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 Org 27569, Org 27759 and Org 29647 are the first discovered allosteric 

modulators of the cannabinoid CB1 receptor.  These ligands are thought to bind to  

“accessory binding sites” at the receptor.   Binding of the Org allosteric modulators has 

been shown to affect the affinities of various CB1 ligands, but to reduce the efficacy of 

these ligands.  The goal of this research project was to understand at a molecular level, 

the origins of the effects produced by the Org allosteric modulators.  

             The study was begun by performing AM1 conformational searches for each 

allosteric modulator using the Spartan molecular modeling suite.  Those conformers 

within 2.00 kcal/mol of the global minimum energy conformer of each modulator were 

subjected to geometry optimization in  Jaguar (Schrodinger, Inc).  Org27569 was then 

targeted for further study.  Org 27569 has been reported to increase the CB1 affinity of 

the non-classical cannabinoid, (1R3R4R)-3-[2-hydroxy-4-(1,1-dimethylheptylphenyl]-4-

(3-hydroxy-propyl)cyclohexab-1-ol, CP-55,940, but to reduce its efficacy. 

 Since the binding site of Org27569 is unknown, the MMC program was then 

employed to identify potential binding sites. The MMC program is a cavity biased 

method that uses Monte Carlo simulated annealing of chemical potential to identify 

small-molecule binding sites in protein structures via a molecular fragment approach [F. 

Guarnieri and M. Mezei,JACS 118, 8493, 1996].  The receptor was placed in a virtual 

cell.  At high chemical potentials, the box is filled with completely with the fragment of 



 
 

 

interest.  As the chemical potential decreases, fragments with less favorable interactions 

are stripped away.  Indole and piperidine rings were used as fragments because they 

constitute the two major structural features of Org 27569.  Three common binding sites 

for both the indole and piperidine fragments were identified.  These areas were R3.50 

(intracellular domain), W4.50 (possible homodimer interface) and in the transmembrane 

region between helices 1 and 2 (interacting with CP55,940).  These were considered 

possible interaction sites for the following reasons:  (1) If interactions occurred between 

the allosteric modulator and R3.50, this would block the interaction site of the G-protein 

and thus impair signalling.  (2) W4.50 is commonly found in GPCR dimer interfaces. If 

the CB1 receptor functions as a dimer, Org27569 would impair activation by blocking 

dimer formation.  (3) The TMH1-2 site site would allow the affinity of CP55940 to 

increase because it would block CP55940 exit from CB1.  At the same time, the TMH1-2 

site dock would constrain TMH6 from moving during activation by tethering the EC-3 

loop.  This should also result in impaired signal transduction.  Future studies will involve 

mutation studies of each allosteric binding site identified in this project to determine the 

allosteric binding site for Org 27569. 
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CHAPTER I 

INTRODUCTION TO G-PROTEIN COUPLED RECEPTORS AND THE 
CANNABINOID 1 RECEPTOR 

 
 

 The goal of this thesis project is to understand the action of novel allosteric 

modulators at the cannabinoid CB1 receptor. L.A Matsuda and co-workers first cloned 

and expressed the complimentary DNA that encoded the cannabinoid CB1 receptor from 

a rat cerebral cortex cDNA library in 1990 (Matsuda et al., 1990).  The amino acid 

sequence of CB1 was found to be consistent with the tertiary structure of a G-protein 

coupled receptor (GPCR).  Subsequently, the primary amino acid sequence of an N-

terminus variant of CB1 and the sequences for human and mouse CB1 were reported 

(Abood et al., 1997; Gerard et al., 1991).  The CB1 receptor is typically found in the 

central nervous system, however mRNA of CB1 has been identified in testis (Gerard et 

al.,1991). 

. G-Protein Coupled Receptor Structure 

G-protein coupled receptors (GPCRs) are a large group of proteins that are 

responsible for signal transduction.  The structures of GPCRs include seven 

transmembrane alpha helices (TMHs) connected by intervening loops with an 

extracellular N-terminus and an intracellular C-terminus.   In higher organisms, these 

receptors are responsible for the recognition of environmental stimuli.  Some of these 

stimuli include light, taste, and odor.  GPCRs are also responsible for other types of 
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communication across the plasma membrane.  About 80% of all drug targets in the 

pharmaceutical industry today are GPCRs  (Mirzadegan et al., 2003). 
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Figure 1:  Generalized Structure of a G-Protein Coupled Receptor 
 

 
One of the most commonly studied GPCRs is the dim light photoreceptor, 

rhodopsin.  Rhodopsin is a member of the Class A GPCR family.  This class comprises 

approximately ninety percent of all known GPCRs.  Rhodopsin is activated by light and 

turns on a signaling pathway that leads to night vision.  Rhodopsin is composed of a 

protein, opsin, to which a derivative of vitamin A , 11-cis-retinal , is covalently bound.  

Isomerization of 11-cis-retinal to all trans-retinal is initiated by absorption of a photon.  

 2



 

This isomerization leads to a conformational change in the protein that is the beginning of 

signal transduction (Palczewski et al., 2000). 

The first x-ray crystal structure of bovine rhodopsin (in the dark (inactive) state) 

was reported by Palczewski and co-workers (Palczewski et al., 2000).  In this structure 

(PDB #1F88), a total of 338 amino acid residues corresponding to 97.1% of the opsin 

molecule were resolved in the crystal structure.  The last 15 residues of the C-terminus 

had to be modeled as alanines.  Also resolved in the structure was the 11-cis-retinal 

chromophore (covalently bound to Lys296), as well as two zinc ions, three mercury ions 

and several water molecules. 

