
SEGMENTATION AND EXTRACTION OF INDIVIDUAL LEAVES FROM PLANT
IMAGES FOR SPECIES CLASSIFICATION

A Thesis
by

DALE GARRETT HENRIES

Submitted to the Graduate School
Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2011
Major Department: Computer Science

SEGMENTATION AND EXTRACTION OF INDIVIDUAL LEAVES FROM PLANT
IMAGES FOR SPECIES CLASSIFICATION

A Thesis
by

DALE GARRETT HENRIES
August 2011

APPROVED BY:

───────────────────────────
Rahman Tashakkori
Chairperson, Thesis Committee

───────────────────────────
Cindy A. Norris
Member, Thesis Committee

───────────────────────────
James T. Wilkes
Member, Thesis Committee
Chairperson, Department of Computer Science

───────────────────────────
Edelma D. Huntley
Dean, Research and Graduate Studies

Copyright by Dale Garrett Henries 2011
All Rights Reserved

iv

ABSTRACT

SEGMENTATION AND EXTRACTION OF INDIVIDUAL LEAVES FROM PLANT
IMAGES FOR SPECIES CLASSIFICATION

Dale Garrett Henries

M.S., Appalachian State University

Thesis Chairperson: Rahman Tashakkori

Plant species classification through the examination of images of plant leaves requires

as input an image of a single leaf with no stems or other non-leaf objects. Images of plants,

however, usually include more than one leaf, stems, branches, flowers, and other non-leaf

objects. For such images each individual leaf needs to be extracted into a unique sub-image,

and these sub-images must be cleaned to remove all non-leaf objects. A target leaf could then

be selected from the group of sub-images to be provided as the input to the plant species

classification program. As a part of the research on this thesis, an algorithm was developed to

automate the tasks of detecting and extracting leaf sub-images from plant images and to clean

the leaf sub-images by removing all non-leaf objects. To implement the algorithm, software

was developed in Java. The proposed algorithm produced at least one perfect leaf result in 18

of the 21 (86%) plant images used in this research, while the remaining three (14%) plant

images produced acceptable leaves.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor, Dr. Rahman

Tashakkori, for his continuous guidance, encouragement, and friendship throughout my

graduate studies. I am also grateful to Dr. Cindy Norris and Dr. James Wilkes for their

advice and encouragement. Thanks to the faculty and staff at the Department of Computer

Science, and my fellow graduate students who made this venture much more enjoyable.

I would also like to thank the Office of Research and Graduate Studies and the NSF

STEP Program for providing funding throughout my studies.

Finally, I would like to thank my family for their never ending support. They have

believed in me in times when I did not believe in myself, and without them I could not have

made it this far.

vi

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES ... viii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: IMAGE PROCESSING TECHNIQUES .. 3

2.1 Introduction ... 3

2.2 Morphological Operations... 3

2.2.1 Erosion .. 4

2.2.2 Dilation ... 5

2.2.3 Opening .. 6

2.2.4 Closing .. 7

2.3 Gradient Images .. 8

2.4 Conversion of RGB to Grayscale .. 8

2.5 Otsu Thresholding ... 9

2.6 Marker Controlled Watershed Segmentation .. 9

CHAPTER 3: METHODOLOGY .. 11

3.1 Introduction ... 11

3.2 Image Preprocessing ... 13

3.3 Detection and Extraction of Individual Leaves ... 13

3.3.1 Segmentation of the Plant ... 14

3.3.2 Segmentation of Leaves.. 15

3.3.3 Creation of Individual Sub-Leaf Images .. 18

3.4 Individual Leaf Image Cleaning .. 19

3.4.1 Determination of Core Leaf Body .. 20

3.4.2 Examination of Border Regions ... 20

3.4.3 Removal of Selected Regions ... 21

vii

CHAPTER 4: IMPLEMENTATION ... 22

4.1 GrayscaleImage and BinaryImage Wrapper Classes .. 23

4.1.1 Accessing and Setting Pixel Values ... 23

4.1.2 GrayscaleImage and BinaryImage Construction .. 25

4.1.3 Grayscale Image Specific Operations ... 27

4.1.4 Binary Image Specific Operations .. 28

4.2 Other Classes ... 33

4.2.1 OtsuThreshold .. 33

4.2.2 Watershed ... 35

4.3 The LeafExtractor Class .. 37

4.4 The LeafCleaner Class .. 39

CHAPTER 5: RESULTS .. 43

5.1 Detection and Extraction of Individual Leaves ... 43

5.2 Cleaning Leaf Images.. 45

5.3 Overall Algorithm Results .. 48

CHAPTER 6: CONCLUSIONS ... 49

6.1 Outcomes ... 49

6.2 Future Work .. 50

REFERENCES ... 52

APPENDIX A ... 53

APPENDIX B ... 65

VITA ... 99

viii

LIST OF FIGURES

Figure 2.1: Illustration of Erosion ... 4
Figure 2.2: Illustration of Dilation .. 5
Figure 2.3: Illustration of Opening ... 6
Figure 2.4: Illustration of Closing ... 7
Figure 2.5: Left - Grayscale Image, Right - Gradient Image .. 8
Figure 3.1: Three Steps of Methodology .. 12
Figure 3.2: Left - Original Specimen from I. W. Carpenter, Jr. Herbarium, Right -

Manually Edited Version ... 12
Figure 3.3: Three Steps of Detection and Extraction of Individual Leaves............................ 14
Figure 3.4: Left - RGB Image, Center - Grayscale Image, Right - Binary Image 15
Figure 3.5: Left to Right - Original Gradient Image, Binary Image Created from

Gradient, Binary Image After Closing Operation, Resulting Gradient Image
After Stems and Branches Filled ... 16

Figure 3.6: Gradient Image Prior to Flooding .. 17
Figure 3.7: Left - Original Binary Image, Right - Result of Watershed Segmentation 18
Figure 3.8: Three Steps of Individual Leaf Image Cleaning .. 19
Figure 3.9: Left to Right - Original Binary Image, Core Leaf Body, Possible Regions for

Removal ... 20
Figure 3.10: Left to Right - Original Binary Image, Possible Regions to Remove,

Regions Selected for Removal .. 21
Figure 4.1: GrayscaleImage's setPixel Method ... 24
Figure 4.2: BinaryImage's getPixel Method ... 24
Figure 4.3: GrayscaleImage Construction .. 26
Figure 4.4: GrayscaleImage's sobel Method ... 27
Figure 4.5: BinaryImage's erode Method ... 29
Figure 4.6: BinaryImage's removeRegion Method ... 30
Figure 4.7: BinaryImage's countRegions Method ... 31
Figure 4.8: BinaryImage's inverse Method ... 31
Figure 4.9: BinaryImage's diffImage Method ... 32
Figure 4.10: BinaryImage's minus Method ... 33
Figure 4.11: OtsuThreshold Contruction .. 34
Figure 4.12: OtsuThreshold's determineThreshold Method ... 35
Figure 4.13: Watershed Construction ... 36
Figure 4.14: Watershed's flood Method .. 37
Figure 4.15: LeafExtractor Construction .. 38
Figure 4.16: LeafCleaner's cleanLeaf Method Part 1 ... 39
Figure 4.17: LeafCleaner's cleanLeaf Method Part 2 ... 41
Figure 4.18: LeafCleaner's cleanLeaf Method Part 3 ... 42

ix

Figure 5.1: Left - Input Image, Right - Individual Leaf Sub-images Produced by the
Detection and Extraction of Individual Leaves Algorithm 44

Figure 5.2: Plant Image Where Non-leaf Objects Were Identified as Possible Leaves by
Watershed .. 45

Figure 5.3: Top Row – OR, Center Row – ONR, Bottom Row – LPR 46
Figure 5.4: Leaf Image Cleaning Algorithm Results .. 47

1

CHAPTER 1: INTRODUCTION

A significant amount of research has been devoted to plant species classification

through the examination of images of leaves. The classification process relies heavily upon

being able to extract shape related features and measurements of the leaf itself. Photographs

of plants, however, almost always contain multiple leaves, stems, branches, and background

objects that interfere with the examination process and must be removed from the image

prior to species classification. Removal of these interfering parts is most often accomplished

by researchers manually editing the image. In order for species classification through the

examination of plant photographs to be more practical, the process of cleaning the leaf image

should be automated. This would allow applications to be developed where an end-user

provides a photograph of a plant, and the software determines the species of the plant.

