
OBJECT RECOGNITION IN LAKE AND ESTUARY
ENVIRONMENTS

By

A.J. Punch

A Thesis
Submitted to the

Faculty of the Graduate School
of

Western Carolina University
in Partial Fulfillment of

the Requirements for the Degree
of

Master of Science in Technology

Committee:

Director

Dean of the Graduate School

Date:

Spring 2011
Western Carolina University
Cullowhee, North Carolina

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149238558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OBJECT RECOGNITION IN LAKE AND ESTUARY
ENVIRONMENTS

A thesis presented to the faculty of the Graduate School of
Western Carolina University in partial fulfillment of the

requirements for the degree of Master of Science in Technology.

By

A.J. Punch

Director: Dr. Brian Howell
Assistant Professor

Department of Engineering and Technology

Committee Members:
Dr. James Zhang, Department of Engineering and Technology

Dr. Peter Tay, Department of Engineering and Technology
Dr. Erin McNelis, Department of Mathematics and Computer Science

April 2011

c©2011 by A.J. Punch



ACKNOWLEDGMENTS

I would like to thank Jesus Christ, my Lord and Savor. Without his guidance, noth-
ing I do is possible. He gave me a second chance at life and the strength to overcome all
of life’s challenges.

I would also like to thank my family for all your support and encouragement, espe-
cially my loving wife Katy. She has been so patient and sacrificed so much for my success
over the past few years. No matter the situation, you were always willing to listen. You
are more than my wife, your my best friend.

To Dr. Brian Howell, thank you so much for your teachings, support and the op-
portunity to work with you in a professional environment. Thanks to Dr. Peter Tay for
all your time and effort to make sure I perform at the highest academic standard. To Dr.
James Zhang, thank you for believing in me and giving me an opportunity to further my
education at the graduate level. Thank you for all the countless hours of help with any and
all issues. I would also like to extend a special thank you to Dr. Erin McNelis for selfishly
giving of her time over my entire academic career. I thank the good Lord for making you
a part of my life, you are truly a blessing.

Last but certainly not least, I would like to thank all my fellow graduate students
and friends. Its been a long road. Without all of you, I don not think I would have made
it. I would like to extend a special thanks to Matthew Proffitt for the countless hours of
help, support, and being a great friend. Finally, to Kirke Shouse, thank you so much for
everything. I will always treasure your friendship. Over the years you have always found
a way to keep me grounded and focused through all the hardships. I would not be where I
am today without you.



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CHAPTER 2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Imaging Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Feature Extraction and Image Processing Techniques . . . . . . . . . . . . . 10
2.3 Neural Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CHAPTER 3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CHAPTER 4. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26
CHAPTER 5. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 32
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



LIST OF TABLES

4.1 Neural Network Recognition Rates for Cone Image . . . . . . . . . . . . 27
4.2 Neural Network Recognition Rates for Prism Image . . . . . . . . . . . . 28
4.3 Neural Network Recognition Rates for Cube Image . . . . . . . . . . . . 29
4.4 Neural Network Recognition Rates for Cylinder Image . . . . . . . . . . 29
4.5 Neural Network Recognition Rates for Sphere Image . . . . . . . . . . . 31

v



LIST OF FIGURES

2.1 Feed-forward Neural Network without Backpropagation . . . . . . . . . 18
2.2 Feed-forward Neural Network with Backpropagation Weight Update . . . 19

3.1 Sonar Image / Optical Grey Scale Image . . . . . . . . . . . . . . . . . . 22
3.2 Edge Map Generation for Varying Illuminations and Orientations . . . . . 23
3.3 Feed-forward Network Input to Output Process . . . . . . . . . . . . . . 24

4.1 Cone, Prism, Cube, Cylinder Epoch Error Rates . . . . . . . . . . . . . . 30
4.2 Sphere Epoch Error Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



ABSTRACT

OBJECT RECOGNITION IN LAKE AND ESTUARY ENVIRONMENTS

A.J. Punch, M.S.T.

Western Carolina University (April 2011)

Director: Dr. Brian Howell

Traditionally, autonomous underwater vehicles employ multiple configurations of

sensor payloads in order to accomplish a specific mission. Due to advances in imaging

technology, imaging sonar arrays and optical imaging devices are among these payloads.

Independent of mission specifics, the majority of imaging data is either stored onboard

the vehicle or transmitted to a base station for later analysis. In either situation, there

is limited local real time analysis and limited mission duration. One focus for increas-

ing real time analysis is the reduction of image information. By using image processing

techniques, such as edge detection, less relevant information can be eliminated while pre-

serving important object features. This reduced object information is then used as inputs

to a neural network. A neural network is a cognitive algorithm which has the ability to

adapt to achieve desired tasks. These networks are able to generalize and make decisions

based on partial or limited input information. The goal of this research is to create an au-

tonomous in-situ recognition system for marine environments, specifically the processing

and classification of object image data. Image information will be applied to a neural net-

work approach to mimic higher order decision making in an artificial cognitive algorithm.

vii
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CHAPTER 1: INTRODUCTION

Autonomous vehicles, specifically autonomous robots, are an on-going field of

study. My research focuses on increasing the level of autonomy thereby substantially

reducing human interaction. Human interaction for these vehicles is either in terms of

navigation, information retrieval, communication and control. How these vehicles are

controlled and operated varies, however most are guided by remote or tethered to a control

unit. For this reason, all vehicles are not truly autonomous. However, advances in technol-

ogy have allowed these vehicles to perform research in environments too harsh for humans

such as deep ocean, deep space, and high altitude scenarios. Mission specific applications

include: underwater mapping of the sea floor, geophysical observation, and exploration of

shipwrecks. Therefore, exploration and experimentation are made more sustainable due to

continuous communication and control, while mission success is not dependent upon hu-

man interaction or environmental conditions. Vehicles can also be configured for specific

applications, where the configurations are dependent on sensor payloads. A multi-sensor

approach that is used for such mission as target localization and tracking is based on the

type and number of sensory devices used. How this sensory information is processed and

analyzed varies for each vehicle and mission parameter, however this information is usu-

ally processed externally.