The crystal structure of rhodopsin is important because it can serve as a structural 

template for other GPCRs.  This includes the assignment of secondary structure and the 

location of highly conserved residues.  Rhodopsin represents an intermediate size GPCR 

of the family and can feature most of the essential parts of functional importance in G-

protein activation.  The length of the helices and the extracellular loops are expected to be 

about the same for most Class A family members. 

GPCR Signalling 

GPCRs can be thought to exist in at least two states, the inactive (R) state and the 

activated (R*) state.  Often the structure of a new protein can be modeled based on a 

homology structure of a well studied protein.  For Class A GPCRs, the rhodopsin crystal 

structure is typically used to model the R state.  There are several ways to model the 

activated state of GPCRs.  One way to get a model of the activated state would be to use 

molecular dynamics (MD) simulations starting with the agonist bound in the inactive 
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state.  However, MD simulations performed on very high performance computing 

clusters today reach only microseconds.  In contrast, the time that it takes for rhodopsin 

to light activate has been estimated to be milliseconds (Arnis et al., 1994), while it takes 

seconds for the β2-AR (beta-2-adrenergic receptor) to be activated by its diffusible ligand 

(Ghanouni et al., 2001).  Because GPCR activation takes much longer than the typical 

MD simulation will allow, it isn’t possible at the current time to perform these 

simulations to study agonist induced changes to the R state to generate the R* state 

without intervening in the process using steered molecular dynamics, see for example 

(Saam et al., 2002). 

Another way to approach building a model of a GPCR activated state is to build a 

model based on the conformational changes that have been suggested to occur by 

biophysical studies.  Through biophysical studies of rhodopsin and the β2 adrenergic 

receptor, it has been shown that during activation there are rigid domain motions and 

rotations of transmembrane helices 3 and 6 (TMH3 and TMH6) that occur.  These 

rotations are counterclockwise when one looks at the receptor from an extracellular view 

point (Farrens et al., 1996; Gether et al., 1997; Ghanouni et al., 2001).  In rhodopsin, 

TMH3 and TMH6 are constrained at the intracellular end by a 

E3.49(134)/R3.50(135)/E6.30(247) salt bridge that limits the ability for the cytoplasmic 

ends of TMH3 and TMH6 to move in the inactive state (Palczewski et al., 2000).  This 

salt bridge acts as an “ionic lock” (Ballesteros et al., 2001; Visiers et al., 2002).  During 

activation, P6.50 of the highly conserved TMH6 CWXP motif acts as a hinge allowing 

TMH6 to straighten, moving its intracellular end away from TMH3 and up toward the 
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lipid bilayer (Altenbach et al., 2008; Jensen et al., 2001).  This movement produces a 

break in the E3.49(134)/R3.50(135)/E6.30(247) salt bridge. 

Based on the above information, a model of the CB1 activated state has been built 

in the Reggio lab.  This model has been tested through mutation(Kapur et al., 2007; 

McAllister et al., 2004), substituted cysteine accessibility (Guo et al., 2005) and covalent 

probe (Khanolkar et al., 2000) experiments and the information from these experiments 

has been used to refine the model.  

GPCR activation is thought, not only to involve changes in the intracellular 

domains, but also to involve a molecular switch within the ligand binding pocket 

(Kobilka and Deupi, 2007).  This switch is a non-covalent intramolecular interaction that 

exists within the ligand binding pocket in the basal state of a GPCR that must be 

disrupted to achieve an active state.  A commonly proposed switch is the “rotamer toggle 

switch” which involves W6.48 on TMH6 (Kobilka and Deupi, 2007; McAllister et al., 

2004; Shi et al., 2002).  In the dark (inactive) state of rhodopsin, the beta-ionone ring of 

11-cis-retinal is close to W6.48(265) of the CWXP motif on TMH6 and acts as a lynch 

pin, constraining W6.48 in a χ1 = g+ conformation (Li et al., 2004; Okada et al., 2002; 

Palczewski et al., 2000).  In the light activated state, the beta-ionone ring moves away 

from TMH6 and toward TMH4 where it resides close to A4.58(169) (Borhan et al., 

2000).   This movement releases the constraint on W6.48(265), making it possible for 

W6.48(265) to undergo a conformational change. Lin and Sakmar (Lin and Sakmar, 

1996) reported that perturbations in the environment of W6.48(265) of rhodopsin occur 

during the conformational change concomitant with receptor activation.  This suggests 
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that the conformation of W6.48(265) when rhodopsin is in its inactive / ground state (R; 

χ1 = g+) changes during activation (i.e., W6.48(265)  χ1  g+ → trans) (Shi et al., 2002). 