Complete automation of selecting and extracting a target leaf from a photograph

requires several steps. First, the plant must be separated from the background objects in the

image such as the ground and sky. Next, all leaves within the image should be detected and

separated into individual sub-images. For each of the leaf sub-images, the objects that are not

leaves, such as stems and branches, must be removed. Then, any leaves that are partially

occluded should be discarded as possible targets. Finally, if multiple non-occluded leaves are

found, one must be selected as the best possible candidate for classification.

Although a complete automated solution is not out of reach for the near future, this

research focuses on several of the issues presented while leaving others for future research.

1

Segmentation of the plant from background objects is a challenging task due to the fact that

background objects often closely resemble the plant in color. Disregarding partially occluded

leaves is also a challenging problem, because leaves that are from the same plant are often of

the same color. It can even be a challenge for the human eye to detect where one leaf ends

and another begins. For these reasons, this thesis focuses on images which contain no

partially occluded leaves and where the plant is already segmented from the background.

Selection of the most suitable target leaf for species classification will require an algorithm

that provides a quantitative way to rank leaves in order of suitability for analysis. Developing

such an algorithm is challenging because it must work for many different types of leaves and

cannot use species specific information in its calculations. For this reason, this thesis will

provide all of the extracted leaves and will leave the selection of most suitable leaf for future

research.

Several approaches for automatic leaf extraction from images have been proposed [1,

2, 3, 4]; however, all of these techniques make assumptions that severely limit their

effectiveness in certain situations. For example, some of the proposed approaches [1, 2, 4]

assume prior knowledge of the shape of the target leaf. Leaves, however, vary drastically in

shape as different species may have smooth or serrated edges, single or multiple lobes, or

various other shape differences.

Another common assumption is that leaves are green [1, 3]. While it is true that most

leaves are green, many plant species have leaves that are other colors, are multiple colors, or

even change colors in direct sunlight. Leaves of some species also change color at different

times of the year. Assuming that leaves are green eliminates unhealthy or dead leaves that

often become dark or brown.

2

The method in which the target leaf is selected presents a challenge with some of the

proposed approaches [3, 4]. These studies make an assumption that the target leaf is the

largest foreground region in the image. The largest leaf, however, may not be the most

suitable leaf for species classification. For example, if the largest leaf in an image is torn and

the image contains a smaller complete leaf, the smaller leaf would be better suited for

classification. In addition to this problem, the algorithm provided by Tang et al. [3] makes

the assumption that the target leaf is centered in the original photograph. In photographs with

multiple leaves, a leaf could be present in any part of the image. Requiring the target leaf to

be in a certain location within the image drastically hinders the potential of the algorithm.

The existing approaches for automated leaf extraction are not satisfactory for an

application that allows end-users to provide a plant image. For such an application to be

feasible, the automated leaf extraction algorithm should handle leaves of various colors,

shapes, sizes, and locations within the image. In this thesis, an algorithm will be proposed to

automate the process of extracting the possible target leaves from a plant image.

The remainder of this thesis is organized as follows. Chapter 2 provides an overview

of image processing techniques related to this work. Chapter 3 outlines the overall algorithm

proposed and the algorithms for target leaf extraction, to detect and extract individual leaf

sub-images, and individual leaf image cleaning, to remove stems and other interfering

objects. Chapter 4 provides an overview of the software tool that was created in Java to

implement the proposed algorithms. Chapter 5 presents the results and effectiveness of the

proposed algorithms. Chapter 6 discusses the outcomes of this study, and provides possible

future work in this area.

3

CHAPTER 2: IMAGE PROCESSING TECHNIQUES

2.1 Introduction

Digital image processing refers to the processing of digital images through the use of

a computer [5]. While digital image processing has many applications, this study focuses on

the automated extraction of leaves from a digital image. Digital images of plants are

processed to locate and extract sub-images of individual leaves. Each individual sub-leaf

image is then cleaned to remove background objects. Various image processing techniques

were used throughout the proposed algorithms to accomplish these tasks. Sections 2.2

through 2.6 provide details and background information for these techniques.

2.2 Morphological Operations

Morphological operators are tools that can be used to extract image components [5].

These tools are used on binary images to trim, expand, isolate, or connect regions of

foreground, or white pixels, within an image. Morphological operations in digital image

processing are based on the concepts of set theory. For the purpose of the morphological

operations used in this study, the pixels within a binary image are considered to be in a set A.

A smaller binary image known as a structuring element is also created, and the pixels within

this smaller image are considered to be in a set B. Structuring elements are generally created

at the beginning of a morphological operation and can be a variety of shapes and sizes. For

the purpose of this thesis, it can be assumed that a circular structuring element was used

unless otherwise noted. Each morphological operation is therefore performed by the

4

convolution of set A and set B with some given set operation. Sections 2.2.1 through 2.2.4

describe the morphological operations used in this thesis.

2.2.1 Erosion

Erosion is the morphological operation used to trim away the edges of a foreground

region from a binary image. Using set theory, erosion can be defined as the intersection of

sets A and B. Figure 2.1 displays an example of erosion on a binary image. The dark green

portion illustrates the foreground region prior to the erosion. The light green portion

represents the foreground region after the erosion, and the circles represent the structuring

element used in the erosion. If all of the pixels beneath the structuring element are

foreground in the original image, the pixel where the structuring element is centered remains

foreground in the eroded image. If any pixel beneath the structuring element is background in

the original image, the pixel where the structuring element is centered is set to background in

the eroded image. As can be seen, the result of erosion is that the foreground region has been

trimmed around the edges.

Figure 2.1: Illustration of Erosion

5

2.2.2 Dilation

The morphological operation of dilation has the effect of expanding or growing the edges

of the foreground region of a binary image. In set theory, dilation can be defined as the union

of sets A and B. Figure 2.2 depicts an example of dilation on a binary image. The dark green

illustrates the foreground region prior to the dilation. The light green represents the

foreground region that was added by the dilation, and the circles represent the structuring

element for the operation. If any pixel under the structuring element is foreground in the

original image, then the pixel where the structuring element is centered is set to foreground in

the dilated image. If no pixels under the structuring element are foreground in the original

image, the pixel where the structuring element is centered is set to background in the dilated

image. As Figure 2.2 depicts, the result of dilation, which includes both the dark and light

green areas, is an expansion of the foreground region around the edges.

