

AUDIO ON THE GPU: REAL-TIME TIME DOMAIN
CONVOLUTION ON GRAPHICS CARDS

A Thesis
by

ANDREW KEITH LACHANCE
May 2011

Submitted to the Graduate School
Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

May 2011

Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149238447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUDIO ON THE GPU: REAL-TIME TIME DOMAIN
CONVOLUTION ON GRAPHICS CARDS

A Thesis
by

ANDREW KEITH LACHANCE
May 2011

APPROVED BY

Rahman Tashakkori
Chairperson, Thesis Committee

Barry L. Kurtz
Member, Thesis Committee

James T. Wilkes
Member, Thesis Committee
Chairperson, Department of Computer Science

Edelma D. Huntley
Dean, Research and Graduate Studies

Copyright by Andrew Keith LaChance 2011
All Rights Reserved

iv

ABSTRACT

AUDIO ON THE GPU: REAL-TIME TIME DOMAIN
CONVOLUTION ON GRAPHICS CARDS

Andrew Keith LaChance

M.S., Appalachian State University

Thesis Chairperson: Rahman Tashakkori

The architecture of CPUs has shifted in recent years from increased speed to more

cores on the chips. With this change, more developers are focusing on parallelism; however,

many developers have not taken advantage of a common hardware component that

specializes in parallel applications: the Graphics Processing Unit (GPU). By writing code to

execute on GPUs, developers have been able to gain increased performance over the

traditional CPU in many problem domains, including signal processing.

Time domain convolution is an important component of signal processing. Currently,

the fastest process to perform convolution is frequency domain multiplication. In addition to

being more complex, inconsistencies such as missing data are difficult to solve in the

frequency domain. It has been shown that executing frequency domain multiplication on

GPUs improves performance, but there is no research for time domain convolution on GPUs.

This thesis provides two algorithms that implement time domain convolution on

GPUs: one algorithm is for computing convolution all at once and another is designed for

real time computation and playing the results. The results from this thesis indicate that using

the GPU significantly reduces processing time for time domain convolution.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my wife who has stood by me during this

very long process and had to deal with the strain of living in two cities while I finish my

degree. I could not have done this without her continuous support.

My thanks also extend to my thesis advisor, Dr. Rahman Tashakkori, without his help

and guidance this thesis would not have been possible.

I would also like to thank Dr. Barry Kurtz and Dr. James Wilkes, my thesis

committee members, for their valuable advice.

vi

Table of Contents

Chapter 1 - Introduction .. 1

Chapter 2 - Background Information .. 5

2.1 – GPU Programming ..5

2.2 - Digital Audio ...10

Chapter 3 - Related Work ... 12

Chapter 4 – GPU Optimization Strategies .. 14

4.1 – Memory Coalescing ..14

4.2 – Shared Memory ...16

4.3 – Texture Memory ..17

4.4 – Pinned Memory ...17

4.5 – float2/float4 Data Type ...18

4.6 – Control Flow and Padding...18

4.7 – Streams ..19

4.8 – Launch Configuration ...19

4.9 – Prefetching ..20

Chapter 5 – Methodology ... 21

5.1 – Acquisition of Sampled Data ..22

5.1.1 – Brief Overview of the WAVE File Format..22

5.1.2 – Conversion of Sampled Data ...23

5.1.3 – Sample Frame Representation ...24

5.1.4 – Zero Padding ..25

5.2 – Preparing Devices ...25

5.2.1 – GPU Memory Allocation ...26

5.2.2 –Definition of Streams ..28

5.2.3 – Definition of Audio Devices ..29

vii

5.3 – Convolution ...29

5.3.1 – CPU ..30

5.3.2 – GPU..32

Chapter 6 – Results ... 37

6.1 – Improving GPU Kernels with Optimizations ..37

6.2 – Improving Convolution ...41

Chapter 7 – Conclusions and Future Work ... 53

7.1 – Conclusions ...53

7.2 – Future Recommendations ..55

References ... 57

Appendix A – User Manual for Executables .. 59

VITA ... 60

1

Chapter 1 - Introduction

 Traditionally, CPUs have been the only target architecture of software developers.

With the advent of three-dimensional graphics and multimedia applications, however,

dedicated processors for graphics (GPUs) have become a standard part of most computers.

At first, GPUs were only used for graphical rendering; gradually they became powerful

enough that developers saw the potential use of GPUs as parallel processors. Software that is

highly parallel derives a performance benefit by utilizing the GPU instead of exclusively

using the CPU. The GPU designer company NVIDIA took advantage of the fact that

developers were using their GPUs for general purpose problems and introduced new

hardware to their GPUs to make them easier to program.

In 2007, NVIDIA introduced Compute Unified Device Architecture (CUDA) as a

solution for general purpose programming on GPUs [5]. CUDA allows developers to write

code in traditional programming languages, such as C and C++, to be compiled and executed

on GPUs. Prior to CUDA, problems needed to be cast into constructs that the GPUs could

understand, such as a data array being cast to a two-dimensional array (texture) and accessed

as such. Because GPUs were already designed to be highly parallel processors, CUDA made

it possible for programmers to develop non-graphics applications that exploited data

parallelism to execute on GPU hardware.

Data parallelism is a property of some algorithms in which the calculations on each

datum in the problem are independent of the results of the other calculations. Therefore, the

2

calculations on different data can be executed simultaneously. Applications that contain

inherent data parallelism include matrix multiplication, electrostatic potential map

calculations, as well as convolution, which is one of the topics of investigation of this thesis.

 According to [6], the convolution in the time domain of two functions, a Dry Signal

and an impulse response, is defined as (1).

݄ሺ݊ሻ ൌ ෍ ݂ሺ݉ሻ݃ሺ݊ െ ݉ሻ
௡

௠ୀ଴

(1)

In this definition, ݊ is the total number of samples in the impulse response, ݉ is the current

sample number, ݂ሺ݊ሻ is the Dry Signal (the one to add reverberation to), ݃ሺ݊ሻ is the impulse

response (the reverberation of the room), and ݄ሺ݊ሻ is the resulting Wet Signal (the Dry signal

with reverberation added). In audio terms, every sample in the impulse response represents

the amplitude of a single echo. By performing convolution on these signals, reverberation is

applied to the Dry Signal. The resulting Wet Signal has the reverberation characteristics of

the room in which the impulse response was acquired. In other words, the Wet Signal would

sound like the Dry Signal being played in that room.

Sequencing software to create and manipulate audio is popular for musicians, sound

engineers, and those who are interested in creating music digitally. The number of effects

that can be added to a signal by the audio creation software within a usable time frame is

dependent upon the speed of the CPU. If the effects can be parallelized and executed on a

GPU, however, it then becomes possible to apply more effects at once since the computation

required by the CPU has been reduced.

 Although convolution can be parallelized, this is not true for all audio effects. In

some algorithms, such as equalization, the value of the current sample depends upon the

3

value of a previous sample or samples. Fabritius investigated the GPU implementation of

four audio effects: equalization, delay, convolution, and compression [3]. He concluded that

of the four effects tested, convolution/reverb was the only algorithm that had a clear

advantage when using the GPU, compared to that obtained by running exclusively on the

CPU.

 Fabritius focused on the fastest known way to perform convolution. This approach

was to transform the data to the frequency domain using the Fourier Transform, and thus

signal data was stored as frequency data instead of time data. After that, frequency domain

multiplication, equivalent to time domain convolution, was performed using the frequency

data. Finally, the result was transformed back to the time domain using the Inverse Fourier

Transform [3]. Unfortunately, Fabritius did not compare time domain convolution with

frequency domain multiplication on GPUs.

 Time domain convolution has the benefit of being far simpler to analyze and

understand. In addition, as a sliding average, it has applications in statistics. In particularly,

the Stanford Exploration Project [13] lists five complications that are more difficult to solve

in the frequency domain:

• time boundaries between past and future

• delimiting a filter

• erratic locations of missing data

• time-variable weighting

• time-axis stretching.

