chains 

d 
      
c         0         .25         .5        .75        1.0 
      

0.0 .497(.005) .497(.005) .501(.006) .498(.005) .499(.005)
   

.25 .436(.005) .435(.005) .435(.005) .434(.006) .435(.005)
   

.50 .360(.006) .360(.006) .360(.004) .361(.004) .359(.006)
   

.75 .251(.006) .248(.005) .250(.005) .249(.005) .248(.004)
   

.90 .156(.004) .156(.006) .155(.006) .155(.005) .156(.005)
   

1.0 .0001(1.4e-20) .0001(6.6e-05) .008(.005) .0001(5.7e-05) .0001(1.1e-19)

 

  The value of Dt when applied to the CUSUM chains is what would be expected 

according to Brooks’ method (1998c). Similar to the findings in Table 4, the effect of c is 
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evident, but the effect of d is not. As c increases, the value of Dt decreases. Also, when c 

is equal to 1 the summary of the indicator statistic goes to zero for all levels of d. The 

value of Dt does not depend on the value of d. 

 When comparing the two sets of solutions for the current method, the simulated 

values are similar to the analytical solutions for some of the conditions, but there are 

some marked differences. When c is equal to zero or one, or if d is equal to .5, the 

simulated values match the analytical solutions very closely. When c is equal to 0, both 

sets of solutions indicate that the value of Dt tends towards .67 (considering both HLH 

and LHL) regardless of the levels of d. This finding was anticipated and is expected. 

When c is equal to one, the simulated mean values of Dt are similar to the analytical 

solutions, and the degree of imbalance is clearly related to the value of Dt. The agreement 

between the analytical and simulated solutions for this set of conditions is expected. 

When c is equal to one and d represents complete imbalance in the chain simulator (d= 0 

or 1), then none of the elements in the chain were coded as 1 by the indicator statistic. 

This result is to be expected based on the way these chains are simulated. Each and every 

element is equal to the previous element plus a random component that is constrained to 

be in the range of -1 to 0 (d = 0) or in the range of 0 to 1 (d = 1). This means that chains 

simulated in this way cannot decrease (or increase) in value from element to element. 

Thus, every element in the chain is coded as zero by the indicator statistic. However, as c 

goes from .25 to .9 and there is imbalance present, the differences between the analytical 

and simulated solutions grow in disagreement, especially when completely imbalanced. 

The unanticipated discrepancy between the analytical and simulated solutions invited 
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greater scrutiny of the results. An explanation will be provided through investigation of 

the time-series plots to help guide understanding of the results. The time series plots are 

informative about the behavior of the elements across the length of the chain. There is not 

enough information presently to compare the values of Dt for the CUSUM chains. 

 To help guide the understanding of the difference between the analytical and 

simulated solutions, investigation of the path plots are informative. Extensive 

investigation of the path plots across all twenty five replications for a given condition led 

to the conclusion that the interesting trends could be elucidated without the provision of a 

plot for every replication of every condition Also, for the sake of economy, only three 

levels of d will be presented visually. These three levels are the balanced condition along 

with one each of the imbalanced and complete imbalanced condition. The reason for not 

showing the other two imbalance conditions is that they are the same as the ones 

presented, except the imbalance is in the opposite direction. As there is no information 

concerning the particular pattern satisfying the indicator statistic being equal to 1, 

presenting both directions of imbalance would be redundant. As such, there is nothing to 

be gained by presenting both directions of imbalance. The findings of interest can clearly 

be seen in the conditions presented. 

 First, summary tables will provide descriptive statistics about the chains. For the 

descriptive statistics there will be three tables. Each table will represent one level of d, 

and it will contain the averages of the mean chain values (with standard errors), as well as 

the mean chain minimums, maximums, and ranges (with standard deviations) across the 

twenty-five replications. After the descriptive statistics, the autocorrelation plots will be 



101 

presented. These plots are informative about manipulations of the simulated chains to 

achieve characteristics similar to real MCMC samplers. The autocorrelation plots will be 

followed by the path plots. The path plots will provide information concerning behavior 

of the chains over time. For both the autocorrelation and path plots, the three levels of 

balance will be plotted together in one figure. Each figure produced will correspond to 

one level of c. The result will be 6 figures, with 3 graphs in each for both the path plots 

and plots of the autocorrelations. These descriptive statistics and graphs will help provide 

an explanation for the pattern of results seen in the analytical and simulated solutions for 

the value of Dt. 

  Table 6 is presented below. It contains the descriptive statistics for the chains for 

all levels of c when d is equal to one (complete imbalance).

Table 6: Descriptive statistics for simulated chains when d=1 (Complete Imbalance) 

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .501(.002) .0001(.0001) .999(.0001) .999(.0001)

  
.25 .667(.004) .028(.009) 1.30(.009) 1.28(.012)

  
.50 .999(.006) .128(.032) 1.87(.025) 1.74(.039)

  
.75 2.00(.013) .430(.176) 3.37(.072) 2.94(.205)

  
.90 5.00(.022) .489(.269) 7.38(.251) 6.89(.321)

  
1.0 2497(13.9) .451(.278)   4997(25.1) 4996(25.1)
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  Table 6 shows that for the condition of complete imbalance (positive, in this case) 

as c increases then each descriptive statistic increases in both the mean and variability. 

The trend is true of the average mean, average minimum, the average maximum, and the 

average range. When c is equal to 0, the chains are i.i.d. sequences that fall within the 

boundaries defined by d. As c increases, the values of the chain elements tend to increase 

and become more variable. Thus, minimums, maximums, and ranges are affected. These 

findings are an indication that these chains have at least some of the desired 

characteristics that they were intended to have. 

 Table 7 contains the descriptive statistics for the case when d is equal to .75. This 

level of d represents partial imbalance in a positive direction. 

Table 7: Descriptive statistics for simulated chains when d=.75 (Partial Imbalance) 

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .251(.003) -.250(.0001) .750(.0001) .999(.0002)

  
.25 .334(.003) -.304(.007) .971(.008) 1.28(.010)

  
.50 .498(.005) -.374(.018) 1.38(.022) 1.75(.031)

  
.75 1.00(.011) -.386(.065) 2.39(.070) 2.78(.096)

  
.90 2.49(.026) .021(.198) 4.76(.182) 4.74(.232)

  
1.0 1257(14.0) .139(.252)   2505(27.8) 2505(27.8)

 

  For Table 7, the pattern is slightly different than seen previously in Table 6. It is 

still the case that as c increases the average mean, maximum, and range increases. It is 
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also still the case that the variability of these statistics increases as c increases. However, 

when d represents partial imbalance (positive) the average minimum first decreases and 

then increases over the range of c. These findings are an indication that these chains have 

at least some of the desired characteristics that they were intended to have. 

  Table 8 contains the descriptive statistics for the case when d is equal to .5. It is 

presented below.

Table 8: Descriptive statistics for simulated chains when d=.5 (Balance) 

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .000(.002) -.500(.0001) .500(.0001) .999(.0001)

  
.25 .000(.005) -.641(.007) .637(.008) 1.28(.011)

  
.50 .003(.007) -.874(.024) .871(.019) 1.75(.027)

  
.75 -.004(.013) -1.38(.063) 1.40(.048) 2.78(.079)

  
.90 .001(.030) -2.33(.224) 2.29(.171) 4.62(.302)

  
1.0 -3.79(17.8) -27.3(19.5) 20.6(14.5) 47.9(16.1)

 

  As can be seen in Table 8, as c increases the average minimum gets smaller and 

more variable, the average maximum gets larger and more variable, and the average 

range gets larger and more variable. The average mean has no discernible pattern, but its 

variability increases as c increases, and it generally tends to stay near zero, which is to be 

expected. These findings are an indication that these chains have at least some of the 

desired characteristics that they were intended to have. 
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  In summary, the descriptive statistics for the chains indicate that the chains have 

the characteristics expected based on the combinations of factors associated with each 

condition. However, they do not provide insight into the discrepancy between the 

analytical and simulated solutions. The descriptive statistics in Tables 6, 7, and 8 help 

guide investigation of the path plots to be presented shortly. 

  The autocorrelation plots are presented next in Figures 3 through 9. Again, a plot 

for each of the three levels of d representing complete imbalance, partial imbalance, and 

balance will be presented in each figure, and there will be a separate figure for each of the 

six levels of c. Each plot will be presented and then followed by an immediate 

description. Investigation of the autocorrelation plots is informative when assessing the 

chains produced in MCMC, so these plots give the reader a sense of how the chains 

behave in this regard. As a reminder, each of these autocorrelation plots represents a 

single chain. There is such a high degree of similarity among all of the 25 replications of 

each condition that this economy is deemed acceptable. Again, the plots are clear 

representations of the trends seen in all 25 replications of each unique factorial 

combination.  

  Figure 3 contains the autocorrelation plots for the three levels of d when c is equal 

to 0. Figure 3 is presented immediately below.
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Figure 3: Autocorrelation plot for all levels of d when c = 0 

 

  Figure 3 shows that there is no autocorrelation present in the chains when c is 

equal to zero. This result is expected because the chains for all conditions where c is 

equal to 0 are i.i.d. sequences by definition. Figure 4 is presented next.
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Figure 4: Autocorrelation plot for all levels of d when c =.25 

 

  Figure 4 shows that when c is equal to .25, there is a very small amount of 

autocorrelation present in the chains. The autocorrelations tend to zero within a lag of 

two or three elements. The mean autocorrelations are roughly .25 and .06 at lags of 1 and 

2, respectively. The presence of an association among elements indicates that the factor c 

is having its desired effect. 
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Figure 5: Autocorrelation plot for all levels of d when c = .5 

 

 

 Figure 5 shows that when c is equal to .5, there is again a small amount of 

autocorrelation present in the chains, slightly larger than in the previously presented 

condition. The autocorrelations tend to zero within a lag of four to five elements. The 

autocorrelations at lag 1, 2, 3, and 4 are roughly .51, .26, .12, and .06, respectively. The 

presence of an association among elements indicates that the factor c is having its desired 

effect. 
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Figure 6: Autocorrelation plot for all levels of d when c = .75 

 

 

  In Figure 6, the autocorrelations are slightly larger again. There is evidence that 

the level of imbalance is influencing the amount of autocorrelation present in the chains. 

The autocorrelations tend towards zero by a lag of 15 for complete imbalance and by a 

lag of 10 for the other two levels of balance. The autocorrelations for a lag of 1, 2, 3, 4, 5, 

6, 7, 8, 9, and 10 are roughly .76, .58, .44, .34, .26, .20, .15, .10, .08, and .05, 

respectively. The presence of an association among elements indicates that the factor c is 

having its desired effect. 

  Figure 7 is presented immediately below. In Figure 7, the autocorrelations are 

larger and extend over a longer lag. At lag 1, the correlation is roughly .9 and decreases at 



109 

a rate of roughly .05 at each successive increase in lag until the autocorrelation reaches 0. 

The autocorrelations tend to zero at a lag of roughly 35 to 40 and decrease very slowly.

Figure 7: Autocorrelation plot for all levels of d when c = .9

 

 

  Figure 8 shows the autocorrelation plots for the case where c is equal to 1. It is 

presented immediately below. There is a great deal of autocorrelation present in these 

chains. The autocorrelations are large and extend to a lag of roughly 3000 to 3500. 
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Figure 8: Autocorrelation plot for all levels of d when c = 1.0 

 

 

  In summary, the degree of autocorrelation and the lag over which it persists is 

clearly dependent on the level of c. Similar to what was expected, as c increases so does 

the amount of autocorrelation present in the chains. Also, the autocorrelation plots do not 

differ over the lower levels of d, but begin to show some effect of as c increases and is 

clear when c is equal to 1. When c is equal to 1, the lag at which the autocorrelation goes 

to zero is slightly lower when there is balance present than when imbalance is present. 

However, for the purpose of MCMC estimation, the amount of autocorrelation present in 

the chains when c is equal to 1 is indicative of a problematic chain regardless of the 

balance. Also, the values of the autocorrelations presented in the previous six figures are 
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representative of all conditions in all studies similar to these throughout the rest of this 

document. The focus of the research questions is on the value of Dt, not the particular 

value of the autocorrelations. For the purposes of this research, it is sufficient to show 

that as autocorrelation increases the expected value of the summary of the indicator 

statistic decreases. As such, any further reference to the values of the autocorrelation 

plots will reference the descriptions of Figures 3-8 and Tables 9 through 14. 

  The path plots will be presented in Figures 9-14. Similar to the figures used to 

present the autocorrelation plots, each figure will contain the path plots for the three 

levels of d, and there will be an individual figure for each level of c. These plots provide 

information that helps explain the pattern of results seen in the simulated solutions 

presented in Table 4. 

  Figure 9 contains path plots of the chains for the conditions of complete 

imbalance (top), imbalance (middle), and balance (bottom) when c is equal to zero. 
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Figure 9: Path plots for all levels of balance when c = 0

 

 

  When c is equal to zero; the only discernible difference between these three path 

plots is the bounds within which they fall. Because the previous element has no influence 

on the successive element, these chains represent random draws from a stable distribution 

with the respective bounds. When there is complete imbalance (in this case, positive), all 

values fall between 0 and 1. When there is partial imbalance, all of the values fall within 

the lower and upper bounds of -.25 and .75, respectively. When there is balance, the 

plotted chain values always remain between the lower and upper bounds of -.5 and .5, 

respectively. These results are expected for this particular set of conditions. These path 

plots indicate that these chains have the appearance of i.i.d. sequences. 
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  Figure 10 contains the path plots for the three levels of d when c is equal to .25. It 

is presented below.

Figure 10: Path plots for all levels of balance when c = .25 

 

 
  As can be seen in Figure 10, when c is equal to .25, the path plots still look very 

similar to one another and to the case where c is equal to zero. However, the influence of 

c can be seen in that the y axis has expanded due to a greater range present in the chain 

values. The range in the chain values is slightly larger than the range between the upper 

and lower bounds for each of these three conditions. When there is complete imbalance 

present, the bounds now range from the lower bound of roughly 0 up to 1.2. When partial 
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imbalance is present, the values in the path plot range from roughly -.2 to 1. When there 

is balance present, the values in the chain range from roughly -.6 to .6. In all cases, the 

range of values is similar, but the location is shifted (in these cases positively) depending 

on the degree of imbalance present.

Figure 11: Path plots for all levels of balance when c = .5

 

 
  Figure 11 follows the same trend as the previous figure, where the range of chain 

values is slightly expanded. The range of chain values for the complete imbalance 

condition ranges from roughly 0 to 2. The range of chain values for the partial imbalance 

condition ranges from roughly -.5 to 1.5. The range of chain values for the balanced 
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condition ranges from roughly -1 to 1.  

  Figure 12 presents the path plots for the case where, c is equal to .75. It is 

presented below.

Figure 12: Path plots for all levels of balance when c = .75

 

 The pattern of results in Figure 12 shows the same general trend as the previous 

figures (Figure 10 and Figure 11, specifically). The ranges of chain values are expanded 

for all conditions. The range of chain values for the complete imbalance condition ranges 

from roughly 0 to 3.5. The range of chain values for the partial imbalance condition 

ranges from roughly -.5 to 2.5. The range of chain values for the balanced condition 

ranges from roughly -1.5 to 1.5.
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Figure 13: Path plots for all levels of balance when c = .9 

 

 

  In Figure 13, the path plot indicates a slightly greater degree of the pattern that 

has become more and more evident over the figures representing the last few conditions 

(i.e., d = .25, .5, and .75). The range of chain values is expanded, and the partial and 

complete imbalance conditions show that the chain has moved in the direction desired.
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Figure 14: Path plots for all levels of balance when c = 1.0 

 

 

 Figure 14 exaggerates the pattern that has become more evident as c moves from 

.25 to .9. When there is complete imbalance, the chain moves in the direction imposed by 

d. It is not possible for any element to be less than the previous element (because the 

imbalance is positive in this case). When there is partial imbalance, the chain moves 

reliably in one direction, although there are a handful of cases where the ordering of 

elements in the chain satisfies the indicator statistic being equal to one. This pattern was 

seen in Table 4. When there is balance present, the each new element in the chain is 

equally likely to be larger or smaller than the previous element. When this is the case, the 

chains take on the appearance of a Brownian walk, and randomly move up and down. In 
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Table 4, this pattern is associated with Dt being equal to .5. 

  A brief explanation at this point is warranted. The simulated solutions produced 

values of Dt that were equal across all level of balance. This finding was unanticipated at 

the outset of this study. It was thought that the simulated solutions should match the 

analytical solutions. Closer investigation of the chains by way of the path plots provides 

some insight into why the simulated Dt values were equal across levels of balance. The 

path plots indicate that the chains seem to settle to a relatively stable range for the vast 

majority of the conditions in this study. The only exception is when c is equal to 1. When 

c is equal to 1, the chains continue to move in the direction anticipated over the course of 

all the elements. For the cases where c is not equal to 1, the chains look more stable than 

was anticipated. The similarity in appearance of the chains produced across balance 

conditions can also be seen in the pattern of the simulated solutions. When there is 

balance present, it was expected that the chains would appear to remain stable unless 

there was a very large amount of autocorrelation present (e.g., as is the case when c = 1). 

When there is imbalance present, the chains still appear very stable, only exhibiting a 

slight shift in the anticipated direction. This stability appears to be a result of a 

cancellation of the factors c and d. It seems that for many levels of c (i.e., c = .25, .5, .75, 

and .9), the influence of c may counteract the influence of d for the imbalanced levels. 

For example, when there is complete imbalance (positive) in the chains and c is equal to 

.5, then even though every new random component generated is constrained to be 

positive, it will be added to half of the value of the previous element. This still allows for 

a chance to observe patterns that satisfy the indicator statistic. The imbalance present in 
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the random component will tend to move the chain in its given direction, but it can only 

move the value so far before the reduction in value due to the factor c moves the 

following element further than the range of the random component being added. Thus, 

the chain can only wander so far in one direction before it has to move in the other 

direction. Thus, these chains are essentially converged. The first simulation study has 

provided evidence that the method of simulating chains proposed in this paper has 

characteristics different than originally anticipated. The findings of the analytical study 

and simulation study 1 will be redressed in the Discussion.

Findings for research question 2 

  The second research question attempts to determine the influence of thinning on 

the behavior of the indicator statistic. Simulation study 2 attempts to answer the second 

research question by generating chains in a fashion similar to the first simulation study, 

but the chains are thinned to achieve approximately i.i.d. sequences before applying the 

indicator statistic. Simulation study 2 had some conditions identical to those presented in 

the first simulation study. These results are omitted because they are virtually identical to 

findings already presented. Everything true of the results already presented for those 

conditions is true for those being omitted. The emphasis will be placed on the results 

where thinning was performed on the chains. The format is similar to that of the previous 

studies. First, the simulated values of Dt will be presented to show the effect of thinning. 

The results will be briefly described and an explanation for the trends will be provided. 