The CB1 receptor contains a microdomain of aromatic residues that face into the ligand 

binding pocket in the TM3-4-5-6 region, including F3.25(189), F3.36(200), W4.64(255), 

Y5.39(275), W5.43(279)  and W6.48(356).  Singh and co-workers used the biased Monte 

Carlo/simulated annealing technique of Conformational Memories combined with 

receptor modeling to suggest that the F3.36(200)/W6.48(356) interaction in CB1 may act 

as a mimic of the 11-cis-retinal/W6.48 interaction in the rhodopsin dark state and may 

serve as the “toggle switch” for CB1 activation, with F3.36(200) χ1 trans / W6.48(356) 

χ1 g+ representing the inactive (R) and F3.36(200) χ1 g+ /W6.48(356) χ1 trans 

representing the active (R*) state of CB1 (Singh et al., 2002).   A detailed functional 

analysis of mouse CB1 F3.36A and W6.48A mutants, undertaken to test this “toggle 

switch” hypothesis showed statistically significant increases in ligand-independent 

stimulation of GTPγS binding for a F3.36A mutant vs. WT mCB1, while basal levels for 

the W6.48A mutant were not statistically different from WT mCB1.  These results 

suggested that F3.36 may function as a “linch pin”, restraining W6.48 from moving to an 

active state conformation in the CB1 receptor  (McAllister et al., 2004). During activation 

of the CB1 receptor, the counterclockwise motion of TMH3 and TMH6 would cause 

F3.36 and W6.48 to move past each other.  From an extracellular view point, one would 

see that W6.48 moves towards TMH5 and F3.36 moves towards TMH2.   

While it has been common place to build models of GPCRs as monomers and 

some recent studies support monomeric GPCRs as functional units (Chabre and le Maire, 
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2005; Whorton et al., 2007),  the emerging concept of GPCR dimerization has begun to 

challenge this notion.   Recent work has shown not only that many GPCRs exist as homo- 

and heterodimers, but also that GPCR oligomeric assembly may have important 

functional roles. (Bulenger et al., 2005; Terrillon and Bouvier, 2004)  At this point in the 

cannabinoid field, there is evidence of the functional importance of a CB1/ dopamine D2 

heterodimer (Kearn et al., 2005; Reggio, 2006), but evidence for the functional 

significance of CB1 homodimers or oligomers has not been published.  Therefore, in this 

thesis, only a monomeric CB1 model is considered. 
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The CB1 receptor has five structurally distinct classes of ligands that can interact with it.  

The structures of these ligands are illustrated in Chart 1. Included in these are the 

classical cannabinoid agonists, such as (6aR)-trans-3-(1,1-dimethylheptyl)6a,7,10,10a-

tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol), HU-210  ; non 

classical cannabinoid agonists, such as (1R3R4R)-3-[2-hydroxy-4-(1,1-

dimethylheptylphenyl]-4-(3-hydroxy-propyl)cyclohexan-1-ol, CP-55,940; the 

endogenous cannabinoid agonists, such as, N-arachidonoylethanolamine, anandamide; 
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and, the aminoalkyindole (AA1) agonists such as 2,3-dihydro-5-methyl-3-[(4-

morpholinyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphyl)methanone, WIN55212-2.  

Diaryl pyrazole antagonist/inverse agonists such as N-(piperdin-1-yl)-5-(4-chlorophenyl)-

1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; SR141716A, have also 

been reported. 

Both SR141716A and WIN55212-2 are highly aromatic compounds.  Mutation 

studies have shown that each binds in the TMH3-4-5-6 region of CB1 (McAllister et al., 

2003).  However, these ligands favor different states of CB1.  Because SR141716A is an 

inverse agonist, it will have higher affinity for the inactive (R) state.   In the inactive 

state, SR141716A has been proposed to form aromatic stacking interactions with F3.36, 

Y5.39, and W5.43 (McAllister et al., 2004).  SR141716A also forms a hydrogen bond 

with K3.28 (Hurst et al., 2002), a residue that is only available to the TMH3-4-5-6 region 

of CB1 in the inactive state.  This hydrogen bond has been shown to be the key 

interaction which imparts the SR141716A preference for the R state (Hurst et al., 2006; 

Hurst et al., 2002).  Figure 2 illustrates SR141716A docked in the CB1 R model.  

Residues with which SR has direct interactions are colored yellow, while residues that 

form part of the extended SR/CB1 complex are colored green.  
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Figure 2:  SR141716a Docked in the Inactive (R) State Model of the CB1 Receptor. 

  
 Because WIN55212-2 is an agonist, it will have higher affinity for the activated 

(R*) state.    In the activated state, WIN 55-212-2 has been proposed to form interactions 

with F3.36, W5.43, and W6.48 (McAllister et al., 2004).  In 1996, Song and Bonner 

(Song and Bonner, 1996) reported that mutation of K3.28 in CB1 to Ala resulted in a 

complete loss of HU210, CP55940 and anandamide (but not WIN55212-2) binding and a 

>100-fold decrease in EC50 for HU210, CP55940 and anandamide (but not WIN55212-2) 

upon this mutation.  These results were confirmed later by Chin and co-workers (Chin et 

al., 1998).  Figure 3 illustrates WIN55212-2 docked in the CB1 R* model.  Residues with 
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which WIN has direct interactions are colored yellow, while residues that form part of the 

extended WIN/CB1 R* complex are colored green.  

Figure 3: WIN55-212-2 Docked in the Activated (R*) State Model of the CB1 Receptor. 

 
 
Mutation results reported by McAllister and co-workers have shown that the 

affinity of the cannabinoid agonist, CP55940 is unaffected by the F3.25A, F3.36A, 

W5.43A or W6.48A mutations (McAllister et al., 2003).  These results suggest that 

unlike WIN55212-2, CP55940 does not bind in the TMH3-4-5-6 aromatic microdomain.   