Figure 2.2: Illustration of Dilation

6

2.2.3 Opening

The morphological operation of opening is the erosion followed by the dilation using the

same structuring element. The effect of the opening operation, shown in Figure 2.3, is that

foreground regions smaller than the structuring element are removed. Foreground regions

larger than the structuring element are disconnected by eliminating corners and any thin

sections connecting the larger foreground regions. The dark green areas in Figure 2.3

illustrate the foreground region prior to the opening process while the light green areas

represent the resulting foreground after the opening process. As can be seen, the small dark

green rectangle is removed by the erosion process so that there is nothing to expand during

the dilation process. The two larger dark green squares, however, would result in smaller

squares from the erosion process, and then are expanded by the dilation process to contain all

of their original shape except for the corners.

Figure 2.3: Illustration of Opening

7

2.2.4 Closing

The morphological operation of closing is the dilation followed by the erosion of the

image using the same structuring element. The effect of the closing operation, illustrated in

Figure 2.4, is that small holes in foreground regions or small gaps between foreground

regions are changed to foreground. The dark green areas in Figure 2.4 illustrate the

foreground regions prior to the closing operation. The result of the closing operation is the

combination of the dark green regions and light green regions. The result of the dilation

would be an expanded foreground region. The erosion that takes place on the result of the

dilation trims the foreground region back to approximately the original shape except for

regions that were close together or close to the edge of the image in the original binary

image.

Figure 2.4: Illustration of Closing

8

2.3 Gradient Images

Gradient images are grayscale images that reflect the change in intensity for each

pixel in the image through analyzing the intensity values of neighboring pixels. Several

algorithms exist for the production of gradient images; however, for the purposes of this

study, the Sobel edge detector was used [5]. As can be seen in Figure 2.5, the result of the

Sobel edge detector is lighter or higher pixel values in the gradient image where the pixel

values change from dark to light or light to dark rapidly in the grayscale image. Where values

remain relatively similar in the grayscale image, however, the result of the Sobel edge

detector is darker or lower pixel intensity values in the gradient image.

Figure 2.5: Left - Grayscale Image, Right - Gradient Image

2.4 Conversion of RGB to Grayscale

The conversion to a grayscale image from an RGB image involves calculating a single

grayscale value from the three values found in an RGB image. This value can either be

calculated by averaging the three values from the RGB image or by using a weighted average

to give each of the three values a priority. Giving priority to certain values in an RGB image,

however, implies that some values are more important than others. Because leaves can be

9

found in many different colors, this research uses an unweighted average for grayscale

conversions.

2.5 Otsu Thresholding

To convert a grayscale image into a binary image, a threshold value is selected in

which all values less than the threshold become a zero, or black, in the binary image and all

values greater than or equal to the threshold value become a one, or white, in the binary

image; therefore, the outcome of the binary image is largely dependent upon the value

selected for the threshold. If the threshold value selected is low, background regions of the

image will be included as foreground elements in the binary image and if the threshold value

selected is too high, elements that should be included as foreground objects in the binary

image will be eliminated as background regions.

For the purpose of this study, Otsu's thresholding algorithm [6] was used to determine

the optimal threshold value for converting grayscale images into binary images. Otsu's

algorithm analyzes the histogram of the grayscale image to determine the value which

maximizes the between-class variance [5]. The between-class variance is a measure of spread

for the pixel values both above and below a given threshold value. By maximizing the

between-class variance, a threshold value is selected that optimizes the separation of

foreground and background regions within the image.

2.6 Marker Controlled Watershed Segmentation

Image segmentation is the process of subdividing an image into its constituent regions or

objects [5]. Watershed segmentation is a method which produces a segmented image that

includes connected regions, and as a result, isolates individual objects within an image.

10

Watershed segmentation is based on the concept of visualizing a gradient image in three-

dimensions like a topographical map. The first two dimensions are the coordinates of each

pixel (x, y), and the third dimension is represented by the value of each pixel. Pixels with

high values would therefore be mountain tops while pixels with low values would be valleys

on a topographical map. The watershed segmentation algorithm works by symbolically

flooding the terrain created by the gradient image with rain. As the rain drops fall, they run

down the mountains until pools are formed in the valleys. As the pools rise, they begin to run

into one another. In cases where any two pools meet, the location is marked as a boundary

between objects. This process continues until all of the terrain is flooded.

The main problem with watershed segmentation is that it has a tendency to over segment

an image. To overcome this problem, markers can be set prior to flooding that control the

amount of segmentation. Basically, markers pre-flood the region image with region

identifiers. Each region identifier corresponds to a single object within the image. If two

pools meet during flooding that have the same marker, the pools are allowed to combine and

no object segmentation occurs. If two pools meet during flooding that have different markers,

however, the location is marked as a boundary between objects.

11

CHAPTER 3: METHODOLOGY

3.1 Introduction

The database of plant images in the Irvin Watson Carpenter, Jr. Herbarium, located in the

Department of Biology at Appalachian State University, was the primary source of plant

images for this research. These images were manually cropped and edited to remove non-

plant objects and areas with overlapping leaves. Other than removing overlapping leaves,

however, the plant images were not altered and therefore contain branches, stems, stalks,

seeds, flowers, and other normal plant parts. Figure 3.2 illustrates an example specimen from

the I. W. Carpenter, Jr. Herbarium and the manually edited version used in this thesis. The

three steps, illustrated in Figure 3.1, were performed by the algorithm that extracts possible

target leaves:

• Image Preprocessing

• Detection and Extraction of Individual Leaves

• Individual Leaf Image Cleaning

12

Figure 3.2: Left - Original Specimen from I. W. Carpenter, Jr. Herbarium, Right -
Manually Edited Version

Image
Preprocessing

Detection and
Extraction of

Individual Leaves

Individual Leaf
Image Cleaning

Figure 3.1: Three Steps of Methodology

13

For the actual implementation of the leaf sub-image extraction and leaf image cleaning

algorithms proposed in this research, a software tool was developed in Java. The remainder

of this chapter will present the theoretical implementation of the algorithms, while the

following chapter will address the actual implementation of the software.

3.2 Image Preprocessing

The first step in an automatic leaf extraction algorithm is to locate the individual

leaves within the plant image. Since digital images vary drastically in size, this could lead to

unexpected results for different sized images using the same algorithm. In order to unify the

approach, before attempting to locate leaves within an image, an image is scaled so that the

largest of either its width or height is exactly 500 pixels. The image's original ratio of width

to height was not altered in the scaling process. By scaling images to a standard size, more

accurate results can be obtained by the algorithm designed to detect and extract individual

leaves.

3.3 Detection and Extraction of Individual Leaves

As illustrated by Figure 3.3, the detection and extraction of individual leaves requires

three steps: segmentation of the plant, segmentation of the leaves, and creation of individual

leaf images. The first step, segmentation of the plant, is required so that all non-plant

background objects are disregarded as insignificant. Once the plant is identified,

segmentation of the leaves is required to identify which portions of the plant are known to be

leaves. Finally, individual sub-images are created for each of the areas identified as leaves.

14

3.3.1 Segmentation of the Plant

The logical first step in locating individual leaves within a plant image is to separate

the plant from the rest of the image. To accomplish this, the RGB image is converted into a

grayscale image. This grayscale image is then slightly blurred with a Gaussian filter to

minimize the effects of small holes or irregularities in the leaves. A binary image is then

created using the grayscale image and Otsu's algorithm [6] to determine the optimal threshold

value. Figure 3.4 shows the RGB, grayscale, and binary versions of a sample image. As can

be seen in the binary image, the plant becomes the foreground of the image. At this point the

background regions in the binary image are deemed to be insignificant and are therefore

removed, or set to white, in the original RGB image.