Furthermore, there may yet be undiscovered advantages to keeping the data in the time

domain.

4

 In addition to its focus on time domain convolution, this thesis investigated different

optimization strategies. For GPU programming, there are many different options for

optimization, but not all of them work well on every type of problem. Presently, there are no

tried-and-true methods for determining whether or not a certain optimization will actually

provide a benefit other than to implement and test that optimization strategy [5]. This thesis

investigated using texture memory, shared memory, prefetching, loop unrolling, and

removing some error-checking by moving that responsibility to the CPU. This will benefit

developers wanting to optimize applications similar to signal processing by allowing them to

focus only on the optimizations that have the best chance of leading to improved

performance.

5

Chapter 2 - Background Information

Although the same programming language (C/C++) is used for programming Central

Processing Units (CPUs) and Graphics Processing Units (GPUs), the methods in which these

processors are programmed are quite different. CPUs are traditionally sequential

architectures in which the instructions are ordered and must be executed in the same order.

Current hardware now allows CPUs to execute instructions out of order, and overlap the

execution of individual instructions, as long as the results produced are the same as that of

sequential execution. This is a form of parallelism known as fine-grain parallelism. CPU

design is currently moving towards a more coarse-grain parallel design with up to eight

processing cores. Eight cores allow up to eight threads to run simultaneously using a

Multiple Instruction Multiple Data (MIMD) strategy.

2.1 – GPU Programming

GPUs utilize parallel architectures in which multiple processors are executing the

same instruction on different data. This strategy is known as Single Instruction Multiple

Data (SIMD). SIMD processors can be used to exploit the data parallelism of algorithms that

perform the same operation on each datum of a typically large set of data. Figure 2.1

describes a SIMD architecture and illustrates how instructions are shared between every

thread. An example of an algorithm that has data parallelism is an add operation of two

6

arrays that adds elements from the same index together and stores the result in another array

at that index.

Most GPU applications follow a particular code layout: CPU code is used to set up

the application and data, memory is allocated and copied using API calls, a GPU kernel

(complete code that runs on a GPU) is launched to operate on the data and upon completion,

the results are copied back to the main memory. The two copy steps and the kernel launch

would replace the calculation step of traditional CPU code, especially if the code is being

modified to run on GPUs.

Figure 2.1 – SIMD Architecture

A GPU kernel launch is different from a typical application launch. Along with any

parameters passed to a kernel, such as the address of the data in GPU memory, a launch

configuration must also be provided. A launch configuration tells the GPU how to organize

its runtime resources. At least two parameters must be specified in the launch configuration:

the number of threads per block and the number of blocks per grid.

Data (such as an array)

Thread Thread Thread ThreadThread

Instruction List

7

A thread on the GPU is very similar to a thread on a CPU; however, control can be

switched among threads much faster on GPUs due to the specialized hardware. Groups of

threads organized into blocks can have one, two, or three dimensions of threads, configured

at runtime. The number of dimensions used is application-dependent. For example, image

or video applications would probably find it beneficial to use two dimensions since images

and video frames are usually organized as two-dimensional arrays.

Threads in a block share resources. For example, each thread does not have its own

register file. Instead, a large register file exists on a multiprocessor and threads use registers

from there. All the blocks reside in a one or two dimensional grid, defined at runtime. A

grid is the highest level in the hierarchy, thus when a grid has completed execution, the

kernel has also completed. Figure 2.2 illustrates an example of a grid with threads in three

dimensions and blocks in two dimensions.

A thread and the data upon which the thread operates are identified via the built-in

variables threadIdx, blockIdx, blockDim, and gridDim. These variables are assigned at

kernel launch based on the launch configuration. The threadIdx variable holds the index of

the thread. It has three components: x, y, and z, accessed using dot notation (for example

threadIdx.x), which refer to the three dimensions in which threads can be launched. The

blockIdx variable holds the block index and has two components, x and y, to correspond to

the two dimensions in which blocks can be launched. The blockDim variable holds the

number of threads per block and gridDim holds the number of blocks. Together, these

variables can be used to determine an index for that thread. In the simplest case of blocks

and threads in one dimension, an index for data can be determined by blockDim *

8

threadIdx.x. The next index for that thread is the sum of the current index and blockDim *

gridDim.

Figure 2.2 – Configuration of two dimensions of both threads and blocks [15]

GPUs do not execute threads one at a time; instead, the hardware divides the threads

into warps. A warp is a group of threads that are executed simultaneously. For the most

recent hardware revision, compute capability 2.0, the warp size is 32 threads. Because the

threads in a warp are executed at the same time and in a SIMD strategy, the instruction that

every thread in a warp executes must be the same. When some threads in a warp execute the

then clause and some execute the else clause, thread divergence occurs, in which the then

clause is executed, followed by the else clause. In such a case, only the threads that have

9

evaluated the expression to be true execute the instructions in the then clause; the other

threads are disabled. The opposite happens for the else clause, and finally all threads are

enabled and continue to execute. Thread divergence can slow processing and developers

should keep this in mind when designing an algorithm. For example it would be

disadvantageous to have an algorithm that had a conditional statement depending on the

parity of a thread index.

Figure 2.3 illustrates how warps are distributed across thread blocks.

Figure 2.3 – Difference between thread blocks and warps [15]

10

The difference between the grouping of threads into blocks and threads into warps is that

thread blocks are logically executed in parallel while warps are physically executed in

parallel. Figure 2.3 also illustrates this difference.

2.2 - Digital Audio

A sound as heard by our ears reflects the changes in pressure caused by vibrations in

the air. These pressure changes in time are compression waves and describe the audio in the

time domain. The ear turns these pressure differences into frequency, which is heard as

pitch. Audio is stored on a computer as digital audio by sampling the sound waves. This

means that at a certain time interval, the pressure is measured and stored. The time interval

is determined by the sampling rate, which is based upon what frequencies should be stored.

The Nyquist Theorem states that a sampling rate of twice the highest distinct frequency to be

stored is needed in order to retain all information. An average person can hear between 20

Hz and 20 KHz, which means that the sampling rate must be at least 40 KHz. However, due

to imperfect recording equipment, a small threshold is added to the sampling rate to

counteract the imperfections of the recording equipment. For example, a sampling rate of

44.1 KHz, or 44,100 samples per second (as was decided upon by Sony and Phillips), has

become the de facto standard. This means that approximately every 23 microseconds, or

2.3x10-5 seconds, a measurement of the pressure is recorded and stored.

The standard audio format is Pulse Code Modulation (PCM), in which sound is stored

as amplitudes (the pressure level) with a sampling rate and bit depth. The bit depth

determines the number of different pressure values that can be stored. A common bit depth

is 16 bits per sample and measured at a sampling rate of 44.1 KHz.

11

A real time system is one in which failure occurs when a deadline is missed. Audio

applications are known as soft real time systems, in the sense that if a deadline (for example,

every 23 microseconds) is missed (sending audio to a speaker), there is a gap in the audio

that the user can hear as an interruption, but it does not lead to a catastrophic failure as no

actual harm occurs – the audio can still be played. The algorithm devised in the thesis is

considered to be running in real time such that immediately upon completion of any

calculated Wet data, it is sent to the speakers, and that there are no stops in the audio for any

amount of time until all the audio has been played.

12

Chapter 3 - Related Work

 GPUs have been used to solve problems in many domains, including MRI analysis

and molecular visualization [5]. While a large chunk of research has been in visualization,

there has also been research into signal processing on GPUs.

 In 2008, Cardinal et al. used GPUs for computing acoustic likelihoods in a speech

recognition system [2]. Cardinal’s team implemented their algorithm using dot product

operations, which GPUs can process efficiently, and concluded that their GPU

implementation was 5 times faster than the CPU version, which led to a speedup of 35% on a

large vocabulary task.