Typically, underwater vehicles use a combination of sonar arrays and optical cam-

era payloads for exploration, detection and recognition of underwater environments. In

most cases, these sensor payloads are continuously operating with little to no pertinent
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information to report. However, the amount of information, specifically imaging data, is

too large to analyze locally in real time. Hence the reason for storage devices on board the

vehicle or communications links to large storage base stations. Another draw back to this

type of design is vehicle resource cost. The more information being actively processed

and communicated decreases the vehicle longevity in the search environment.

Recently, autonomous systems for shallow water and coastal regions are being ex-

plored. Applications include: harbor patrol, pollution detection, and even military applica-

tions for intelligence gathering and ordinance location. These applications reflect changes

to sensory input over time. Onboard data reduction and communication only for event

triggers can increase autonomy and over all system performance.

The main focus of the following research is to develop a neural network or learning

algorithm for the purpose of object recognition in underwater environments, specifically

shallow water. Using existing image processing and feature extraction techniques, a sig-

nificant reduction in computational and resource cost can be obtained to increase vehicle

longevity. These methods will be used to recognize five fundamental geometric shapes,

where these are: cone, cube, sphere, cylinder, and prism [1].

This thesis will include: a literature survey introducing the concepts for sonar and

optical sensor hardware comparison, image processing, feature extraction techniques, and

neural network methods. A design methodology section to introduce the feed-forward

neural network with backprogation weight update using optical images followed by sec-

tions dedicated to experimental results and future work.
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CHAPTER 2: LITERATURE SURVEY

As mentioned earlier, the number and type of sensor payloads are completely de-

pendent on the defined mission parameters. Types of sensor payloads can be classified

as imaging and non-imaging devices, where the most commonly used imaging devices

are optical cameras and acoustic imaging systems. The implementation for each sensor is

different since the input parameters and calibration techniques vary due to the range and

complexity of the specific environmental conditions being measured. However, acoustic

systems have longer range due to the ability of seeing through turbid conditions. All imag-

ing sensors return enormous amounts of information although all of the sensor data may

not play a role in navigation and event detection. Either way, the information has to be

processed for analysis. In terms of this research, the information being processed is ob-

ject image data. There are numerous methods for extracting object features from images.

Some of these methods include; Canny, Sobel, and Linear Prediction. These methods de-

tect changes in light intensity to determine shape edges in an image, where these edge

define shape contours. Given that the object edges can be determined, decisions on object

shape are needed. By increasing the degree of autonomy by a neural network approach,

the individual vehicle can make determinations on what the object is.

The following sections are dedicated to the theory and background information for

the hardware, software, and neural methods used for this design. These sections will give

insight into these methods for the purpose of object recognition.
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2.1 Imaging Systems

Sound navigation and ranging (Sonar) also known as acoustic ranging is one of the major

sensory techniques used for underwater vehicles. Sonar systems use sound propagation

for navigation, detection and communication. Sound propagation is based on the speed of

sound value through a fluid medium. Temperature, pressure, and salinity are the three ma-

jor factors that effect sound propagation. These three factors influence the range and return

magnitude of the sound wave. Sonar systems can be classified into two categories; active

or passive. Of those two classifications, systems can be further categorized into imag-

ing and non-imaging. Distinctions can be made between conventional sonar and acoustic

imaging systems. While they share hardware implementation and calibration parameters,

they are not one in the same. The differences between the two are in the intended purpose

of each. Conventional sonar systems are more concerned with where something is, while

acoustic imaging systems is centered toward what it looks like [2].

The return sound of an acoustic imaging system is used to produce images in two-

dimensional space. This is important in underwater environments due to optical camera

systems being limited. Optical systems will generate higher quality images but their ef-

fective range is limited. These limitations are contributed to the difference between sound

and optical wavelength characteristics. For example, in deep ocean environments optical

system visibility maybe approximately 60m, but in turbid shallow water conditions vis-

ibility could be reduced to 6− 10m or less. If ever the environment is disturbed during

observation, visibility can be further reduced to less than 1m [2].

According to Sutton [2], the basic characteristics of acoustic imaging systems are:

frequencies, wavelengths, apertures, resolution, range, and depth of fields. The main dif-

ference between these characteristics relative to other imaging techniques is the range

variation over which the sound waves propagate. Sutton also states these parameters are
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not independent of each other as shown in equations (2.1) and (2.2).

λ=
c

f
(2.1)

α=
λ

D
(2.2)

The wavelength of the signal λ is dependent on the speed of sound c(1500ms ) divided by

the frequency of the signal sent f. The angular resolution α is dependent on λ and the

receiving aperture diameter D. Range and resolution are also effected by attenuation co-

efficients of seawater(0.3dBm at 1MHz) as well as reverberation effects. [2] Due to sound

wave characteristics varying based on water depth, sound is distorted laterally more than

longitudinally in shallow water, hence oscillation and vibration effects are more promi-

nent. Therefore, the intensity of acoustic return is subject to change [3]. For this reason

acoustic imaging systems are of lesser resolution quality as compared to optical systems.