Following the values of Dt, descriptive statistics will be presented and graphs of the 

autocorrelations and the path plots will be presented. Each table and figure will be 
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described and a brief summary will be provided.  

  Table 9 contains the Dt values for the thinned chains. Thinning for the chains was 

done by taking every nth element, where n was determined by inspection of the 

autocorrelation plots. For each condition, a value of n was chosen such that thinning all 

25 chains produced for that condition by that n produced a thinned chain that was 

approximately i.i.d. to be characterized by the indicator statistic. The only exception was 

the case where c is equal to one. The autocorrelations were so strong over such a long lag 

(roughly 3000 to 3500) that there would only be 3 or 4 values left in the thinned chain. It 

was decided to use n= 250 in this case to provide enough values in the chain to estimate 

Dt reasonably well. The values chosen for thinning are 1, 4, 6, 10, 30, and 250 for c being 

equal to 0, .25, .5, .75, .9, and 1, respectively. Again, the reason that thinning was done in 

this fashion was because of the uniformity of results across all replications within a 

unique combination of factor levels. After thinning, each and every chain was inspected 

to determine if the thinning worked to produce i.i.d. sequences uniformly across 

repetitions. The thinned chains were all deemed to be linearly independent sequences for 

the sake of this research.
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Table 9: Dt values for thinned chains

D 
      
c 0 .25 .5 .75 1.0 
   

0.0 .668(.004) .666(.004) .668(.004) .667(.004) .666(.004)
   

.25 .663(.008) .664(.009) .665(.010) .664(.007) .666(.008)
   

.50 .660(.011) .659(.011) .662(.011) .658(.010) .661(.012)
   

.75 .652(.005) .656(.013) .659(.014) .657(.015) .651(.013)
   

.90 .654(.019) .656(.020) .653(.017) .657(.021) .655(.022)
   

1.0 .000(.000) .000(.000) .467(.057) .000(.000) .000(.000)

 

  As can be clearly seen in Table 8, when the effect of thinning serves to provide an 

at least approximately i.i.d. sequence of values, then the indicator statistic tends towards 

the expected value of .67. These findings must be interpreted in light of the fact that the 

method for simulating chains essentially produced mostly converged chains. Based on the 

interval about Dt that was originally presented by Brooks (1998), the ranges of Dt values 

that would be considered ‘converged’ are .658 to .676, .649 to .685, .644 to .690, .638 to 

.696, .616 to .718, and .519 to .815 for the chain lengths associated with the thinning used 

for values of c equal to 0, .25, .5, .75, .9 and 1, respectively. The ranges are different for 

the levels of c due to the differing thinning values used for the conditions. According to 

these intervals, all of these chains would be considered to be ‘converged’ except for the 

case where c is equal to one. When c is equal to 1 and there is balance present, 5 out of 

the 25 chains produced values of Dt within the bounds specified previously. The fact that 
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most of the chains for this condition do not produce values of Dt within the ranges 

provided above is due to the fact that the chains after thinning did not produce completely 

i.i.d. sequences (which will be shown below). The strong degree of autocorrelation left in 

the chains for the conditions where c is equal to one shows the effect of reducing the 

value of Dt. Another finding of interest is that when c is equal to one and there is partial 

imbalance present, the value of Dt is .000, rather than .375 when there is not thinning. 

Thinning the chains by taking every nth element seems to eliminate the cases that satisfy 

the indicator statistics being equal to one. This finding was not anticipated. 

  The descriptive statistics for the thinned chains are presented in the three 

following tables. Again, descriptive statistics for the chains before thinning are virtually 

identical to those presented in Tables 6, 7, and 8 so they are omitted. Tables 10, 11, and 

12 will present the descriptive statistics for all levels of c for the cases where d is equal to 

1 (complete imbalance), .75 (partial imbalance), .5 (balance), respectively. Each table 

will be presented and immediately followed by a brief description of the data presented 

therein. 

 Table 10 is presented below. It contains the descriptive statistics for all levels of c 

when d is equal to one (complete imbalance) for the thinned chains.
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Table 10: Descriptive statistics for thinned chains when d=1 (Complete Imbalance) 

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .499(.004) .0001(.0001) .999(.0001) 1.00(.0001)

  
.25 .664(.007) .040(.012) 1.29(.012) 1.25(.019)

  
.50 .998(.008) .157(.030) 1.83(.027) 1.68(.039)

  
.75 2.00(.015) .763(.102) 3.23(.093) 2.47(.149)

  
.90 4.99(.034) 3.14(.245) 6.83(.211) 3.70(.375)

  
1.0 2557(17.0) 248.5(6.65)   4865(27.0) 4616(24.7)

 

  It is important to mention that when c is equal to zero, there is no thinning of the 

chains because they are already i.i.d. sequences. The results for these conditions are very 

similar to those in Table 6. Table 10 is similar to Table 5 in that it shows that when c 

increases then each descriptive statistic increases in both the mean and variability. Again, 

these findings are an indication that these chains have at least some of the desired 

characteristics that they were intended to have. For example, the chains were intended to 

increase in the mean, and they do. Again it can be seen that as c increases, the range gets 

larger. Compared to the chains that are not thinned, these chains tend to produce 

descriptive statistics that are more variable. For the cases where c is greater than zero, 

this increased variability is due to the fact that the descriptive statistics are based on 

chains with fewer observations. 
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 Table 11 contains the descriptive statistics for the case when d is equal to .75, 

representing partial imbalance, for the thinned chains. 

Table 11: Descriptive statistics for thinned chains when d=.75 (Partial Imbalance) 

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .250(.003) -.250(.0001) .750(.0001) 1.00(.0001)

  
.25 .334(.006) -.294(.012) .960(.012) 1.25(.017)

  
.50 .498(.008) -.340(.025) 1.33(.028) 1.67(.042)

  
.75 1.00(.016) -.224(.065) 2.29(.091) 2.51(.140)

  
.90 2.50(.041) .602(.096) 4.41(.247) 3.80(.304)

  
1.0 1281(20.9) 123.6(7.89)   2439(32.4) 2315(30.6)

 

  For Table 11, the pattern is slightly different than for the previous table. It is still 

the case that as c increases the average mean, maximum, and range increases. It is also 

still the case that variability of all statistics increases as c increases. However, when d 

represents partial imbalance (positive) the average minimum first decreases and then 

increases over the range of c. Compared to Table 7, the descriptive for all cases where c 

is greater than zero produce statistics that are more variable. Again, this increased 

variability for the statistics associated with the thinned chains is likely due to the 

decreased number of observations on which the statistics are based. 

  Table 12 contains the descriptive statistics for the case when d is equal to .5 for 

the thinned chains. It is presented below.
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Table 12: Descriptive statistics for thinned chains when d=.5 (Balance)

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .000(.002) -.500(.0002) .500(.0001) 1.00(.0002)

  
.25 -.002(.007) -.624(.011) .629(.011) 1.25(.016)

  
.50 .003(.009) -.831(.040) .836(.034) 1.67(.055)

  
.75 .003(.017) -1.24(.095) 1.25(.105) 2.49(.148)

  
.90 -.003(.039) -1.94(.264) 1.89(.293) 3.83(.381)

  
1.0 4.49(14.3) -13.7(18.5) 24.1(16.8) 37.8(16.3)

 

  As can be seen in Table 12, as c increases the average minimum gets smaller and 

more variable, the average maximum gets larger and more variable, and the average 

range gets larger and more variable. The average mean has no discernible pattern, but it 

stays close to zero and its variability increases as c increases. When compared to Table 8, 

these estimates tend to be more variable. Again, the fact that the increased variability 

observed as c increases compared to the case where there is no thinning is due to the fact 

that the estimates are based on fewer observations. 

  In summary, the descriptive statistics for the thinned chains are very similar to 

those for the chains that are not thinned. The primary difference is that the thinning of the 

chains means that the descriptive statistics are based on fewer observations for all cases 

where c is greater than 0. Overall, the thinned chains look similar to the full chains in 

terms of the descriptive statistics, even though the value of the summary statistic is 
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clearly influenced by the thinning, as was seen in Table 8. 

  The autocorrelation plots for these chains before thinning are virtually the same as 

the plots presented in Figures 3 through 8. As such, these autocorrelation plots will not be 

presented again. The autocorrelation plots for the thinned chains will be provided in 

Figures 15 through 20. For all conditions except c = 1, the autocorrelation plots on the 

thinned chains reveal that the thinning had the desired effect of producing linearly i.i.d. 

sequences. Again, the autocorrelation plots for the thinned chains will be presented such 

that the plots for completely imbalanced, partially imbalanced, and balanced chains will 

be presented together in one figure for each of the six levels of c. 

  Figure 15 presents the autocorrelation plots for all levels of balance for the case 

where c is equal to 0.
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Figure 15: Autocorrelation plot for all levels of d when c = 0 

 

 

  Figure 15 shows that the chains produced for this set of conditions are i.i.d. 

sequences, and the interpretation is identical to Figure 8. Because these are i.i.d. 

sequences, no thinning is necessary.
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Figure 16: Autocorrelation plot for all levels of d when c = .25 

 

 
  Figure 16 shows the chains produced for all levels of d when c is equal to .25, 

after thinning. This set of plots looks like those for the previous figure. All chains in this 

set of conditions are at least linearly i.i.d.
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Figure 17: Autocorrelation plot for all levels of d when c = .5 

 

 
 Figure 17 shows the chains produced for all levels of d when c is equal to .5, after 

thinning. This set of plots looks like those for the previous figure. All chains in this set of 

conditions are at least linearly i.i.d. 

  Figure 18 presents the autocorrelation plots for all levels of d when c is equal to 

.75. It is presented below.
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Figure 18: Autocorrelation plot for all levels of d when c = .75 

 

 
 Figure 18 shows the chains produced for all levels of d when c is equal to .5, after 

thinning. This set of plots looks like those for the previous figure. All chains in this set of 

conditions are at least linearly i.i.d. 

  Figure 19 presents the autocorrelation plots for all levels of d when c is equal to 

.90. It is presented below.
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Figure 19: Autocorrelation plot for all levels of d when c = .9 

 

 
 Figure 19 shows the chains produced for all levels of d when c is equal to .9, after 

thinning. This set of plots looks like those for the previous figure.All chains in this set of 

conditions are at least linearly i.i.d. 

 Figure 20 presents the autocorrelation plots for all levels of d when c is equal to 1. 

It is presented below.
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Figure 20: Autocorrelation plot for all levels of d when c = 1.0 

 

 
 Figure 20 shows the chains produced for all levels of d when c is equal to 1, after 

thinning. All chains in this set of conditions show that there is still some degree of linear 

dependence remaining among the elements of the thinned chains. 

  In summary, the thinning done for all levels of c (except for the case where c is 

equal to 1), achieved the desired effect of a linearly independent sequence of elements. 

When these thinned sequences are characterized by way of the indicator statistic, it is 

found that none of the chains in any condition would be deemed non-converged. Thus, 

the effect of thinning on the value of Dt is to bring it close to the expected value of .67. 
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  The path plots for the thinned chains are presented in Figures 21 through 26. Each 

figure contains the path plots for three levels of d, and there is an individual figure for 

each level of c. Again, see Figures 9-14 for characteristics of un-thinned chains. 

  Figure 21 presents the path plots for the three levels of d for the case where c is 

equal to zero for the thinned chains. It is presented and then described immediately 

below.

Figure 21: Path plots for all levels of d when c = 0

 

 
  As can be seen in Figure 21, each of these chains traverses the space between the 

bounds of the respective distribution. As these are i.i.d. sequences, all values stay within 
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the bounds as specified by the levels of d. 

 Figure 22 presents the path plots for the three levels of d for the case where c is 

equal to .25 for the thinned chains. It is presented and then described immediately below.

Figure 22: Path plots for all levels of d when c = .25

 

 
  Figure 22 shows the same expansion of range that was seen in the descriptive 

statistics. Each of these chains has been reduced to 2500 elements by the thinning. The 

chains are virtually indistinguishable from one another in their behavior except for the 

bounds within which they traverse. The expanded range can be seen in the plots. 
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  Figure 23 is presented below. It contains the path plots for all levels of d when c is 

equal to .5. 

Figure 23: Path plots for all levels of d when c = .5

 

 
  Figure 23 shows the same expansion of range that was seen in the descriptive 

statistics. Each of these chains has been reduced to 1667 elements by the thinning. The 

chains are virtually indistinguishable from one another. 

  Figure 24 presents the path plots for all levels of d when c is equal to .75. It is 

presented below.
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Figure 24: Path plots for all levels of d when c = .75

 

 
  Figure 24 shows the same expansion of range that was seen in the descriptive 

statistics. Each of these chains has been reduced to 1000 elements by the thinning. The 

chains are virtually indistinguishable from one another. 

  Figure 25 shows the path plots for all levels of d when c is equal to .9. It is 

presented below.
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Figure 25: Path plots for all levels of d when c = .9

 

 
  Figure 25 shows the same expansion of range that was seen in the descriptive 

statistics. Each of these chains has been reduced to 333 elements by the thinning. The 

chains are virtually indistinguishable from one another. 

 Figure 26 presents the path plots for the three levels of d for the case where c is 

equal to one for the thinned chains. It is presented and then described immediately below. 
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Figure 26: Path plots for all levels of d when c = 1 

 

 
  Figure 26 shows the chains for the case where c is equal to one. As was seen in 

the autocorrelation plots for these conditions, Figure 20, the strong degree of 

autocorrelation was not removed by the thinning. This was due to the fact that thinning 

until an i.i.d. sequence is achieved would leave these chains with only three elements left. 

As the indicator statistic looks at three elements simultaneously, nothing can be gained 

from thinning the chains to this point. Also, because the criticism of thinning is that it 

reduces the quality of the estimates obtained, reducing these chains any more than was 

done here would leave a chain that was so reduced so as not to be useful.  
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  In summary, when thinning is performed on the chain and an i.i.d. sequence is 

obtained, then the value of the summary of the indicator statistic tends towards .67, and 

all conditions produce values within the bounds as specified in the methods section. 

These chains behave as if converged when characterized by the indicator statistic after 

thinning. The amount of autocorrelation present has an influence on the amount of 

thinning necessary to obtain an i.i.d. sequence. As autocorrelation increases, then more 

thinning is necessary to achieve linear independence. The question of whether or not 

thinning is artificially making the chains look ‘converged’ will be addressed in the 

discussion. 

  The second research question was also addressed in Simulation study 3. 

Simulation study 3 involved creating chains with a real MCMC sampler under conditions 

that would influence the autocorrelation present in the chains. Code was written to 

implement a Metropolis Hastings within Gibbs sampler in R. The code is presented in 

Appendix A. The factor of interest in this study was the relationship between the 

variability of the target and proposal distributions (RATIO). The ratio of variabilities is 

known to influence the behavior of the sampler, and was described previously. There are 

three levels of the RATIO factor. The first level is the case where the variability of the 

proposal distribution is one quarter the size of the variability of the target distribution 

(e.g., sd = .25 and 1, respectively). The second level is the case where the variability of 

the proposal distribution and the target distribution is equal (e.g., sd = 1 and 1, 

respectively. The third level is the case where the variability of the proposal distribution 

is four times larger than the variability of the target distribution (e.g., sd =4 and 1, 
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respectively). These levels were controlled by ensuring that the proposal distribution was 

constrained to have the appropriate variability compared to the conditions used to 

generate the true parameter values on which the simulated data were based. These 

parameters are discussed shortly. 

  Data was generated following the 2-parameter logistic model (2PL; Hambleton 

and Swaminathan, 1985) for 1000 persons and twenty items. The item response function 

defining the probability of a correct response for the 2PL is given as: 

| ,
1

1
																			 16 	 

 

where  refers to an individual examinee’s ability, ai is an item discrimination parameter, 

bi is an item difficulty parameter and D is a scaling constant that is equal to 1 for logistic 

scaling and 1.7 for normal ogive scaling. Item parameters and person ability parameters 

were generated at random. The “a” parameters were simulated from a normal distribution 

with a mean of 0 and a standard deviation of .2, and then the exponent of the values was 

taken to ensure that all values were positive. For the first level of the factor RATIO, the 

standard deviation of the proposal distribution was set equal to .05, or one quarter of the 

true distribution. For the second level of the factor RATIO, the standard deviation of the 

proposal distribution for “a” parameters was set equal to .2. For the third level of the 

factor RATIO, the standard deviation of the proposal distribution for “a” parameters was 

set equal to .8. The “b” and  parameters were simulated from a standard normal 

distribution. For the first, second, and third levels of the factor RATIO, the standard 
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deviation of the proposal distribution for these parameters was set equal to .25, 1, and 4, 

respectively. Data will be presented for the item parameters, but not the person 

parameters. The results concerning the person parameters are more than enough to 

illustrate the influence of RATIO on the chains produced from each type of sampler. 

  The probability of a correct response for each simulated examinee to each item 

was calculated based on the item and person parameters randomly generated as described 

above. Each of these probabilities was then compared to a random value generated from a 

continuous uniform distribution with lower and upper bounds of 0 and 1, respectively. 

When the probability of a correct response was larger than the corresponding random 

value, then it was coded as 1 to indicate a correct response; otherwise it was coded a 0 to 

indicate an incorrect response. A MCMC sampler corresponding to each of the three 

conditions of RATIO was applied to each dataset. In this way, the three levels of the 

factor are applied to the same dataset, and this process is repeated 25 times. Each chain 

was run for 10,000 steps, and the first 5000 iterations are removed as burn-in. While this 

amount of thinning may be more than is necessary, it is commonly done to ensure that the 

resulting chains have settled to a location. All of the results presented for this simulation 

study will be based on the final chain of 5000 elements. 

  The findings for simulation study 3 will be presented next. First, the average 

autocorrelation at each lag will be presented for the three levels of RATIO. The 

autocorrelations for the a parameters and b parameters will be presented in separate 

tables. The average autocorrelation is informative about the intended effect of the factor 

RATIO. Following the autocorrelations, examples of chains from the three levels of 
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RATIO will be presented. Again, plots of all chains will not be presented for the sake of 

economy. After inspection of the chains from all replications of all conditions, it is 

sufficient to show a few chains to exemplify the trends present in the data. Following the 

path plots, the mean Dt values for the chains will be presented. 