 Kerr et al. developed an implementation of the Vector Signal Image Processing

Library (VSIPL) for GPUs in 2008 [4]. This group implemented two versions: a time-

domain finite impulse response filtering runtime and a fast Fourier Transform runtime. They

achieved an 82 times speedup for their time-domain runtime and a 14.5 times speedup for

their fast Fourier Transform runtime.

 Nieuwpoort and Romein developed a GPU version of a software correlator to filter

out noise from radio astronomy signals [8]. A correlator is a streaming, real-time application

that is more I/O intensive than typical applications developed for multiple-core architectures

(such as GPUs). They found that using an NVIDIA GPU gave them a speedup of 6.3 times

over a CPU.

13

 In 2010, Nexiwave announced that the next version of their speech indexing

application will be accelerated by using NVIDIA GPUs [7]. The application by Nexiwave

for speech indexing has the ability to search for and locate spoken words in media, such as

videos. They claim to have achieved a speedup of 70 times over the existing solutions.

In 2009, Frederik Fabritius described the use of GPUs for audio processing, including

convolution as reverberation [3]. His goal was to determine whether or not GPUs were

suitable for convolution and to investigate how they compare with CPUs in performance,

specifically using the fastest known approach to convolution. This convolution method

involves using the frequency domain in which a signal is described in terms of frequency and

power. Convolution is performed by multiplying the spectra of the two signals. Fabritius

concluded that in all practical cases, it is either as fast, or faster, to compute reverberation on

GPUs.

14

Chapter 4 – GPU Optimization Strategies

 Software developers have been writing code for CPUs for a while now. They have

gotten used to the underlying architecture and have developed numerous strategies for

speeding up their programs. GPUs have different hardware from CPUs and the optimization

strategies are more specialized. While there are some strategies, such as memory coalescing,

that will always work, some depend on the specifics of the problem and the algorithm used.

Many optimization strategies involve utilizing the GPUs memory or memories in an efficient

way. Figure 4.1 shows the layout of memory on an NVIDIA CUDA GPU. Each block has

its own register file and shared memory, while every block has access to the same constant

and global memory.

4.1 – Memory Coalescing

 One tried-and-true method to improve efficiency is to make sure that most, if not all,

memory accesses to global memory are coalesced. Global memory loads and stores, under

certain requirements, can be reduced to a single instruction [9]. Recall from chapter 2 that

the smallest execution unit is a warp (or 32 threads). Depending on the compute capability

of the GPU, memory instructions are either executed by a half-warp or a full warp. This

means that it is possible for 16 or 32 load or store instructions to be reduced to a single

instruction.

15

Figure 4.1 – Memory layout on CUDA GPUs [15]

 Coalescing is achieved when all threads of a half-warp or full warp (depending on the

hardware version or compute capability) access different, but contiguous, areas of memory.

The only other option is for all the threads to access the same memory location. For

example, the following code segment has coalesced access:

int index = threadIdx.x;

float element = globalArray[index];

This segment has coalesced access because each thread is accessing a different element of

globalArray, but are contiguous in memory. Thread 0 accesses element 0, thread 1 accesses

element 1, and so on. Since this can be reduced to a single instruction, global memory is

only accessed one time. This removes up to 31 global memory accesses, and with each

16

global memory access taking hundreds of clock cycles, hence saves a significant amount of

time [9].

4.2 – Shared Memory

 Unlike CPU architectures, which include a hardware cache for memory, GPU

architectures have not had a hardware cache. Only the most recent GPUs have hardware

caching (compute capability 2.0). This means that every global access will always go to the

global memory. However, GPUs do have a type of cache on-chip which is entirely software

managed - shared memory [9].

 Shared memory exists for threads in the same block, which allows all threads in a

block to share information. The latency in accessing data from shared memory is about 100

times lower than that of accessing data from global memory [9]. If the same data is used

more than once, significant gains can be realized by storing the data in shared memory rather

than fetching it from global memory each time.

 Shared memory is divided into banks so that all threads can access shared memory at

the same time. For example, element 0 is located in bank 0, element 1 in bank 1, and so on.

The number of banks differs by compute capability (32 for compute capability 2.x and 16 for

lower) [9]. This means that in order to get the most out of shared memory, it is best to access

data in such a way that every thread accesses a different bank, or all threads access the same

address (thus one bank can broadcast its data to every thread).

17

4.3 – Texture Memory

 Textures are images that are used to decorate polygons in graphics rendering, such as

a texture of a tabletop looking like wood. Accessing textures is a very common operation,

and GPU hardware has texture units to help speed up that process by optimizing reads by 2D

spatial locality [9]. In general purpose computing, this provides a type of hardware cache for

memory to which the GPU will not write (since textures do not change), especially prior to

compute capability 2.0 when there was no hardware for caching. In cases where memory has

been “bound” as a texture and its access is generally in a way to take advantage of 2D spatial

locality, it is possible to achieve a higher bandwidth.

4.4 – Pinned Memory

 Pinned memory is memory that has been specifically allocated so that it cannot be

swapped to disk [12]. This makes it safe for the operating system to allow the application to

access the physical address space of the memory. In the case of GPU programming, this

allows the GPU to use Direct Memory Access (DMA) to copy data to and from the CPU.

The CPU is not involved with DMA, and allows a potential speed increase due to not

needing to execute memory copying instructions. Even if a developer does not allocate

pinned memory and performs a copy, the driver copies the memory to a pinned memory

region and then moves it to the GPU. Therefore, a copy from pageable memory occurs twice

– first from the pageable memory to temporary pinned memory, and then from pinned

memory to the GPU.

18

4.5 – float2/float4 Data Type

 The float2 and float4 data types are built-in vectors, represented as structures that

contain two or four floats, respectively. Because they are built-in, it may be possible to

slightly optimize memory accesses for accessing two or four floats, depending on the

application, access pattern, and usage.

4.6 – Control Flow and Padding

 Branching instructions are executed differently on GPUs than CPUs. The reason is

because of the minimum number of threads that are executed at the same time (the warp

size). The branching condition is checked by all threads. If the results do not agree for all

threads in the warp, the execution paths need to be serialized [10]. This means that all

statements in the clause, both that are executed when the condition is true and when it is

false, are executed serially. This increases the total amount of instructions executed by the

warp, and can drastically reduce the execution speed.

 A possible way to reduce the number of control flow statements is to use array

padding. Padding an array changes the size of the array but does not change the resulting

value of calculations on the array. For example, with convolution, an array can be padded

with zeroes without changing the result. This is because the multiplication step will produce

a value of zero, and then adding zero to the sum will not change the sum. Padding works in

this case by completely removing all bounds checking in the convolution calculation.

Normally, convolution will go out of bounds on the Dry array at both ends. However, adding

padding to both sides allows all accesses to stay in bounds, thus removing the need to check

for negative accesses and greater-than-length accesses.

19

 Padding arrays to become a certain size or a certain multiple of a size can also be

beneficial. A good example is to allow chunks of data to fit in shared memory with a number

of elements equal to the number of threads per block.

4.7 – Streams

 Streams can be thought of as self-contained parts of an application. As GPUs’

hardware have advanced, it became possible to execute kernels at the same time as copying

memory to and from the GPU. In order to accomplish that, however, a new method had to be

employed to separate the execution from the memory copying. This method uses streams. A

stream can be copying data to the GPU at the same time that another stream is executing its

kernel. This allows some of the work to overlap and can save time. The only caveat is that

streams must operate only on pinned memory.

 Starting with compute capability 2.0, multiple streams can be executed on the GPU

simultaneously, provided that resources are available. Therefore, if a kernel does not use a

lot of resources, or if the GPU has an abundance of resources, multiple streams can execute

at the same time where previously queued streams had to wait. A common situation is when

one stream is finishing up and is not using as many resources, in which case the next stream

can start using the resources that the previous stream does not need anymore.