Instead, modelling studies have suggested that CP55940 binds in the TMH2-3-6-7 region 
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of CB1 with a K3.28 hydrogen being the primary interaction site for CP55940 at CB1 

and S1.39 and K(373) serving as secondary sites of interaction (see Figure 4). Kapur and 

co-workers (Kapur et al., 2007)recently reported that the CB1 S7.39A mutant resulted in a 

total ablation of [3H]CP55940 high affinity binding. This loss of binding was attributed to 

a change in TMH7 conformation upon this mutation that brings the extracellular end of 

TMH7 into the binding pocket of CP55940.  Figure 4 illustrates CP55940 docked in the 

CB1 R* model.  Residues with which CP has direct hydrogen bonding interactions are 

Figure 4:  CP55,940 Docked in the Activated (R*) State Model of the CB1 Receptor. 

colored yellow.  
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CB1 docking studies of the endogenous agonist anandamide in CB1 R* have 

suggested that anandamide binds in a U shaped conformation in the TMH 2-3-6-7 region 

using K3.28 as its primary interaction site (McAllister et al., 2003).   The binding site 

region identified for AEA by McAllister and co-workers has received support from 

modeling studies performed by Brizzi and co-workers (Brizzi et al., 2007).   These 

authors found that AEA docks in the TMH2-3-6-7 region of CB1 with the aliphatic chain 

directed toward the intracellular side of the receptor. The amide oxygen atom of AEA is 

hydrogen bonded to K3.28, while the hydroxyl group forms a hydrogen bond with S7.39. 

The n-pentyl tail of AEA is stabilized by lipophilic interactions with F3.25, V6.59, and 

F7.35 (Brizzi et al., 2007). 

Allosteric Modulators 

 The binding site at which GPCR agonists bind and activate their receptors is 

termed the orthosteric site.  Allosteric sites are “accessory binding sites” at which ligand 

binding can modulate (positively or negatively) the effect produced by the agonist at the 

orthosteric site.  Allosteric modulators are characterized by the cooperativity factor, α, 

which quantifies the magnitude by which the affinity of one ligand is changed by the 

other ligand when both are bound to the receptor (i.e., the ratio of the binding constant of 

the allosteric site to that of the orthosteric site).  The effect of allosteric modulators is 

saturable; i.e., once the allosteric sites are completely occupied, no further allosteric 

effect is observed. By contrast, classic orthosteric (competitive) antagonism can 

theoretically be infinite, as it depends only on the relative concentrations of the 

competing species. Saturability of allosteric effects applies to both positive and negative 
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allosteric modulators, and is therefore useful for drug candidates that are aimed at either 

enhancing or antagonizing receptor-mediated effects; the modulators can be given in 

relatively high doses without fear of overstimulating or overinhibiting the system 

(Christopoulos, 2002).  Therefore, one reason for interest in allosteric modulators is that 

they can be prescribed with orthosteric compounds to minimize the dose of the 

orthosteric compound needed to achieve a desired pharmacological effect (Christopoulos 

and Kenakin, 2002).    

Allosteric modulation can offer “absolute subtype selectivity”.  An example of 

this is the documented allosteric modulation produced by N-chloromethylbrucine at the 

muscarinic receptors when acetylcholine is the orthosteric ligand (see Table 1) 

(Christopoulos and Kenakin, 2002).  Log[KA
-1]  is a measure of the affinity of N-

chloromethylbrucine for the receptor. Table 1 shows that while the affinities of N-

chloromethylbrucine are in the same range, the cooperativity factors (α) are quite 

different. Here it is clear that N-chloromethylbrucine is only positively cooperative with 

acetylcholine at the M3 receptor (Christopoulos and Kenakin, 2002).   
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Table 1:  Cooperative Factors with Acetylcholine at the M3 Receptor 

Subtype Log[KA
-1] α 

M1 4.38 0.45 

M2 4.22 0.094 

M3 3.66 3.26 

M4 4.32 1.03 

M5 3.66 0.055 

 

Allosteric Modulators of the CB1 Receptor 

Price and co-workers (Price et al., 2005) have shown that Org 27569 (5-Chloro-3-

ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 

(3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-(94-dimethylamino-phenyl)-ethyl]-

amide and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-

3-yl)-amide, 2-enedioic acid salt) are unexpectedly, allosteric enhancers of CB1 agonist 

binding affinity, but are functionally allosteric inhibitors of CB1 agonist signalling 

efficacy (see Figures 5 and 6).  Horswill and co-workers(Horswill et al., 2007) recently 

reported a strikingly similar profile for PSNCBAM-1 (see Figure 7) (Horswill et al., 

2007). 
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Figure 5:  Allosteric Modulators for the CB1 Receptor. The arrows indicate bonds 
rotated during conformational analyses. 
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Figure 6:  Binding Affinity Data for CP55,940 in the Presence of the Allosteric       
         Modulators.  
 
 
 Figure 6 shows that in the presence of the Org allosteric modulators, ORG 27569 

has the greatest affect on the binding of CP 55,940.  While, Figure 8 shows that in the 

presence of ORG 27569, the signalling of CP55940 decreases dramatically (Price et al., 

2005). 

 

 

 

 

 Figure 7:  PSNCBAM-1 
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Figure 8:  [35S]GTPγS Binding in Mouse Brain Membranes in the Presence of                         
        ORG27569.   
 
 Taken together, Figures 6 and 8 show that the Org compounds display a ligand-

dependent effect, whereby they enhance the specific binding of the CB
1 

receptor agonist 

CP55940 but diminish its signalling.  Thus these ligands are allosteric enhancers of 

agonist binding affinity and allosteric inhibitors of agonist signalling efficacy.  The Org 

compounds are neither agonists nor antagonists in CB1 
receptor assay systems 

([35S]GTPγS binding in brain membranes, mouse isolated vas deferens and a CB1 
cAMP 

reporter assay), as they have no effect in the absence of agonist (Price et al., 2005). 