  Table 13 presents the average value of the autocorrelation at each lag from 1 

through 25 across all chains for all replications for the “a” parameters for each of the 

levels of RATIO. It is presented below
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Table 13: Average autocorrelations for ‘a’ parameters for all levels of RATIO

‘a’ Parameters 
 ¼ 1 4 

Lag    

    

1 .965(.1e-15) .973(.000) .996(.000) 
2 .931(.006)) .947(.009) .992(.005) 
3 .899(.011) .922(.017) .988(.010) 
4 .869(.017) .898(.025) .985(.015) 
5 .839(.021) .874(.032) .980(.020) 
6 .811(.026) .851(.038) .977(.025) 
7 .784(.030) .829(.044) .973(.030) 
8 .758(.034) .807(.050) .970(.035) 
9 .733(.037) .787(.055) .966(.040) 

10 .708(.041) .766(.060) .962(.045) 
11 .685(.044) .747(.064) .959(.046) 
12 .663(.047) .727(.069) .955(.047) 
13 .641(.049) .709(.073) .952(.048) 
14 .620(.052) .691(.076) .948(.050) 
15 .600(.054) .673(.080) .945(.051) 
16 .581(.056) .656(.083) .941(.052) 
17 .562(.058) .640(.086) .938(.053) 
18 .545(.060) .624(.088) .934(.055) 
19 .527(.062) .608(.091) .931(.056) 
20 .511(.064) .593(.093) .927(.057) 
21 .495(.065) .578(.096) .924(.059) 
22 .479(.066) .564(.098) .921(.060) 
23 .464(.068) .550(.100) .917(.061) 
24 .450(.069) .536(.102) .914(.063) 
25 .435(.070) .523(.103) .910(.064) 

    

 

  In Table 13 it can be seen that as the ratio of the proposal distribution variability 

to the target distribution variability decreases, there is less autocorrelation present at each 

lag of 1 through 25. When the proposal distribution is less variable than the target 

distribution, there is less dependence among draws. These findings are evidence that 

variations in the sampling mechanism affect the characteristics of the resulting Markov 
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chains. These findings are slightly different than what was expected based on previous 

literature. These findings will be revisited in the discussion. 

 Table 14 presents the average value of the autocorrelation at each lag from 1 

through 25 across all chains for all replications for the b parameters for each of the levels 

of RATIO. It is presented below.

Table 14: Average autocorrelations for ‘b’ parameters for all levels of RATIO

‘b’ Parameters 
 ¼ 1 4 

Lag    

    

1 .849(.9e-16) .967(.000) .996(.000) 
2 .738(.031) .936(.012) .992(.004) 
3 .656(.051) .906(.022) .988(.009) 
4 .593(.065) .878(.032) .984(.013) 
5 .544(.075) .852(.040) .980(.018) 
6 .506(.081) .826(.047) .976(.022) 
7 .476(.085) .802(.054) .972(.026) 
8 .451(.088) .779(.060) .968(.031) 
9 .430(.089) .757(.066) .964(.035) 

10 .413(.090) .736(.071) .961(.039) 
11 .397(.090) .716(.076) .957(.041) 
12 .384(.089) .696(.080) .953(.042) 
13 .372(.088) .678(.084) .949(.044) 
14 .362(.087) .660(.087) .946(.046) 
15 .352(.086) .643(.091) .942(.047) 
16 .343(.085) .627(.094) .939(.049) 
17 .335(.083) .612(.097) .935(.051) 
18 .327(.082) .597(.099) .931(.053) 
19 .320(.081) .583(.102) .928(.055) 
20 .313(.079) .569(.104) .924(.056) 
21 .306(.078) .555(.106) .921(.058) 
22 .299(.077) .543(.108) .917(.060) 
23 .293(.076) .531(.110) .914(.062) 
24 .287(.075) .519(.112) .910(.064) 
25 .281(.074) .507(.113) .907(.065) 
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 In Table 14 it can again be seen that as the ratio of the proposal distribution 

variability to the target distribution variability decreases, there is less autocorrelation 

present at each lag of 1 through 25. When the proposal distribution is less variable than 

the target distribution, there is less dependence among chain elements. These findings 

again indicate that there is an effect of RATIO on the characteristics of the resulting 

Markov chains. 

  Examples of the path plots for chains produced by the MCMC samplers 

corresponding to the three levels of RATIO will now be presented. The path plots 

provide information regarding the behavior of the chains over time. Also, the particular 

shape of the plots can provide feedback concerning whether or not the manipulations of 

RATIO created chains with differing appearances. There will be a figure for the a 

parameters and a separate figure for the b parameters. In each figure, all levels of RATIO 

will be plotted to allow for direct comparison.
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Figure 27: Path plots for all levels of RATIO for the ‘a’ parameters 

 

 
  In Figure 27, the effect of RATIO can be seen in the behavior of the chains for the 

a parameters. When RATIO is equal to 1/4, there are the fewest ties of the experimental 

conditions considered here. More unique values were accepted into these chains, and the 

chains explore more of the parameter space than those produced for the cases where 

RATIO is equal to 1 and 4. When RATIO increases, the increased variability of the 

proposed values means that fewer unique values are accepted into these chains. In fact, 

when RATIO is equal to 4, there are such a large number of rejections that in the example 

presented here there are only 15 unique values in this chain of 10,000. 
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  Figure 28 will present the path plots for the three levels of RATIO for the a 

parameters. It is presented below.

Figure 28: Path plots for all levels of RATIO for the ‘b’ parameters 

 

 
 In Figure 28, the effect of RATIO can be seen in the behavior of the chains for the 

b parameters. The results are similar to those for the a parameters. When RATIO is equal 

to 1/4, there are the fewest ties of the experimental conditions considered here. More 

unique values were accepted into these chains, and the chains explore more of the 

parameter space than those produced for the cases where RATIO is equal to 1 and 4. 

When RATIO increases, the increased variability of the proposed values means that 
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fewer unique values are accepted into these chains. 

  To briefly summarize the path plots, it is important to note that while the levels of 

RATIO used in this study produced samplers that were not expected on the basis of 

Hanson and Cunningham (1998), the ratio of standard deviations of the proposal and 

target distributions has an effect on the acceptance ratios and consequently the chains. 

These path plots show that the characteristics of the samplers affect the behavior of the 

chains. Next, the values of Dt for these chains will be presented. 

  Table 15 presents the descriptive statistics for the values of Dt for the three levels 

of RATIO for both the a parameters and the b parameters. The mean value of Dt, as well 

as the standard deviation, maximum and minimum will be presented for each of the 

levels of RATIO. These descriptive statistics are based on all Dt values for all item 

parameters across all 25 replications. The purpose of this table is to demonstrate the 

general effect of RATIO on the behavior of the summary of the indicator statistic.

Table 15: Summary of Dt across all chains and replications for each level of RATIO

                                      RATIO 
  1/4 1 4 

Parameter Statistic    

     
a Mean .031 .0010 .00002 
 SD .017 .0012 .00005 
 Max .012 .0000 .00000 
 Min .183 .0170 .00040 
     

b Mean .038 .0010 .00002 
 SD .019 .0013 .00005 
 Max .015 .0000 .00000 
 Min .200 .0190 .00040 
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  The first thing noticeable in Table 15 is that the mean value of Dt is very small for 

all levels of RATIO. The reason for the small values of Dt is that the chains contained a 

great deal of ties. Ties are commonly encountered when constructing samplers using the 

Metropolis-Hastings algorithm. The sampler essentially compares each new candidate to 

the previous entry. Thus, when the variability of the proposal distribution is relatively 

large, it is more often the case that new candidates are proposed that are rejected. The 

value of Dt is directly related the amount of ties present in the chains produced. The 

particular samplers set up in this simulation study resulted in chains having an increasing 

amount of ties as RATIO increased. Without thinning, none of these ties are removed. 

The indicator statistic is currently defined in terms of strict inequalities. Thus, the ties are 

coded as zeroes, and the value of Dt is decreased. The issue of ties and how to deal with 

them will be revisited in the Discussion. 

  There is an inverse relationship between the amount of autocorrelation present in 

the chains and the mean value of Dt. It is expected that as the amount of autocorrelation 

increases, the value of Dt decreases. For the conditions presented in simulation study 3, 

the smallest degree of autocorrelation is present in the chains generated for the case 

where RATIO is equal to 1/4. For these chains Dt takes on the largest value on average. 

As RATIO increases, we see stronger degrees of autocorrelation as well as the increase in 

ties. Correspondingly, the mean values of Dt for these conditions show a decrement 

compared to the case where RATIO is equal to 1/4. When RATIO is equal to 4, very few 

of the chain elements satisfy the indicator statistic being equal to 1. On average, only 4 

elements in these chains are coded as ones according to the indicator statistic. The 
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relationship between the autocorrelation and the number of ties in the chain both are 

influencing the value of Dt. 

  It is important to show at this point the quality of the estimates provided by these 

chains. The convergence diagnostic Dt must be linked to the quality of the estimates. The 

most important criterion when determining the quality of chains is how close the 

estimates are to the true values of the parameters. Because these data are simulated and 

truth is known, it is important to show how close the estimates were to the true values for 

the parameters. Table 16 presents the mean absolute deviations (MADs) for the estimates 

of the ‘a’ parameters for each level of RATIO for each of the 25 replications. In this 

table, the MAD and the variability of the absolute deviations across the 20 items in each 

replication will be reported. The average MAD across all replications for each level of 

RATIO and its standard error will also be included. The purpose of this table is to show 

the quality of the estimates provided by the samplers representing each level of RATIO. 
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Table 16: MADs for all levels of RATIO for the ‘a’ parameters

MADs for ‘a’ Parameters 
 1/4 1 4 

Replications    

    

1 .063(.043) .058(.040) .071(.043) 
2 .064(.052) .069(.063) .065(.050) 
3 .065(.056) .064(.053) .081(.063) 
4 .086(.092) .084(.093) .092(.090) 
5 .086(.059) .084(.064) .073(.063) 
6 .061(.045) .063(.043) .061(.047) 
7 .099(.052) .099(.054) .097(.074) 
8 .073(.056) .070(.056) .084(.060) 
9 .109(.109) .110(.113) .126(.124) 

10 .066(.041) .063(.039) .067(.050) 
11 .058(.039) .060(.038) .066(.046) 
12 .073(.046) .072(.048) .077(.055) 
13 .100(.082) .095(.078) .098(.077) 
14 .072(.055) .078(.054) .071(.054) 
15 .060(.054) .058(.054) .059(.057) 
16 .071(.080) .072(.080) .079(.085) 
17 .058(.045) .049(.048) .065(.044) 
18 .099(.075) .100(.077) .106(.080) 
19 .072(.050) .071(.049) .072(.057) 
20 .085(.070) .085(.077) .083(.070) 
21 .072(.070) .075(.076) .076(.066) 
22 .062(.048) .063(.046) .072(.056) 
23 .062(.041) .063(.041) .065(.048) 
24 .073(.061) .065(.055) .073(.067) 
25 .057(.055) .062(.056) .051(.057) 

    

Mean MAD(SE) .073(.015) .073(.015) .077(.016) 
 

  Table 16 shows that chains from each level of RATIO do an equally good job of 

recovering the true parameters. Overall, for all levels of RATIO, estimates were quite 

close to truth. These findings are important in that they show that the quality of the 

estimate is not immediately revealed by autocorrelations or the value of any particular 
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convergence diagnostic. Although Dt differed across experimental conditions, the quality 

of the estimates did not.

Table 17: MADs for all levels of RATIO for the ‘b’ parameters

MADs for ‘b’ Parameters 
 ¼ 1 4 

Replications    

    

1 .047(.041) .048(.044) .050(.037) 
2 .050(.048) .061(.049) .068(.060) 
3 .070(.102) .066(.093) .072(.094) 
4 .079(.086) .077(.087) .073(.086) 
5 .060(.043) .054(.042) .055(.037) 
6 .085(.067) .076(.059) .087(.072) 
7 .083(.062) .087(.061) .086(.073) 
8 .059(.041) .057(.041) .054(.032) 
9 .117(.225) .120(.238) .139(.228) 

10 .064(.045) .059(.043) .056(.041) 
11 .059(.046) .071(.048) .071(.049) 
12 .046(.033) .046(.032) .055(.027) 
13 .107(.087) .097(.082) .120(.092) 
14 .072(.084) .074(.090) .076(.097) 
15 .051(.036) .052(.036) .048(.034) 
16 .066(.041) .063(.040) .071(.041) 
17 .055(.045) .052(.048) .057(.051) 
18 .085(.076) .086(.075) .087(.083) 
19 .052(.044) .053(.043) .065(.047) 
20 .048(.051) .047(.050) .056(.052) 
21 .060(.067) .059(.071) .055(.054) 
22 .047(.044) .050(.045) .068(.051) 
23 .058(.060) .060(.059) .062(.068) 
24 .058(.054) .046(.046) .060(.054) 
25 .059(.036) .056(.033) .056(.044) 

    

Mean MAD(SE) .065(.018) .065(.018) .070(.021) 
 

 Table 17 is very similar to Table 16. Table 17 also shows that chains from each 

level of RATIO do an equally good job of recovering the true b parameters. Overall, for 
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all levels of RATIO, estimates were quite close to truth. These findings are important in 

that they show that the quality of the estimate is not immediately revealed by 

autocorrelations or the value of any particular convergence diagnostic. Although Dt 

differed across experimental conditions, the quality of the estimates did not. 

  It is appropriate to briefly summarize the information about the quality of the 

estimates in the chains for this study. Dt showed a great deal of sensitivity to ties and 

autocorrelation, but all chains for a parameters for all conditions produced very good 

estimates. The indicator statistic under development is influenced by RATIO, but the 

quality of the estimates for the chains when no thinning is done is good as indicated by 

small MADs across items and replications. These findings will be revisited in the 

discussion. 

  The results for the thinned chains will now be presented. First, the average 

autocorrelation at each lag will be presented for the three levels of RATIO after thinning 

has been done. The autocorrelations for the a parameters and b parameters will be 

presented in separate tables. The average autocorrelations presented in these tables will 

provide feedback concerning the effect of thinning the chains. Following the 

autocorrelations, examples of chains from the three levels of RATIO after thinning will 

be presented. Again, plots of all chains will not be presented for the sake of economy. 

After inspection of the chains from all replications of all conditions, it is deemed 

sufficient to show a few chains to exemplify the trends present in the data. Following the 

path plots, the average Dt values for the chains after thinning will be presented.
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Table 18: Average value of AC at lag 1 through 25 for thinned chains for ‘a’ parameters

‘a’ Parameters 
 ¼ 1 4 

Lag    

    

1 .116(.125) .078(.148) .255(..277) 
2 .005(.124) -.005(.138) -.002(.250) 
3 -.014(.119) -.025(.141) -.078(.209) 
4 -.011(.109) -.020(.134) -.098(.182) 
5 -.022(.110) -.024(.124) -.108(.184) 
6 -.013(.109) -.020(.136) -.100(.195) 
7 -.013(.108) -.019(.125) -.104(.178) 
8 -.025(.105) -.014(.128) -.082(.158) 
9 -.021(.110) -.028(.126) -.078(.149) 

10 -.012(.109) -.027(.122) -.057(.128) 
11 -.015(.112) -.022(.129) -.035(.111) 
12 -.018(.098) -.016(.118) -.014(.072) 
13 -.015(.106) -.024(.120)  
14 -.010(.100) -.016(.120)  
15 -.013(.104) -.019(.118)  
16 -.011(.104) -.024(.117)  
17 -.016(.101) -.019(.112)  
18 -.019(.104) -.010(.113)  
19 -.012(.101) -.014(.109)  
20 -.008(.099) -.014(.106)  
21 -.012(.104) -.015(.107)  
22 -.016(.101) -.013(.105)  
23 -.013(.098) -.016(.102)  
24 -.019(.095) -.014(.102)  
25 -.013(.096) -.015(.102)  

    
 

  In Table 18, the effect of thinning can be seen in that the values of the 

autocorrelations are much smaller than when thinning is not done (see Table 13). At lag 

1, there is a small positive association for all levels of RATIO for the “a” parameters. At 

lag 2, the association is even smaller, practically 0. These findings indicate that the 
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thinning is having its desired effect, and the remaining sequence is at least linearly 

independent. 

Table 19: Average value of AC at lag 1 through 25 for thinned chains for ‘b’ parameters

‘b’ Parameters 
 ¼ 1 4 

Lag    

1 .122(.122) .178(.164) .390(.254) 
2 .032(.112) .082(.150) .142(.251) 
3 -.009(.113) .032(.143) .026(.225) 
4 -.012(.115) -.003(.140) -.021(.200) 
5 -.013(.115) -.022(.131) -.063(.177) 
6 -.016(.116) -.022(.131) -.084(.160) 
7 -.017(.114) -.026(.131) -.091(.171) 
8 -.013(.110) -.024(.132) -.099(.166) 
9 -.022(.109) -.037(.132) -.101(.158) 

10 -.012(.107) -.042(.125) -.104(.159) 
11 -.008(.108) -.030(.123) -.099(.151) 
12 -.011(.106) -.018(.120) -.090(.145) 
13 -.024(.110) -.025(.115) -.081(.145) 
14 -.018(.106) -.018(.116) -.062(.131) 
15 -.007(.106) -.026(.120) -.049(.123) 
16 -.009(.105) -.024(.113) -.042(.113) 
17 -.020(.095) -.016(.115) -.034(.094) 
18 -.028(.102) -.011(.117) -.025(.076) 
19 -.020(.103) -.017(.114) -.012(.051) 
20 -.016(.099) -.024(.104)  
21 -.016(.099) -.036(.105)  
22 -.010(.092) -.032(.106)  
23 -.015(.097) -.029(.099)  
24 -.014(.092) -.031(.106)  
25 -.015(.091) -.031(.100)  

    
 

  In Table 19, the values of the average autocorrelations at lags 1 through 25 are 

presented for the ‘b’ parameters. It can be seen that the same general pattern holds as 

does for the ‘a’ parameters, except that the autocorrelations are somewhat larger at lag 1 
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and 2. The largest average autocorrelation is observed at lag 1 for the case where RATIO 

is equal to 4. Again, it should be stated that the thinning was done on the basis of 

autocorrelation plots. When visually investigating the autocorrelation plots for the chains 

for the ‘b’ parameters when RATIO equals 4, none of the plots showed a correlation 

deemed significant (alpha = .05) at a lag greater than 250.  

  Next, the path plots for the thinned chains will be presented. Similar to the path 

plots for the chains that aren’t thinned, each level of RATIO will be presented in each 

figure, and there will be a figure for both the “a” parameters and the b parameters. Figure 

29 presents the path plots for the “a” parameters.

Figure 29: Path plots for all levels of RATIO for the ‘a’ parameters 
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 It can be seen that the chains have been greatly reduced in length due to the 

thinning. However, the same general pattern holds for the thinned chains as was seen for 

the path plots for the chains without thinning. When RATIO is equal to 1/4, there are the 

fewest ties of the experimental conditions considered here. More unique values were 

accepted into these chains, and the chains explore more of the parameter space than those 

produced for the cases where RATIO is equal to 1 and 4. When RATIO increases, the 

increased variability of the proposed values means that fewer unique values are accepted 

into these chains.

Figure 30: Path plots for all levels of RATIO for the ‘b’ parameters 
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  In Figure 30, the pattern of results for the b parameters can be seen to be very 

similar to those for the a parameters in Figure 29. When RATIO is equal to 1/4, there are 

the fewest ties of the experimental conditions considered here. More unique values were 

accepted into these chains, and the chains explore more of the parameter space than those 

produced for the cases where RATIO is equal to 1 and 4. When RATIO increases, the 

increased variability of the proposed values means that fewer unique values are accepted 

into these chains. 