4.8 – Launch Configuration

 A simple way to optimize a kernel is to write it so that it can run with any

configuration of threads per block, number of blocks per grid, and number of grids. This

allows the programmer to try different launch configurations to find the most suitable one for

20

the program. A tool to help is known as the CUDA Occupancy Calculator, provided by

NVIDIA. It is a spreadsheet in which the programmer fills in information about the kernel

and it shows them the limitations of the kernel and potentially new configurations to try. It

also shows the occupancy of each multiprocessor, which is defined as the ratio of the number

of active warps to the maximum number of active warps [9]. A higher occupancy does not

always yield better performance – there is a point at which a higher occupancy does not

increase performance.

4.9 – Prefetching

 Another use for shared memory is to use the prefetching technique. Prefetching is an

algorithm in which the next chunk of data is read from memory before the data is actually

needed. The goal is to overlap the memory reading instructions (more specifically, the delay

in accessing the data) with instructions performing calculations on the data already retrieved

with the hope of reducing the time spent waiting on data from memory. However,

prefetching requires twice the amount of shared memory (to store the data to do the

calculations on and the data to be prefetched) and may use more registers, which may reduce

the number of warps that can be executed simultaneously.

21

Chapter 5 – Methodology

The algorithm used on this thesis for the implementation of time domain convolution

on GPUs can be broken down into three major steps: 1) acquiring the sampled data of the

Dry and impulse response Signals, 2) preparing the devices, and 3) performing the

convolution. Figure 5.1 illustrates the computation process. The sampled data are broken

into chunks guaranteed to be a multiple of the number of threads per block. A stream will

process one chunk of data with the number of streams determined at compile time. The GPU

will hold a circular buffer into which chunks of sampled Dry data will be written. After

streams finish convolution on their chunk, the chunk gets copied back to the CPU where the

audio data are played.

Figure 5.1- High-level algorithm design

Acquire Data

Preparing Devices

Convolution

22

5.1 – Acquisition of Sampled Data

 The first step in the process is to acquire the samples for both sounds: the Dry Signal

and the impulse response. The standard WAVE file is selected for the ease of obtaining the

signal data. The raw data read from the WAVE file must be converted to floating point,

mapped as a float2 type, and padded with zeroes before it can be used. Figure 5.2 illustrates

this process.

Figure 5.2 – Conversion process from WAVE data to usable data for convolution

5.1.1 – Brief Overview of the WAVE File Format

 The data in the WAVE files are split into chunks. There are three main chunks: the

RIFF - or Resource Interchange File Format - chunk, the format chunk, and the data chunk.

Each chunk has a size field that defines its size. The RIFF chunk defines that the file is a

WAVE file. The format chunk describes the properties of the signal, including the number

of channels (for example, mono or stereo), the sample rate, the byte rate, the number of bits

per sample, and the audio format (usually uncompressed). The data chunk contains the

actual sampled data [14]. Figure 5.3 describes the format in detail.

 In order to access the sampled data, each chunk must be visited. The RIFF chunk is

used to verify that the file is a WAVE file. The fields of the format chunk are read first

which define how the audio will be sent to the speakers after convolution. Finally, the

sampled data are read in as described by the format chunk, with attention given to the

Conversion to
floating point

WAVE Data Mapping to
float2 type Zero Padding

23

number of channels and bits per sample. If a chunk is read that is not of type format or data,

it can be skipped by reading the size field and by skipping the specified number of bytes.

Figure 5.3 – Description of the Wave file format [14].

5.1.2 – Conversion of Sampled Data

 In the WAVE format, sampled audio data are stored as integral data types, such as a

char or short. GPUs have excelled in floating point calculations and have dedicated

hardware specifically designed for fast floating point computation. Especially useful is a

single instruction (known as a fused multiply-add instruction) that multiplies two floating

24

point numbers and adds the result to another. In order to take advantage of this, the data

must be converted to a floating point data type before convolution.

5.1.3 – Sample Frame Representation

 The audio data are separated into channels. Stereo signals, which are audio signals

with a left channel and a right channel, are a common format. A sample frame is a sample

from every channel that is played at the same time. Figure 5.4 illustrates an example of a

two-channel sample frame. Thus, for stereo audio, a sample frame consists of two samples;

one for the left channel, and one for the right. The float2 data type, a built-in structure that

holds two floating point values, was selected to represent one sample frame of data because it

maps well to stereo audio. Figure 5.5 illustrates the mapping of the float2 type to a sample

frame.

Figure 5.4 – Example of a two-channel sample frame

Figure 5.5 – The mapping of a sample frame to the float2 data type

Left Sample 0

Right Sample 0
Sample Frame

Time

Left Sample 1

Right Sample 1

Left Sample 0

Right Sample 0
Sample Frame

Time

Left Sample 1

Right Sample 1

float2[0].x

float2[0].y
float2

float2[1].x

float2[1].y

25

5.1.4 – Zero Padding

The impulse response and Dry Signals are zero padded to eliminate bounds checking

and thus reduce the number of branching instructions in the kernel code. The impulse

response data has zeroes added to the tail end to make it a multiple of the number of threads

per block. This allows ease of access from shared memory so that each thread of a block can

always access and store one element. The Dry Signal has leading and trailing zeroes added

such that when performing convolution on the GPU, the indices never become less than zero

or greater than the size of the array holding the Dry data. To make sure the indices never go

out of bounds, the Dry Signal is padded by one less than the number of sample frames in the

impulse response on both ends.

5.2 – Preparing Devices

 Before any GPU kernel code can be executed on a GPU, all data on which the kernel

operates must to be allocated appropriate space. In addition, the GPU streams need to be

defined and the device for playing audio needs to be configured. Figure 5.6 illustrates this

process.

Figure 5.6 – Setup process for convolution

GPU Memory Allocation

Definition of Streams

Definition of Audio Device

26

5.2.1 – GPU Memory Allocation

 Unlike programs that are developed on the CPU, in the case of programming for

GPUs the programmer has explicit access to many types of memory, which vary in size,

scope, and purpose. Not including registers, four types of memory, constant, texture, global,

and shared, are used in the final algorithm designed for this thesis. Three types are defined in

the CPU code.

 Constant memory is useful if a kernel needs access to small constant data. For

convolution, the length of the impulse response and the length of the buffer for the Dry data

do not change. Since the length variables are well within the limit of the constant cache size

of 64 KB, it is possible to store them in constant memory. The first read of every element in

constant memory will be read from global memory and also stored in the constant memory

cache. Each subsequent read will then be routed to the constant memory cache; therefore

using constant memory will not increase efficiency in the case of one read [10]. Using

constant memory reduces the number of parameters needed for each kernel, making the code

simpler.

 Texture memory can be used as a type of hardware cache provided that the access

pattern that takes advantage of 2D spatial locality. Texture memory is used for the impulse

response because of the way the impulse response data is accessed. Every sample of the

calculated Wet data needs every sample of the impulse response. This means that every

sample of the impulse response is accessed many times, and having some or all of the data in

cache is beneficial. After allocation, the impulse response is copied to the GPU.

 Global memory is used to store the Dry and Wet sample frames. Since each sample

frame of the Wet data is only accessed once to store the calculated value, there is no need to

27

use any special memory. The access pattern of the Dry data does not map well to the

properties of any special memory, thus global memory is used. Since compute capability 2.0,

a hardware cache exists to handle access patterns that do not map well to the other memories.