 

 The goal of this thesis project is to understand at the molecular level, the origins 

of the effects (presented in Figures 6 and 8) that are produced by Org27569, Org27759 

and Org29647 on the binding of agonist, CP55940.  
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CHAPTER II 

RESEARCH METHODS 
 
 

Conformational Analysis 

 In order to understand the effects produced by Org27569, Org27759 and 

Org29647 on the binding of agonist, CP55940 at a molecular level, one first needs to 

understand the structure and flexibility of these compounds.  To this end, the structure of 

each allosteric modulator was built in Spartan (Wavefunction INC, Irvin CA).  A semi-

empirical AM1 conformational analysis was performed on each allosteric modulator.  

Rotations were performed about each of the bonds marked by arrows in Figure 5.  Once 

the conformational search was completed, each compound was examined and the global 

minimum energy conformation was identified.  Minimum energy conformers that were 

within 2.00 kcal/mol of the global minimum were considered accessible conformations 

and were exported into Jaguar (Schrodinger New York, NY).  
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Jaguar Optimization 

The conformation of the global minimum energy conformer and each minimum 

energy accessible conformer identified with AM1 was refined using a Hartree-Fock ab-

initio geometry optimization at the 3-21G* level as encoded in Jaguar (Schrodinger, 

NewYork, NY). Results indicated that these ligands have low energy folded and extended 

conformations (see Results section, Figure 9). 

Minimization of CB1 R* with Orthosteric Ligand (CP55940) 

 The wild type CB1 R* bundle with CP55940 docked was prepared and minimized 

as described in Kapur et. al. 2007(Kapur et al., 2007) .   This model includes the CB1 

trans membrane helix bundle, all intra- and extracellular loops, the complete C-terminus 

and a truncated N-terminus.  This ligand/receptor model was used for all calculations 

described below. 

Identification of Allosteric Binding Sites Using Grand Canonical Monte Carlo 

Simulations 

 The binding sites of the Org compounds have not yet been identified.  In order to 

get an initial indication of where these compounds may bind at CB1, we used a novel 

cavity-biased grand canonical Monte Carlo method (MMC) (Guarnieri and Mezei, 1996) 

to identify regions of CB1 at which specific molecular fragments of the Org compounds 

bind.   The MMC method is best described by Clark and co-workers (Clark et al, 2006): 

 The goal of this method is to create a series of grand canonical ensembles of 

ligands of interest interacting with a protein in a large simulation cell using Monte Carlo 

sampling (Clark, Guarnieri et al. 2006).  The ligands are positioned throughout the cell 
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and over the entire surface of the protein.  The free energy is annealed and the output of 

the calculation is an ensemble of ligand positions  at each energy level in the annealing 

schedule.  Annealing is typically run at descending free energy levels with each new level 

starting from the last ensemble generated from the previous run.  There are several 

textbooks that show the derivation of the thermodynamics of the grand canonical 

ensemble (Friedman, 1985).  The MMC approach has been used widely in surface 

science (He and Seaton, 2003; Meredith and Johnston, 1999; Nagumo, 2003).  There has 

been limited use of the approach in chemistry (Jayaram and Beveridge, 1991). 

 In the grand canonical ensemble, the system energy is generally defined as the 

excess chemical potential relative to the chemical potential of a reference state, μ-μideal -

(Clark, Guarnieri et al. 2006).  The unitless property, B, is used instead of directly using 

the excess chemical potential to set the system energry.  The relationship between B and 

the number of ligands in the system, N, is show in equation 1 (Adams, 1975). 

B=(μ-μideal)/kT+lnN                          (1) 

 B is related to the concentration of molecules in the system as shown in equation 

2.  In MMC, it is B that is annealed rather than the chemical potential.  One of the key 

features of the grand canonical ensemble is that the number of molecules in the system is 

varied by attempts to insert or delete molecules until the system density equilibrates to 

that particular chemical potential.  The probability of accepting the insertion or deletion 

of a molecule into a system and the transforming from state i to j in terms of B is given in 

the equation below. 

Pij/Pji = [V exp(B – (Ei- Ej)/kT]/Nj                 (2) 
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 The relationship of B to the system concentration can be emphasized by factoring 

equation 2. 

(Pij/Pji) = (V/Nj)exp (B) exp(-ΔE/kT)          (3) 
 

 For an ideal gas, ΔE is always zero.  At B=0, the above equation will result in a 

concentration of one molecule per system volume V.  The reference state for the above 

condition is set by multiplying V/N by a reference concentration to make B represent the 

energy with respect to the reference state.   

 In the grand canonical ensemble, the ligands of interest can rotate and translate as 

well as leave or enter the system.  These moves are attempted randomly and the 

probability of accepting the moves is given by equations 4-6.   

αinsert  = min[1, exp(-ΔE/kT + B) V/(N+1)]            (4) 
 

αdelete = min[1, exp(-ΔE/kT – B) N/V]                   (5) 
 

αmove = min[1, exp(-ΔE/kT)]                                  (6) 
 

 In the above equations, the term ΔE represents the change in potential energy for 

the move that is attempted.  The unitless chemical potential and the temperature in Kelvin 

are represented by B and T, respectively.  Equation 4 gives the probability of accepting 

the insertion of a new ligand into the system.  In order to create a favorable interaction, 

the change in energy should be negative.  This would make the value of the exponent in 

equation 4 positive and the insertion is likely to be a favorable move and thus accepted.  

