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ABSTRACT 

AUDIO ON THE GPU: REAL-TIME TIME DOMAIN 
CONVOLUTION ON GRAPHICS CARDS 

 
Andrew Keith LaChance 

M.S., Appalachian State University 

Thesis Chairperson: Rahman Tashakkori 

The architecture of CPUs has shifted in recent years from increased speed to more 

cores on the chips.  With this change, more developers are focusing on parallelism; however, 

many developers have not taken advantage of a common hardware component that 

specializes in parallel applications: the Graphics Processing Unit (GPU).  By writing code to 

execute on GPUs, developers have been able to gain increased performance over the 

traditional CPU in many problem domains, including signal processing. 

Time domain convolution is an important component of signal processing.  Currently, 

the fastest process to perform convolution is frequency domain multiplication.  In addition to 

being more complex, inconsistencies such as missing data are difficult to solve in the 

frequency domain.  It has been shown that executing frequency domain multiplication on 

GPUs improves performance, but there is no research for time domain convolution on GPUs. 

This thesis provides two algorithms that implement time domain convolution on 

GPUs: one algorithm is for computing convolution all at once and another is designed for 

real time computation and playing the results.  The results from this thesis indicate that using 

the GPU significantly reduces processing time for time domain convolution. 



v 
 

 

 

ACKNOWLEDGEMENTS 
 

First and foremost, I would like to thank my wife who has stood by me during this 

very long process and had to deal with the strain of living in two cities while I finish my 

degree.  I could not have done this without her continuous support. 

My thanks also extend to my thesis advisor, Dr. Rahman Tashakkori, without his help 

and guidance this thesis would not have been possible. 

I would also like to thank Dr. Barry Kurtz and Dr. James Wilkes, my thesis 

committee members, for their valuable advice. 

  



vi 
 

 

 

 

Table of Contents 
 

Chapter 1 - Introduction .................................................................................................................. 1 

Chapter 2 - Background Information .............................................................................................. 5 

2.1 – GPU Programming ..............................................................................................................5 

2.2 - Digital Audio .....................................................................................................................10 

Chapter 3 - Related Work ............................................................................................................. 12 

Chapter 4 – GPU Optimization Strategies .................................................................................... 14 

4.1 – Memory Coalescing ..........................................................................................................14 

4.2 – Shared Memory .................................................................................................................16 

4.3 – Texture Memory ................................................................................................................17 

4.4 – Pinned Memory .................................................................................................................17 

4.5 – float2/float4 Data Type .....................................................................................................18 

4.6 – Control Flow and Padding.................................................................................................18 

4.7 – Streams ..............................................................................................................................19 

4.8 – Launch Configuration .......................................................................................................19 

4.9 – Prefetching ........................................................................................................................20 

Chapter 5 – Methodology ............................................................................................................. 21 

5.1 – Acquisition of Sampled Data ............................................................................................22 

5.1.1 – Brief Overview of the WAVE File Format............................................................22 

5.1.2 – Conversion of Sampled Data .................................................................................23 

5.1.3 – Sample Frame Representation ...............................................................................24 

5.1.4 – Zero Padding ..........................................................................................................25 

5.2 – Preparing Devices .............................................................................................................25 

5.2.1 – GPU Memory Allocation .......................................................................................26 

5.2.2 –Definition of Streams ..............................................................................................28 

5.2.3 – Definition of Audio Devices ..................................................................................29 



vii 
 

5.3 – Convolution .......................................................................................................................29 

5.3.1 – CPU ........................................................................................................................30 

5.3.2 – GPU........................................................................................................................32 

Chapter 6 – Results ....................................................................................................................... 37 

6.1 – Improving GPU Kernels with Optimizations ....................................................................37 

6.2 – Improving Convolution .....................................................................................................41 

Chapter 7 – Conclusions and Future Work ................................................................................... 53 

7.1 – Conclusions .......................................................................................................................53 

7.2 – Future Recommendations ..................................................................................................55 

References ..................................................................................................................................... 57 

Appendix A – User Manual for Executables ................................................................................ 59 

VITA ............................................................................................................................................. 60 

 



1 
 

 

 

Chapter 1 - Introduction 

 Traditionally, CPUs have been the only target architecture of software developers.  