 The real time convolution algorithm developed for this thesis is designed to use a Dry

Signal of arbitrary length; therefore, a method is needed that allows operations on the data

either if the entire signal would not fit within global memory or if the entire signal is not

known at once, such as if it were streaming across the Internet. The method chosen is to use

a circular buffer in global memory such that a signal of any size would fit. The length of the

buffer must be chosen carefully, otherwise corruption can occur. The minimum length of the

circular buffer must be based upon the number of streams (so that no data currently being

used is overwritten) and the number of sample frames per chunk. To calculate one sample

frame of the Wet signal, a number of Dry sample frames equal to the length of the impulse

response is needed. Because of this, there must always be in memory a contiguous number

of sample frames of the Dry signal equal to the length of the impulse response. This means

that the total length of the circular buffer also must not be smaller than the length of the

impulse response. This problem can be alleviated by allowing each stream a number of

buffers of a length equal to the Dry chunk size, as part of the circular buffer.

 To calculate the minimum length of the circular buffer, first we determine the total

length of the Dry data, l, that must be used in calculations at a single time:

݈ ൌ ݊ כ (2) ݎ

In this definition, ݊ is the number of streams and ݎ is the number of sample frames per

chunk. This represents the number of sample frames that cannot be overwritten because

kernels of different streams are currently using this data.

28

 Once the minimum length of the circular buffer has been determined, the number of

buffers, b, needed for each stream to allow replacement of data is calculated by (3).

ܾ ൌ ቞
ሺ݅ ൅ ݈ሻ ൅ ሺ݈ െ 1ሻ

݈ ቟
(3)

In this equation, ݅ is the length of the impulse response and ݈ is the total length of the Dry

data buffer.

The buffers are arranged in memory sequentially by increasing stream first, then

buffer. For example, if there are two streams and two buffers needed, the layout in memory

would look like Figure 5.7.

Figure 5.7 – Layout sequence of stream buffers in GPU memory

Finally, the total length, s, of the circular buffer is calculated using (4).

ݏ ൌ ܾ כ ݈. (4)

The buffer is allocated on the GPU of size ݏ and then cleared. Clearing the data achieves the

same effect as padding leading zeroes to the signal; when the buffer wraps around, the data

being read are zeroes.

5.2.2 –Definition of Streams

 The Dry signal is being copied to GPU memory at the same time the kernel is

processing this data. Thus, it is beneficial to use streams. Streams are used to compute

convolution on a chunk of data independently of other chunks. This allows possible overlaps

Stream 1,
Buffer 2

Stream 2,
Buffer 1

Stream 2,
Buffer 2

Stream 1,
Buffer 1

29

to be exploited. Before streams can be used, they must be defined. In addition, for the

implementation of this thesis, each stream has a non-pageable (pinned) memory buffer that

holds the most recent chunk of Dry data to be sent to the GPU for computation.

5.2.3 – Definition of Audio Devices

 Before audio can be sent to an audio output device such as speakers, the device must

be configured. The configuration uses the sample rate, block align, and byte rate of the input

files. The number of channels is always two because this is convolution on stereo data, the

format is PCM since the data was read from WAVE files, and the number of bits per sample

is 16, which is a common bit depth.

5.3 – Convolution

 The main process for this convolution algorithm is to:

• send the current chunk of the Dry Signal to the GPU

• send the previously received Wet data to the speakers

• use the GPU to compute the Wet data on the current chunk

• copy the Wet data back to the CPU.

The CPU is responsible for manipulating data and keeping track of CPU-GPU coordination

(via streams) whereas the GPU is focused solely on the computation of the Wet data. Figure

5.8 illustrates this process.

30

Figure 5.8 – Overall convolution algorithm

 5.3.1 – CPU

 The CPU is the driving force behind the entire process. It has the responsibility of

copying memory to and from the GPU, coordinating between streams, and playing audio.

 The convolution step begins with the CPU copying the current chunk of Dry data to

the pinned memory buffer of the current stream. If there is insufficient data left to fill the

pinned buffer completely, zeroes are appended to the end until the buffer is full. This is

equivalent to padding the Dry Signal with trailing zeroes.

Once the GPU has finished executing the previous stream, the next chunk of the Dry

data is asynchronously copied to the circular buffer on the GPU. Upon completion of this

step, the function returns immediately, allowing the copying of the computed section of the

Wet signal of the current stream to the CPU. The copy to the GPU is conducted first because

it is possible to asynchronously copy memory to the GPU, but not from the GPU.

Send chunk of Dry data to GPU

Play Previous Wet Data

GPU Computation on Current Chunk

Copy Data to CPU

While More
Chunks

Play Last Wet Chunk

31

Asynchronously copying the data to the GPU allows the copy from the GPU to begin as soon

as possible. Since the newer GPUs can support simultaneous memory copies to and from the

GPU, ordering the memory copies in this way provides a benefit for the new GPUs without

sacrificing efficiency on older GPUs.

 Once the GPU has the next section of the Dry data, the kernel is launched. The

kernel launch is asynchronous thus control returns to the CPU immediately. While the GPU

is computing the next section of the Wet signal, the CPU normalizes the data of the chunk

recently copied from the GPU. The CPU scans through the chunk and compares the largest

value of the chunk to the largest value of all chunks. Each element is then divided by the

largest value, which is guaranteed to keep the data clamped between -1 and 1. This

eliminates any distortion and clicking in the audio signal while keeping the volume as

consistent as possible with other chunks. This also results in reducing the overall volume if a

new maximum value is found.

 The audio device expects the audio data to be 16-bit integer samples instead of

floating point data. Therefore, the normalized floating point data is converted to the short

integer data type. After the audio device is finished playing the current stream, the CPU

writes the audio data, which is in short integer form, to the audio device.

At least two streams must be present for real-time audio, which is similar to the

concept of double buffering. In the case of one stream, there is only one buffer for audio,

thus when the stream is finished being played, there is no audio data ready to play. The data

received from the GPU must be copied into the buffer, and that can only occur after the

stream has finished playing. Waiting for the device to finish playing and then copying the

data to the buffer takes a small amount of time, which causes a gap in the audio that is heard

32

as a clicking sound. Following this step, the stream number is incremented and set to zero

if it is greater than the number of streams. When the stream is set to zero, the buffer number

is incremented. If the buffer number exceeds the number of buffers for each stream, it is also

set to zero. The loop continues until all Dry data and its trailing zeroes have been sent to the

GPU for computation.

5.3.2 – GPU

 The main task of the GPU is to perform the necessary calculations for convolution.

Figure 5.9 illustrates the GPU process for the convolution algorithm of this thesis.

33

The GPU kernel needs four parameters – the address of the Wet data array, the

address of the Dry data array, the index from which the kernel is starting to read the Dry data,

and the starting index in which the calculated results are to be saved. The addresses of the

arrays are assigned to variables on the CPU when the memory for the arrays is allocated on

the GPUs. The addresses are pointers to global memory on the GPU.

The first step is to assign each individual thread the data used as input and the

location where it stores the result. This is accomplished via the blockIdx, blockDim, and

threadIdx variables. The data are one-dimensional and the calculation to guarantee every

sample frame is assigned to only one thread is as shown in (5).

൅ൌݔ݁݀݊݅ .ݔ݀ܫ݇ܿ݋݈ܾ ݔ כ .݉݅ܦ݇ܿ݋݈ܾ ݔ ൅ .ݔ݀ܫ݀ܽ݁ݎ݄ݐ ݔ (5)

This assignment also makes efficient use of memory by allowing the GPU hardware to

coalesce memory accesses since each thread has an index adjacent to its neighboring threads.

The same assignment is used to calculate the index used to store the Wet data.

After completing the above task, a while loop is used to guarantee that all sample

frames in the chunk are processed by not allowing the kernel to terminate until all sample

frames have been computed. This is dependent on the number of threads per block and the

number of blocks. If there are not sufficient threads in the kernel to process all of the sample

frames, a stride value is needed. This stride value is the total number of threads in the grid

and is calculated by (6).

݁݀݅ݎݐݏ ൌ ݉݅ܦ݇ܿ݋݈ܾ כ ݉݅ܦ݀݅ݎ݃ (6)

During each iteration of the while loop, the stride is added to the index variable of the thread.