Segmentation
of the Plant

Segmentation
of the Leaves

Creation of Individual
Leaf Images

Figure 3.3: Three Steps of Detection and Extraction of
Individual Leaves

15

Figure 3.4: Left - RGB Image, Center - Grayscale Image, Right - Binary Image

3.3.2 Segmentation of Leaves

With the background and all non-plant objects removed, the task of segmenting

leaves within the image would seem to be as simple as removing all non-leaf parts. The

process of categorizing a leaf by species, however, is highly dependent upon the shape of the

leaf. The more common methods, such as the morphological operations generally used in

such a situation, would not only remove the stems and branches of the image but would also

alter the shape of the leaves themselves. For a leaf extraction algorithm to be effective for the

purpose of species classification, the branches, stems, and other non-leaf plant parts have to

be identified and removed without altering the shape of the leaves.

A marker controlled watershed segmentation is used to determine the location of all

possible leaf objects. The internal markers, which represent regions considered to be possible

leaves, are created by eroding the original binary image with a structuring element of 30

16

pixels in both width and height that is shaped like a geometric cross. The external markers,

which represent background regions or objects known to not be leaves, are created by

inverting the original binary image. Prior to flooding the gradient image, the stems and

branches are dammed up to prevent them from being considered as part of the leaves.

To dam up the stems and branches, a binary image is created from the gradient image

using Otsu's method to determine an appropriate threshold. The morphological operation of

closing is used on this new binary image to fill the insides of the stems and branches. The

foreground region of the new binary image is then copied back to the original gradient image

so that all stems and branches are filled with the maximum value. Due to the fact that the

stems and branches are now filled with the highest possible mountain peaks, the flooding can

take place without fear of stems and branches being included as parts of a leaf. Figure 3.5

illustrates the steps used in filling the stems and branches in the gradient image.

Figure 3.5: Left to Right - Original Gradient Image, Binary Image Created from Gradient,
Binary Image After Closing Operation, Resulting Gradient Image After Stems and Branches

Filled

17

Figure 3.6 illustrates the state of the image when it is ready to be flooded. The color

red in Figure 3.6 represents external markers or regions known to not be leaves, and the color

blue represents internal markers or regions known to be leaf like objects. The color green in

Figure 3.6 represents mountain peaks created by filling the stems and branches, and white

and green areas represent the portions of the image that will be flooded. Figure 3.7 shows the

results of the watershed segmentation as compared to the original binary image.

Figure 3.6: Gradient Image Prior to Flooding

18

Figure 3.7: Left - Original Binary Image, Right - Result of Watershed Segmentation

3.3.3 Creation of Individual Sub-Leaf Images

Once the watershed flooding was complete, all internal regions are labeled with a

unique region identifier. The locations and dimensions for each region are then calculated,

and regions that had less than 961 pixels, i.e., 31 pixels by 31 pixels, are discarded as

insignificant and not likely the target leaf. Prior to extracting the sub-leaf images, the

dimensions of each region are padded by ten percent to guarantee that the entire leaf would

be contained in the resulting image. A binary image is created from each sub-image, and

those which have ten percent or less foreground pixels are discarded as non-leaf objects. Due

to the fact that the leaf segmentation algorithm does not maintain the original shape of the

leaf, each sub-leaf image is created from an exact copy of the pixels from the original RGB

19

image. While this process produces images with leaves unaltered, it also copies stems,

branches, and parts of other closely located leaves as well. Therefore, each individual sub-

leaf image must be cleaned to remove other partial leaves and non-leaf objects.

3.4 Individual Leaf Image Cleaning

When each leaf from the original plant image is extracted into its own sub-image, each

sub-image must be cleaned to remove stems, branches, other partial leaves, and non-leaf

objects. The original shape of the leaf, however, must be maintained as well as possible for

accurate species classification. As depicted in Figure 3.8, the proposed algorithm for cleaning

an individual leaf image requires the following steps:

• Determination of Core Leaf Body

• Examination of Border Regions

• Removal of Selected Regions

Determination of
Core Leaf Body

Examination of
Border Regions

Removal of
Selected Regions

Figure 3.8: Three Steps of Individual Leaf Image Cleaning

20

3.4.1 Determination of Core Leaf Body

The initial objective of cleaning a leaf image is to determine the portion known to be

part of the leaf. To accomplish this, a binary image of the original RGB leaf image is created.

The morphological operation of opening is performed on the binary image to remove all

small border regions, such as leaf tips and stems, while retaining as much of the leaf's

original shape as possible. To determine appropriate size for the structuring element used in

the opening process, the largest of either the width or height of the original image is

determined, and one-eighth of this size was selected. An additional binary image was then

created to contain the foreground regions removed by the opening operation. This second

binary image contains all border regions that are not part of the core leaf body and might

need to be removed during the cleaning process. Figure 3.9 illustrates an example of an

original binary image, the binary image containing the core leaf body, and the binary image

containing all border regions that might need to be removed.

Figure 3.9: Left to Right - Original Binary Image, Core Leaf Body, Possible Regions for
Removal

3.4.2 Examination of Border Regions

To determine which of the border regions are not parts of the leaf, each border region is

examined to determine its level of connectivity. Connectivity is a ratio of the number of

pixels in a region that are neighbors with a pixel in the core leaf body over the total number

21

of pixels in the region. Regions with a high level of connectivity are likely to be part of the

leaf while regions with low connectivity, such as stems, are not likely to be part of the leaf.

Through experimentation, it was determined that regions with greater than 16% connectivity

are most likely to be part of the leaf. The regions determined to be part of the leaf are then

erased from the binary image containing possible regions to remove. This results in a binary

image with only those regions that should be removed. Figure 3.10 illustrates the results of

this procedure. It should be noted that leaves with numerous long tips did not perform well

with this algorithm. To accommodate for such leaves, if more than three regions are selected

to be removed, only the largest of these regions is removed.

Figure 3.10: Left to Right - Original Binary Image, Possible Regions to Remove, Regions
Selected for Removal

3.4.3 Removal of Selected Regions

To remove the selected regions from the original RGB image, all pixels that are

foreground in the binary image containing possible regions to remove are set to white in the

original RGB image. The result is a cleaned RGB leaf image that is suitable for species

classification.

22

CHAPTER 4: IMPLEMENTATION

As a part of this thesis, a software tool was developed to implement the proposed

algorithms discussed in the methodology. The software requires a digital image of a plant

with a mostly solid light colored background and no overlapping leaves as input. This image

is first sent through the leaf extraction algorithm which returns a collection of individual sub-

images for each leaf found in the original input image. Each individual leaf image is then

sent through the leaf cleaning algorithm to remove all non-leaf objects such as stems,

flowers, and other leaves. The resulting clean leaf images are then saved to the same

directory as the original input image.

The programming language chosen for implementation was Java due to its portability on

a wide range of operating systems; Java, however, does not provide many built in image

processing tools. Therefore, many of the most basic image processing techniques, such as

converting an image into a grayscale or binary image, were implemented as part of this

thesis.