Another aspect of acoustic systems that makes recognition difficult is object shape

and material composition. An experiment performed at the University of Hawaii [3] stud-

ied these effects by varying material composition verses object shape. The results from

this experiment show dynamic change in acoustic images given material composition for

identical object shapes. These effects are attributed to the reflection and absorption char-

acteristics of the acoustic wave for certain materials.

Viewpoint is another major factor in object recognition. Changing the degree of

orientation varies the amount of object edges subjected to the acoustic signal. This change

affects the amount of acoustic signal return thus producing a extremely different image.

Therefore, the intensity of the acoustic signal is dependent on three factors; object shape,
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material composition and orientation. Since acoustic reflection is directly related to shape

and material composition, and reflection angle is dependent on orientation, the intensity

of the produced image is a function of angular reflection shown in equation (2.3) [3]

I= f(ma,α) (2.3)

wherema is compositional acoustic reflection and α is reflection at angle of incident.

An experiment conducted at Harbin Engineering University [4] focused on feature

extraction of sonar images for object classification. By scanning two extremely different

objects at varying orientations, it was shown that in some cases scattering of the acoustic

signal produced relatively identical images. The amount of shadow present in the images

make it extremely difficult to determine object features. However, further experimentation

by [5] introduced a partial shape recognition method using contour points. This method

was based on a ”curvature-based polygonal approximation” which combined corner detec-

tion and polygonal approximation. By using these contour points or landmarks, a partial

reconstruction of each object was determined.

The focus of both experiments is object recognition and classification, however

the purpose of [5] is to demonstrate the low resolution quality of certain imaging sonar

systems. Recognition and classification will be discussed in more detail in the image pro-

cessing section.

When detecting objects underwater particularly for the first time, situations my oc-

cur when the object is partially obscured by environmental conditions or by debris. Due

to the low resolution of acoustic imaging systems, these conditions could mislead an au-

tonomous processing technique into falsely classifying the object. In these cases a partial

recognition or adaptive method that considers the occluded object scenario is needed.
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2.2 Feature Extraction and Image Processing Techniques

When performing object detection, the focus is on the extraction of features from the

object, where the features are defined as the structural information. The structural infor-

mation can be further defined as object edges in the image. Therefore, given these edges

the object features can be determined [6].

Feature extraction is a process of recognizing and extracting specific shape compo-

nents of an object from its images. Shape composition is determined by three parameters,

object size, orientation, and position, although all three may not influence feature ex-

traction at the same time. These parameters define three specific conditions for all feature

extraction. Position invariance, also known as location invariance is important in determin-

ing object shape regardless the object position. Orientation invariance for object shapes

influence feature extraction due to the shape or camera aperture location being unknown.

The most difficult condition is shape size. Shape size or size invariance can be determined

either by using the distance from the camera or estimations by known shapes or features in

the image background. However, these estimations are still dependent on orientation and

position. Therefore position and orientation are important to size determination. The most

important condition for feature extraction is illumination. Illumination invariance should

have little to no affect on feature extraction [1].

Another aspect of feature extraction is to simplify a complex image by decompos-

ing it into basic fundamental shapes. For example, if an image is of a person, specific

body features such as eyes, head, arms, and torso can be viewed as simple shapes. The

eyes and head portion can be viewed as spherical shapes, while the arms can be viewed

as cylindrical or rectangular in nature. Therefore, more complex image shapes can be de-

composed into simple shape structures such as cones, cubes, and prisms [1], similar to the

way individuals view real world environments.
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The concept of feature extraction was first introduced by Hough [7] to find bub-

ble shapes rather than objects. This method was further expanded by Duda and Hart [8]

and focused on the extraction of lines and conical shapes. These early methods focused

on cross-sections from each object shape, however, the expanded versions were used to

find shape contours. Other methods include template matching and template matching

with Fourier transforms. Template matching is more position dependent, hence changes to

orientation and scale make it difficult to extract and match due to gaps or spaces appear-

ing in the coordinate system caused by rotation [1]. Computationally, template matching

is much larger compared to versions of the Hough transform due to independence from

shape parameters. However, the Hough transform requires large amounts of computa-

tional storage [1].

A simpler feature extraction technique is thresholding and subtraction. This tech-

nique uses known illumination and background values at the time the image is captured

to set an illumination threshold. Once this threshold is computed, the background can be

subtracted from the foreground leaving only the object space. Therefore, this method is

highly dependent on known values of illumination [1]. All images will be contaminated

by noise. Even though noise can be filtered out, the degree and computational cost can

vary based on specific extraction technique.

Another common approach in image processing is edge detection. As previously

mentioned, edges are the structural information of an object shape. Edges can also be

viewed as changes of light intensity. An edge map is an image that contains structural

information and ignores less important image details [6]. For this reason, edge detections

methods are prime candidates for feature extraction. The more prominent edge detection

methods are “Sobel”, “Canny”, and “Prewitt”. Canny’s method is regarded as the optimal

edge detection method and has been mathematically proven for optimal performance [9].
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Developed in 1986, Canny’s method focuses on maximizing signal to noise ratio(SNR) in

an image. He further defines three performance criteria and optimal filter design in order

to maximize this ratio. The three performance criteria are as follows [9]:

1. Good Detection: The probability of falsely marking nonedge points and failing to

mark real edge points should be as low as possible.

2. Good Localization: Points marked as edges should be as close to the true edge

center.