Note that if the kernel is launched with a sufficient number of threads per grid to process all

the sample frames in the chunk, the condition code of the while loop and the stride

34

instructions can be omitted. This can save computation time and reduces the size of the

kernel. The minimum number of blocks needed to guarantee all sample frames in the chunk

are processed as shown in (7).

ݏ݇ܿ݋݈ܾ ൌ ඌ
݁ݖ݅ݏ ݇݊ݑ݄ܿ

 ඐ݇ܿ݋݈ܾ ݎ݁݌ ݏ݀ܽ݁ݎ݄ݐ

(7)

 Every sample frame of the Wet data depends on every sample of the impulse

response. Each thread in the block is using the same element of the impulse response at the

same time, on different sample frames of the Dry data. Using shared memory can improve

the performance of this access pattern over using global memory.

 Each thread of a block grabs a sample frame of the impulse response from texture

memory and stores the value in a shared memory array. Because all data accesses are

neighboring, all the accesses are coalesced. Therefore the number of sample frames in

shared memory of the impulse response is equal to the number of threads per block. The

block waits for every thread to access its sample frame before continuing execution. Each

sample frame in the shared memory is then accessed in a loop. The current Dry sample

frame is read from global memory using the current index. One is subtracted from the

current index for the next calculation, resetting to the other end of the circular buffer if the

value is -1. The Dry sample frame is multiplied with the impulse response sample frame and

added to a running sum.

 When all the samples from shared memory have been processed, the loop starts again,

this time accessing the next group of sample frames from the impulse response. After all

values have been calculated and all samples of the impulse response processed, the resulting

sum is stored in global memory. Finally, the stride mentioned previously is added to both the

Dry index and the Wet index.

35

 The real time kernel is intended for applications where the entire Dry signal is not

known in advance, such as streaming across the Internet. In such a case, some optimizations

cannot be performed. In order to view many optimizations, in addition to the real time

kernel, a separate kernel that computes the entire signal at once was developed as part of the

research for this thesis. The algorithm is similar to that of the real time kernel, except that

the Dry signal is explicitly padded with zeroes, is bound to texture memory, and a single

kernel computes the entire Wet signal.

 Figures 5.10 and 5.11 illustrate the main differences between the offline and real time

kernels by showing a simplified version of the optimized kernels. The main difference is the

circular buffer check for the real time kernel. Because the offline kernel has all the Dry data,

there is no need for a check. The other main difference is the use of texture memory.

Because the offline kernel has all the Dry data, it can bind the Dry data as a texture. Since

the real time kernel does not have the full Dry signal at any one time and because more

recent chunks of Dry data overwrite previous chunks, it cannot utilize texture memory.

36

Figure 5.10 – Simplified offline kernel

Figure 5.11 – Simplified real time kernel

while(THREADS_PER_BLOCK * loopNum < impulseResponseSize) {
 impulseResponseCache[threadIdx.x] =
 tex1Dfetch(impulseResponseTexture,
 (THREADS_PER_BLOCK * loopNum) + threadIdx.x);

 __syncthreads();

 for(j = 0; j < THREADS_PER_BLOCK; j++) {
 drySampleFrame = tex1Dfetch(dryTexture, dryIndex);
 dryIndex--;
 sum.x += (impulseResponseCache[j].x * drySampleFrame.x);
 sum.y += (impulseResponseCache[j].y * drySampleFrame.y);
 }

 loopNum++;
 __syncthreads();
}

while(THREADS_PER_BLOCK * loopNum < impulseResponseSize) {
 impulseResponseCache[threadIdx.x] =
 tex1Dfetch(impulseResponseTexture,
 (THREADS_PER_BLOCK * loopNum) + threadIdx.x);

 __syncthreads();

 for(j = 0; j < THREADS_PER_BLOCK; j++) {
 drySampleFrame = dry[dryIndex];
 dryIndex--;

 if(dryIndex == -1)
 dryIndex = bufferSize;

 sum.x += (impulseResponseCache[j].x * drySampleFrame.x);
 sum.y += (impulseResponseCache[j].y * drySampleFrame.y);
 }

 loopNum++;
 __syncthreads();
}

37

Chapter 6 – Results

 For proper comparison of running a convolution algorithm on the CPU against

convolution running on a GPU, the best kernel for offline and the best kernel for real time

were selected. The selection process involved testing a 16-second Dry signal with a 2.5-

second impulse response, with a sampling rate of 44.1 KHz. The time, in milliseconds, of

the kernels, was recorded using the CUDA API’s cudaEventRecord() function. In the case of

the real time kernel, the kernel time is the sum of each kernel launch. The GPU used was an

EVGA Nvidia GTX260 Superclocked version with 216 cores and a compute capability of

1.3. The CPU was an Intel E5320 1.86 GHz.

6.1 – Improving GPU Kernels with Optimizations

The optimizations selected are to use texture memory, shared memory, loop,

prefetching, and removal of the outer loop by making sure the kernel launches with a

sufficient number of blocks to complete the computation. The “simple” kernel is the kernel

without any optimizations.

Figure 6.1 shows the results for the offline kernel in which it is apparent using shared

memory and texture memory achieved better performance. This is because there is no

hardware cache on the GTX260 as it is of compute capability 1.3. Prefetching the impulse

response did not affect the performance much, but still saw a small speedup. A loop unroll

of eight was found empirically to provide the best performance, and yielded an approximate

38

speedup of 1.8 times. Finally, removing the outer loop slightly hindered the performance.

This has more to do with launching more blocks rather than reusing already executing ones

than removing the loop logic.

Figure 6.1 – Comparison of execution time of the offline kernel using different optimizations

13.4957

8.36524

9.93468

7.35191

7.04993

4.0354 4.05495

0

2

4

6

8

10

12

14

16

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Comparison of Kernels in Offline Computation

39

 Figure 6.2 illustrates the results for the real time kernel using a chunk size for the Dry

data of 22,528 sample frames. This sample frame size was found experimentally to produce

the best performance. Similar to the offline kernel, shared memory and texture memory

resulted in improved performance. Shared memory improved the performance

approximately the same amount as in the offline kernel. However texture memory did not

have as much effect on performance, because in the real time kernel, only the impulse

response can be bound as a texture as the CPU is constantly writing data to the Dry data

circular buffer. While removing the outer loop only saved 6 milliseconds, it also reduced the

amount of registers used by four. This can be important for developers who need to reduce

the amount of registers their kernels use to keep the occupancy high.

As contrasted to the offline kernel, prefetching the impulse response data did not

improve performance, because each of the real time kernels are running for less time than the

offline kernels and the overhead of prefetching overcomes the benefit on the shorter kernels.

Similar to the drop in performance with prefetching, unrolling the loop decreased

performance. A loop unroll of 4 was found to yield the best loop-unroll performance, but

still reduced overall performance while using five more registers. The reduction in

performance and use of more registers is caused by the circular buffer checks to make sure

wrap around is applied if necessary.

40

Figure 6.2 – Comparison of execution time of the real time kernel using different
optimizations

12.2363

10.7611

10.0138 9.97688 9.97682
10.3022

11.0704

0

2

4

6

8

10

12

14
Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Comparison of Kernels for Real Time
Computation

41

6.2 – Improving Convolution

 Among the offline kernels, the kernel with all optimizations without the removal of

the outer loop performed best. Of the real time kernels, the kernel utilizing shared memory,

texture memory, and the removal of the outer loop performed best. For this reason, these two

kernels will be compared in time domain convolution and frequency domain multiplication

on the CPU. The CPU functions are built-in functions for MATLAB. MATLAB’s conv()

function performs time domain convolution and cconv() performs frequency domain

multiplication. The tests were performed on an Intel E5320 1.86 GHz processor. All tests

were run on two different impulse responses: one created digitally by generating white noise

and the other recorded from an unfinished chapel and obtained from the Real Rooms online

repository [11]. Both were edited to be exactly 2.5 seconds long. Figure 6.3 illustrates the

waveform for the chapel impulse response, and Figure 6.4 illustrates the waveform for the

white noise impulse response.