  To briefly summarize, even after thinning, the characteristics of the samplers as 

influenced by RATIO demonstrate the same general pattern as the cases where thinning 

was not done. When RATIO is equal to 1/4, the chains take on more unique values than 

for the other levels, but the comparison is less clear due to unequal number of elements 

after thinning. The thinning has removed a great deal of the observed chain values, and 

the path plots have become a great deal shorter, which is problematic for practical 

reasons. This aspect of the issue of thinning will be revisited in the discussion. 

 Table 20 presents the descriptive statistics for the values of Dt for the three levels 

of RATIO for both the a parameters and the b parameters after the chains have been 

thinned. The mean value of Dt, as well as the standard deviation, maximum and minimum 

will be presented for each of the levels of RATIO. These descriptive statistics are based 

on all Dt values for all item parameters across all 25 replications. The purpose of this 

table is to demonstrate the general effect of thinning on the behavior of the summary of 

the indicator statistic.
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Table 20: Summary of Dt across all thinned chains and replications for each level of 

RATIO

                                      RATIO 
  ¼ 1 4 

Parameter Statistic    

     
‘a’ Mean .687 .674 .673 

 SD .136 .141 .179 
 Max .960 .918       1.00 
 Min .347 .265 .250 
     

‘b’ Mean .672 .666 .668 
 SD .157 .161 .163 
 Max .960 .959 .947 
 Min .267 .265 .263 

 

  Table 20 shows the effect that thinning has on the value of Dt. Thinning is 

removing both the large number of ties as well as the autocorrelation among chain 

elements, both of which influence the summary of the indicator statistic. The result is that 

the average value of Dt increases compared to the same chains without thinning. For all 

levels of RATIO for both ‘a’ and ‘b’ parameters, the average value of Dt goes the value 

that would be expected for an i.i.d. sequence. This finding is not to be interpreted as 

saying that all chains move towards 2/3. Rather, it is simply the case that the thinning is 

removing some qualities of the chains that are known to influence the value that Dt takes 

on. 

 Again, it is important to show at this point the quality of the estimates provided by 

these chains. The convergence diagnostic Dt must be linked to the quality of the 

estimates. The most important criterion when determining the quality of chains is how 
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close the estimates are to the true values of the parameters. Because these data are 

simulated and truth is known, it is important to show how close the estimates were to the 

true values for the parameters. Table 21 presents the mean absolute deviations (MADs) 

for the estimates of the 20 ‘a’ parameters for each of the 25 replications for each level of 

RATIO for the thinned chains. In this table, the MAD and the variability of the absolute 

deviations across the 20 items in each replication will be reported. The average MAD 

across all replications for each level of RATIO and its standard error will also be 

included. The purpose of this table is to show the quality of the estimates provided by the 

samplers representing each level of RATIO when thinning is done. 

  



161 

Table 21: MADs for all levels of RATIO for the ‘a’ parameters for thinned chains

MADs for ‘a’ Parameters (thinned chains) 
 ¼ 1 4 

Replications    

    

1 .064(.042) .057(.043) .069(.045) 
2 .063(.051) .067(.063) .068(.051) 
3 .066(.057) .067(.054) .082(.059) 
4 .085(.091) .089(.092) .096(.097) 
5 .087(.061) .086(.064) .072(.060) 
6 .059(.047) .065(.041) .060(.049) 
7 .099(.153) .100(.055) .097(.074) 
8 .072(.056) .069(.055) .086(.057) 
9 .111(.109) .109(.112) .127(.127) 

10 .064(.042) .061(.038) .065(.050) 
11 .057(.039) .059(.038) .064(.047) 
12 .074(.046) .074(.048) .077(.056) 
13 .101(.084) .096(.079) .097(.078) 
14 .072(.053) .079(.056) .065(.057) 
15 .062(.053) .058(.055) .059(.061) 
16 .071(.081) .072(.078) .080(.086) 
17 .059(.045) .051(.049) .066(.050) 
18 .100(.075) .099(.076) .108(.076) 
19 .075(.052) .073(.048) .071(.061) 
20 .083(.071) .084(.079) .083(.071) 
21 .072(.070) .079(.077) .079(.067) 
22 .063(.050) .065(.044) .070(.055) 
23 .062(.042) .061(.043) .067(.043) 
24 .073(.062) .068(.054) .077(.067) 
25 .058(.056) .061(.057) .050(.058) 

    

Mean MAD(SE) .074(.015) .074(.015) .078(.017) 
 

 Table 21 shows that chains from each level of RATIO do an equally good job of 

recovering the true parameters, and these results are very similar to those for the un-

thinned chains. Overall, for all levels of RATIO, estimates were quite close to truth. 

These findings are important in that they show that the quality of the estimate is not 
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affected by the thinning. The quality of the estimates did not suffer even when there was 

a great deal of thinning. 

  Table 22 contains the MADs for the 25 replications of the ‘b’ parameters. The 

mean MAD across replications and its standard error are also presented. 

 

Table 22: MADs for all levels of RATIO for the ‘b’ parameters for thinned chains

MADs for ‘b’ Parameters (thinned chains) 
 ¼ 1 4 

Replications    

    

1 .048(.041) .049(.044) .052(.041) 
2 .051(.049) .060(.048) .067(.058) 
3 .069(.103) .068(.094) .071(.099) 
4 .078(.089) .080(.092) .076(.089) 
5 .059(.049) .056(.044) .057(.036) 
6 .085(.070) .075(.059) .085.069) 
7 .082(.060) .089(.062) .085(.072) 
8 .060(.040) .056(.043) .055(.033) 
9 .117(.224) .122(.234) .138(.226) 

10 .062(.046) .055(.042) .061(.043) 
11 .062(.046) .073(.049) .069(.048) 
12 .047(.030) .050(.030) .053(.028) 
13 .107(.089) .098(.084) .121(.091) 
14 .070(.085) .076(.105) .075(.088) 
15 .052(.037) .054(.038) .048(.035) 
16 .066(.042) .062(.043) .071(.041) 
17 .053(.046) .056(.053) .059(.052) 
18 .085(.078) .085(.074) .091(.088) 
19 .051(.046) .054(.042) .057(.052) 
20 .047(.051) .048(.051) .056(.054) 
21 .060(.068) .061(.072) .070(.052) 
22 .048(.044) .052(.046) .062(.065) 
23 .060(.061) .059(.058) .056(.050) 
24 .061(.056) .046(.047) .053(.040) 
25 .060(.037) .055(.035) .061(.039) 

    

Mean MAD(SE) .066(.018) .066(.018) .070(.022) 
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 Table 22 is very similar to Table 21. Table 22 also shows that chains from each 

level of RATIO do an equally good job of recovering the true b parameters. Overall, for 

all levels of RATIO, estimates were quite close to truth. These findings are important in 

that they show that the quality of the estimate is not necessarily affected by the thinning. 

  It is appropriate to briefly summarize the information about the quality of the 

estimates in the chains for this study. Dt showed a great deal of sensitivity to ties and 

autocorrelation, but all chains for ‘a’ parameters for all conditions produced very good 

estimates. The thinning of the chains had a great deal of influence on the value of the 

summary of the indicator statistic, but not on the MADs for the estimates produced by the 

chains. The indicator statistic under development is influenced by thinning, but the 

quality of the estimates is good as indicated by small MADs across items and 

replications. These findings will be revisited in the discussion.

Findings for research question 3 

  Research question 3 compares the diagnostic currently being investigated to three 

existing diagnostics. Simulation study 4 is similar to simulation studies  1 and 2 in that it 

also has chains created using the same levels of c and d. In addition, this study also varies 

the range of the random component of the chain simulator. The Dt values for these new 

conditions (i.e., where the range of the random component is equal to .1, .5, and 5) will 

be presented along with descriptive statistics, autocorrelation plots, and path plots. The Dt 

values, descriptive statistics, autocorrelation plots and path plots for the case where the 

range of the random component is equal to 1 will be omitted because they are virtually 
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the same as results presented in the previous studies, but this condition will be included in 

the comparison to the three existing diagnostics. 

  Presented below are the tables containing the Dt values for the three different 

ranges of the random component of the chain simulator. Each table is followed by a brief 

description of the results.

Table 23: Mean Dt values (SD) for combinations of balance (d) and AC factor (c) when 

range is equal to .1

d 
      
c         0         .25         .5        .75        1.0 
      

0.0 .668(.004) .666(.004) .666(.004) .668(.004) .667(.004)
   

.25 .627(.005) .626(.004) .625(.004) .625(.004) .624(.004)
   

.50 .584(.004) .584(.005) .583(.003) .584(.004) .582(.004)
   

.75 .541(.005) .542(.004) .542(.005) .542(.005) .541(.005)
   

.90 .520(.004) .517(.006) .515(.005) .514(.006) .516(.004)
   

1.0 .000(.000) .376(.005) .500(.006) .375(.006) .000(.000)

 

  Table 23 shows the same patterns of results for values of Dt based on simulated 

chains that were apparent in Table 4 for simulation study 1. The effect that the balance 

factor was intended to have is not apparent in this table either. Also, it is clear that setting 

the range of the random component equal to .1 did not have an influence on the value of 

Dt.  
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  Table 24 presents the values of the summary of the indicator statistic for the case 

where the range is equal to .5. It is presented below.

Table 24: Mean Dt values (SD) for combinations of balance (d) and AC factor (c) when 

range is .5 

d 
      
c         0         .25         .5        .75        1.0 
      

0.0 .668(.004) .666(.004) .667(.004) .667(.003) .666(.004)
   

.25 .627(.005) .626(.003) .625(.004) .624(.004) .625(.003)
   

.50 .584(.004) .585(.005) .584(.003) .583(.004) .584(.003)
   

.75 .541(.003) .542(.005) .542(.004) .541(.005) .542(.005)
   

.90 .520(.005) .516(.006) .517(.005) .512(.005) .516(.005)
   

1.0 .000(.000) .376(.005) .499(.005) .375(.005) .000(.000)

 

  Table 24 shows the same patterns of results for values of Dt based on simulated 

chains that were apparent in Tables 4 and 12. The effect that the balance factor was 

intended to have is not apparent in this table either. Also, it is clear that setting the range 

of the random component equal to .5 did not have an influence on the value of Dt. 

  Table 25 presents the values of Dt for the case where the range of the random 

component of the chain simulator is equal to 5. It is presented below.
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Table 25: Mean Dt values (SD) for combinations of balance (d) and AC factor (c) when 

range is 5 

d 
      
c         0         .25         .5        .75        1.0 
      

0.0 .668(.004) .667(.003) .668(.004) .668(.004) .666(.004)
   

.25 .628(.005) .625(.003) .624(.005) .624(.004) .626(.005)
   

.50 .583(.004) .585(.004) .582(.005) .585(.005) .585(.004)
   

.75 .541(.004) .542(.005) .542(.004) .541(.006) .542(.005)
   

.90 .521(.006) .518(.005) .517(.004) .517(.005) .518(.005)
   

1.0 .000(.000) .374(.006) .501(.005) .377(.007) .000(.000)

 

 Table 25 shows the same patterns of results for values of Dt based on simulated 

chains that were apparent in Tables 4, 17, and 18. The effect that the balance factor was 

intended to have is not apparent in this table either. Also, it is clear that setting the range 

of the random component equal to 5 did not influence the value of Dt. 

  Taken together; these results indicate that the value of the indicator statistic is not 

influenced by the range of the random component of the chain simulator. This was 

expected for Dt given that the diagnostic is only sensitive to the rank orderings of the 

elements produced by the chain simulator. The relative rank orderings of values 

generated from a continuous uniform distribution with differing boundaries would still be 

expected to produce the same pattern. 
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 Now the descriptive statistics will be provided for the three new conditions of 

RANGE. Each table will be presented and then followed by a brief description of the 

results. Table 26 (below) presents the descriptive statistics for all levels of c when there is 

complete imbalance and the range of the random component is .1. It is presented below.

Table 26: Descriptive statistics for simulated chains when d=1 (Complete Imbalance) and 

range = .1

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .050(.0003) .00001(.00001) .100(.00001) .100(.00001)

  
.25 .067(.0004) .003(.001) .131(.001) .128(.001)

  
.50 .100(.001)       .012(.004)     .187(.003)       .175(.004)

  
.75 .200(.001) .04(.018) .335(.006) .295(.019)

  
.90 .499(.003) .060(.030) .729(.017) .670(.035)

  
1.0 250(1.38) .049(.030)   500(2.22)      500(2.21)

 

 As can be seen in Table 26, the general pattern for all descriptive statistics that the 

mean and variability increases as c goes from 0 to 1. These values in the table reflect the 

range of the random component of the chain simulator. In general, the trend seen in this 

table reflects the trend seen in all similar descriptive statistic tables for the cases where 

there is complete imbalance. 

  Table 27 presents the descriptive statistics for all levels of c when there is partial 

imbalance and the random component is equal to .1. It is presented below.
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Table 27: Descriptive statistics for simulated chains when d=.75 (Partial Imbalance) and 

range = .1

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .025(.003) -.025(.00001) .075(.00001) .100(.00001)

  
.25 .003(.0003) -.030(.001) .097(.001) .128(.001)

  
.50  .050(.001)   -.037(.005)     .138(.001)       .174(.002)

  
.75 .100(.001) -.039(.005) .239(.007) .278(.007)

  
.90 .250(.003) .007(.017) .483(.017) .477(.022)

  
1.0 125(1.46) .022(.028)   250(2.52)        250(2.53)

 

  For Table 27, the pattern is slightly different than for the previous table. It is still 

the case that as c increases the average mean, maximum, and range increases. It is also 

still the case that variability increases as c increases. However, when d represents partial 

imbalance (positive) the average minimum first decreases and then increases over the 

range of c. The descriptive statistics also reflect the influence of the range of the random 

component of the chain simulator. The pattern in Table 27 is similar to the trend seen in 

each other table of descriptive statistics for the case where partial imbalance is present in 

the chain simulator. 

 Table 28 presents the descriptive statistics for all levels of c when there is balance 

and the random component is equal to .1. It is presented below.
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Table 28: Descriptive statistics for simulated chains when d=.5 (Balance) and range = .1

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 -.0001(.0002) -.050(.00001) .050(.00001) .100(.00001)

     
.25 -.0001(.0003) -.064(.001) .064(.001) .128(.001)

     
.50  .0001(.0006)    -.088(.002)     .088(.0022)      .175(.003) 

     
.75 .00004(.001) -.139(.007) .140(.007) .280(.009)

     
.90 -.0002(.004) -.231(.018) .226(.020) .457(.026)

     
1.0 .033(1.58) -2.01(1.43) 2.11(1.61) 4.11(1.04) 

 

 As can be seen in Table 28, as c increases the average minimum gets smaller and 

more variable, the average maximum gets larger and more variable, and the average 

range gets larger and more variable. The average mean has no discernible pattern, but its 

variability increases as c increases. The descriptive statistics in the table reflect the range 

of the random component of the chain simulator. The pattern of results in Table 22 is 

similar to all other conditions where there is balance present in the random component of 

the chain simulator. 

 Table 29 presents the descriptive statistics for all levels of c when there is 

complete imbalance and the random component is equal to .5. It is presented below.
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Table 29: Descriptive statistics for simulated chains when d=1 (Complete Imbalance) and 

range = .5

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .250(.001) .0001(.0001) .500(.0001) .500(.0001)

  
.25 .333(.002) .013(.003) .651(.004) .638(.005)

  
.50 .499(.003) .056(.012) .937(.012) .882(.014)

  
.75 1.00(.005) .208(.100) 1.69(.033) 1.49(.099)

  
.90 2.49(.013) .216(.160) 3.63(.062) 3.42(.166)

  
1.0 1251(10.4) .234(.160)   2501(16.3) 2501(16.3)

 

 As can be seen in Table 29, the general pattern for all descriptive statistics that the 

mean and variability increases as c goes from 0 to 1. These values in the table reflect the 

range of the random component of the chain simulator. In general, the trend seen in this 

table reflects the trend seen in all similar descriptive statistic tables for the cases where 

there is complete imbalance. 

 Table 30 presents the descriptive statistics for all levels of c when there is partial 

imbalance and the random component is equal to .5. It is presented below.
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Table 30: Descriptive statistics for simulated chains when d=.75 (Partial Imbalance) and 

range = .5

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .125(.001) -.125(.00004) .375(.00004) .500(.0001)

  
.25 .167(.002) -.152(.005) .486(.004) .638(.010)

  
.50 .250(.003) -.188(.011) .686(.011) .874(.015)

  
.75 .499(.005) -.197(.034) 1.20(.043) 1.39(.058)

  
.90 1.25(.013) .023(.093) 2.41(.107) 2.39(.140)

  
1.0 625.3(8.34) .125(.175)   1249(14.9) 1249(14.9)

 

 For Table 30, the pattern is slightly different than for the previous table. It is still 

the case that as c increases the average mean, maximum, and range increases. It is also 

still the case that variability increases as c increases. However, when d represents partial 

imbalance (positive) the average minimum first decreases and then increases over the 

range of c.  The descriptive statistics also reflect the influence of the range of the random 

component of the chain simulator. This pattern is similar to the trend seen in each other 

table of descriptive statistics for the case where partial imbalance is present in the chain 

simulator. 

 Table 31 presents the descriptive statistics for all levels of c when there is balance 

and the random component is equal to .5. It is presented below.
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Table 31: Descriptive statistics for simulated chains when d=.5 (Balance) and range = .5

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 .0001(.002) -.250(.0001) .250(.0001) .500(.0001)

  
.25 .0005(.002) -.318(.004) .318(.003) .636(.005)

  
.50 .0003(.002) -.437(.010) .436(.012) .873(.014)

  
.75 -.0001(.006) -.706(.039) .684(.030) 1.39(.054)

  
.90 .004(.017) -1.16(.107) 1.15(.088) 2.31(.147)

  
1.0 1.72(8.29) -9.35(7.74) 12.39(8.1) 21.74(5.66)

 

 As can be seen in Table 31, as c increases the average minimum gets smaller and 

more variable, the average maximum gets larger and more variable, and the average 

range gets larger and more variable. The average mean has no discernible pattern, but its 

variability increases as c increases. The descriptive statistics in the table reflect the range 

of the random component of the chain simulator. This pattern is similar to the trend seen 

in each other table of descriptive statistics for the case where balance is present in the 

chain simulator. 