The remainder of this chapter discusses the implementation of the software and is

organized as follows. Section 4.1 addresses the GrayscaleImage and BinaryImage wrapper

classes used extensively throughout the program. Section 4.2 addresses other helper classes

created to perform specific tasks. Section 4.3 provides an overview of the LeafExtractor class

which implements the detection and extraction of individual leaf sub-images algorithm.

Section 4.3 provides an overview of the LeafCleaner class which implements the individual

23

leaf cleaning algorithm. Samples of code are provided throughout this chapter; in addition,

the entire code is provided on an enclosed CD.

4.1 GrayscaleImage and BinaryImage Wrapper Classes

Access to images in Java is provided by the java.awt.image.BufferedImage

(BufferedImage) class which provides useful methods for working with RGB images.

Grayscale and binary images, however, have unique value ranges and image processing

operations. To deal with these requirements, two wrapper classes, GrayscaleImage and

BinaryImage, were created as a part of this thesis that take as input an RGB BufferedImage

and provide access to the RGB BufferedImage as if it were a grayscale or binary image.

4.1.1 Accessing and Setting Pixel Values

Java’s BufferedImage provides useful methods for working with RGB images such as

getRGB(int x, int y) and setRGB(int x, int y, int val) which respectively return or set the value

of the pixel located at the x and y coordinates provided. The problem with these methods is

that they return or require as input a single thirty-two bit value where each byte represents,

from most significant to least significant, the pixel’s: alpha value, red value, green value, and

blue value. A significant amount of bit manipulation is required to access or set the actual

four values from the single value returned or required by these methods.

When working with grayscale or binary images, each of the red, green, and blue values

are equal, and the alpha value never changes. GrayscaleImage and BinaryImage, which store

the original RGB BufferedImage image, provide methods getPixel(int x, int y) and

setPixel(int x, int y, int val) which perform all of the required bit manipulation and return or

accept as input an acceptable grayscale or binary value.

24

Figure 4.1 illustrates the code segment for the GrayscaleImage’s setPixel method. As can

be seen, a single value is provided as input, and the bit manipulation required to store it as a

single ARGB value is performed inside the call to BufferedImage’s setRGB method.

Figure 4.1: GrayscaleImage's setPixel Method

For a binary image, only two values are acceptable: one for white and zero for black. The

getPixel method in Figure 4.2 uses a helper method RGBToBinary to convert the single

thirty-two bit value provided by BufferedImage’s getRGB into an acceptable one or zero.

Figure 4.2: BinaryImage's getPixel Method

25

4.1.2 GrayscaleImage and BinaryImage Construction

A GrayscaleImage can be constructed from an ARGB BufferedImage. Figure 4.3

illustrates the code required to construct a GrayscaleImage. In the constructor method the

input BufferedImage is stored as a field image along with the image’s height, width, and

raster. The method convertFromRGB parses each pixel and uses the methods

rgbToGrayscale, getRed, getGreen, and getBlue to perform the required bit manipulation and

calculation of the grayscale value. This value is stored in the BufferedImage image as an

ARGB value, which then allows the previously mentioned getPixel and setPixel methods to

respectively return and accept as input simple one byte unsigned grayscale values.

Similar to GrayscaleImages, BinaryImages store an ARGB BufferedImage in a field

image. The previously mentioned getPixel and setPixel methods provide access to the ARGB

BufferedImage using simple one bit binary values. BinaryImages are constructed using a

GrayscaleImage and a threshold value. All pixels with grayscale values less than the given

threshold value are set to zero or black, and all pixels with grayscale values greater than or

equal to the threshold value are set to one or white. The construction of BinaryImages is

similar to that of GrayscaleImages, presented in Figure 4.3, and differs only in that the

methods are altered to convert grayscale images into binary images.

26

Figure 4.3: GrayscaleImage Construction

27

4.1.3 Grayscale Image Specific Operations

Operations specific to grayscale images are also included as methods in the

GrayscaleImage class. These methods include fillStems, which performs the essential step of

damming up stems and branches prior to the flooding in the leaf detection and extraction

algorithm, and sobel, which returns a new GrayscaleImage that is a gradient image created

using the sobel edge detection algorithm [5]. The method sobel can be seen in Figure 4.4. To

apply the sobel edge detection, first a new empty GrayscaleImage is created with the same

width and height of the original GrayscaleImage. Following this step, the sobel value for

each pixel is determined using the methods getSobelXVal and getSobelYVal. The value is

then tested to make sure it is not greater than the maximum one byte unsigned grayscale

value, and if so, the value is set to the maximum. This value is then used as the pixel value

for the GrayscaleImage sobel. Finally, after all pixels have been processed the new

GrayscaleImage sobel is returned.

Figure 4.4: GrayscaleImage's sobel Method

28

4.1.4 Binary Image Specific Operations

Operations specific to binary images are included as methods of the BinaryImage class.

These methods include morphological operations, regional operations, global operations, and

comparative operations. The following sections provide examples and code for each of the

operations that are unique to binary images.

4.1.3.1 Morphological Operations

The BinaryImage class contains methods for morphological operations such as erode,

dilate, open, and close. Figure 4.5 provides the code for the methods erode and erodeTest.

The erode method returns a new BinaryImage that has been eroded with a circular structuring

element with the width and height of size. Initially, a new empty BinaryImage is created with

the same width and height of the original BinaryImage. Each pixel of the original

BinaryImage is tested with the boolean method erodeTest. The pixels that return true are set

to zero (black) in the eroded image while those that return false are set to one (white) in the

eroded image. The other three morphological operations are implemented in similar fashion.

An erodePlusSign method also exists to erode a binary image with a structuring element

shaped like a geometric cross and is used to create the internal markers necessary during the

marker controlled watershed segmentation.

4.1.3.2 Regional Operations

A region within a binary image refers to a unique area of foreground that is not connected

to any other area of foreground. The BinaryImage class contains methods for regional

operations such as countRegions, which returns the number of unique regions within the

29

image; onlyLargestRegion, which returns a BinaryImage containing only the largest unique

region; and removeRegion, which removes a unique region from a BinaryImage.

Figure 4.6 shows the code segment for removeRegion, which takes as parameters a

BinaryImage, and the x, y coordinates of a foreground pixel in the region. The algorithm

changes the value of the foreground pixel to background and then recurses on any

neighboring pixel that is determined to be foreground. The result is that all foreground pixels

connected to the initial pixel are removed from the BinaryImage.

Figure 4.5: BinaryImage's erode Method

30

Figure 4.6: BinaryImage's removeRegion Method

Figure 4.7 shows the code for BinaryImage’s countRegions method which returns the

number of unique regions within the image. First, a copy of the original BinaryImage is

created so that the original image will remain unaltered, and the variable regions, which

holds the current region count, is initialized to zero. The algorithm then iterates through each

of the image’s pixels until finding a foreground pixel. Upon finding a foreground pixel the

regions variable is incremented and the region is removed from the image so that it will not

be counted twice. Once all of the pixels are iterated through, the count of regions is returned.

31

Figure 4.7: BinaryImage's countRegions Method

4.1.3.3 Global Operations

BinaryImage’s global operations include methods such as inverse and countWhitePixels.

The method inverse changes all foreground pixels to background pixels and all the

background pixels to foreground pixels, therefore creating the inverse of the original image.

As can be seen in Figure 4.8, the inverse method’s code inverts the value of each pixel.