Equation 5 gives the probability of a particular ligand leaving the system.  In this case, if 

the change in energy is positive, then the exponent would be negative.  This would mean 
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that the removal is likely because the ligand has created an unfavorable interaction.  Note 

that for insertion the number of ligands changes from N to N+1 while for deletion the 

number of ligands changes from N+1 to N.  Equation 6 represents the probability of 

accepting the rotation or translation of a ligand without changing the number of ligands 

present in the system.  Equation 6 may also be used to calculate the probability of 

accepting conformational changes to the ligand of interest.   

 By using one or more of the above methods, a new configuration can be 

generated.  The way the method determines if a move is accepted is by computing the 

change of energy and comparing it to a number that is randomly generated with a 

uniform distribution between 0 and 1.  If the probability computed above is greater than 

the random number that was generated, then the move is accepted.   

 The states of the system, collected as snapshots characterized by N, and E ( the 

average energy per ligand molecule) is the key outcome of a grand canonical ensemble 

simulation.  After equilibration, the resulting ensemble of ligands corresponds to the free 

energy represented by the given B value (Clark, Guarnieri et al. 2006)  

 

 The MMC method has been used successfully to identify potent and novel p38 

kinase inhibitors  (Moore, 2005) and to identify thermolysin and T4 lysozyme binding 

sites (Clark et al., 2006).  As initial tests of the MMC method, studies were performed to 

identify binding sites for water in bovine pancreatic trypsin inhibitor (BPTI) (Wlodawer 

et al., 1984), a protein for which good crystal structure information is available.  A simple 

comparative study of three crystal structures of BPTI (PDB Numbers-1BPI, 5PTI and 
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6PTI) was performed. Once it was clear that the method was running properly, the study 

of the Org compounds at CB1 was undertaken.  The molecular fragments used in this 

method were fragments relevant to the structures of the Org compounds (indole and 

piperidine rings).  MMC runs were undertaken with the CB1 R* model (Kapur et al., 

2007) and each fragment separately.  Both the exterior and the interior of the receptor 

were sampled.  Sites were sought at which the fragment clusters were consistent with the 

molecular structure of each compound.   Clusters with molecular fragment spacing 

consistent with folded conformations identified for each compound, as well as extended 

conformations of each compound were considered. 

Docking 

 Preliminary results from our conformational analysis indicated that the Org  

ligands have low energy folded and extended conformations.  Results from MMC 

calculations determined whether the folded and/or extended conformer of each compound 

would be used for docking studies.  Each Org conformer was then docked at each site 

identified by MMC calculations on the CB1 R* bundle using Maestro (Schrodinger New 

York, NY).  This CB1 R* bundle had CP55940 docked at the orthosteric site as 

previously established via mutation studies(Kapur et al., 2007; McAllister et al., 2003; 

Picone et al., 2005) 

Minimization of Bundle with Allosteric Modulator 

 The energy of docked ORG 27569 allosteric modulator positions to the CP55940 

WT CB1 R* complex was minimized using the OPLS 2005 force field in Macromodel 

9.1 (Schrödinger Inc., Portland, OR).  An 8.0-Å extended nonbonded cutoff (updated 
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every 10 steps), a 20.0-Å electrostatic cutoff, and a 4.0-Å hydrogen bond cutoff were 

used in the calculation.   A generalized born/surface area continuum solvation model for 

water, or GBSA model, as implemented in Macromodel was used for docking positions 

shown in figures 14 and 16 of the allosteric modulator.  In each minimization the 

CP55940 WT CB1 R* complex was treated as non-moving fixed atoms as implemented 

in Macromodel 9.1, while the allosteric modulator ORG 27569 was completely free to 

move.  Conjugate gradient minimization was performed for each docking position until a 

final gradient of 0.01 kcal/(mol(A^2)) was reached.  

Assessment of Pair-wise Interaction Energies 

 Pair-wise interaction energies were then calculated between ORG 27569 and 

receptor residues within 4.0 Å.  After defining the atoms of ORG 27569  as one group 

(group 1) and the atoms corresponding to a residue that lines the binding site in the final 

ligand/CB1 R* complex as another group (group 2), Macromodel (version 9.1) was used 

to output the pair-wise interaction energy (coulombic and van der Waals) for a given pair 

of atoms. The pairs corresponding to group 1 (ligand) and group 2 (residue of interest) 

were then summed to yield the interaction energy between the ligand and that residue.  

See Table 3. 

 
 The energies of interaction were compared for the orthosteric ligand (CP55940) in 

the presence and absence of the allosteric modulator (Org27569) at each site identified by 

MMC calculations.  Allosteric sites were sought that would yield results consistent with 

the experimental results presented in Figures 6 and 8 above.  
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CHAPTER III 

PRELIMINARY RESULTS 
 
 

AM1 Conformational Searches 

 The global minimum energy conformations of Org27569, Org27759 and 

Org29647 were found to be folded conformations.  However, extended conformations at 

1.26 kcal/mol, 1.88 kcal/mol and 5.70 kcal/mol above the global minima were identified 

for Org27569, Org27759 and Org29647, respectively.  For Org27569 and Org27759, 

these extended conformations were low enough in energy to be considered accessible at 

biological temperature. 
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Figure 9:   AM1 Conformational Search Results. The lowest energy folded and 
extended conformers of each Org compound are represented.  In each case a folded 
conformation was the global minimum energy conformer. 