Figure 6.3 – The waveform of the chapel impulse response

42

Figure 6.4 – The waveform of the white noise impulse response

Figure 6.5 illustrates using a logarithmic scale the comparison of MATLAB’s conv()

function to the best-performing GPU kernels for the impulse response recorded in a chapel.

Both GPU kernels performed better than the CPU, with speedups ranging from 106 times to

125 times faster. These results show that CPU time domain convolution has a very steep

linear nature. The GPU kernels, however, have a slight parabolic curve.

 Figure 6.6 shows the comparison of MATLAB’s cconv() function to the best-

performing GPU kernels. While the cconv() function performs better in most cases, the

offline kernel performs close to it or performs better for impulse response lengths less than

three seconds. As Figure 6.5 illustrates, the processing time for the cconv() function does not

follow a specific curve. This may be due to the frequencies present in the impulse response.

43

Figure 6.5 – Comparison of the CPU function conv() and the GPU kernels for the chapel
impulse response

0.1

1

10

100

1000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Impulse Response Duration (seconds)

Performance Comparison of CPU conv() and GPU
Kernels for the Chapel Impulse Response

CPU conv() GPU Offline Kernel GPU Real Time Kernel

44

Figure 6.6 – Comparison of the CPU function cconv() and the GPU kernels

0

5

10

15

20

25

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Impulse Response Duration (seconds)

Performance Comparison of CPU cconv() and
GPU Kernels for the Chapel Impulse Response

CPU cconv() GPU Offline Kernel GPU Real Time Kernel

45

Figure 6.7 illustrates using a logarithmic scale the comparison of the conv() function

for the white noise impulse response. The execution time for both GPU kernels and the

conv() function are almost identical to those for the chapel impulse response. This is

opposite of the cconv() function, in which the processing time depends upon the signal. It

appears that unlike time domain convolution, where processing time is only dependent on the

length, frequency domain multiplication appears to be dependent on the frequencies of the

signals.

Figure 6.7 - Comparison of the CPU function conv() and the GPU kernels for the white noise
impulse response

0.1

1

10

100

1000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Duration (seconds)

Performance Comparison of CPU conv() and GPU
Kernels for the White Noise Impulse Response

CPU cconv() white noise GPU Offline Kernel GPU Real Time Kernel

46

 Figure 6.8 illustrates the frequency spectrum for the chapel impulse response. As the

figure illustrates, the spectrum is not flat. For this spectrum, as the frequency goes up, the

amplitude of the frequency goes down. This means that there are less high frequency

components than low frequency components for the chapel impulse response. This could be

the result of the air dissipating the high frequency energy faster than the low frequency

energy, the properties of the microphone used to record the impulse response, or the gunshot

used to create the sound file [11].

Figure 6.8 – Spectrum for the chapel impulse response

 Figure 6.9 illustrates the frequency spectrum for the white noise impulse response.

As the figure illustrates, the spectrum is flat, indicating that the amplitude of all frequencies

in the impulse response is very similar. White noise was chosen as a baseline for comparing

to a recorded impulse response for its properties of having a flat spectrum.

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

86 94
7

1,
80

9

2,
67

0

3,
53

1

4,
39

3

5,
25

4

6,
11

5

6,
97

7

7,
83

8

8,
69

9

9,
56

1

10
,4
22

11
,2
83

12
,1
45

13
,0
06

13
,8
67

14
,7
29

15
,5
90

16
,4
51

17
,3
13

18
,1
74

19
,0
35

19
,8
97

20
,7
58

21
,6
19

Po
w
er
 (d

B)

Frequency (Hz)

Spectrum Chart for Chapel Impulse Response

47

Figure 6.9 – Spectrum for the white noise impulse response

Figure 6.10 illustrates the performance comparison of the CPU cconv() function

against the GPU kernels for the white noise impulse response. The results from the cconv()

function are much more stable for the white noise impulse response than the chapel impulse

response. The GPU kernels perform similarly to the cconv() function for short impulse

responses. However, in all cases but the shortest impulse response, the CPU cconv()

function performed better.

‐30

‐28

‐26

‐24

‐22

‐20

‐18

‐16

‐14

‐12

‐10

86 94
7

1,
80

9

2,
67

0

3,
53

1

4,
39

3

5,
25

4

6,
11

5

6,
97

7

7,
83

8

8,
69

9

9,
56

1

10
,4
22

11
,2
83

12
,1
45

13
,0
06

13
,8
67

14
,7
29

15
,5
90

16
,4
51

17
,3
13

18
,1
74

19
,0
35

19
,8
97

20
,7
58

21
,6
19

Po
w
er
 (d

B)

Frequency (Hz)

Spectrum Chart for White Noise Impulse
Response

48

Figure 6.10 – Performance comparison between CPU cconv() and GPU kernels

0

5

10

15

20

25

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Impulse Response Duration (seconds)

Performance Comparison of CPU cconv() and
GPU Kernels for a White Noise Impulse Response

CPU cconv() GPU Offline Kernel GPU Real Time Kernel

49

 In addition to testing various lengths of impulse responses, a variety of Dry lengths

and a constant length impulse response were tested to see how performance scales with

increasing Dry length. Dry lengths tested were 30-second increments from a length of 30

seconds to five minutes. The Dry signals were created via Audacity, a free, open source

application for editing sound files [1]. The left channel was a Sine wave sweep from 20 Hz

to 20 KHz and the right channel was white noise. This arrangement was chosen to give the

broadest test possible by including all frequencies and by having the samples both close to

each other (the sine wave sweep) and far apart (white noise). The impulse response used was

the 2.5-second chapel impulse response.

Figure 6.11 illustrates using a logarithmic scale the performance comparison between

different Dry lengths on the two GPU kernels and the CPU conv() function. The conv()

function takes significantly longer to execute in all cases. The growth is similar to the

growth for increasing impulse response lengths and is steep. Again, the offline kernel

performs better than the real time kernel in all cases.

Figure 6.12 illustrates the performance comparison between different Dry lengths on

the two GPU kernels and the CPU cconv() function. Similarly to the impulse response

lengths test, the cconv() function performed better than the GPU in all cases and the offline

kernel outperformed the real time kernel.

Upon completion of testing with the GTX260 GPU, a new GPU became available.

The results from initial simple test cases on the new GPU, an Nvidia Tesla C2050 with

compute capability 2.0, are illustrated in figure 6.13. The performance comparison between

different lengths of impulse responses for the real time kernel running on the C2050 GPU

and the GTX260 GPU is presented in this figure.

50

Figure 6.11 – Performance comparison between GPU kernels and CPU conv() function for
various Dry lengths

1

10

100

1000

10000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Dry Duration (minutes)

Performance Comparison for Different Dry
Lengths

CPU conv() GPU Offline GPU Real Time

51

Figure 6.12 - Performance comparison between GPU kernels and CPU cconv() function for
various Dry lengths

0

20

40

60

80

100

120

140

160

180

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Dry Duration (minutes)

Performance Comparison for Different Dry
Lengths

CPU cconv() GPU Offline GPU Real Time

52

Figure 6.13 – Performance comparison of the real time kernel for a GTX260 and a C2050
GPU

0

5

10

15

20

25

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m
e
(m

ill
is
ec
on

ds
) x
10

3

Performance Comparison of Different GPUs
C2050 Real Time Kernel GTX260 Real Time Kernel

53

Chapter 7 – Conclusions and Future Work

7.1 – Conclusions

 In this research, real time computation of time domain convolution on graphics cards

and GPU optimizations were studied. The research investigated the optimization strategies

of utilizing shared memory, texture memory, prefetching, loop unrolling, and removal of the

outer loop that checks that all Wet data has been calculated.