Figure 4.8: BinaryImage's inverse Method

32

4.1.3.4 Comparative Operations

Comparative operations in the BinaryImage class perform comparisons between two

BinaryImage. The diffImage method, illustrated in Figure 4.9, compares the pixels of the

original BinaryImage to the pixels of another BinaryImage and returns a new BinaryImage

containing foreground pixels everywhere the two BinaryImages have different values.

Figure 4.9: BinaryImage's diffImage Method

BinaryImage’s minus method, shown in Figure 4.10, subtracts the foreground pixels of

another BinaryImage from the foreground of the original BinaryImage. The result is a new

BinaryImage with foreground pixels only where the original BinaryImage is foreground and

the other BinaryImage is background.

33

Figure 4.10: BinaryImage's minus Method

4.2 Other Classes

While the GrayscaleImage and BinaryImage classes contain a large amount of

functionality, several other helper classes had to be created to perform specific tasks. These

include classes such as OtsuThreshold, which determines an appropriate threshold value for

converting grayscale images into binary images, and the Watershed class, which performs the

marker controlled watershed segmentation. The following sections provide details on the

implementation of these helper classes.

4.2.1 OtsuThreshold

The OtsuThreshold class is used to determine an adequate threshold value during the

process of converting a grayscale image into a binary image. The constructor of

OtsuThreshold, seen in Figure 4.11, takes an instance of a GrayscaleImage as its only

parameter. The constructor stores the GrayscaleImage instance as a field gray along with

other fields for width, height, and number of pixels (pixels). A histogram for the

34

GrayscaleImage is then calculated in the field histData using the calculateHistogram

method.

Figure 4.11: OtsuThreshold Contruction

Once an instance of OtsuThreshold is created, the determineThreshold method calculates

and returns the selected threshold value. Figure 4.12 illustrates the code for

determineThreshold. Each valid unsigned single byte grayscale value is visited to calculate

the between class variance (varBetween). Along the way the maximum between class

variance is stored in varMax, and the index of the maximum is stored in threshold. When all

values are checked, threshold is returned.

35

Figure 4.12: OtsuThreshold's determineThreshold Method

4.2.2 Watershed

The Watershed class performs the marker controlled watershed segmentation that is used

in the algorithm for the detection and extraction of individual leaves. During construction of

a Watershed instance, as can be seen in Figure 4.13, two GrayscaleImage instances are

required as input. The first GrayscaleImage, which is stored in the field gray, is a gradient

36

image that is interpreted as three-dimensional terrain during the flooding stage of the

watershed segmentation. The second GrayscaleImage, regionImage, has its pixel values set

as region values that will be used as the markers for the flooding. Once the necessary fields

have been set, the flood method is called to start the segmentation.

Figure 4.13: Watershed Construction

Figure 4.14 provides the implementation of the flood method that performs the

segmentation algorithm. The water level starts at the lowest possible value of zero. Every

pixel is then visited, and those that have the value of zero, which represents unlabeled, and

have a value less than the water level are tested by the method labeledNeighbors. The

method labeledNeighbors returns the value of a pixel’s neighbors if at least one of the pixel’s

neighbors is not labeled zero and all of the pixel’s non-zero labeled neighbors share the same

label. Otherwise, labeledNeighbors returns zero. If labeledNeighbors returns a non-zero

value, the pixel being tested gets labeled with this value. The number of pixels added at the

current water level is then incremented. The water level stays the same until no pixel is added

during an iteration. Following this step, the water level is incremented by one and the process

continues until the water level goes above the acceptable range.

37

Figure 4.14: Watershed's flood Method

4.3 The LeafExtractor Class

The LeafExtractor class implements the detection and extraction of individual leaf sub-

images algorithm discussed in the methodology. Figure 4.15 illustrates the code responsible

for construction of a LeafExtractor instance and outlines the previously mentioned algorithm.

The input required to create a LeafExtractor instance is the original RGB BufferedImage

containing the plant photograph. Initially, a GrayscaleImage, gradient image, and

BinaryImage are created, which are used throughout the rest of the process. The

removeBackground method converts all pixels that are determined as background in the

BinaryImage to white in the original RGB BufferedImage. The stems and branches are then

38

filled which is a required step prior to the watershed segmentation. The watershed

segmentation is then performed which detects all leaves or large objects within the image.

The LeafRegion class stores the top, bottom, left, and right bounds of a possible leaf or large

object, and the call to flood.identifyRegions() returns a collection of LeafRegion instances for

all objects detected. The createSubLeafImages method analyzes each object detected by the

program, removes those that it determines not to be leaves, and creates a sub-image for all

probable leaves. Finally, each leaf image is padded by five pixels on each side to ensure that

the leaf is not located on the border of the image. A call to LeafExtractor’s getLeafImages

method will return a collection of all individual leaf sub-images.

Figure 4.15: LeafExtractor Construction

39

4.4 The LeafCleaner Class

The LeafCleaner class implements the individual leaf image cleaning algorithm discussed

in the methodology which includes the following steps: determination of the core leaf body,

examination of border regions, and removal of selected regions. All three of these steps are

implemented in the method cleanLeaf; however, discussion of each step will be broken down

for better clarity. Figure 4.16 provides the code that implements the determination of the core

leaf body.

To obtain the core leaf body, a BinaryImage bin is created. A copy of this BinaryImage,

binCopy, is made such that the original is left unaltered, and the copy has the morphological

operation of closing performed on it, leaving only the foreground known to be part of the leaf

body. Due to the fact that individual leaf sub-images vary in size, the size of the structuring

element has to be proportional to the size of the image. Through experimentation, it was

determined that a structuring element one-eighth of the largest width or height of the image

provided the best results.

Figure 4.16: LeafCleaner's cleanLeaf Method Part 1

40

Figure 4.17 illustrates the examination of border regions step of the leaf cleaning

algorithm. To obtain a BinaryImage containing only the border regions, the regions removed

during the open operation, BinaryImage’s diffImage method is used to obtain a new

BinaryImage called diff that contains the foreground regions present in bin but not present in

binCopy. Small or insignificant regions that contain less than ten pixels are then removed for

better efficiency during the examination process. A copy of the border regions BinaryImage

is then created that will store the regions selected for removal later. Next, an array of

BinaryImages is created that stores a unique BinaryImage instance for each region. Each

BinaryImage in this collection contains as foreground only one unique region. Each region is

then examined to determine what percentage of pixels in the region border a foreground pixel

in the core leaf body. This value is referred to as a region’s connectivity. Regions that have a

connectivity of greater than 16% are determined to be part of the leaf and are removed from

the toRemove instance.

41

Figure 4.17: LeafCleaner's cleanLeaf Method Part 2

Through experimentation it was determined that when more than three regions are

selected to be removed, several of the removed regions are in fact part of the leaf. For this

reason, when more than three regions are selected to be removed, only the region with the

lowest connectivity is removed. Figure 4.18 provides the code for the removal of selected

regions step of the leaf cleaning algorithm. First, all of the regions are visited to determine

42

which region has the lowest connectivity. Then, if the toRemove instance has more than three

regions, all regions except for the region with the lowest connectivity is removed from

toRemove. The regions that are selected to be removed are then dilated with a structuring

element of size three which has the effect of expanding each foreground region by one pixel

on each side. This step is necessary to ensure that all of the selected regions will be removed

from the original image. Finally, all of the regions selected for removal are removed from the

original RGB image resulting in a cleaned leaf image.