 Table 32 presents the descriptive statistics for all levels of c when there is 

complete imbalance and the random component is equal to 5. It is presented below.
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Table 32: Descriptive statistics for simulated chains when d=1 (Complete Imbalance) and 

range = 5

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 2.50(.016) .0003(.0004) 5.00(.0004) 5.00(.001)

  
.25 3.33(.015) .146(.044) 6.54(.037) 6.39(.058)

  
.50 4.99(.028) .553(.188) 9.41(.125) 8.85(.225)

  
.75 9.99(.046) 1.87(.963) 16.9(.288) 15.0(1.07)

  
.90 25.0(.167) 2.40(1.23) 36.7(.932) 34.2(1.59)

  
1.0 12488(63.2) 2.17(1.34) 24966(103.4) 24964(103.5)

 

 As can be seen in Table 32, the general pattern for all descriptive statistics that the 

mean and variability increases as c goes from 0 to 1. These values in the table reflect the 

range of the random component of the chain simulator. In general, the trend seen in this 

table reflects the trend seen in all similar descriptive statistic tables for the cases where 

there is complete imbalance. 

 Table 33 presents the descriptive statistics for all levels of c when there is partial 

imbalance and the random component is equal to 5. It is presented below.
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Table 33: Descriptive statistics for simulated chains when d=.75 (Partial Imbalance) and 

range = 5

 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 1.25(.017) -1.25(.0002) 3.75(.001) 5.00(.001)

  
.25 1.67(.019) -1.52(.032) 4.86(.043) 6.38(.052)

  
.50 2.51(.024) -1.84(.118) 6.89(.127) 8.73(.175)

  
.75 4.98(.041) -1.99(.416) 11.9(.401) 13.9(.493)

  
.90 12.45(.128) .381(.933) 23.7(.753) 23.3(1.28)

  
1.0 6223(64.5) .947(1.35) 12455(140.4) 12454(140.3)

 

 For Table 33, the pattern is slightly different than for the previous table. It is still 

the case that as c increases the average mean, maximum, and range increases. It is also 

still the case that variability increases as c increases. However, when d represents partial 

imbalance (positive) the average minimum first decreases and then increases over the 

range of c.  The descriptive statistics also reflect the influence of the range of the random 

component of the chain simulator. This pattern is similar to the trend seen in each other 

table of descriptive statistics for the case where partial imbalance is present in the chain 

simulator. 

 Table 34 presents the descriptive statistics for all levels of c when there is balance 

and the random component is equal to 5. It is presented below.
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Table 34: Descriptive statistics for simulated chains when d=.5 (Balance) and range = 5

     
 
c 

Average 
Mean 

Average 
Minimum 

Average 
Maximum 

Average 
Range 

     
0.0 -.001(.017) -2.50(.0004) 2.50(.0004) 5.00(.001) 

     
.25 -.011(.022) -3.19(.041) 3.19(.043) 6.38(.059) 

     
.50 -.003(.030) -4.40(.102) 4.39(.090) 8.79(.161) 

     
.75 .010(.061) -6.88(.347) 6.97(.252) 13.8(.430) 

     
.90 .039(.127) -11.7(.543) 11.4(.585) 23.1(.791) 

     
1.0 22.9(85.1) -95.5(79.8) 148.2(105.1) 243.7(84.2) 

 

 As can be seen in Table 34, as c increases the average minimum gets smaller and 

more variable, the average maximum gets larger and more variable, and the average 

range gets larger and more variable. The average mean has no discernible pattern, but its 

variability increases as c increases. The descriptive statistics in the table reflect the range 

of the random component of the chain simulator. 

 Overall, the range of the random component has an influence on the values 

present in the chains. For example, as the range of the random component increases, the 

values observed in the chains become more extreme. It was expected that the range of the 

random component of the chain simulator would have this effect. Also, the degree of 

autocorrelation influences the values of the chain elements. Generally speaking, as the 

degree of autocorrelation present among elements in the chain increases, the variability of 

the descriptive statistics increases. Finally, the general trend for each level of balance 
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holds across all ranges of the random component of the chain simulator, indicating that 

the range of the random component doesn’t necessarily have an influence on the chain 

other than to set bounds for how far the values will wander for a given amount of 

iterations. 

  Now, the autocorrelation plots will be presented for the levels of range new to 

Simulation study 4 (range = .1, .5 and 5 respectively). Again, the autocorrelation plots for 

the condition where the range is equal to one are omitted because they are virtually 

identical to the autocorrelation plots already presented for this condition in other 

simulation studies. Each autocorrelation plot will represent the three levels of the balance 

factor, d, and a plot for each level of c will be represented in an individual figure. 

  Figure 31 presents the autocorrelation plots for all levels of d when c is equal to 0 

and range is equal to .1. It is presented below.
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Figure 31: Autocorrelation plots for all levels of d when c is equal to 0 and range = to .1 

 

 
  In Figure 31, it can again be seen that when c is equal to zero, the chains are an 

i.i.d. sequence of elements. This pattern is similar to all cases where c is equal to 0. 

 Figure 32 presents the autocorrelation plots for all levels of d when c is equal to 

.25 and range is equal to .1. It is presented below.
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Figure 32: Autocorrelation plots for all levels of d when c is equal to .25 and range = to .1 

 

 
  In Figure 32, it can again be seen that when c is equal to .25, there is a small 

amount of autocorrelation that exists among elements in the chain. For the chains in this 

condition, the autocorrelation is no longer observable by a lag of three or four. This 

pattern is similar to all the cases where the value of c is equal to .25. 

 Figure 33 presents the autocorrelation plots for all levels of d when c is equal to .5 

and range is equal to .1. It is presented below.
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Figure 33: Autocorrelation plots for all levels of d when c is equal to .5 and range = to .1 

 

 
  In Figure 33, there is again an increase in the degree of autocorrelation present in 

the chains when c is set equal to .5. In the chains simulated for this condition it can be 

seen that the autocorrelation tends towards zero by a lag of roughly five. This pattern is 

similar for all conditions where c is equal to .5. 

 Figure 34 presents the autocorrelation plots for all levels of d when c is equal to 

.75 and range is equal to .1. It is presented below.
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Figure 34: Autocorrelation plots for all levels of d when c is equal to .75 and range = to .1 

 

 
  In Figure 34, it can again be seen that when c is equal to .75 there is dependency 

among elements for a lag of up to 15. This pattern is similar to all other case where c is 

equal to .75. 

 Figure 35 presents the autocorrelation plots for all levels of d when c is equal to .9 

and range is equal to .1. It is presented below.
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Figure 35: Autocorrelation plots for all levels of d when c is equal to .9 and range = to .1 

 

 
  In Figure 35, it can again be seen that when c is equal to .9 there is a relationship 

among elements separated by a lag of up to roughly 25 to 30 elements. This pattern is 

similar to all other cases where c is equal to .9. 

 Figure 36 presents the autocorrelation plots for all levels of d when c is equal to 1 

and range is equal to .1. It is presented below.
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Figure 36: Autocorrelation plots for all levels of d when c is equal to 1 and range = to .1 

 

 
  In Figure 36, it can again be seen that when c is equal to 1, there is a strong 

degree of autocorrelation present among elements. When there is any type of imbalance 

present, this autocorrelation persists to a lag of up to 3500 elements. When there is 

balance present (and the chain is equally likely to move up or down, rather than in one 

direction only), the autocorrelation exists among elements for a smaller lag. The lag over 

which the autocorrelation persists in the case of balance is roughly 2000 to 2500. 

 Figure 37 presents the autocorrelation plots for all levels of d when c is equal to 0 

and range is equal to .5. It is presented below.



183 

Figure 37: Autocorrelation plots for all levels of d when c is equal to 0 and range = to .5 

 

 
 In Figure 37, it can again be seen that when c is equal to zero, the chains are an 

i.i.d. sequence of elements. This pattern is similar to all cases where c is equal to 0. 

 Figure 38 presents the autocorrelation plots for all levels of d when c is equal to 

.25 and range is equal to .5. It is presented below.
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Figure 38: Autocorrelation plots for all levels of d when c is equal to .25 and range = to .5 

 

 
  In Figure 38, it can again be seen that when c is equal to .25, there is a small 

amount of autocorrelation that exists among elements in the chain. For the chains in this 

condition, the autocorrelation is no longer observable by a lag of three or four. This 

pattern is similar to all the cases where the value of c is equal to .25. 

 Figure 39 presents the autocorrelation plots for all levels of d when c is equal to .5 

and range is equal to .5. It is presented below.
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Figure 39: Autocorrelation plots for all levels of d when c is equal to .5 and range = to .5 

 

 
  In Figure 39, there is again an increase in the degree of autocorrelation present in 

the chains when c is set equal to .5. In the chains simulated for this condition it can be 

seen that the autocorrelation tends towards zero by a lag of roughly five. This pattern is 

similar for all conditions where c is equal to .5. 

 Figure 40 presents the autocorrelation plots for all levels of d when c is equal to 

.75 and range is equal to .5. It is presented below.
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Figure 40: Autocorrelation plots for all levels of d when c is equal to .75 and range = to .5 

 

 
  In Figure 40, it can again be seen that when c is equal to .75 there is dependency 

among elements for a lag of up to 15. This pattern is similar to all other case where c is 

equal to .75. 

 Figure 41 presents the autocorrelation plots for all levels of d when c is equal to .9 

and range is equal to .5. It is presented below.
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Figure 41: Autocorrelation plots for all levels of d when c is equal to .9 and range = to .5 

 

 
 In Figure 41, it can again be seen that when c is equal to .9 there is a relationship 

among elements separated by a lag of up to roughly 25 to 30 elements. This pattern is 

similar to all other cases where c is equal to .9. 

 Figure 42 presents the autocorrelation plots for all levels of d when c is equal to 1 

and range is equal to .5. It is presented below.
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Figure 42: Autocorrelation plots for all levels of d when c is equal to 1 and range = to .5 

 

 
 In Figure 42, it can again be seen that when c is equal to 1, there is a strong 

degree of autocorrelation present among elements. When there is any type of imbalance 

present, this autocorrelation persists to a lag of up to 3500 elements. When there is 

balance present (and the chain is equally likely to move up or down, rather than in one 

direction only), the autocorrelation exists among elements for a smaller lag. The lag over 

which the autocorrelation persists in the case of balance is roughly 2000 to 2500. 

 Figure 43 presents the autocorrelation plots for all levels of d when c is equal to 0 

and range is equal to 5. It is presented below.
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Figure 43: Autocorrelation plots for all levels of d when c is equal to 0 and range = to 5 

 

 
 In Figure 43, it can again be seen that when c is equal to zero, the chains are an 

i.i.d. sequence of elements. This pattern is similar to all cases where c is equal to 0. 

 Figure 44 presents the autocorrelation plots for all levels of d when c is equal to 

.25 and range is equal to 5. It is presented below.
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Figure 44: Autocorrelation plots for all levels of d when c is equal to .25 and range = to 5 

 

 
 In Figure 44, it can again be seen that when c is equal to .25, there is a small 

amount of autocorrelation that exists among elements in the chain. For the chains in this 

condition, the autocorrelation is no longer observable by a lag of three or four. This 

pattern is similar to all the cases where the value of c is equal to .25. 

 Figure 45 presents the autocorrelation plots for all levels of d when c is equal to .5 

and range is equal to 5. It is presented below.



191 

Figure 45: Autocorrelation plots for all levels of d when c is equal to .5 and range = to 5 

 

 
 In Figure 45, there is again an increase in the degree of autocorrelation present in 

the chains when c is set equal to .5. In the chains simulated for this condition it can be 

seen that the autocorrelation tends towards zero by a lag of roughly five. This pattern is 

similar for all conditions where c is equal to .5. 

 Figure 46 presents the autocorrelation plots for all levels of d when c is equal to 

.75 and range is equal to 5. It is presented below.
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Figure 46: Autocorrelation plots for all levels of d when c is equal to .75 and range = to 5 

 

 
 In Figure 46, it can again be seen that when c is equal to .75 there is dependency 

among elements for a lag of up to 15. This pattern is similar to all other case where c is 

equal to .75. 

 Figure 47 presents the autocorrelation plots for all levels of d when c is equal to .9 

and range is equal to 5. It is presented below.
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Figure 47: Autocorrelation plots for all levels of d when c is equal to .9 and range = to 5 

 

 
 In Figure 47, it can again be seen that when c is equal to .9 there is a relationship 

among elements separated by a lag of up to roughly 25 to 30 elements. This pattern is 

similar to all other cases where c is equal to .9. 

 Figure 48 presents the autocorrelation plots for all levels of d when c is equal to 1 

and range is equal to 5. It is presented below.
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Figure 48: Autocorrelation plots for all levels of d when c is equal to 1 and range = to 5 

 

 
  In Figure 48, it can again be seen that when c is equal to 1, there is a strong 

degree of autocorrelation present among elements. When there is any type of imbalance 

present, this autocorrelation persists to a lag of up to 3500 elements. When there is 

balance present (and the chain is equally likely to move up or down, rather than in one 

direction only), the autocorrelation exists among elements for a smaller lag. The lag over 

which the autocorrelation persists in the case of balance is roughly 2000 to 2500. 

  In general, the autocorrelation plots presented for the new conditions of 

simulation study 4 demonstrate the same patterns seen in the previous simulation studies. 

Taken together, the fact that the pattern of autocorrelations present across all 
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combinations of c and d is the same regardless of the range of the random component of 

the chain simulator is to be expected. Again, the range of the random component of the 

chain simulator affects the magnitude of movement we see between elements in a chain, 

but it does nothing to manipulate the relative rank orderings or associations among the 

elements in a chain. 

  The path plots for the conditions new to simulation study 4 will now be presented. 

Each plot will be provided and then briefly described. After all of the path plots 

representing the new conditions have been presented, a brief summary of the overall 

trends seen will be made and any similarity to previously presented findings will be 

addressed. 

  Figure 49 shows the path plots for all levels of d when c is equal to 0 and the 

range is equal to .1. It is presented below.
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Figure 49: Path plots for all levels of d when c = 0 and range = .1 

 

 
  As can be seen in Figure 49, each of these chains traverses the space between the 

bounds of the respective distribution. As these are i.i.d. sequences, all values stay within 

the bounds as specified by the range of the random component of the chain simulator. 

  Figure 50 shows the path plots for all levels of d when c is equal to .25 and the 

range is equal to .1. It is presented below.
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Figure 50: Path plots for all levels of d when c = .25 and range = .1 

 

 
  Figure 50 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of c can be seen in the 

expanded range that the values of the chain elements take on. 

  Figure 51 shows the path plots for all levels of d when c is equal to .5 and the 

range is equal to .1. It is presented below.
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Figure 51: Path plots for all levels of d when c = .5 and range = .1 

 

 
 Figure 51 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of c can be seen in the 

expanded range that the values of the chain elements take on. 

  Figure 52 shows the path plots for all levels of d when c is equal to .75 and the 

range is equal to .1. It is presented below.
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Figure 52: Path plots for all levels of d when c = .75 and range = .1

 

 
 Figure 52 shows the same expansion of range that was seen in the descriptive 

statistics. The influence of c can be seen in the expanded range that the chain elements 

take on. 

  Figure 53 shows the path plots for all levels of d when c is equal to .9 and the 

range is equal to .1. It is presented below.
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Figure 53: Path plots for all levels of d when c = .9 and range = .1

 

 
 Figure 53 shows the same expansion of range that was seen in the descriptive 

statistics. The influence of c can be seen in the expanded range that the chain elements 

take on.  

  Figure 54 shows the path plots for all levels of d when c is equal to 1 and the 

range is equal to .1. It is presented below.
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Figure 54: Path plots for all levels of d when c = 1 and range = .1 

 

 
 Figure 54 shows the behavior of the chain elements that was seen in the 

descriptive statistics for this particular set of conditions. The influence of d and c can be 

seen in the behavior of the chain. Specifically, because c is equal to 1, the complete 

imbalance condition is a strictly non-decreasing sequence of values. When there is partial 

imbalance present and c is equal to 1, the behavior of the chain is consistent with what 

would be expected. Specifically, each new element is set equal to the previous plus a 

random component that was twice as likely to be positive as it is to be negative. Thus the 

value that chain elements take on is more likely to increase rather than decrease over the 

length of the chain. However, chains produced in this condition are not strictly non-
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decreasing. When there is balance present and c is equal to 1, it is equally likely that each 

new element will be greater than or less than the previous element. The result is a 

sequence of values that randomly increases or decreases over the length of the chain with 

equal frequency. 

  Figure 55 shows the path plots for all levels of d when c is equal to 0 and the 

range is equal to .5. It is presented below.

Figure 55: Path plots for all levels of d when c = 0 and range = .5 

 

 
 As can be seen in Figure 55, each of these chains traverses the space between the 

bounds of the respective distribution. The chains generated for these conditions are i.i.d. 
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sequences because c is equal to 0. Therefore, all values in the sequence stay within the 

bounds for the particular set of conditions. These chains are in agreement with the 

descriptive statistics presented earlier for the same case. 

  Figure 56 shows the path plots for all levels of d when c is equal to .25 and the 

range is equal to .5. It is presented below.

Figure 56: Path plots for all levels of d when c = .25 and range = .5 

 

 
 Figure 56 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range that the values of the chain elements take on, as well as the 
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particular values they take on, which corresponds to the direction of the imbalance. 

  Figure 57 shows the path plots for all levels of d when c is equal to .5 and the 

range is equal to .5. It is presented below. 

Figure 57: Path plots for all levels of d when c = .5 and range = .5 

 

 
 Figure 57 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 
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 Figure 58 shows the path plots for all levels of d when c is equal to .75 and the 

range is equal to .5. It is presented below.

Figure 58: Path plots for all levels of d when c = .75 and range = .5 

 

 
 Figure 58 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 

  Figure 59 shows the path plots for all levels of d when c is equal to .9 and the 

range is equal to .5. It is presented below.
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Figure 59: Path plots for all levels of d when c = .9 and range = .5 

 

 
 Figure 59 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 

  Figure 60 shows the path plots for all levels of d when c is equal to 1 and the 

range is equal to .5. It is presented below.
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Figure 60: Path plots for all levels of d when c = 1 and range = .5 

 

 
 Figure 60 shows the behavior of the chain elements that was seen in the 

descriptive statistics for this particular set of conditions. The influence of d and c can be 

seen in the behavior of the chain. Specifically, because c is equal to 1, the complete 

imbalance condition is a strictly non-decreasing sequence of values. When there is partial 

imbalance present and c is equal to 1, the behavior of the chain is consistent with what 

would be expected. Specifically, each new element is set equal to the previous plus a 

random component that was twice as likely to be positive as it is to be negative. Thus the 

value that chain elements take on is more likely to increase rather than decrease over the 

length of the chain. However, chains produced in this condition are not strictly non-



208 

decreasing. When there is balance present and c is equal to 1, it is equally likely that each 

new element will be greater than or less than the previous element. Thus, chains created 

for the case where c is equal to 1 and d is equal to .5 are sequences of elements that are 

equally likely to increase or decrease at each successive step. 

  Figure 61 shows the path plots for all levels of d when c is equal to 0 and the 

range is equal to 5. It is presented below.