With the advent of three-dimensional graphics and multimedia applications, however, 

dedicated processors for graphics (GPUs) have become a standard part of most computers.  

At first, GPUs were only used for graphical rendering; gradually they became powerful 

enough that developers saw the potential use of GPUs as parallel processors.  Software that is 

highly parallel derives a performance benefit by utilizing the GPU instead of exclusively 

using the CPU.  The GPU designer company NVIDIA took advantage of the fact that 

developers were using their GPUs for general purpose problems and introduced new 

hardware to their GPUs to make them easier to program. 

In 2007, NVIDIA introduced Compute Unified Device Architecture (CUDA) as a 

solution for general purpose programming on GPUs [5].  CUDA allows developers to write 

code in traditional programming languages, such as C and C++, to be compiled and executed 

on GPUs.  Prior to CUDA, problems needed to be cast into constructs that the GPUs could 

understand, such as a data array being cast to a two-dimensional array (texture) and accessed 

as such.  Because GPUs were already designed to be highly parallel processors, CUDA made 

it possible for programmers to develop non-graphics applications that exploited data 

parallelism to execute on GPU hardware. 

Data parallelism is a property of some algorithms in which the calculations on each 

datum in the problem are independent of the results of the other calculations.  Therefore, the 
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calculations on different data can be executed simultaneously.  Applications that contain 

inherent data parallelism include matrix multiplication, electrostatic potential map 

calculations, as well as convolution, which is one of the topics of investigation of this thesis. 

 According to [6], the convolution in the time domain of two functions, a Dry Signal 

and an impulse response, is defined as (1). 

݄ሺ݊ሻ ൌ ෍ ݂ሺ݉ሻ݃ሺ݊ െ ݉ሻ
௡

௠ୀ଴

 
 
(1)

In this definition, ݊ is the total number of samples in the impulse response, ݉ is the current 

sample number, ݂ሺ݊ሻ is the Dry Signal (the one to add reverberation to), ݃ሺ݊ሻ is the impulse 

response (the reverberation of the room), and ݄ሺ݊ሻ is the resulting Wet Signal (the Dry signal 

with reverberation added).  In audio terms, every sample in the impulse response represents 

the amplitude of a single echo.  By performing convolution on these signals, reverberation is 

applied to the Dry Signal.  The resulting Wet Signal has the reverberation characteristics of 

the room in which the impulse response was acquired.  In other words, the Wet Signal would 

sound like the Dry Signal being played in that room. 

Sequencing software to create and manipulate audio is popular for musicians, sound 

engineers, and those who are interested in creating music digitally.  The number of effects 

that can be added to a signal by the audio creation software within a usable time frame is 

dependent upon the speed of the CPU.  If the effects can be parallelized and executed on a 

GPU, however, it then becomes possible to apply more effects at once since the computation 

required by the CPU has been reduced. 

 Although convolution can be parallelized, this is not true for all audio effects.  In 

some algorithms, such as equalization, the value of the current sample depends upon the 
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value of a previous sample or samples.  Fabritius investigated the GPU implementation of 

four audio effects: equalization, delay, convolution, and compression [3].  He concluded that 

of the four effects tested, convolution/reverb was the only algorithm that had a clear 

advantage when using the GPU, compared to that obtained by running exclusively on the 

CPU. 

 Fabritius focused on the fastest known way to perform convolution.  This approach 

was to transform the data to the frequency domain using the Fourier Transform, and thus 

signal data was stored as frequency data instead of time data.  After that, frequency domain 

multiplication, equivalent to time domain convolution, was performed using the frequency 

data.  Finally, the result was transformed back to the time domain using the Inverse Fourier 

Transform [3].  Unfortunately, Fabritius did not compare time domain convolution with 

frequency domain multiplication on GPUs.  

 Time domain convolution has the benefit of being far simpler to analyze and 

understand.  In addition, as a sliding average, it has applications in statistics.  In particularly, 

the Stanford Exploration Project [13] lists five complications that are more difficult to solve 

in the frequency domain: 

• time boundaries between past and future 

• delimiting a filter 

• erratic locations of missing data 

• time-variable weighting 

• time-axis stretching. 