 

Jaguar Optimization 

 Table 2 shows that the ab-initio optimization (performed in Jaguar) still identified 

the folded conformers to be the global minima.  The relative energies of the extended 

conformers were very similar to those calculated using AM1.  

 
Table 2:  Ab-initio Relative Energies. 

Org27569 Folded Global min 

 Extended ΔE= +1.51 kcal/mol 

Org27759 Folded Global min 

 Extended ΔE=+1.75 kcal/mol 

Org29647 Folded Global min 

 Extended ΔE=+5.77 kcal/mol 
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. Preliminary Docking Experiments 

 Figure 10:  Preliminary Docks of all Three Org Allosteric Modulators. 
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 Before beginning MMC calculations, an attempt was made to identify the 

allosteric sites for the Org compounds via hypothesis driven docking studies.  The sites 

initially identified were based on the hypothesis that these compounds may bind at the 

interface of TMH5 and TMH6.  In this location, many aromatic amino acids are available 

for interaction and the location would interfere with activation of the receptor.  The 

results of initial docking studies were presented in Spring 2006 at the national ACS 

meeting in Atlanta.  These sites are illustrated above in Figure 10.  MMC studies were 

undertaken  after these initial docking studies in order to identify alternate sites for each 

Org ligand. 

MMC 

 As initial tests of the MMC method, studies were performed to identify binding 

sites for water in bovine pancreatic trypsin inhibitor (BPTI) (Wlodawer et al., 1984), a 

protein for which good crystal structure information is available.  A simple comparative 

study of three crystal structures of BPTI:  1BPI, 5PTI and 6PTI was performed.  After 

examining each of these crystal structures, four common/conserved internal waters and 

five common/conserved surface waters were identified.  Three of the four internal waters 

form a triplet that hydrogen bonds to one another for stability.  Conserved surface waters 

were found hydrogen bonding with residues R1, D3, T32, K46 and E49.  Figure 11 

illustrates results from the MMC study of BPTI. At left, the simulation cell containing 

BPTI and water at B = 10 is illustrated.  Here water fills the simulation cell.  At B = -7 

(center), waters have been stripped away as the chemical potential is reduced. At B = -19 
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(right), only the bound waters identified in BPTI crystal structures remain, including the 

distinctive triplet waters.  

 

Figure 11:  Initial MMC BPTI Runs.  The initial MMC BPTI runs (Left, B= 10, Center 
B=-7; Right B=-19) are represented in the illustration. Waters are contoured at their Van 
der Waals radii.  Internal waters are colored green, while external waters are colored red.  
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CHAPTER IV 

RESULTS BASED OFF OF MMC STUDIES OF THE CB1 RECEPTOR 
 
 

MMC Study of CB1 

 The MMC program was used to identify possible binding sites for indole and 

piperidine fragments (appropriate fragments of the Org structures) at the CB1 

R*/CP55940 complex.  Our goal was to identify sites at which not only ligand binding 

free energy was low, but also sites at which function would be impaired. 

 Figure 12 illustrates MMC results for the piperidine ring fragments at B= -2.  

Regions in which piperidine rings are colored yellow were those identified as plausible 

allosteric sites based upon their relationship with GPCR function.   These three sites were 

(1) the region near R3.50, a key residue in the TMH3-6 intracellular salt bridge that is 

one toggle switch for GPCR activation; (2) W4.50, a residue commonly found in GPCR 

homodimer interfaces; and, (3) a TMH1-2 site near the orthosteric binding site. 
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Figure 12:  Original MMC Output of the Piperdine Fragment at B=-2 at the CB1 
R*/CP55940 Complex.  The yellow piperdines are those fragments that may represent 
possible binding sites of Org27569 consistent with its pharmacology.  
 
 
Figure 13 illustrates MMC results for an indole fragment.  At B= -5, there were many 

more indole fragments left compared with piperidine fragments above in Figure 12.  
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Figure 13:  Original MMC Output of the Indole Fragment at B=-5 at the CB1 
R*/CP55940 Complex.  The yellow indoles are those fragments that correspond to 
regions identified with piperidine fragments in Figure 12.  
 
 
 These results were combined with the results of the piperdine runs in order to 

form hypotheses about where Org27569 could possibly dock.  Notice that the piperdine 

fragments (Figure 12) cluster in three of the same places as the indoles (Figure 13) after 

their respective phase transitions.  Based on the raw MMC results, three docking 

positions were hypothesized.  These docks are illustrated in Figures 14-16 below.     

 
 (1) In Figure 14, Org27569 interacts with R3.50, a residue thought to stabilize the 

inactive state via a salt bridge with D6.30 (Ballesteros et al., 2001).  This interaction is 

 34



 

broken in the activated state to open a crevice into which the G protein Gα C-terminus 

can dock.    The interaction illustrated in Figure 14 would block interaction between the 

receptor and the G-protein and would therefore lead to impaired signaling. The fact that 

this interaction stabilizes the activated state of CB1, however, should lead to higher 

CP55940 affinity.  It should be noted that this dock of Org27569 is plausible only if this 

compound can gain access to the intracellular domains of CB1. 