3. Only one response to an edge: If there are two responses to the same edge, one must

be false.

The localization criteria is dependent on maximizing the SNR shown in equa-

tion (2.4). The localization criteria can be derived by taking the derivative of the sig-

nal component and the noise component, given the noise component is a Gaussian ran-

dom variable shown in equation (2.5). According to Canny, since these constraints are

not independent of each other, maximizing the inner product of these two will maximize

both criteria simultaneously. This inner product inherently simplifies the analysis for step

edges. A good localization combined with an optimal Gaussian filter will smooth out step

edges which in turn smooths out edge contours

SNR=

[∫∞
−∞G(−x)f(x)dx

]
no

√∫∞
−∞f2(x)dx

(2.4)
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Localization=

[∫∞
−∞G ′(−x)f ′(x)dx

]
no

√∫∞
−∞f ′2(x)dx

(2.5)

where G(·) is a Gaussian filter.

Another form of edge detection is in the use of Linear Prediction (LP). One ap-

proach was developed at Western Carolina University by Dr. James Zhang. This method

combines a linear prediction detection method with entropy thresholding. Unlike Canny’s

method which focuses on the maximization of the signal to noise ratio, LP uses a linear

function of previous samples to estimate future values, or simply stated, using past values

to predict future values. [6] The key to this prediction technique is choosing the appropriate

filter coefficients to minimize prediction errors. Given a one-step forward linear predictor

of order p, which can be expressed as a convolution of the prediction coefficients a[k], and

past values x[n−k] shown in equation (2.6), where x̂[n] is the expected value for each

image pixel. The prediction error fp[n], is a subtraction of the estimated image from the

real image shown in equation (2.7), where a(0) = 1 by definition [6].

x̂[n] = −

p∑
k=1

a[k]x[n−k] (2.6)

fp[n] = x[n]− x̂[n] =

p∑
k=0

a[k]x[n−k] (2.7)

In order to minimize prediction error, the minimum mean square error(MMSE) is

calculated using the conjugate of the kth autocorrelation value of x[n] and is shown in

equation (2.8) [6].
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min
{
Efp

}
=min

{
E
[
|fp[n]|

2
]}

= rxx(0)+
p∑
k=1

a[k]rxx(−k) (2.8)

As previously mentioned, edges in an image are abrupt changes in light intensity,

therefore edges can be considered discontinuities for a given 2-D signal [6]. These “jumps”

in intensity are not predicted well using this method due to the errors at these “jumps” be-

ing large. However, LP does predict values over a smooth transition signal state. Applying

a threshold to separate smooth states from the “jumps” allows the extraction of values at

the “jumps”, where these “jumps” represent the edge information. Therefore, this LP de-

tector maximizes the predicted errors used for the extraction of edge information [6].

Each pixel is generally stored as an eight bit unsigned integer, that corresponds to a

gray level. LP is applied to the +x and −x directions respectively in order to generate edge

information for the x direction. This process is repeated for both +y and −y directions.

The edges or errors in each direction can be computed by equations (2.9) and (2.10) with

the image edges obtained by equation (2.11) [6]. Due to subtracting information from each

direction, this method suppresses less important information while amplifying the errors

associated with these abrupt transition states.

4Ix,error = Î+x − Î−x (2.9)

4Iy,error = Î+y − Î−y (2.10)

Iedge =
√
4I2x,error + 4I2y,error (2.11)

To further separate the edge information from the less important background infor-

mation, an entropy-based threshold is introduced. Thresholding is a useful technique for
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image segmentation. Given a gray scale image of size MxN with scale 0 to K. The total

probability for the edge points PE and the probablity for the background PB are calculated

by equations (2.13) and (2.14) respectively , given equation (2.12) which represents the a

priori probability pk for the given gray scale image [6]

pk =
Nk
M ·N

(2.12)

where Nk is the pixel number of the edge,

PE =

KTH∑
k1=1

pk1 , (2.13)

and

PB =

K∑
k2=KTH+1

pk2 . (2.14)

The term KTH is the separation threshold between the background and the edge infor-

mation. The entropy for the edges H(E) and entropy for the background H(B) can be

expressed in the equations (2.15) and (2.16), where the total entropy histogram can be

seen in equation (2.17).

H(E) = −

KTH∑
k1=1

pk1

Pe
ln

(
pk1

Pe

)
(2.15)

H(B) = −

K∑
k2=KTH+1

pk2

1−Pe
ln

(
pk2

1−Pe

)
(2.16)

Φ(KTH) =H(E)+H(B) (2.17)



16

Therefore, the KTH value that maximizes the histogram is the desired threshold, thus sep-

arating the object from the background. This segmentation of object edges from the back-

ground leads to a more pronounced edge map.

2.3 Neural Methods

A neurocomputing approach to information processing first involves a learning process

within an artificial neural network architecture that adaptively responds to inputs accord-

ing to a learning rule [10]. A neural network has the ability to learn by example. These

networks also have the ability to learn from their environments and adapt in an interactive

manner. Given specific environments neural networks have the ability to generalize and in-

fer given partial or limited input information. Once these networks have learned what they

need to know, they can be applied to perform specific tasks. Therefore, a neural network

mimics or emulates its biological counterpart in an artificial cognitive algorithm [10].In

order to bridge the link between an artificial neural network and it biological counterpart,

a brief introduction of biological neural networks is needed.