Figure 61: Path plots for all levels of d when c = 0 and range = 5 

 

 
 As can be seen in Figure 61, each of these chains traverses the space between the 

bounds of the respective distribution. The chains generated for these conditions are i.i.d. 
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sequences because c is equal to 0. Therefore, all values in the sequence stay within the 

bounds for the particular set of conditions. These chains are in agreement with the 

descriptive statistics presented earlier for the same case. 

  Figure 62 shows the path plots for all levels of d when c is equal to .25 and the 

range is equal to 5. It is presented below.

Figure 62: Path plots for all levels of d when c = .25 and range = 5 

 

 
 Figure 62 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 
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  Figure 63 shows the path plots for all levels of d when c is equal to .5 and the 

range is equal to 5. It is presented below.

Figure 63: Path plots for all levels of d when c = .5 and range = 5 

 

 
 Figure 63 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 

  Figure 64 shows the path plots for all levels of d when c is equal to .75 and the 

range is equal to 5. It is presented below.
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Figure 64: Path plots for all levels of d when c = .75 and range = 5 

 

 
 Figure 64 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 

  Figure 65 shows the path plots for all levels of d when c is equal to .9 and the 

range is equal to 5. It is presented below.
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Figure 65: Path plots for all levels of d when c = .9 and range = 5 

 

 
 Figure 65 shows the same expansion of range that was seen in the descriptive 

statistics for this particular set of conditions. The influence of the factors c and d can be 

seen in the expanded range of the chain elements, and the particular values they take on, 

corresponding to the direction of the imbalance. 

  Figure 66 shows the path plots for all levels of d when c is equal to 1 and the 

range is equal to 5. It is presented below.
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Figure 66: Path plots for all levels of d when c = 1 and range = 5 

 

 
 Figure 66 shows the behavior of the chain elements that was seen in the 

descriptive statistics for this particular set of conditions. The influence of d and c can be 

seen in the behavior of the chain. Specifically, because c is equal to 1, the complete 

imbalance condition is a strictly non-decreasing sequence of values. When there is partial 

imbalance present and c is equal to 1, the behavior of the chain is consistent with what 

would be expected. Specifically, each new element is set equal to the previous plus a 

random component that was twice as likely to be positive as it is to be negative. Thus the 

value that chain elements take on is more likely to increase rather than decrease over the 

length of the chain. However, chains produced in this condition are not strictly non-
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decreasing. When there is balance present and c is equal to 1, it is equally likely that each 

new element will be greater than or less than the previous element. 

  Overall, there is no influence of the range of the random component of the chain 

simulator on the summary of the indicator statistic, Dt, or on the autocorrelation plots. 

However, the range of the random component does have an influence on the behavior of 

the chains. Specifically, as the range of the random component becomes larger, the range 

that the chain elements can take on becomes larger. Otherwise, the general trend that was 

encountered in the previous studies involving the simulated chains with these values of c 

and d is the same as the pattern of results observed in all tables and figures related to 

Research Question 3. When c is 0, the chains from all levels of d and range are i.i.d. 

sequences with bound equal to those implied by the level of d and range. While c is .25 

through .9, the chains tend to stabilize into a specific range related to the range of the 

random component of the chain simulator and the level of c and d. As c increases, the 

chain elements tend to become more variable. As d goes from .5 to 1 the values of the 

chain elements tends to increase. These results will be revisited again.  

  Next, the results for the convergence diagnostics will be presented. The 

convergence diagnostics for all levels of c will presented in a single table. There will be a 

table for each combination of the levels of d and the levels of the range of the random 

component of the chain simulator. Each table contains the proportion of chains in that 

condition that would be deemed non-converged according to the convergence diagnostics 

(Pr NC). The four diagnostics are Dt, the Geweke diagnostic (G), the Heidelberger and 

Welch diagnostic (HW), and the Raftery and Lewis diagnostic (RL), all of which were 
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described earlier. The ‘boa’ package in R was used to compute G, HW and RL. For all 

diagnostics, an alpha level of .05 was selected. In addition to the proportion of non-

converged chains, the table also provides the mean of the statistic/criterion used to 

determine convergence (where available), the maximum of the statistic, and the minimum 

of the statistic. The output of the software used for the stationarity test of the HW 

diagnostic only provided whether or not the chain passed or failed at the given 

significance level, therefore, descriptive statistics are not available for this diagnostic. 

The Geweke diagnostic can be interpreted like a z score, as it is the difference between 

the means for the beginning and end portion of the chains corrected for the variability 

present. Any value more extreme than -1.96 or 1.96 is considered to be associated with a 

chain that is non-converged. For the RL diagnostic, the chain length necessary to achieve 

convergence is reported. When this value is greater than the chain used as input (10,000), 

a chain is deemed non-converged. The results for each set of conditions will be briefly 

described, and then an overall summary of the conditions together will be provided. 

  Table 35 contains the convergence diagnostics for the case where d is equal to 1 

and range is equal to .1. It is presented below.
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Table 35: Convergence diagnostics for d = 1 and range = .1  

   d=1 
 Statistic     
c  Dt G HW RL 

   
0.0 Pr NC 0.0 .08 0.0 0.0

 Mean .667 -.05 - 384.9
 SD .004 1.20 - 6.34
 Max .675 2.01 - 397
 Min .661 -2.33 - 373
   

.25 Pr NC 1.0 .04 0.0 0.0
 Mean .624 -.18 - 835.5
 SD .004 1.01 - 80
 Max .631 1.22 - 1209
 Min .613 -2.34 - 792
   

.50 Pr NC 1.0 0 0.0 0.0
 Mean .582 -.27 - 1475
 SD .004 .77 - 198
 Max .588 1.57 - 1756
 Min .573 -1.88 - 1224
   

.75 Pr NC 1.0 .04 0.0 0.0
 Mean .541 -.52 - 3211
 SD .005 .81 - 409
 Max .550 1.05 - 3996
 Min .532 -2.18 - 2616
   

.90 Pr NC 1.0 .04 0.0 0.0
 Mean .516 -.57 - 7065
 SD .004 .84 - 903
 Max .524 1.25 - 9320
 Min .509 -2.23 - 5436
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean 0.0 -38.7 - 34536
 SD 0.0 .32 - 0.0
 Max 0.0 -38.21 - 34536
 Min 0.0 -39.36 - 34536
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  In Table 35, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 2, 1, 0, 1, and 1, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 36 contains the convergence diagnostics for the case where d is equal to .75 

and range is equal to .1. It is presented below.
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Table 36: Convergence diagnostics for d = .75 and range = .1 

   d=.75 
 Statistic     
c  Dt G HW RL 
   

0.0 Pr NC 0.0 0.0 0.0 0.0
 Mean .668 -.35 - 385.2
 SD .004 .86 - 7.50
 Max .675 .89 - 401
 Min .663 -1.70 - 369
   

.25 Pr NC 1.0 .04 0.0 0.0
 Mean .625 .25 - 827.2
 SD .004 1.20 - 19.7
 Max .675 2.74 - 864
 Min .663 -1.92 - 800
   

.50 Pr NC 1.0 .04 0.0 0.0
 Mean .584 .24 - 1460
 SD .004 1.10 - 193
 Max .592 1.86 - 1764
 Min .575 -2.48 - 1206
   

.75 Pr NC 1.0 0.0 .04 0.0
 Mean .542 -.29 - 3100
 SD .005 .73 - 388
 Max .553 1.50 - 3915
 Min .532 -1.80 - 2562
   

.90 Pr NC 1.0 0.0 0.0 0.0
 Mean .514 -.21 - 7370
 SD .006 .89 - 813
 Max .524 1.62 - 8517
 Min .503 -1.82 - 5368
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .375 -38.7 - 168220
 SD .006 .72 - 369440
 Max .387 -37.2 - 204107
 Min .368 -40.3 - 36889
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 In Table 36, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 0, 1, 1, 0, and 0, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, only one chain is deemed non-converged. When 

c is equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery 

and Lewis diagnostic behaves as it did in the previous table. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 37 contains the convergence diagnostics for the case where d is equal to .5 

and range is equal to .1. It is presented below.
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Table 37: Convergence diagnostics for d = .5 and range = .1 

   d=.5 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC .04 .04 0.0 0.0
 Mean .666 -.16 - 387.1
 SD .004 1.01 - 8.46
 Max .676 1l72 - 403
 Min .661 -2.21 - 371
   

.25 Pr NC 1.0 .08 0.0 0.0
 Mean .625 -.21 - 857
 SD .004 1.12 - 117.4
 Max .633 2.12 - 1254
 Min .617 -2,11 - 774
   

.50 Pr NC 1.0 0.0 .04 0.0
 Mean .583 .22 - 1501
 SD .003 .91 - 206
 Max .591 1.72 - 1784
 Min .579 -1.38 - 1191
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .542 -.27 - 3206
 SD .005 .74 - 450
 Max .552 1.22 - 4820
 Min .537 -1.84 - 2694
   

.90 Pr NC 1.0 .04 0.0 0.0
 Mean .515 -.01 - 6794
 SD .005 1.14 - 706
 Max .523 2.07 - 8466
 Min .504 -1.88 - 5291
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .500 -38.7 - 311760
 SD .006 .57 - 193028
 Max .512 -38.1 - 719256
 Min .489 -40.7 - 128084
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 In Table 37, Dt indicates that when c is equal to zero, all but one of the chains are 

deemed converged. For all cases where c is greater than zero, each and every chain is 

deemed non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 2, 0, 0, and 1, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, only one chain is deemed non-converged. When 

c is equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery 

and Lewis diagnostic behaves as it did in the previous table. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 38 contains the convergence diagnostics for the case where d is equal to 1 

and range is equal to .5. It is presented below.
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Table 38: Convergence diagnostics for d = 1 and range = .5 

   d=.75 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC .04 .04 0.0 0.0
 Mean .666 .21 - 387
 SD .004 .91 - 7.29
 Max .671 1.98 - 399
 Min .658 -1.32 - 375
   

.25 Pr NC 1.0 .08 0.0 0.0
 Mean .625 -.12 - 837.4
 SD .003 .99 - 68.8
 Max .636 1.45 - 1152
 Min .617 -2.06 - 778
   

.50 Pr NC 1.0 .04 0.0 0.0
 Mean .584 -.32 - 1455
 SD .003 .98 - 213
 Max .595 1.86 - 1965
 Min .578 -2.46 - 1233
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .542 -.43 - 3124
 SD .005 .66 - 434
 Max .553 .75 - 4630
 Min .534 -1.79 - 2610
   

.90 Pr NC 1.0 .20 0.0 0.0
 Mean .516 -1.08 - 7440
 SD .005 .87 - 783
 Max .526 1.55 - 8874
 Min .510 -2.32 - 6202
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean 0 -38.7 - 34536
 SD 0 .37 - 0
 Max 0 -38.1 - 34536
 Min 0 -39.5 - 34536
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 In Table 38, Dt indicates that when c is equal to zero, all but one of the chains are 

deemed converged. For all cases where c is greater than zero, each and every chain is 

deemed non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 2, 1, 0, and 1, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 39 contains the convergence diagnostics for the case where d is equal to .75 

and range is equal to .5. It is presented below.

  



224 

Table 39: Convergence diagnostics for d = .75 and range = .5

   d=.75 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC 0.0 0.0 0.0 0.0
 Mean .667 .114 - 387.4
 SD .003 1.03 - 8.36
 Max .673 1.99 - 404
 Min .661 -1,56 - 375
   

.25 Pr NC 1.0 .04 0.0 0.0
 Mean .624 .02 - 859.1
 SD .004 .92 - 112
 Max .631 2.26 - 1245
 Min .618 -1.38 - 780
   

.50 Pr NC 1.0 0 0.0 0.0
 Mean .583 .19 - 1485
 SD .004 .76 - 203
 Max .590 1.47 - 1764
 Min .572 -1.18 - 1248
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .541 .06 - 3050
 SD .005 .92 - 297
 Max .550 1.90 - 3654
 Min .535 -1.60 - 2496
   

.90 Pr NC 1.0 .08 0.0 0.0
 Mean .512 -.40 - 7033
 SD .005 1.26 - 832
 Max .528 1.83 - 8670
 Min .510 -2.95 - 5904
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .375 -38.9 - 285698
 SD .005 .66 - 462363
 Max .381 -37.29 - 1148703
 Min .367 -40.1 - 34536
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 In Table 39, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 0, 1, 0, 0, and 2, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 40 contains the convergence diagnostics for the case where d is equal to .5 

and range is equal to .5. It is presented below.
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Table 40: Convergence diagnostics for d = .5 and range = .5 

   d=.5 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC 0.0 .04 0.0 0.0
 Mean .667 .51 - 386.6
 SD .004 .90 - 7.30
 Max .674 2.04 - 402
 Min .660 -1.48 - 372
   

.25 Pr NC 1.0 .08 0.0 0.0
 Mean .625 .04 - 858
 SD .004 1.08 - 111
 Max .634 1.73 - 1254
 Min .619 -2.19 - 766
   

.50 Pr NC 1.0 .04 0.0 0.0
 Mean .584 -.14 - 1504
 SD .003 .72 - 189
 Max .595 1.51 - 1796
 Min .579 -2.43 - 1260
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .542 -.22 - 3130
 SD .004 .79 - 294
 Max .553 1.43 - 3760
 Min .533 -1.53 - 2664
   

.90 Pr NC 1.0 .08 0.0 0.0
 Mean .517 .09 - 7061
 SD .005 1.08 - 731
 Max .524 2.07 - 8493
 Min .510 -3.01 - 5368
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .499 - - 374719
 SD .005 - - 162218
 Max .507 - - 663264
 Min .491 - - 129980
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 In Table 40, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 2, 1, 0, and 2, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 41 contains the convergence diagnostics for the case where d is equal to 1 

and range is equal to 1. It is presented below.
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Table 41: Convergence diagnostics for d = 1 and range = 1 

   d=1 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC 0.0 .04 0.0 0.0
 Mean .666 -.08 - 389
 SD .004 1.08 - 7.53
 Max .674 1.91 - 406
 Min .661 -2.01 - 376
   

.25 Pr NC 1.0 .08 0.0 0.0
 Mean .624 -.03 - 814.0
 SD .003 1.07 - 22.1
 Max .632 2.32 - 868
 Min .615 -2.45 - 780
   

.50 Pr NC 1.0 .04 0.0 0.0
 Mean .584 -.12 - 1511
 SD .004 .96 - 197
 Max .593 1.38 - 1768
 Min .577 -2.04 - 1242
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .543 -.02 - 3108
 SD .005 .66 - 420
 Max .551 1.79 - 4239
 Min .534 -1.47 - 2556
   

.90 Pr NC 1.0 .08 0.0 0.0
 Mean .517 -.49 - 6921
 SD .006 1.10 - 736
 Max .532 2.07 - 8415
 Min .506 -3.09 - 5772
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean 0 -38.9 - 34536
 SD 0 .36 - 0
 Max 0 -38.0 - 34536
 Min 0 -39.5 - 34536
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 In Table 41, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 2, 1, 0, and 2, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 42 contains the convergence diagnostics for the case where d is equal to .75 

and range is equal to 1. It is presented below.
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Table 42: Convergence diagnostics for d = .75 and range = 1

   d=.75 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC 0.0 .04 0.0 0.0
 Mean .667 .26 - 387.0
 SD .004 .97 - 7.17
 Max .675 2.13 - 403
 Min .659 -1.34 - 374
   

.25 Pr NC 1.0 .04 0.0 0.0
 Mean .626 -.01 - 824.3
 SD .004 .79 - 166
 Max .634 2.16 - 856
 Min .621 -1.28 - 798
   

.50 Pr NC 1.0 0 0.0 0.0
 Mean .584 -.14 - 1465
 SD .005 .79 - 210
 Max .590 1.72 - 1768
 Min .577 -1.36 - 1248
   

.75 Pr NC 1.0 .08 0.0 0.0
 Mean .542 -.21 - 3195
 SD .005 1.14 - 301
 Max .552 1.79 - 3744
 Min .533 -2.47 - 2670
   

.90 Pr NC 1.0 0.0 0.0 0.0
 Mean .513 -.43 - 7318
 SD .005 .94 - 866
 Max .523 1.57 - 9432
 Min .508 -1.8 - 5760
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .376 -38.9 - 391046
 SD .006 .71 - 530415
 Max .386 -37.0 - 1148812
 Min .363 -39.9 - 34532
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 In Table 42, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 1, 0, 2, and 0, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 43 contains the convergence diagnostics for the case where d is equal to .5 

and range is equal to 1. It is presented below.
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Table 43: Convergence diagnostics for d = .5 and range = 1 

   d=.5 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC 0.0 .04 0.0 0.0
 Mean .666 .01 - 384.8
 SD .003 .95 - 6.78
 Max .673 2.50 - 398
 Min .658 -1.45 - 373
   

.25 Pr NC 1.0 0.0 0.0 0.0
 Mean .625 .09 - 839
 SD .004 .81 - 73.1
 Max .632 1.55 - 1176
 Min .622 -1.25 - 778
   

.50 Pr NC 1.0 .12 0.0 0.0
 Mean .585 -.01 - 1510
 SD .005 1.09 - 184
 Max .588 2.14 - 1796
 Min .576 -2.21 - 1257
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .542 -.19 - 3114
 SD .004 .77 - 327
 Max .551 .97 - 3792
 Min .530 -1.43 - 2653
   

.90 Pr NC 1.0 .04 .04 0.0
 Mean .516 -.03 - 7114
 SD .005 1.00 - 1050
 Max .527 1.65 - 9108
 Min .510 -2.70 - 5568
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .499 - - 346903
 SD .005 - - 195113
 Max .507 - - 673937
 Min .492 - - 34227
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 In Table 43, Dt indicates that when c is equal to zero, all chains are deemed 

converged. For all cases where c is greater than zero, each and every chain is deemed 

non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 0, 3, 0, and 1, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, all but one of the chains is deemed non-

converged. When c is equal to 1, then the HW diagnostic deems every chain non-

converged. When c is less than 1, the RL diagnostic indicates that no chains are non-

converged. When c is equal to 1, the RL diagnostic deems all chains non-converged. 

 Table 44 contains the convergence diagnostics for the case where d is equal to 1 

and range is equal to 5. It is presented below.