Figure 4.18: LeafCleaner's cleanLeaf Method Part 3

43

CHAPTER 5: RESULTS

Twenty-one plant images obtained from the Irvin Watson Carpenter, Jr. Herbarium were

selected to test the algorithms described in chapters 3 and 4. These images contained a total

of 84 leaves with an average of 4 leaves per plant image. The minimum number of leaves in

a plant image was 1, and the maximum number of leaves in a plant image was 7. The

remainder of this chapter will separately analyze the effectiveness of the detection and

extraction of individual leaves algorithm and the individual leaf cleaning algorithm. The last

section analyzes the effectiveness of the overall approach.

5.1 Detection and Extraction of Individual Leaves

The detection and extraction of individual leaves algorithm accurately extracted the

correct leaf sub-images for all 21 plant images. Figure 5.1 provides an example of an input

image and the individual leaf sub-images that were produced from this algorithm. The results

of the detection and extraction of individual leaves algorithm for all of the 21 plant images

used in this thesis are provided in Appendix A.

44

Figure 5.1: Left - Input Image, Right - Individual Leaf Sub-images Produced by the
Detection and Extraction of Individual Leaves Algorithm

 The marker controlled watershed segmentation algorithm was successful in isolating

only leaf objects in all but one of the plant images. The image in which the watershed

algorithm failed to correctly isolate only the leaves is displayed in Figure 5.2. This plant

contains branches that are close to being as large as the leaves themselves. The marker-

controlled watershed segmentation algorithm detected five possible leaf objects in this image,

the three leaves and two large branch sections. The algorithm designed to rule out non-leaf

objects, however, successfully removed the two large branch regions that the marker-

controlled watershed segmentation algorithm identified as possible leaf objects.

45

Figure 5.2: Plant Image Where Non-leaf Objects Were Identified as Possible Leaves by
Watershed

5.2 Cleaning Leaf Images

To analyze the results of the leaf image cleaning algorithm, the original sub-images, that

were produced by the leaf detection and extraction algorithm, were compared to the sub-

images that were produced by the leaf cleaning algorithm. During this comparison, leaf

images were marked with the following characteristics: non-leaf object(s) removed (OR),

non-leaf object(s) not removed (ONR), and leaf part(s) removed (LPR). Figure 5.3 illustrates

examples of these characteristics.

46

Figure 5.3: Top Row – OR, Center Row – ONR, Bottom Row – LPR

Forty-six out of the total 84 leaf images (57.76%) were changed in some way during the

cleaning process while 38 (45.24%) remained unaltered. The number of leaf images where a

non-leaf object was removed was 43 which accounts for 51.19% of the total 84 leaf images

and 93.48% of the 46 images that received alterations during the cleaning process. Twenty-

three of the leaf images still contained a non-leaf object after the cleaning process which

accounts for 27.38% of the total 84 leaves and 50% of the 46 images altered by the cleaning

process. Only 9 or 10.71% of the total 84 leaf images had some leaf part removed which

accounts for 19.57% of the 46 leaves that were changed during the cleaning process.

To measure the overall success of the leaf cleaning algorithm, each cleaned leaf image

was categorized into one of the following categories:

47

• The basic shape of the leaf was unaltered and all non-leaf objects were removed.

(Perfect)

• The basic leaf shape was slightly altered and/or one or more very small non-leaf

objects were not removed. (Acceptable)

• The basic leaf shape was altered significantly and/or one or more significant non-

leaf objects were not removed. (Failure)

As Figure 5.4 illustrates, 54 (64.29%) of the total 84 leaf images were categorized as

perfect, while the remaining 30 (35.71%) were categorized as acceptable. None of the leaves

were categorized as failures. It should be noted that 20 (23.81%) of the total 84 leaf images

were not altered in any way during the cleaning process and were still categorized as perfect.

The remaining 18 unaltered leaf images where categorized as acceptable. The results of the

leaf image cleaning algorithm for all of the 84 leaf images used in this thesis are provided in

Appendix B.

Figure 5.4: Leaf Image Cleaning Algorithm Results

48

5.3 Overall Algorithm Results

The overall goal for the leaf extraction algorithm was to provide an automated solution

that would be capable of producing leaf images that could successfully be used in species

classification. For a leaf image to be successfully used in species classification, a target leaf

should be provided that retains the unique shape of the individual leaf while all non-leaf

objects are removed. To determine how successful the leaf extraction algorithm was at

achieving this goal, each of the 21 plant images were divided into two categories, successful

or unsuccessful. Successful plant images were those that resulted in at least 1 leaf categorized

as perfect by the leaf cleaning algorithm while unsuccessful plant images were those that

resulted in no leaves categorized as perfect. Of the total 21 plant images, 18 (86%) were

determined to be successful while only 3 (14%) were determined to be unsuccessful. It

should also be noted that 8 (38%) of the total 21 plant images resulted in all leaves

categorized as perfect by the leaf cleaning algorithm and 16 (76%) had at least half of their

leaves categorized as perfect.

49

CHAPTER 6: CONCLUSIONS

6.1 Outcomes

The algorithm designed to detect and extract individual leaf images successfully detected

100% of the leaves within the 21 plant images and extracted no non-leaf objects. This

algorithm also produced leaf images categorized as perfect by the leaf cleaning algorithm for

23.81% of the leaves. This algorithm, however, requires that none of the leaves are

overlapping, and if overlapping leaves are present within an image the algorithm generally

extracts a single image for the whole section.

The 21 plant images used in this research contained only plants with a near white

background. When provided with images containing complicated backgrounds such as grass,

the sky, or buildings, the extraction algorithm was far less effective. When working with

images containing complicated backgrounds, Otsu's thresholding algorithm produced a

binary image where parts of the background with lighter values were determined to be

foreground and parts of the plants with darker values were determined to be background.

The algorithm designed to clean the leaf images produced perfect leaves 64.29% of the

time, acceptable leaves 35.71% of the time, and no failed leaves. The majority of leaves

determined to be acceptable contained only very small stems and would most likely produce

satisfactory results if used in species classification. The task of cleaning leaf images provides

a challenging problem in that non-leaf objects often contain the same characteristics as leaf

tips or points. A threshold must be determined to remove as many of the non-leaf objects as

50

possible without removing the leaf tips or points. The proposed algorithm resulted in only

10.71% of leaves where tips or points were removed and 51.19% of leaves where some non-

leaf object was removed. When compared to only those leaves that received alterations

during the cleaning process, these values are 19.57% of leaves where tips or points were

removed and 93.48% of leaves where some non-leaf object was removed.

When combining the extraction algorithm and the cleaning algorithm, the overall

algorithm produced successful results for 85.71% of the plant images tested. Of the

remaining 14.29% that were determined to be unsuccessful due to no perfect leaves, at least

one leaf image was acceptable enough to get promising results if used in species

classification.

6.2 Future Work

The proposed algorithms do not provide a solution capable of fully automated plant

species classification from a plant image. They do, however, provide several successful

solutions to some of the tasks necessary for such a system. For a solution capable of fully

automated plant species classification to become a reality, portions of the proposed

algorithms need to be improved or have functionality added, and the tasks not implemented

by the proposed algorithms need to be addressed.

The images used in this research are plants without a background. The leaf detection and

extraction algorithm does not provide adequate results for images with complicated

backgrounds. For images containing complicated backgrounds, a new algorithm could be

designed to separate the plant from the background before it is provided to the leaf detection

and extraction algorithm.