Furthermore, there may yet be undiscovered advantages to keeping the data in the time 

domain. 
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 In addition to its focus on time domain convolution, this thesis investigated different 

optimization strategies.  For GPU programming, there are many different options for 

optimization, but not all of them work well on every type of problem.  Presently, there are no 

tried-and-true methods for determining whether or not a certain optimization will actually 

provide a benefit other than to implement and test that optimization strategy [5].  This thesis 

investigated using texture memory, shared memory, prefetching, loop unrolling, and 

removing some error-checking by moving that responsibility to the CPU.  This will benefit 

developers wanting to optimize applications similar to signal processing by allowing them to 

focus only on the optimizations that have the best chance of leading to improved 

performance. 
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Chapter 2 - Background Information 

Although the same programming language (C/C++) is used for programming Central 

Processing Units (CPUs) and Graphics Processing Units (GPUs), the methods in which these 

processors are programmed are quite different.  CPUs are traditionally sequential 

architectures in which the instructions are ordered and must be executed in the same order.  

Current hardware now allows CPUs to execute instructions out of order, and overlap the 

execution of individual instructions, as long as the results produced are the same as that of 

sequential execution.  This is a form of parallelism known as fine-grain parallelism.  CPU 

design is currently moving towards a more coarse-grain parallel design with up to eight 

processing cores.  Eight cores allow up to eight threads to run simultaneously using a 

Multiple Instruction Multiple Data (MIMD) strategy. 

 

2.1 – GPU Programming 

GPUs utilize parallel architectures in which multiple processors are executing the 

same instruction on different data.  This strategy is known as Single Instruction Multiple 

Data (SIMD).  SIMD processors can be used to exploit the data parallelism of algorithms that 

perform the same operation on each datum of a typically large set of data.  Figure 2.1 

describes a SIMD architecture and illustrates how instructions are shared between every 

thread.  An example of an algorithm that has data parallelism is an add operation of two 
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arrays that adds elements from the same index together and stores the result in another array 

at that index. 

Most GPU applications follow a particular code layout: CPU code is used to set up 

the application and data, memory is allocated and copied using API calls, a GPU kernel 

(complete code that runs on a GPU) is launched to operate on the data and upon completion, 

the results are copied back to the main memory.  The two copy steps and the kernel launch 

would replace the calculation step of traditional CPU code, especially if the code is being 

modified to run on GPUs. 

 
 

 

 

 

 

 

 

 

Figure 2.1 – SIMD Architecture 

 

A GPU kernel launch is different from a typical application launch.  Along with any 

parameters passed to a kernel, such as the address of the data in GPU memory, a launch 

configuration must also be provided.  A launch configuration tells the GPU how to organize 

its runtime resources.  At least two parameters must be specified in the launch configuration: 

the number of threads per block and the number of blocks per grid. 

Data (such as an array) 

Thread Thread Thread ThreadThread 

Instruction List 
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A thread on the GPU is very similar to a thread on a CPU; however, control can be 

switched among threads much faster on GPUs due to the specialized hardware.  Groups of 

threads organized into blocks can have one, two, or three dimensions of threads, configured 

at runtime.  The number of dimensions used is application-dependent.  For example, image 

or video applications would probably find it beneficial to use two dimensions since images 

and video frames are usually organized as two-dimensional arrays. 

Threads in a block share resources.  For example, each thread does not have its own 

register file.  Instead, a large register file exists on a multiprocessor and threads use registers 

from there.  All the blocks reside in a one or two dimensional grid, defined at runtime.  A 

grid is the highest level in the hierarchy, thus when a grid has completed execution, the 

kernel has also completed.  Figure 2.2 illustrates an example of a grid with threads in three 

dimensions and blocks in two dimensions. 