The nervous system is a complex neural network where the brain is the central el-

ement. The brain receives sensory information from receptors, processes this information

and delivers action commands to effectors. The human brain consists of approximately

1011 neurons, the central processing element. Each neuron is interconnected through sub-

networks called nuclei. These subnetworks are collections of neurons designed to process

specific information. Therefore, the biological neuron is the basis for the artificial neu-

ron [10]. The nervous system contains a wide variety of neurons, each with specific num-

bers, sizes, patterns and electrical properties. Each neuron is interconnected to other neu-

rons in each subnetwork by connectors called synapses. The number of synaptic pathways
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for each neuron can vary depending on type and purpose. When the nervous system re-

ceives some sensory input, this information is transmitted to specific subnetworks through

electrical impulses. Once the magnitude of the impulse reaches a certain threshold, in-

formation is passed to the effectors to initiate the desired action. Given the complexity

of the subnetworks and numbers of synaptic pathways, the human brain is an adaptive,

nonlinear, parallel computer. Artificial neural networks model the human brain in order to

accomplish specific tasks [10].

Artificial neural networks are defined by how they learn over time (training). The

ability for each network to learn is further defined by the complexity of the network design

and the type of input information used for training. Thus, artificial neural networks can

be categorized into supervised and unsupervised learning networks, where the function of

each network can be linear or nonlinear. The most predominant supervised learning net-

works are; associative memory, feed-forward multilayer perceptrons trained through back-

propagation, counterpropagation, and radial basis function. The commonality between all

four networks is their capability of performing pattern association, classification, and func-

tion approximation. An associative network is a mapping network where given incomplete

or partial input information, the network is able to “associate” correct patterns. Counter-

propagation networks are known as optimal self-programming lookup tables, while radial

basis function networks have the ability to learn more quickly compared to other network

paradigms. Feed-forward multilayer perceptrons with variants of backpropagation update

are the most well known and more often used. These networks work on the principle

of steepest descent(gradient) for learning [10]. Figure (2.1) shows the architecture for a

feed-forward neural network minus the backpropagation weight update portion. Similar to

its biological counterpart, the amount of neuron or node interconnectivity can be seen for

each layer, where a layer can be viewed as a subnetwork of neurons. Each layer consists
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of a weight matrix corresponding to specific input values. These weights are multiplied

by each input given a specific neuron or node. These resultant scalar values are summed

together and used as the input to an activation function. The activation function shown in

equation (2.18) also known as a transfer function bounds the input vector of scaler values

between a specified range. The output of the activation function is used as the input to

the following network layer. The process is repeated for each layer throughout the net-

work [10].

Figure 2.1: Feed-forward Neural Network without Backpropagation

An example of a possible activation function shown in equation (2.18) is of a sig-

moid function.

f(x) =
1

1+e−x
(2.18)

The characteristics of a sigmoid function allow for the bounding of values between 0−1.

Given specific network applications, the type of function used can change based on a
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desired output scale. The choice of activation function can also depend on the neural

network paradigm. An example of this is in the use of radial basis function networks. The

activation functions for this particular paradigm can take one of three forms, Gaussian,

multiquadratic, and inverse multiquadratic.

Figure (2.2) is the feed-forward neural network with backpropagation weight up-

date. In order for a network to be used to accomplish specific tasks, network training is

needed. This training involves information being applied to the network relative to the de-

sired task application. Each input is multiplied by a set of weights over each training cycle

or epoch. After each input is processed, error is calculated given the estimated output for

that given training iteration. This estimated value is subtracted from the nominal or desired

output predetermined for this application, where the range of the output is determined by

the activation function.

Figure 2.2: Feed-forward Neural Network with Backpropagation Weight Update

Since the feed-forward neural network is based on the steepest descent approach,

the first derivative of the activation function shown in equation (2.19) is needed to further
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calculate the weight update for each subsequent network layer.

g(x) =
e−x

(1+e−x)2 (2.19)

This derivative is calculated using the given sigmoid activation function in equation (2.18).

Equation (2.20) is the function for calculating the weight update given the sth layer at the

(k+1)th iteration, where µ(s) is the learning rate assigned to the network during training.

w
(s)
j,i (k+1) =w(s)

j,i (k)+µ
(s)δ

(s)
j x

(s−1)
out,i (2.20)

The estimated output given a certain training cycle is denoted by x(s−1)
out,i . The layer error is

denoted by δ(s)j and is shown in equation (2.21).

δ
(s)
j =


(
dq,j−x

(s)
out,j

)
g
(
v
(s)
j

)
if s is the last output layer(

ns+1∑
h=1

δ
(s+1)
j ·w(s+1)

h,j

)
g
(
v
(s)
j

)
otherwise

(2.21)

Since, this is a backpropagation algorithm, the last layer in the network is updated first,

and each subsequent layer update propagates in reverse order. This is important since the

weight update equations vary given the network layer. The difference value determined

from the subtraction of the estimated output from the desired is multiplied by the first

derivative of the activation function. The previous layers use a summation of error for

the previously updated layer multiplied by the weight matrix values multiplied by the first

derivative of the activation function.