51

When taking photographs of leaves, it is usually very difficult to capture an image where

none of the leaves are overlapping. In the case of overlapping leaves, there is usually at least

one whole leaf on top with other partially occluded leaves behind it. An new algorithm could

be developed to remove the partially occluded leaves and retain the original shape of the

whole leaf. Such an algorithm could be added to the cleaning algorithm proposed to provide

an adequate solution to the problem.

The cleaning algorithm proposed provides adequate results for species classification by

retaining the original shape of most leaves while removing the majority of non-leaf objects.

Species classification relies heavily upon the shape of the leaf, but the proposed algorithm is

not perfect. More research in this area could provide better solutions to the problem which

would directly result in better results from species classification.

The proposed algorithm does not provide a way to automatically detect the best leaf for

species classification. For a fully automated system, this is an essential task that needs an

adequate solution. One possibility is to try all leaves classified as perfect within an image to

see if the recognition algorithm agrees on a species. While a fully automated system for plant

species classification is not provided by this research, this research provides sufficient

evidence that an adequate solution is possible.

52

REFERENCES

[1] Camargo Neto, J., Meyer, G.E., & Jones, D.D. (2006). Individual leaf extractions from

young canopy images using gustafson-kessel clustering and a genetic algorithm.

Computers and Electronics in Agriculture, 51, 66-85.

[2] Manh, A.G., Rabatel, G., Assemat, L., & Aldon, M.J. (2001). Weed leaf image

segmentation by deformable templates. Journal of Agricultural Engineering Research,

80(2), 139-146.

[3] Tang, X., Liu, M., Zhao, H., & Tao, W. (2009). Leaf extraction from complicated

background. Proceedings of the 2009 2nd international congress on image and signal

processing (pp. 1-5). 10.1109/CISP.2009.5304424

[4] Wang, X.F., Huang, D.S., Du, J.X., Xu, H.X., & Heutte, L. (2008). Classification of plant

leaf images with complicated background. Applied Mathematics and Computation,

205(2), 916-926.

[5] Gonzalez, R.C., & Woods, R.E. (2008). Digital image processing. Upper Saddle River,

NJ: Prentice Hall.

[6] Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE

Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

53

APPENDIX A

Results of Leaf Detection and Extraction Algorithm

54

Figure A.1: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.2: Left – Original Image, Right – Extracted Leaf Sub-images

55

Figure A.3: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.4: Left – Original Image, Right – Extracted Leaf Sub-images

56

Figure A.5: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.6: Left – Original Image, Right – Extracted Leaf Sub-images

57

Figure A.7: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.8: Left – Original Image, Right – Extracted Leaf Sub-images

58

Figure A.9: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.10: Left – Original Image, Right – Extracted Leaf Sub-images

59

Figure A.11: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.12: Left – Original Image, Right – Extracted Leaf Sub-images

60

Figure A.13: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.14: Left – Original Image, Right – Extracted Leaf Sub-images

61

Figure A.15: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.16: Left – Original Image, Right – Extracted Leaf Sub-images

62

Figure A.17: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.18: Left – Original Image, Right – Extracted Leaf Sub-images

63

Figure A.19: Left – Original Image, Right – Extracted Leaf Sub-images

Figure A.20: Left – Original Image, Right – Extracted Leaf Sub-images

64

Figure A.21: Left – Original Image, Right – Extracted Leaf Sub-images

65

APPENDIX B

Results of Leaf Cleaning Algorithm

66

Figure B.1: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.2: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.3: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

67

Figure B.4: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.5: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.6: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

68

Figure B.7: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.8: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

69

Figure B.9: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.10: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

70

Figure B.11: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.12: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.13: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

71

Figure B.14: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.15: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.16: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

72

Figure B.17: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.18: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.19: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

73

Figure B.20: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.21: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

74

Figure B.22: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.23: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.24: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

75

Figure B.25: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.26: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.27: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

76

Figure B.28: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.29: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

77

Figure B.30: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.31: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.32: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

78

Figure B.33: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.34: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.35: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

79

Figure B.36: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.37: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

80

Figure B.38: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.39: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

81

Figure B.40: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.41: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.42: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

82

Figure B.43: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.44: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

83

Figure B.45: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.46: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

84

Figure B.47: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.48: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

85

Figure B.49: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.50: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.51: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

86

Figure B.52: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.53: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.54: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

87

Figure B.55: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.56: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

88

Figure B.57: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.58: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.59: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

89

Figure B.60: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.61: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.62: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

90

Figure B.63: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.64: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.65: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

91

Figure B.66: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.67: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.68: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

92

Figure B.69: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.70: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.71: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

93

Figure B.72: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.73: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

94

Figure B.74: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.75: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.76: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

95

Figure B.77: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.78: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

96

Figure B.79: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.80: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.81: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

97

Figure B.82: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

Figure B.83: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

98

Figure B.84: Left – Original Leaf Sub-image, Right – Leaf Sub-image Cleaned

99

VITA

Dale Garrett Henries was born in Boone, North Carolina in 1984. He graduated from

Watauga High School in 2003, and began attending Appalachian State University the same

year. While taking electives to finishing his undergraduate degree in Criminal Justice, he

discovered a passion for Computer Science. In August of 2008 he both graduated with his

Bachelor of Science in Criminal Justice and immediately began to pursue a Master of

Science in Computer Science. Mr. Henries received the Master of Science in Computer

Science degree in August of 2011.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: IMAGE PROCESSING TECHNIQUES
	2.1 Introduction
	2.2 Morphological Operations
	2.2.1 Erosion
	2.2.2 Dilation
	2.2.3 Opening
	2.2.4 Closing

	2.3 Gradient Images
	2.4 Conversion of RGB to Grayscale
	2.5 Otsu Thresholding
	2.6 Marker Controlled Watershed Segmentation

	CHAPTER 3: METHODOLOGY
	3.1 Introduction
	3.2 Image Preprocessing
	3.3 Detection and Extraction of Individual Leaves
	3.3.1 Segmentation of the Plant
	3.3.2 Segmentation of Leaves
	3.3.3 Creation of Individual Sub-Leaf Images

	3.4 Individual Leaf Image Cleaning
	3.4.1 Determination of Core Leaf Body
	3.4.2 Examination of Border Regions
	3.4.3 Removal of Selected Regions

	CHAPTER 4: IMPLEMENTATION
	4.1 GrayscaleImage and BinaryImage Wrapper Classes
	4.1.1 Accessing and Setting Pixel Values
	4.1.2 GrayscaleImage and BinaryImage Construction
	4.1.3 Grayscale Image Specific Operations
	4.1.4 Binary Image Specific Operations
	4.1.3.1 Morphological Operations
	4.1.3.2 Regional Operations
	4.1.3.3 Global Operations
	4.1.3.4 Comparative Operations

	4.2 Other Classes
	4.2.1 OtsuThreshold
	4.2.2 Watershed

	4.3 The LeafExtractor Class
	4.4 The LeafCleaner Class

	CHAPTER 5: RESULTS
	5.1 Detection and Extraction of Individual Leaves
	5.2 Cleaning Leaf Images
	5.3 Overall Algorithm Results

	CHAPTER 6: CONCLUSIONS
	6.1 Outcomes
	6.2 Future Work

	REFERENCES
	APPENDIX A
	APPENDIX B
	VITA