  



234 

Table 44: Convergence diagnostics for d = 1 and range = 5 

   d=1 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC .08 .04 0.0 0.0
 Mean .666 -.07 - 388
 SD .004 1.01 - 9.59
 Max .678 2.53 - 407
 Min .658 -1.74 - 372
   

.25 Pr NC 1.0 .08 0.0 0.0
 Mean .626 -.06 - 857.1
 SD .005 .95 - 107
 Max .637 2.02 - 1227
 Min .613 -2.06 - 760
   

.50 Pr NC 1.0 .04 0.0 0.0
 Mean .585 -.36 - 1568
 SD .004 .89 - 197
 Max .594 1.41 - 2010
 Min .578 -2.03 - 1248
   

.75 Pr NC 1.0 .08 0.0 0.0
 Mean .542 -.06 - 3115
 SD .005 .97 - 307
 Max .552 1.49 - 3712
 Min .533 -2.43 - 2652
   

.90 Pr NC 1.0 0.0 0.0 0.0
 Mean .518 -.55 - 7498
 SD .005 .75 - 729
 Max .528 .53 - 9360
 Min .510 -1.77 - 5832
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean 0 -38.8 - 34536
 SD 0 .27 - 0
 Max 0 -38.3 - 34536
 Min 0 -39.4 - 34536
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 In Table 44, Dt indicates that when c is equal to zero, all but two chains are 

deemed converged. For all cases where c is greater than zero, each and every chain is 

deemed non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 2, 1, 2, and 0, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

 Table 45 contains the convergence diagnostics for the case where d is equal to .75 

and range is equal to 5. It is presented below.
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Table 45: Convergence diagnostics for d = .75 and range = 5 

   d=.75 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC .04 .04 0.0 0.0
 Mean .668 .03 - 385.1
 SD .004 1.01 - 10.15
 Max .677 2.29 - 406
 Min .659 -1.76 - 371
   

.25 Pr NC 1.0 0.0 0.0 0.0
 Mean .624 .04 - 889.3
 SD .004 .85 - 137
 Max .631 1.65 - 1215
 Min .616 -1.49 - 792
   

.50 Pr NC 1.0 .04 .04 0.0
 Mean .585 -.43 - 1525
 SD .005 .90 - 216
 Max .592 1.08 - 2145
 Min .573 -2.62 - 1260
   

.75 Pr NC 1.0 .08 0.0 0.0
 Mean .541 .01 - 3189
 SD .006 .97 - 278
 Max .551 2.16 - 3808
 Min .534 -1.79 - 2760
   

.90 Pr NC 1.0 .04 0.0 0.0
 Mean .517 -.04 - 6789
 SD .005 .95 - 613
 Max .529 2.04 - 8330
 Min .506 -1.89 - 5754
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .377 -38.8 - 257378
 SD .007 .47 - 454875
 Max .393 -37.8 - 1147536
 Min .365 -39.4 - 34536
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 In Table 45, Dt indicates that when c is equal to zero, all but one of the chains are 

deemed converged. For all cases where c is greater than zero, each and every chain is 

deemed non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 1, 0, 1, 2, and 1, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, all but one of the chains are deemed non-

converged. When c is equal to 1, then the HW diagnostic deems every chain non-

converged. When c is less than 1, the RL diagnostic indicates that no chains are non-

converged. When c is equal to 1, the RL diagnostic deems all chains non-converged. 

 Table 46 contains the convergence diagnostics for the case where d is equal to .5 

and range is equal to 5. It is presented below.
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Table 46: Convergence diagnostics for d = .5 and range = 5 

   d=.5 
 Statistic     
c  Dt G HW RL 

0.0 Pr NC .04 0.0 0.0 0.0
 Mean .668 .01 - 388.3
 SD .004 .95 - 6.79
 Max .674 1.49 - 403
 Min .656 -1.91 - 377
   

.25 Pr NC 1.0 0.0 0.0 0.0
 Mean .624 .28 - 837
 SD .005 .72 - 82.5
 Max .632 1.91 - 1218
 Min .618 -1.02 - 766
   

.50 Pr NC 1.0 .04 0.0 0.0
 Mean .582 .25 - 1541
 SD .005 .90 - 178
 Max .588 2.02 - 1760
 Min .572 -1.46 - 1242
   

.75 Pr NC 1.0 0.0 0.0 0.0
 Mean .542 .06 - 3067
 SD .004 .82 - 321
 Max .549 1.56 - 3933
 Min .536 -1.27 - 2448
   

.90 Pr NC 1.0 .04 0.0 0.0
 Mean .517 -.03 - 7065
 SD .004 1.23 - 793
 Max .525 1.91 - 8415
 Min .510 -2.63 - 5784
   

1.0 Pr NC 1.0 1.0 1.0 1.0
 Mean .501 - - 336239
 SD .005 - - 205545
 Max .509 - - 817920
 Min .489 - - 33450
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 In Table 46, Dt indicates that when c is equal to zero, all but one of the chains are 

deemed converged. For all cases where c is greater than zero, each and every chain is 

deemed non-converged. Whenever there is some degree of autocorrelation present in the 

sequence, the value of Dt over both patterns satisfying the indicator statistic decreases to 

the point that it falls outside the bounds as specified by Brooks (1998c), thus these chains 

are deemed non-converged. For the Geweke diagnostic, very few chains are deemed non-

converged while c is less than 1. For example, when c is equal to 0, .25, .5, .75 and 9, the 

number chains deemed non-converged are 0, 0, 1, 0, and 1, respectively. This is a roughly 

chance level of detection of non-convergence for each level of c. When c is equal to one, 

all chains are deemed non-converged by the G diagnostic. For the Heidelberger and 

Welch diagnostic, when c is less than 1, no chains are deemed non-converged. When c is 

equal to 1, then the HW diagnostic deems every chain non-converged. The Raftery and 

Lewis diagnostic behaves similarly to the HW diagnostic. When c is less than 1, the RL 

diagnostic indicates that no chains are non-converged. When c is equal to 1, the RL 

diagnostic deems all chains non-converged. 

  The amount of agreement between Dt and each of the other diagnostics can be 

quantified with kappa. Kappa was calculated for all levels of c, d and range. The 

observed kappa values for all levels of c and d are summarized in Table 47 below for the 

case where the range is equal to .1.
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Table 47: Agreement (kappa) between Dt and G, HW, and RL for all levels of c and d 

when range is equal to .1

 d 
   1.0    .75    .5  
c             

  G HW RL G HW RL  G HW RL
             

0.0  .84 1 1 1 1 1  .84 .92 .92
      

.25  -.92 -1 -1 -.92 -1 -1  -.84 -1 -1
      

.50  -1 -1 -1 -.92 -1 -1  -1 -.92 -1
      

.75  -.92 -1 -1 -1 -.92 -1  -1 -1 -1
      

.90  -.92 -1 -1 -1 -1 -1  -.92 -1 -1
      

1.0  1 1 1 1 1 1  1 1 1
      

 

  Kappa quantifies the agreement between the new diagnostic and the existing 

diagnostics. Table 47 demonstrates that there are cases where the new diagnostic agrees 

with the existing diagnostics, and there are cases where there is disagreement. There is 

some evidence that the level of c influences the value of Kappa. Specifically, when c is 

equal to 0 or 1, the new diagnostic agrees with the existing ones. However, for all other 

levels of c, the new diagnostic largely disagrees with the existing diagnostics. There is no 

evidence that d influences Kappa.  
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 The observed kappa values for all levels of c and d are summarized in Table 48 

below for the case where the range is equal to .5.

Table 48: Agreement (kappa) between Dt and G, HW, and RL for all levels of c and d 

when range is equal to .5

 d 
   1.0    .75    .5  
c             

  G HW RL G HW RL  G HW RL
             

0.0  .92 .92 .92 .92 1 1  .92 1 1
      

.25  -.92 -1 -1 -.84 -1 -1  -.84 -1 -1
      

.50  -1 -1 -1 -.92 -1 -1  -.92 -1 -1
      

.75  -1 -1 -1 -1 -1 -1  -1 -1 -1
      

.90  -.84 -1 -1 -.6 -1 -1  -.84 -1 -1
      

1.0  1 1 1 1 1 1  1 1 1
      

 

 Table 48 is very similar to Table 47. It demonstrates that there are cases where the 

new diagnostic agrees with the existing diagnostics, and there are cases where there is 

disagreement. There is some evidence that the level of c influences the value of Kappa. 

Specifically, when c is equal to 0 or 1, the new diagnostic agrees with the existing ones. 

However, for all other levels of c, the new diagnostic largely disagrees with the existing 

diagnostics. There is no evidence that d influences Kappa. 
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 The observed kappa values for all levels of c and d are summarized in Table 49 

below for the case where the range is equal to 1.

Table 49: Agreement (kappa) between Dt and G, HW, and RL for all levels of c and d 

when range is equal to 1

 d 
   1.0    .75    .5  
c             

  G HW RL G HW RL  G HW RL
             

0.0  .84 1 1 1 1 1  .84 .92 .92
      

.25  -.92 -1 -1 -.92 -1 -1  -.84 -1 -1
      

.50  -1 -1 -1 -.92 -1 -1  -1 -.92 -1
      

.75  -.92 -1 -1 -1 -.92 -1  -1 -1 -1
      

.90  -.92 -1 -1 -1 -1 -1  -.92 -1 -1
      

1.0  1 1 1 1 1 1  1 1 1
      

 

 Table 49 is similar to Table 47 and Table 48. It also demonstrates that there are 

cases where the new diagnostic agrees with the existing diagnostics, and there are cases 

where there is disagreement. There is some evidence that the level of c influences the 

value of Kappa. Specifically, when c is equal to 0 or 1, the new diagnostic agrees with the 

existing ones. However, for all other levels of c, the new diagnostic largely disagrees 

with the existing diagnostics. There is no evidence that d influences Kappa. 
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The observed kappa values for all levels of c and d are summarized in Table 50 below for 

the case where the range is equal to 5.

Table 50: Agreement (kappa) between Dt and G, HW, and RL for all levels of c and d 

when range is equal to 5

 d 
   1.0    .75    .5  
c             

  G HW RL G HW RL  G HW RL
             

0.0  .84 1 1 1 1 1  .84 .92 .92
      

.25  -.92 -1 -1 -.92 -1 -1  -.84 -1 -1
      

.50  -1 -1 -1 -.92 -1 -1  -1 -.92 -1
      

.75  -.92 -1 -1 -1 -.92 -1  -1 -1 -1
      

.90  -.92 -1 -1 -1 -1 -1  -.92 -1 -1
      

1.0  1 1 1 1 1 1  1 1 1
      

 

 Table 50 agrees with the results presented in Tables 47, 48, and 49. It also 

demonstrates that there are cases where the new diagnostic agrees with the existing 

diagnostics, and there are cases where there is disagreement. There is some evidence that 

the level of c influences the value of Kappa. Specifically, when c is equal to 0 or 1, the 

new diagnostic agrees with the existing ones. However, for all other levels of c, the new 

diagnostic largely disagrees with the existing diagnostics. There is no evidence that d 

influences Kappa. 
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 In summary, when c is equal to 0 or 1, there is a great deal of agreement among 

all four of the convergence diagnostics. Very few of the chains produced for the case 

where c is equal to 0 were deemed non-converged. The rate of detection is what would be 

expected according to chance. Because an alpha level of .05 was used for all diagnostics 

and 25 chains were produced for each condition in the study, it is not surprising that one 

or maybe even two of the chains produced diagnostics that would be deemed non-

converged by chance alone. When c is equal to 1, all chains from all conditions were 

deemed non-converged by all diagnostics. This finding was anticipated because chains 

produced from all cases where c is equal to 1 showed a high degree of autocorrelation 

and tended to be unstable. Depending on the level of d, these chains moved up, down, or 

both up and down over the length of the chain. The finding of most importance deals with 

the cases where there is a large discrepancy among the diagnostics. When c was equal to 

.25, .5, .75, or .9, the value of Dt was always outside the boundaries specified by Brooks 

(1998c). Each of the chains from these conditions was deemed non-converged by the new 

method. However, the other diagnostics rarely, if ever, deemed chains produced from 

conditions where c was .25, .5, .75, and .9 to be non-converged. The Geweke diagnostic 

would sometimes identify 1, 2, or even 3 chains from these conditions that were deemed 

non-converged. The Heidelberger and Welch diagnostic would occasionally identify a 

single chain from these conditions that was deemed non-converged. The Raftery and 

Lewis diagnostic never identified a chain from these conditions as being non-converged. 

These findings must be interpreted keeping in mind that the simulated chains are 

essentially producing converged chains. This issue will be redressed in the Discussion.
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CHAPTER V 
 

DISCUSSION 

 

  The discussion will be divided into several sections. First, the results of the 

simulation studies will be briefly revisited in order to summarize the information 

provided by each study as it pertains to the associated research question. As each study 

and its findings are discussed, an attempt will be made to link data to aspects of the 

specific research question under consideration. Second, the strengths and limitations of 

the current method will be summarized. Both the convergence diagnostic being 

developed, Dt, and the method of simulating chains will receive consideration. Finally, 

future research that needs to be done to address limitations and additional questions 

raised by this research will be discussed.

Summarizing the results 

  The current research has been undertaken to determine whether or not the current 

method of assessing convergence is capable of being used for that purpose. Each of the 

simulation studies was designed to provide information concerning a particular issue that 

needs to be addressed before the new method can be put into use. Some of these issues 

were phrased in the form of the research question addressed in this study. Together, the 

simulation studies provide information about how the indicator statistic might be used in 

practice. The studies provide information about how the indicator statistic will be 

influenced by some of the known characteristics of Markov chains, such as linear 
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dependence among elements and stability of location of the chains, how the method 

should behave with and without thinning, and how the method compares to some existing 

methods. Each simulation study will be presented in order, and the contribution of the 

evidence from each study will be considered in light of the question it was intended to 

answer.

Research question 1 

 The purpose of the first research question is to learn the effect that autocorrelation 

and balance (in the form of c and d) have on the value of Dt. This question was primarily 

asked because of the known problems with thinning the chain to assess convergence 

(MacEachern and Berliner, 1995). If there is to be any chance of using this method 

without thinning the chains prior to applying the indicator statistic, it must be known 

exactly what influence autocorrelation has on the summary of the indicator statistic. 

Autocorrelation 

  Overall, as anticipated, as the amount of autocorrelation present in the chains 

increased, the value of Dt decreased. Thus, the answer to the first research question is in 

part revealed. Increased amounts of autocorrelation are associated with reduced values of 

Dt. Without thinning of the chains to reduce the amount of dependence present among 

elements, the expected value of the summary of the indicator statistic would need to be 

adjusted downwards. What remains to be determined is exactly what amount of 

autocorrelation at each lag is associated with the exact amount of reduction in Dt. This 

would also in turn affect the value of the boundaries as proposed by Brooks (1998c) 

which are centered at the expected value of Dt. However, it must also be considered that 
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there are other things that can reduce the value of Dt other than autocorrelation. For 

example, other evidence shows that the number of ties in the chain, especially 

consecutive ties, can influence the value of the summary of the indicator statistic. 

Balance 

  When it comes to the balance of the chains, the answer of whether or not this 

factor influences the summary of the indicator statistic is not so clear. An unanticipated 

outcome occurred by which the simulated solutions were in disagreement with the 

analytical solution. This unanticipated outcome requires further explanation. The findings 

indicate that one of the two solutions is incorrect. There is reason to believe that the 

simulated solutions are somewhat incomplete in their representation of the analytical 

solutions. First the analytical solutions will be briefly reviewed and then the simulated 

solutions will be discussed and critiqued. 

  The analytical solutions showed the expected relationship among c, d, and Dt. As 

the ‘autocorrelation’ factor c increased, the value of Dt decreased, and did so at a greater 

rate when imbalance was present to greater degrees. These findings seem to be clearly in 

line with initial expectations. There is an implicit assumption in the analytical solution 

that the range of the random component shares a steady relationship with the value of the 

previous element (which is multiplied by c). This assumption was not incorporated into 

the method for simulating chains, and is presumed to be the primary source of the 

difference between the two solutions. 
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 Now attention is turned to the simulated solutions for the value of Dt based on the 

simulated chains. Investigation of the simulated chains showed that there was some 

relationship between the factor c and the range of the random component of the chain 

simulator (1 in this study) that prevented the simulated chains from behaving as initially 

predicted. Essentially, the chains will move in one direction until the proportional 

reduction, c, of element xi-1 is greater in degree than the range of the continuous uniform 

random component. This relationship prevents the imbalance from behaving as initially 

predicted across the length of the chain. The chain has some of the desired characteristics 

(e.g., a mean that is unstable in the short term), but didn’t behave exactly as predicted in 

regard to the influence of balance. It should be noted here that when there was no 

autocorrelation (c = 0), or the strongest degree of autocorrelation (c = 1), the simulated 

solutions did match the analytical solutions. Initially, it was thought that when an 

imbalanced chain is being simulated, it is more likely to move in one direction than 

another and that this would take place gradually over the length of the chain. Instead, the 

chains tended to move in one direction very quickly, and then change direction abruptly. 

This pattern of changing directions then alternates again and again throughout the chains.  

  Let us briefly consider the chain as it is simulated from the first element. As the 

chain moves in one direction more so than another, the value that any individual element 

takes on tends to become quite large (as compared to the range of the continuous random 

uniform component). Once this happens, then taking some proportion of that element, say 

c = .5, moves the new element far enough towards zero that the following element is 

constrained in such a way as to produce a pattern among elements that satisfies the 
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indicator statistic being equal to one. The value of d did have an influence on the 

particular location where the chain elements were simulated. The indicator statistic is 

only sensitive to the patterns of rank orderings, so all of these chains produce a similar 

value of Dt. Thus, regardless of the degree of imbalance, the simulated chains all behaved 

in similar fashion as far as the current method is concerned.

Summarizing the first research question 

  In summary for the first research question, it is not entirely clear what the full 

relationship is among c, d and Dt. The analytical solutions fit with expectations regarding 

c and d influencing Dt. However, the simulated solutions aren’t in line with expectations, 

so it raises questions concerning the strength of assertions made about the influence of c 

and d. It does seem to be the case for the simulated solutions, though, that as 

autocorrelation increases, Dt decreases. Because this occurs in both sets of solutions it 

provides some convergent evidence for the influence of autocorrelation on the value of 

the summary of the indicator statistic. However, the fact that the simulated chains do not 

behave as expected should give reason to interpret these results with the explanation of 

why the two sets of solutions differ in mind.

Research question 2 

  The second research question addressed the practice of thinning the chain prior to 

characterizing it by way of the indicator statistic. For the first simulation study regarding 

this question, chains were simulated in the same fashion as in the first simulation study, 

and the degree of autocorrelation present in the chains was used to determine the amount 

of thinning necessary for the chains. Thinning was done by inspecting the autocorrelation 
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plots to determine the lag at which the value of the autocorrelation was not significant at 

alpha = .05. Visual inspection of the autocorrelation plots is the most efficient way of 

proceeding, but for the sake of this research, the study is informative about the influence 

of thinning. 

  Due to the uniformity of results across replications, the same lag was used to thin 

all chains for a given level of c. Except for the case with the strongest possible degree of 

autocorrelation (c = 1), the thinning left a subsample of elements that was linearly 

dependent. When characterized by way of Dt, all of the chains that showed linear 

independence were also deemed converged according to the criterion employed as 

described in the methods. This finding provides evidence that the practice of thinning 

removes the linear dependence among elements, thus increasing the proportion of 

elements that satisfy the indicator statistic being equal to one for the simulated chains. 