Research in this field of study has seen increase over the past twenty years. An

experiment performed by [11] focus on a Feed-forward neural network with backpropa-

gation weight update for prediction of acoustic signals to model the effects of attenuation

through layered media. Given what is know of acoustic reflection characteristic, they used

a five layer network architecture to increase accuracy. This network applied an attenua-

tion model from underwater media to this network to simulate the exponential decay of
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the signal amplitudes. A follow up experiment by [12] was performed using a parallel

architecture to further predict the media parameters given reflection coefficients and travel

times of the acoustic signals. However, the training data set used for this experiment is ar-

tificially generated based on the previous network experiment. Given this training set, the

parallel network was able to accurately detect media parameters and detect the output sig-

nal from each media. The values that were returned were scaled for a min-max amplitude

range predetermined before testing.
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CHAPTER 3: METHODOLOGY

The implementation for this autonomous system is a three step process. The initial

step is the creation of an optical image data base. This data base consists of fundamen-

tal object shape images captured over varying orientations and illuminations. Due to the

lack of sonar image availability for use in the database, optical images were used for all

experiments. Since edge maps are used as inputs to the neural network, the results should

be applicable to sonar images. Shown below in Figure (3.1) is an image comparison of a

sonar image and a gray scaled optical image from this data base with corresponding edge

maps.

Sonar Optical

Sonar Edge Map Optical Edge Map

Figure 3.1: Sonar Image / Optical Grey Scale Image

The data base is divided into two image sets, a training and testing set. Each set
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consists of equal amounts for each object shape and orientation. Once these sets were

determined, each image was processed using the Linear Prediction with Entropy Thresh-

olding edge detection method to produce the corresponding edge maps. Shown in Fig-

ure (3.2) is a depiction of these orientations with varying lighting conditions with their

corresponding edge maps.

0◦ 45◦ 90◦ Random

Figure 3.2: Edge Map Generation for Varying Illuminations and Orientations

Shown in Figure (2.2) is the Feed-forward neural network with backpropagation

weight update used for this design. A collection of edge maps corresponding to the five

fundamental shapes will be used as inputs to this network. Each training cycle will consist

of forty image frames. The specific shape image counts vary due to the variation in orien-

tation needed for each shape type. The activation function f(x) used is a sigmoid function

in equation (2.18). The first derivative g(x) in equation (2.19) is used to calculate the

weight update functions for each network layer. The network will train for 300 iterations

(epochs). At the end of the 300 epochs the weight files for the trained network are written
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to text files. These files are uploaded back to the network in order to run the network in

feed-forward mode. At this point the backpropagation weight update is turned off.

The network process shown in Figure (3.3) begins when an object image is cap-

tured. This image is processed using the LPC edge detection method to extract the edge

map. This array of pixels is used as the input to the network in feed-forward mode. The

output for each image is a 5x1 matrix corresponding to each shape type. Figure (3.3)

shows a nominal case in which the input image is of a cube. The output recognition range

is on a scale from 0− 1, where a value close to 1 represents high recognition confidence

for that particular shape type. A recognition rate of 0 represents confidence that the object

is not that shape.

Figure 3.3: Feed-forward Network Input to Output Process

Network testing involves applying each of the five object shapes to the network in

four orientations and a noised corrupted image. The four orientations are 0◦, 45◦, 90◦, and

random. The random orientation image chosen is also corrupted by added noise and used

as the fifth test input image. Each object shape is processed through the network over three
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replicates. No two images are duplicated. The results for each replicate will be recorded

in spread sheet format for later analysis. The error attributed to each training cycle will

also be stored to verify system learning with no over training.
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CHAPTER 4: RESULTS AND ANALYSIS

This chapter is dedicated to the analysis of results from the feed-forward neural

network algorithm using LP edge detection. These results are from the experiment de-

scribed in the methodology portion of this thesis. All shape types were tested over defined

orientations using this method to verify recognition rate. The purpose for defining the

image orientation before testing allows for greater insight into which if any orientation

presents recognition problems for a given shape. These recognition rates are dependent on

limited training time for this algorithm.

Each test consisted of a five images with one of the five being corrupted by added

noise. Shown in Table (4.1), are the recognition rate results using cone images as inputs

to the network. Given the recognition rates shown, this network has high confidence that

the input image is of a cone, except in the case of noise added images. The low recog-

nition rates for these images are attributed to the fact that during the training phase, no

corrupted images were used for network learning. The purpose for this image test was to

see if the network given limited training time could generalize this image shape when the

input edge map is not ideal. The remaining four image inputs show high confidence for

correctly identifying this shape type with the lowest set of recognition rates corresponding

to the random images. The second highest recognition rate mean value corresponds to the

prism shape. This is due to the cone and prism shapes being approximately identical in

specific orientations in a 2-D image. An example of this is the 0◦ case. From this orien-

tation, the difference between these shape types can be seen at their base. The cone will
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have some conical tendency where the prism is linear. Given the pixels that were detected

using LPC these images could look identical. Given this relationship, the recognition for

the cone at 0◦ and the random orientation are lower where the prism recognition rates are

of higher confidence. Given longer training time this might be eliminated.

Table 4.1: Neural Network Recognition Rates for Cone Image

Cone
Cone Cube Sphere Cylinder Prism

Input Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3

0◦ 0.65 0.69 0.68 0.09 0.10 0.12 0.01 0.05 0.04 0.03 0.04 0.05 0.22 0.20 0.26

45◦ 0.72 0.74 0.70 0.08 0.09 0.03 0.19 0.18 0.15 0.04 0.03 0.10 0.13 0.11 0.11

90◦ 0.79 0.78 0.75 0.10 0.11 0.08 0.14 0.14 0.17 0.15 0.17 .011 0.17 0.17 0.19

Rand 0.55 0.56 0.54 0.15 0.13 0.12 0.12 0.14 0.12 0.13 0.11 0.15 0.32 0.31 0.28

Noise 0.12 0.20 0.15 0.17 0.21 0.20 0.05 0.09 0.05 0.27 0.21 0.25 0.23 0.25 0.31

Mean 0.58 0.12 0.11 0.13 0.22

St dev 0.23 0.04 0.06 0.03 0.07

Table (4.2) below are the recognition rates when the prism shape is the input to

the neural algorithm. These results show high confidence for recognizing the input shape

is a prism. Similar to the cone input results, the network has trouble recognizing the

noise corrupted image. The confidence for this specific input is indeterminate across all

shape outputs, although there is a correlation between the prism and cone results for the 0◦

orientation. Even though the prism is correctly recognized for this input, the confidence

is less compared to other orientation inputs. This corresponds to the higher confidence of

the cone shape for this input. Given these results, there is a direct recognition issue for

this specific orientation. Therefore, a larger image library, and more training time, these

values might be more consist with other recognition values.