 

 (2) Barnett-Norris and co-workers (Barnett-Norris and Reggio, 2005) used 

Correlated mutation analysis (CMA) as implemented in the Filizola and Weinstein 

algorithim (Filizola and Weinstein, 2002) to identify TMH4 as the most likely 

homodimer interface for CB1.  W4.50 is located in this dimer interface.  Thus, if the Org 

compounds interact with W4.50 ( as illustrated in Figure 15), they would interfere with 

dimerization.  If the functional form of CB1 was a homodimer, allosteric  modulator 

binding at W4.50 would, therefore, inhibit function, but again increase CP55940 affinity 

since the interaction stabilizes the activated state of CB1. 

 

 (3) In the dock shown in Figure 16, Org27569 interacts with CB1 near the 

extracellular ends of TMH1/2.  This binding site would block exit of CP55940 from CB1 

and thereby lead to an increase in the measured affinity of CP55940.   The allosteric site 

identified here includes portions of the EC-3 loop (I(375)).  Since TMH6 straightening is 

part of GPCR activation, this loop (which links TMH6 with TMH7) will also move upon 
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activation.  It is concievable, then, that any interaction which tethers the IC-3 loop will 

lead to impaired signal transduction.  

 

Figure 14:  Org27569 Interacting with R3.50 and R7.56.  The first allosteric modulator 
dock based on the MMC output.   The total interaction energy for this dock is -33.2 
kcal/mol. This interaction site would block interaction between the receptor and the G-
protein and would therefore lead to impaired signaling.  
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Figure 15:  Org27569 Interacting with W4.50 and A2.49.  The second allosteric 
modulator dock based on the MMC output.  The total interaction energy for this dock is -
16.3 kcal/mol. This would be a possible interaction site for Org 27569 if CB1 functions 
as a dimer, because the complex would block the TMH4 homodimer interface.   
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Figure 16:  Org27569 Interacting with F2.67, Q1.32, and L1.33.  The third allosteric 
modulator dock based on the MMC output.  The total interaction energy for this dock is -
24.2kcal/mol.  This is a possibility because Org27569 would hold CB1 in a conformation 
that would allow the affinity of CP55940 to increase because it would block CP55940 
exit from CB1.  At the same time, this dock would constrain TMH6 from moving during 
activation by tethering the EC-3 loop.  This should also result in impaired signal 
transduction. 
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Table 3:  Energy Contributions for all Three Docks.  Total energy includes Van der 
Waals and Coulomb interactions. 
Dock R214 (Figure 14) Dock 

TMH234 
(Figure 15) Dock 

TMH12 
(Figure 16) 

Residues Total Energy 
(kcal/mol) 

Residues Total Energy 
(kcal/mol) 

Residues Total Energy 
(kcal/mol) 

R214 -6.9 A162 -4.1 F108 -3.8 

S217 -1.6 L165 -2.4 P113 -2.7 

I218 -0.7 G166 -1.4 Q116 -3.6 

R148 -0.8 V168 -0.3 L117 -4.0 

M337 -3.4 I169 -0.3 A120 -1.3 

R340 -3.3 F191 -2.3 F177 -2.8 

R400 -11.3 W241 -3.4 F180 -4.6 

K402 -2.4 I245 -2.1 H181 -0.5 

R405 -2.8   I375 -0.9 

      

Overall 
Energy 

-33.2 Overall 
Energy 

-16.3 Overall 
Energy  

-24.2 

 
 
 Based on energetic considerations alone, the Org27569/CB1 R* complex 

illustrated in Figure 14, in which Org27569 interacts with R3.50 and R7.56 would be 

predicted to be the most likely interaction site for Org27569.  However, this particular 

dock requires that the compound cross the membrane to access an intracellular site.  The 

LogP of ORG27569 is 5.25 (organic-chemistry.com).  Thus, it is likely that Org27569 

will partition into lipid readily and some small fraction of the sample should be able to 
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cross the membrane to reach the intracellular compartment.  The dock pictured in Figure 

15, would require that Org27569 access the interaction site from lipid.  Given its Log P 

value, this would seem to be possible.  The dock in Figure 16 would be more likely if 

Org27569 were "druglike", i.e. could tolerate being in water.  To determine this, 

Lipinski’s Rule of Five was used. 

Lipinski’s Rule of Five 
 
 There is one way to define drug likeness of potential drug candidates by using 

four cutoff parameters.  The cutoff parameters are close to five or multiples of five.  

Christopher A. Lipinski noted that when a potential drug has more than one value above 

the following that permeability is poor. 

 
1. There are more than 5 H-bond donors. 
2. The molecular weight is over 500. 
3. The LogP is over 5 (Log P is the ratio of concentration of potential drug candidate 

dissolved in octanol to concentration of potential drug candidate dissolved in 
water). 

4. There are more than 10 H-bond acceptors. 
 
Lipinski’s Rule of Five states that in general, an orally active drug has no more than one 

violation of the above criteria. 

.(http://www.acdlabs.com/products/phys_chem_lab/logp/ruleof5.html). 

 
When examining ORG27569, the following was found: 
 

1. ORG27569 has two H-bond donors. 
2. The molecular weight of ORG27569 is 410. 
3. The LogP of ORG27569 is 5.25 (organic-chemistry.com). 
4. ORG27569 has four H-bond acceptors. 
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According to Lipinski’s rule of five, Org27569 should be orally active because it doesn’t 

have more than one violation (log P is only violation) of the above rule. 

Further Studies 

 Now that a hypothesis has been formed about the allosteric binding site, it will be 

necessary to undertake mutation studies to determine which of these hypothesized sites is 

more plausible.  These studies are currently underway in Dr. Ruth Ross’ laboratory at the 

University of Aberdeen in Scottland.
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