When considering the fact that the method used for simulating chains in this work 

essentially produced converged chains, the results of simulation study 2 become clearer. 

In short, these chains behave as if converged, but have some amount of autocorrelation 

which influences the value of the summary of the indicator statistic. The thinning 

removes the autocorrelation, thus, the value of Dt moves towards .67. 

  A fair criticism of the current method is that the act of thinning may be making 

the remaining elements look like a converged sequence, regardless of the true state of the 

Markov chain under consideration. There is some evidence that this is not the case, 

though. When the chains from the real MCMC samplers were investigated for simulation 

study 3, the thinned chains showed a great deal of variability. In fact, many of the chains 
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would have been deemed non-converged according to the criteria (Dt above or below the 

upper and lower bounds, respectively) in place for this study. So, there are chains that 

when thinned and characterized by the indicator statistic are sometimes inside the 

bounds, and sometimes above or below the bounds. This finding at least provides some 

evidence that the criticism of the method simply giving the appearance of convergence 

may be invalid. 

  It is not clear from simulation study 1 or 2, however, whether or not the thinning 

is affecting the quality of the estimate. In simulation study 3, the true values of the 

parameters are known. The third simulation study involved generating chains from a real 

sampler rather than simulating chains. Also, because the true parameters are known it is 

possible to determine the accuracy of the chains in their estimates of the parameters. 

Tables 16 and 17 and Table 21 and 22 showed that the MADs for the chains produced by 

the conditions manipulated in this study produced estimates that were accurate. While, 

MADs have no clear objective criterion to indicate ‘good fit’, it is clear from this study 

that in general it is possible to recapture the true values used to generate the data. While 

the conditions of this study are not overly rigorous, it at least provides some evidence that 

the thinning may not be detrimental enough to prohibit the practice of thinning. 

  Simulation study 3 manipulated the ratio of the standard deviations of the 

proposal and target distributions to affect the degree of autocorrelation present in the 

chains. There was some evidence that the level of RATIO influenced the value of Dt, and 

did so by affecting the autocorrelation present in the chains. However, there was a strong 

influence on the value of Dt that was due to the number of ties present in the chains 
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produced from the real MCMC sampler. The large number of ties was due to the 

acceptance rates of the samplers. As the value of RATIO increased, the number of ties 

increased in the Markov chains. As the indicator statistic is currently phrased in terms of 

strict inequalities, the large amount of tied, consecutive elements depresses the value of 

Dt. In the extreme case of RATIO being equal to 4, there were often so many ties and one 

directional changes that no elements in the chain were coded as 1, and the value of Dt 

was equal to 0. Brooks (1998c) suggests that all ties be set equal to the expected value of 

the summary of the indicator statistic. However, some of the chains presented show 

clearly that setting ties equal to the expected value of 2/3 would bias them towards 

looking like ‘converged chains’ when they are in fact not good estimates. 

  Further research will need to address the questions remaining regarding the 

appropriateness of thinning the chains. However, it has been clearly demonstrated that 

thinning will remove the dependence among elements, and when conditions are such that 

the thinning by autocorrelation leaves a good deal of the original elements, then this may 

be a viable technique to employ. At least for the chains produced in this study, it has been 

shown that thinning did not necessarily degrade the quality of the estimates obtained.

Research question 3 

  The third research question compares the current diagnostic to three existing 

methods. In simulation study 4, chains were again simulated and then characterized by 

each of the convergence diagnostics. Attempts were made to standardize the criteria used 

by each technique to make a determination of convergence. For example, the alpha level 

used for all diagnostics was .05. No thinning was performed on these chains. The 
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proportion of chains deemed non-converged was presented for each method, as well as a 

measure of agreement (kappa). 

  The current (and previous) results demonstrate that the new method being 

developed is especially sensitive to the patterns of rank orderings of the elements in these 

chains. When there is no autocorrelation present in the chains, all chains were deemed to 

fall within the boundaries. When there is any degree of autocorrelation present in the 

chains, the value of Dt decreases to the point it falls outside the boundaries. The 

boundaries are influenced by the number of elements in the chain. As the number of 

elements increases, the boundaries get narrower. The chains in this study all contain 

10,000 elements, so the boundaries for differentiating convergence from non-

convergence are quite narrow. So, all cases where c was greater than 0, the current 

method deemed the chains non-converged. Perhaps the criterion used to distinguish 

between convergence and non-convergence is too strict. 

  For the other three methods, all chains are deemed non-converged when c is equal 

to 1. The chains in these conditions have a strong degree of autocorrelation, and they also 

tend to have unstable locations. Specifically, the mean at any point in the chains is 

relatively likely to be different than the mean at any other point in the chain. When c is 

less than 1, the Geweke and Heidelberger and Welch diagnostics only deem a chain non-

converged at chance levels. The Raftery and Lewis diagnostic never deems a chain non-

converged when c is less than 1. All of these methods are sensitive to both bias and 

variance (Cowles & Carlin, 1996). However, these methods appear to be insensitive to 

the patterns of rank orderings among elements.  
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  The evidence provided by simulation study 4 is tempered by the fact that it is not 

entirely clear which of these chains would be deemed converged or not. That is, there is 

no clear distinction between what is and is not converged except for the extreme 

conditions of c equal to 0 and c equal to 1 as converged and non-converged, respectively. 

When c was not equal to 0 or 1, the simulated chains tended to settle into locations as 

influenced by the experimental conditions. This ‘settling’ into fairly well-defined 

boundaries seems to satisfy the three existing methods, but the new method ignores the 

settling and focuses on the patterns of rank orderings. 

 The results of simulation study 4 need to be interpreted in light of the fact that the 

simulated chains were essentially converged. The new method being developed is 

sensitive to patterns of rank orderings and autocorrelations. The three existing methods 

included in this study are sensitive to the stability of the mean for the chains. The 

discrepancies among the existing techniques and the new technique may be largely due to 

the interplay of the method used to simulate chains and the way that the diagnostics 

characterize convergence.

Strengths and weaknesses

Strengths 

  The strengths and weaknesses of the current method will now be discussed. It is 

not always clear what characteristics of the new method are strengths or weaknesses, so 

every attempt will be made to characterize the new method fairly. One of the reasons why 

the interpretation of the findings is not always clear has to do with uncertainty regarding 

the simulated chains. As it is not the case that the simulated chains were completely 
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understood at the outset of these studies, any attempt to draw inference based on the 

simulated chains must be tempered with caution. Another reason that interpretation of the 

findings is not straightforward is that the methods employed in this study were focused 

specifically on the research questions, and the research questions were not aimed at 

answering all possible questions of interest. Many unforeseen nuances of interest were 

uncovered during the course of this research, but unfortunately not all can be addressed. 

  To begin, a potential strength of the new method is that it is fundamentally unlike 

any of the methods it was compared to in this study. The current method is sensitive to 

the pattern of rank orderings of elements, and the other methods are not. In addition, the 

new method tends to disagree with the other methods in characterizing the chains 

simulated in this study. The new method deems all chains with any degree of dependence 

to be non-converged (using .67 as the expected value of Dt). It is because the new method 

is sensitive to particular patterns of rank orderings of the elements in the chain. 

  The current method provides information about the particular pattern of rank 

orderings present in the chains. This characterization of chains is unique among 

convergence diagnostics. As such, it is providing information that other diagnostics 

simply do not provide. It raises an interesting question about the fundamental nature of 

what we mean by convergence in MCMC estimation. 

  For the sake of example, if we have a chain that stays within reasonable bounds 

for a given parameter but is either: 1) constantly wandering up for say 20 iterations, and 

then down and up again, or 2) shows a pattern of rank orderings similar to what would be 

expected if they were just random draws from a distribution, do we call both of these 
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chains converged? Probably so for the second case, and probably not for the first case. 

Diagnostics like the one Geweke proposed offer no clear direction that helps users to 

make a distinction between these two general types of chains. However, Dt is able to 

distinguish between chains like the ones just described. 

  When a chain is being produced from a stationary distribution with no degree of 

linear dependence among elements, it is clear what value of Dt to expect. However, when 

dealing with chains from real samplers, it is not clear exactly how to proceed with this 

technique. When it is the case that thinning of chains isn’t so restrictive as to remove the 

vast majority of sampled values, then this technique provides an alternative to the 

existing techniques. 

  The way the indicator statistic is defined allows the method to be sensitive to a 

case where the location of the chain is fluctuating up (and/or down) more often than 

would be expected. The other methods treat convergence from different standpoints. For 

example, the Geweke (1992) diagnostic compares the mean from the first tenth of the 

chain to the last half of the chain. When applied to the simulated chains in this study, it 

deemed most chains converged. 

  The stationarity test of Heidelberger and Welch (1983) also is relatively unlikely 

to classify the simulated chains as non-converged. The HW diagnostic is also essentially 

focused on the mean of the chain and attempts to determine when the transient phase at 

the beginning of a Markov Chain has passed. 

  The Raftery and Lewis (1992) diagnostic focuses on the accuracy of estimating 

user-specified quantiles of the target distribution of interest. In this study, the quantile 
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that was specified was .5. This quantile was chosen because it represents the center of the 

distribution. The RL method essentially boils down to estimating the mean and variability 

of the distribution. 

  So, each of the existing methods to which the new method is being compared is 

focused on a fundamentally different aspect of the behavior of the chains. Thus, it is not 

surprising that the three existing diagnostics behave similarly to one another, and that 

each tends to disagree with the new method. The new diagnostic takes a new perspective 

on convergence. 

  At this point, it has not been determined whether the new method is an 

improvement or not over the existing methods. It could be an improvement by virtue of 

its sensitivity to the patterns of rank orderings within the chains. No other diagnostics 

considered have this kind of sensitivity, so the new method may be providing a useful 

new characterization of convergence. However, perhaps the new technique is simply 

sensitive to autocorrelation in the chains. Autocorrelations are known to go hand in hand 

with MCMC samplers. Just because there is dependence among elements, it does not 

mean that there is lack of convergence. That is to say, the new method may be sensitive 

to something that is not informative about the convergence of Markov chains.

Weaknesses 

  One of the primary weaknesses of this set of studies is its limited scope. There are 

many questions of interest that are not addressed by these research questions. Future 

research will address the limited scope of the current set of research questions. 
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  The primary limitation of this set of studies is that it provides only limited 

information on how to proceed in using the new method for the assessment of 

convergence. One of the reasons why the current study provides only limited information 

is that it contains only a few simple simulation studies. If the method is to be used in 

practical settings, it needs to be further refined so there are clear guidelines for how to 

apply it. There is also a need to develop more complex simulation studies to address the 

usefulness of the technique. Also, it would be very informative to apply the method to 

chains from real samplers. Also, the method needs to be applied to real datasets.  

  Another reason why the current set of studies only provides limited information is 

that there was a discrepancy between what was expected and what was observed with the 

solutions for the value of the summary of the indicator statistic. The analytical and 

simulated solutions do not match. The reason for the disagreement likely lies in the fact 

that the boundaries specified for the simulated solutions don’t accurately reflect the 

assumptions of the analytical solutions. 

  Also, although the simulated chains behaved somewhat as expected (e.g., as c 

increased so did the amount of autocorrelation), it may be the case that elements of chains 

from real MCMC samplers such as those created using the MH algorithm have a 

fundamentally different relationship to one another which is defined by the algorithm. 

Thus, the reason why elements are associated with one another in real chains may be due 

to a fundamentally different mechanism than those provided by the simulated chains. If 

this is the case, then the simulated solutions provided only limited insight into the 

behavior of the method being developed here. The only remedy for this situation is to 
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apply the method to real chains from real samplers. The one study contained herein using 

real samplers provided a glimpse of all the issues remaining to be resolved. For example, 

the specification of the variability of the proposal distribution can greatly affect the 

chains produced by the sampler. Based just on the very limited scope of the study with 

real samplers in this paper, if the proposal distribution has too great a variance, then the 

chains will have a great deal of autocorrelation over very long lags. Chains of this type 

would immediately pose problems for applying the current method. Also, it is well 

known that any dependence among parameters in the model can result in 

interdependencies among chains. This issue was not addressed at all by the current 

research, but is certainly germane to the use of the method. 

  Another limitation has to do with how the method characterizes the chains. The 

indicator statistic provides information about the pattern of rank orderings of the chains. 

However, as currently defined the indicator statistic is not capable of making any claims 

about convergence to a location. The indicator statistic is a simple way to describe the 

pattern of rank orderings of the chain elements. In this way, the new method is an 

interesting and possible useful alternative to the existing methods. It is probably best to 

pair this technique with other methods that do provide information about the particular 

location of chain elements. 

  Finally, the most serious limitation of this technique is that is deals with 

convergence in a post hoc fashion. This limitation is not unique to the current method, 

but it is a limitation nonetheless. Ideally, it would be best to be able to specify ahead of 

time how long a chain should be allowed to run to achieve convergence. As there is no 
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currently accepted method to determine this, convergence diagnostics will all remain 

‘fundamentally flawed’.

Future directions 

  Much work still remains to be done in order for this technique to become a viable 

way of assessing convergence of MCMC samplers. This work falls into three general 

categories; operational, graphical, multivariate. 

  In order for the technique to become operational, the issue of thinning needs to be 

settled. It has been shown by other authors to be undesirable to thin, as it goes against the 

practice of obtaining the best estimate possible. If thinning is to continue, guidelines must 

be provided for exactly when and how to thin. For example, how much dependence 

among elements is too much before thinning would require the removal of too many 

elements? In the studies presented here, even a mild amount of autocorrelation led to the 

reduction of the initial chain by 1/2 or 1/3. When there was a substantial amount of 

autocorrelation over longs lags, the thinning could lead to reductions of the chain by 1/30 

or more. This large degree of thinning is clearly counterproductive to applying the 

method in practice. MCMC samplers tend to run for a long time to produce chains, so 

throwing away the vast majority of the observations seems especially wasteful. 

  In order to avoid thinning, it seems necessary to know how the autocorrelation 

present can influence the value of the summary of the indicator statistic. However, other 

factors can influence the value of Dt besides the amount of autocorrelation present in the 

chains. The analytical and simulated solutions for the value of Dt presented herein do not 

reveal a simple relationship between autocorrelation, balance/stability of the chain, and 
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the value of Dt. Therefore, statements about the utility of the method are limited. To use 

the method without thinning, we would expect the value of Dt to be lower than .67, but 

by how much? Also, if we see a decrease in the value of Dt, is it due to autocorrelation or 

instability? Some work remains to be done to answer these questions. 

  Also, one of the aspects of this method was largely overlooked in order to provide 

information to the basic research questions presented. This method can be represented 

graphically. It is hoped that the combined use of graphical and quantitative 

representations of the chains can provide more information than either method alone. 

What this method lacks in sensitivity to location can be easily informed by path plots and 

CUSUM plots. Just because the method under development is no longer tied to 

Cumulative Sums doesn’t mean that this aspect should be overlooked or disregarded. The 

purpose of the current research was to learn about the potential of this method to 

characterize Markov chains. To this end, the current research has met with some success, 

however, to fully benefit from all this technique has to offer, further work needs to be 

done to integrate the strengths of this technique with other existing methods. It is unwise 

to develop a method that does not complement and add to existing methods. The 

CUSUM path plots are indicative about the behavior of the chain in reference to the 

mean. This type of characterization contains information that the current method does 

not. 

  The gold standard of convergence diagnostics is the Multivariate Potential Scale 

Reduction factor (Gelman and Rubin, 1992). This method takes into account the 

relationships among the parameters that the chains represent. In this way, any dependence 
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among parameters that exists is incorporated into the assessment of convergence. 

Following in this fashion, it would be ideal to expand the method to be used with 

multiple chains. Assuming that the chains are independent is probably incorrect in many 

practical applications. Also, investigation of the cross-correlations may be informative for 

the purpose of thinning. 

  Also, Brooks (1998c) suggested that this type of method could be incorporated 

into the MCMC sampling procedure. Essentially, as the chain is being produced by the 

sampler, it would also be analyzed by way of the indicator statistic. In this way, the 

sampler could be programmed to run long enough to satisfy some pre-specified criterion 

chosen by the user. Once the chain satisfies the criterion, the sampler could be 

terminated. A note of caution here is appropriate, though. It is generally unwise to try to 

automate the assessment of convergence for MCMC samplers (Cowles & Carlin, 1996). 

  Also, something must be done to deal with the issue of ties in the sampler. As the 

diagnostic is currently defined in terms of strict inequalities, any ties will be coded as 

zeroes. Brooks (1998c) suggests setting ties equal to the expected value of the indicator 

statistic. Research needs to be done to verify if this is wise. MCMC samplers built using 

the MHA are known to be effective, even though the fact that they are rejection samplers 

means ties are common. To make this method applicable to MHA samplers, something 

needs to be done to address how the method should deal with ties. An alternative to 

Brooks’ (1998c) modification of dealing with ties is to redefine the indicator statistic by 

relaxing the idea of strict inequalities. Although, relaxing the strict inequalities of the 

indicator statistic would mean that samplers like those produced in simulation study 3 for 
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RATIO equal to 4 would set nearly every element to 1. There is much research needed to 

address this issue. 

 Thinning is a big issue to resolve. The issue was only indirectly broached by the 

current set of studies. The studies contained in this paper provided evidence that agreed 

with predictions about thinning’s effects on the values of Dt  achieved. When a chain with 

any degree of autocorrelation was thinned to achieve a linearly independent sequence, the 

result was that the value of Dt increased when applied to the thinned chain. A much more 

thorough investigation of the effect of thinning on the quality of the estimates obtained 

from chains would be needed to make further statements about the appropriateness of 

thinning as a practice in the assessment of convergence.

Relevance 

  The convenience of MMLE typically makes it preferable to MCMC when both 

techniques are easily implemented. The advantage of MCMC becomes apparent when 

models become overly complex and/or highly dimensional. In cases where the 

psychometric model in question is complex, it is not always possible to implement 

MMLE procedures. MCMC techniques are much more easily implemented when the 

complexity of the model in question increases. Where the current technique may find 

some usefulness is with models that are formulated to represent highly multidimensional 

constructs. Examples would include Diagnostic Classification Models (DCMs) such as 

the Log-linear Cognitive Diagnostic Model (LCDM; Henson, Templin and Willse, 2007). 

  When MCMC techniques become the only or best way to obtain parameter 

estimates, it is necessary to check the quality of the chains produced. While there are 
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currently many diagnostics that exist for use with MCMC procedures, the current 

technique clearly provides information different than the other three techniques 

considered in this paper. While this paper does not speak to the overall efficacy of the 

technique under development, it does raise the question of the usefulness of the technique 

for assessing convergence. It is necessary to investigate the technique further to 

determine if it is useful for assessing the quality of estimates obtained in situations where 

the more accepted MMLE approach isn’t feasible. This paper is a first step in a sequence 

of directed research to address the utility of the new diagnostic.
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