Table (4.3) and Table (4.4) show the recognition rates when the input to the neural

algorithm is a cube and cylinder respectively. In both cases, the recognition confidence is

significantly higher for the noise corrupted images. The network was able to generalize

given these edge maps that the object shapes were the correct image input. These values

are still close to 0.5 in both cases, however these results demonstrate the ability for the
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Table 4.2: Neural Network Recognition Rates for Prism Image

Prism
Cone Cube Sphere Cylinder Prism

Input Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3

0◦ 0.30 0.31 0.25 0.13 0.13 0.16 0.04 0.05 0.05 0.11 0.12 0.10 0.65 0.60 0.62

45◦ 0.07 0.07 0.08 0.10 0.09 0.13 0.01 0.02 0.01 0.10 0.10 0.11 0.85 0.82 0.85

90◦ 0.06 0.09 0.10 0.07 0.06 0.07 0.04 0.06 0.09 0.03 0.06 0.05 0.70 0.77 0.74

Rand 0.11 0.15 0.12 0.08 0.09 0.14 0.05 0.04 0.05 0.07 0.06 0.04 0.84 0.83 0.84

Noise 0.12 0.11 0.11 0.04 0.10 0.10 0.05 0.06 0.07 0.06 0.06 0.05 0.14 0.10 0.11

Mean 0.14 0.10 0.05 0.07 0.63

St dev 0.08 0.03 0.02 0.03 0.23

network to generalize given partial information. The recognition rates produced from

the cube input verify network learning for this shape type. However, the 90◦ orientation

recognition rate is lower compared to other input orientations. This corresponds to the

higher recognition rate of the prism produced from this input. The similarity between these

two shape types at this orientation is the result of a four-sided prism being approximately

identical to a cube from this angle. Given the input resolution of the edge map, the cross-

sections from the prism are non-existent. Therefore, the prism looks like a cube. The

cylinder results are especially interesting. Two factors are attributed to the results for a 2-

D image of a cylinder in two orientations, 0◦ and 90◦. For the 0◦ case, there are similarities

between a cylinder and 3-sided prism in 2-D space. Both edge maps will look rectangular,

thereby attributing to the recognition rates corresponding to that orientation. For the 90◦

case, it would stand to reason that the recognition rate of a sphere would be higher with

respect to the cylinder in this orientation. From a top down view, both images would have

a sphere shape in each edge map. The reason for this discrepancy is attributed to the over

training of the sphere shape. This will be explained in more detail when the results from

the sphere are introduced.

Figure (4.1) shows the epoch(iteration) error curves for each of the previously dis-

cussed shape types. The error values for each curve are the average error calculated for

each set of training images for each object shape type. The spike at time 0 is attributed



29

Table 4.3: Neural Network Recognition Rates for Cube Image

Cube
Cone Cube Sphere Cylinder Prism

Input Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3

0◦ 0.08 0.09 0.08 0.80 0.78 0.79 0.10 0.10 0.08 0.03 0.05 0.03 0.11 0.12 0.11

45◦ 0.09 0.11 0.08 0.82 0.80 0.81 0.04 0.05 0.03 0.03 0.03 0.04 0.17 0.17 0.15

90◦ 0.10 0.09 0.12 0.57 0.68 0.59 0.07 0.10 0.08 0.03 0.04 0.03 0.33 0.30 0.31

Rand 0.04 0.06 0.06 0.80 0.71 0.77 0.11 0.14 0.12 0.05 0.05 0.07 0.16 0.18 0.18

Noise 0.16 0.18 0.12 0.61 0.55 0.59 0.31 0.29 0.30 0.07 0.08 0.08 0.21 0.20 0.20

Mean 0.10 0.71 0.13 0.05 0.19

St dev 0.04 0.10 0.09 0.02 0.07

Table 4.4: Neural Network Recognition Rates for Cylinder Image

Cylinder
Cone Cube Sphere Cylinder Prism

Input Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3

0◦ 0.05 0.09 0.04 0.06 0.08 0.08 0.09 0.10 0.10 0.73 0.77 0.74 0.14 0.20 0.71

45◦ 0.16 0.11 0.15 0.11 0.11 0.12 0.05 0.06 0.12 0.76 0.75 0.76 0.09 0.08 0.12

90◦ 0.08 0.09 0.05 0.08 0.05 0.11 0.13 0.13 0.10 0.63 0.63 0.65 0.31 0.30 0.31

Rand 0.06 0.06 0.11 0.04 0.06 0.09 0.09 0.08 0.05 0.44 0.44 0.52 0.29 0.28 0.29

Noise 0.04 0.08 0.03 0.16 0.12 0.20 0.24 0.24 0.22 0.46 0.40 0.49 0.21 0.20 0.25

Mean 0.08 0.10 0.12 0.61 0.22

St dev 0.04 0.04 0.06 0.14 0.08

to the randomization of the weight matrix before training began. Since the feed-forward

method works on the principle of steepest descent or gradient method, these values quickly

trend to lower and lower values as training iterations increase. The gradient method is

focused on determining the global error minimum. As seen in these graphical represen-

tations, the error given specific iterations are trending lower and lower. In the case of the

cylinder and cube, the error has not reached a global minimum by the 300 epoch. Given

longer training cycles, this error would trend lower thus producing higher recognition val-

ues for these specific shape types.
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Figure 4.1: Cone, Prism, Cube, Cylinder Epoch Error Rates