The results indicate that the offline GPU kernel performs better than the real time

kernel by executing approximately 2.4 times faster in all cases. Compared to the CPU conv()

function for the impulse response length test, the offline kernel which has 216 cores,

performed up to 125 times faster. For the Dry length test, the offline kernel performed up to

133 times faster.

However, it is not always the case that the entire Dry signal is known. In this case,

the real time kernel provides sufficient performance over the CPU to warrant its use over the

CPU for time domain convolution. The real time kernel performed convolution up to 51

times faster than the CPU conv() function on the test files for the impulse response length

test. For the Dry length test, the real time kernel performed up to 53 times faster than the

CPU conv() function.

For impulse response lengths of approximately one second or less, the offline GPU

kernel matches or performs better than frequency domain multiplication on the CPU. The

real time kernel still performs well enough to process approximately 4.6 seconds in real time.

54

For impulse response lengths greater than that, the kernels will not finish fast enough to meet

the deadline and will cause gaps in the audio.

 For optimizations, the results are clear. For problems such as time domain

convolution, considerable effort should be made on using texture memory and shared

memory whenever possible. Texture memory allowed the offline kernel a 1.61 times speed

increase and a 1.22 times speed increase for the real time kernel. Shared memory sped the

offline kernel up by 1.36 times and the real time kernel by 1.22 times. Using both

optimizations together gave an overall speed increase of 1.84 times for the offline kernel and

1.23 times for the real time kernel. Both optimizations provided considerable speedup over

accesses to global memory.

For kernels that have inner loops that have no conditionals, manually unrolling the

loop is strongly encouraged. For the offline kernel, manually unrolling the inner loop

increased performance by 1.75 times that of the kernel already using the shared memory,

texture memory, and prefetching optimizations. Compared to the offline kernel with no

optimizations, it is running 3.34 times faster.

 Prefetching is encouraged only if there is time left in the development cycle, as it did

not guarantee a performance boost. When it did boost performance, in the offline kernel, it

was only sped up by 1.04 times. Using prefetching in the real time kernel hindered

performance by 0.97 times. Similarly, loop unrolling of loops with condition statements is

also suggested to only test if time permits. As well as extra register usage, it is not

guaranteed to increase performance. Unrolling the inner loop reduced the performance of the

real time kernel using the shared memory and texture memory optimizations by 0.90 times.

In contrast to the offline kernel, unrolling the loop did not increase the ratio of instructions

55

calculating data and those checking conditional statements. Unrolling this loop also added

more conditional checks, which reduced performance.

 When writing kernels, it is a good idea to support any number of threads and blocks

with an outer loop. After testing many configurations for best performance, if it is possible

to determine the number of blocks needed at runtime for the data, it is encouraged to test

without the outer loop. Even if there is no increase in performance, it may reduce the

number of registers used by the kernel. This can allow more warps to execute

simultaneously and allow a higher occupancy. Even if no performance gain occurs, it may

still be possible on different GPUs, especially future GPUs, to improve performance since a

lower register usage may mean another stream may start execution while the current stream

is executing.

 Initial testing for the real time kernel on the Nvidia C2050 may indicate that new

GPUs with compute capability 2.0 can perform much better than older compute capabilities

without any changes to the code. The only change was a compiler option for compute

capability 2.0 instead of compute capability 1.3. The C2050 GPU executed the real time

kernel approximately 3.1 times faster than the GTX260 GPU. In addition, the C2050 GPU

was able to process an impulse response of 14.1 seconds in real time. The addition of a

hardware cache and ability to execute multiple streams simultaneously led to this

improvement.

7.2 – Future Recommendations

 With the exception of the single test case of the C2050 GPU, these kernels were

compiled for and executed on GPUs of compute capability 1.3. Compute capability 2.0 has

56

numerous improvements, including a hardware cache for global memory and a choice of a

larger shared memory. Every access of a Dry data element is always one element less than

before. Because a thread of one index less will have used that data in the last iteration, it is

highly likely the value will be in the hardware cache. It would be worth investigating how

hardware caching improves performance in more than a single, simple test case, especially of

the real time kernel where the Dry data cannot be bound to a texture. In addition, tweaking

the code for the new architecture, such as testing a larger shared memory or prefetch cache,

would be beneficial to determine how convolution scales to multiple GPUs.

 The CPU that the conv() was tested on was perhaps slow by today’s standards.

Testing on a variety of different CPU types and speeds will provide better performance

increase numbers. It would also be beneficial to include special chips designed to do digital

signal processing as part of the comparisons.

57

References

[1] Sound Editor Application. http://audacity.sourceforge.net/

[2] Cardinal, P., Dumouchel, P., Boulianne, G., and Comeau, M. 2008. GPU Accelerated

Acoustic Likelihood Computations. Paper presented at the Centre de Recherche
Informatique de Montréal, Montréal, Canada.

[3] Fabritius, F. 2009. Audio Processing Algorithms on the GPU. Master’s Thesis. Technical

University of Denmark.

[4] Kerr, A. and Campbell, M. R. 2008. GPU VSIPL: High-Performance VSIPL
Implementation for GPUs. Paper presented at the Georgia Institute of Technology,
Georgia Tech Research Institute.

[5] Kirk, D. B. and Hwu, W. W. 2010. Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann Publishers, Burlington, MA.

[6] Loy, G. 2007. Musimathics: The Mathematical Foundations of Music Volume 2. The
MIT Press, Cambridge, MA.

[7] Nexiwave. 2010. Nexiwave.com and UbiCast Partner to Offer Next-Generation Deep

Audio Search. http://nexiwave.com/

[8] Nieuwpoort, R. and Romein, J. 2008. Using Many-Core Hardware to Correlate Radio
Astronomy Signals. Paper presented at the Netherlands Institute for Radio Astronomy,
Dwingeloo, The Netherlands.

[9] NVIDIA Corporation. CUDA C Best Practices Guide Version 3.2. 20 August 2010.

[10] NVIDIA Corporation. NVIDIA CUDA C Programming Guide Version 3.2. 9

November 2010.

[11] Real Rooms, 2011. http://www.impulseresponse.org/real_rooms.htm

[12] Sanders, J. and Kandrot, E. 2010. CUDA By Example. Boston, MA: Addison-Wesley

58

[13] Stanford Exploration Project. 2004. Time domain versus frequency domain.
http://sepwww.stanford.edu/sep/prof/gee/mda/paper_html/node2.html

[14] Wilson, Scott. 2003. Microsoft WAVE Soundfile Format.

https://ccrma.stanford.edu/courses/422/projects/WaveFormat/

[15] Zeller, C. 2008. NVIDIA Tutorial CUDA.
http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/NVIDIA_CUDA_Tutorial_No_NDA
_Apr08.pdf

59

Appendix A – User Manual for Executables

Please see the enclosed CD for executables and application code developed for this

thesis. There are two executables, OfflineConvolution.exe and RealTimeConvolution.exe.

Both are compiled for GPUs of compute capability 1.3 and higher. Both are executable via

the command line using command line arguments. The first argument is the file location of

the Dry data. The second argument is the file location of the impulse response.

OfflineConvolution.exe requires a third argument, the location to save the output WAVE file.

The input files must: 1) be in WAVE files, 2) be in stereo format (contains two audio

channels), 3) have equivalent sample rates, 4) have equivalent block align, and 5) have

equivalent bit depth (bits per sample).

If either of the input files does not match these five requirements, the application will exit

before performing convolution.

60

VITA

 Andrew Keith LaChance was born in Lawrence, Massachusetts and grew up in

Kingston, New Hampshire. He moved to Huntersville, North Carolina to finish the last two

years of high school. He graduated from Appalachian State University in May 2009 with a

BS degree in Computer Science. He entered the graduate program at Appalachian State

University in August 2009. After completing his Master of Science degree in Computer

Science in May 2011, Andrew LaChance becomes a Software Development Engineer at

Microsoft Corporation.