Table (4.5) shows the results for the sphere shape input. In all cases except for

the 0◦ orientation, the recognition rates are considerably low. This is due to this shape

being over trained during backpropagation weight update portion of this algorithm. The

0◦ results show a maximum output value given the defined output range being between

0− 1. This is due to the network having the inability to generalize or infer given partial

information. The values for this orientation correspond to edge maps that are complete

circles with limited to no pixels missing from these shapes. The remaining test orientations

are partial spheres or hemisphere like shapes. Given the inability to generalize, the network

only recognizes a complete circle as a sphere, and cannot infer that the other images are

spherical in nature. For this reason, the network could not recognize the spherical tendency

in the cylinder presented earlier.
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Table 4.5: Neural Network Recognition Rates for Sphere Image

Sphere
Cone Cube Sphere Cylinder Prism

Input Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3

0◦ 0.13 0.11 0.15 0.00 0.01 0.00 1.00 1.00 0.98 0.06 0.05 0.10 0.00 0.00 0.00

45◦ 0.10 0.08 0.15 0.16 0.20 0.17 0.21 0.28 0.22 0.27 0.22 0.25 0.13 0.14 0.18

90◦ 0.06 0.09 0.06 0.17 0.21 0.19 0.14 0.20 0.15 0.09 0.05 0.11 0.10 0.07 0.09

Rand 0.06 0.08 0.06 0.17 0.11 0.12 0.14 0.15 0.14 0.09 0.09 0.10 0.10 0.10 0.18

Noise 0.22 0.22 0.20 0.24 0.40 0.27 0.06 0.10 0.09 0.05 0.09 0.06 0.30 0.31 0.30

Mean 0.12 0.16 0.32 0.11 0.13

St dev 0.06 0.11 0.35 0.07 0.10

Shown below in Figure (4.2) is the epoch error curve for the sphere shape. It can

be seen that at approximately iteration 118 the error starts to trend back up. This is due

to the lack of dynamic change in each of the training images. This lack of change means

the network will learn more quickly this shape is a sphere. Given this faster training, the

network begins to over train this shape type. When over training occurs, the network loses

its ability to generalize given partial information. Therefore, only complete spheres or

circles in a 2-D image can be recognized. This over training also hinders the network of

generalizing other shape types that have spherical tendency. Even though this result is not

desired, the information gained can lead to better understanding of optimal training time

given shape type as well as insight into frequent network learning between training cycles.

Frequent error checks could give insight to network status during the training process

rather than waiting until the network has completed all cycles.

Figure 4.2: Sphere Epoch Error Rates
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CHAPTER 5: CONCLUSION AND FUTURE WORK

In Conclusion, based on the results presented from this research primitive shapes

can be recognized and determined using a feed-forward with backpropation weight update

neural network with optical image input. Given the limited data base and training time,

recognition rates showed accurate recognition of each shape. Over training for this net-

work was due to the lack of variation for the sphere shape type. Given less training time

for this particular shape, over training could be avoided. This approach also demonstrated

the adaptiveness of the LPC edge detection method with regards to processing batch image

sets. Given any image, a quality edge map can be generated from this method thus pre-

serving structural features for the purpose of object recognition. The feed-forward mode

of this network also demonstrated the ability to perform local real time analysis, where this

time scale does not include training time. From the time an image is captured, the shape

recognition process takes approximately 3 seconds using a C-based language. Therefore,

the experiment in this thesis demonstrated the robustness of the feed-forward neural net-

work with backpropagation to recognize five fundamental objects in optical images.

Given the results from this research, several suggestions are offered for future

work. The first of which is increasing the size of the image data base to include noise

corrupted images. Due to the less than desirable results produced from adding noise, these

images could be used for both training and test sets. These corrupted images coupled with

the addition of emergent shape images would produce a more robust data base which could

lead to more accurate recognition rates for real world environmental events. Due to the
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lack of available sonar images, optical images were implemented to verify network learn-

ing and the ability for this network to recognize primitive shapes. Given this information,

further testing is needed to include a sonar image library to verify the effectiveness of the

LPC edge detector and the feed-forward neural network. Once this library is obtained, im-

provements to the overall data base could lead to higher recognition rates for all imaging

systems.

Additional improvements could be attained by the investigation of alternative neu-

ral network paradigms. These networks can be used as stand along networks or used in

a parallel fashion. The increased computational power of parallel networks could reduce

training time and increase global network recognition. The addition of a linear classifier

or associative memory network is one option. The output from this addition could be used

as the input for the feed-forward network. Due to the significant training involved for

this network, another alternative is the use of radial-basis function or momentum learning

algorithm. This would reduce training time and allow for the image size to be increased

to produce a more defined edge map. More structural information could lead to more

confident recognition rates corresponding to specific inputs. Using these alternative net-

works would allow for more research in optimizing the training time for specific mission

applications. Given a significant reduction in training time, mission preparation time is

reduced.
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