A thread and the data upon which the thread operates are identified via the built-in 

variables threadIdx, blockIdx, blockDim, and gridDim.  These variables are assigned at 

kernel launch based on the launch configuration.  The threadIdx variable holds the index of 

the thread.  It has three components: x, y, and z, accessed using dot notation (for example 

threadIdx.x), which refer to the three dimensions in which threads can be launched.  The 

blockIdx variable holds the block index and has two components, x and y, to correspond to 

the two dimensions in which blocks can be launched.  The blockDim variable holds the 

number of threads per block and gridDim holds the number of blocks.  Together, these 

variables can be used to determine an index for that thread.  In the simplest case of blocks 

and threads in one dimension, an index for data can be determined by blockDim * 
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threadIdx.x.  The next index for that thread is the sum of the current index and blockDim * 

gridDim. 

 

Figure 2.2 – Configuration of two dimensions of both threads and blocks [15] 
 
 
 

GPUs do not execute threads one at a time; instead, the hardware divides the threads 

into warps.  A warp is a group of threads that are executed simultaneously.  For the most 

recent hardware revision, compute capability 2.0, the warp size is 32 threads.  Because the 

threads in a warp are executed at the same time and in a SIMD strategy, the instruction that 

every thread in a warp executes must be the same.  When some threads in a warp execute the 

then clause and some execute the else clause, thread divergence occurs, in which the then 

clause is executed, followed by the else clause.  In such a case, only the threads that have 
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evaluated the expression to be true execute the instructions in the then clause; the other 

threads are disabled.  The opposite happens for the else clause, and finally all threads are 

enabled and continue to execute.  Thread divergence can slow processing and developers 

should keep this in mind when designing an algorithm.  For example it would be 

disadvantageous to have an algorithm that had a conditional statement depending on the 

parity of a thread index. 

Figure 2.3 illustrates how warps are distributed across thread blocks. 

 

 

Figure 2.3 – Difference between thread blocks and warps [15] 
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The difference between the grouping of threads into blocks and threads into warps is that 

thread blocks are logically executed in parallel while warps are physically executed in 

parallel.  Figure 2.3 also illustrates this difference. 

 

2.2 - Digital Audio 

A sound as heard by our ears reflects the changes in pressure caused by vibrations in 

the air.  These pressure changes in time are compression waves and describe the audio in the 

time domain.  The ear turns these pressure differences into frequency, which is heard as 

pitch.  Audio is stored on a computer as digital audio by sampling the sound waves.  This 

means that at a certain time interval, the pressure is measured and stored.  The time interval 

is determined by the sampling rate, which is based upon what frequencies should be stored.  

The Nyquist Theorem states that a sampling rate of twice the highest distinct frequency to be 

stored is needed in order to retain all information.  An average person can hear between 20 

Hz and 20 KHz, which means that the sampling rate must be at least 40 KHz.  However, due 

to imperfect recording equipment, a small threshold is added to the sampling rate to 

counteract the imperfections of the recording equipment.  For example, a sampling rate of 

44.1 KHz, or 44,100 samples per second (as was decided upon by Sony and Phillips), has 

become the de facto standard.  This means that approximately every 23 microseconds, or 

2.3x10-5 seconds, a measurement of the pressure is recorded and stored. 

The standard audio format is Pulse Code Modulation (PCM), in which sound is stored 

as amplitudes (the pressure level) with a sampling rate and bit depth.  The bit depth 

determines the number of different pressure values that can be stored.  A common bit depth 

is 16 bits per sample and measured at a sampling rate of 44.1 KHz. 
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A real time system is one in which failure occurs when a deadline is missed.  Audio 

applications are known as soft real time systems, in the sense that if a deadline (for example, 

every 23 microseconds) is missed (sending audio to a speaker), there is a gap in the audio 

that the user can hear as an interruption, but it does not lead to a catastrophic failure as no 

actual harm occurs – the audio can still be played.  The algorithm devised in the thesis is 

considered to be running in real time such that immediately upon completion of any 

calculated Wet data, it is sent to the speakers, and that there are no stops in the audio for any 

amount of time until all the audio has been played. 
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Chapter 3 - Related Work 

 GPUs have been used to solve problems in many domains, including MRI analysis 

and molecular visualization [5].  While a large chunk of research has been in visualization, 

there has also been research into signal processing on GPUs. 

 In 2008, Cardinal et al. used GPUs for computing acoustic likelihoods in a speech 

recognition system [2].  Cardinal’s team implemented their algorithm using dot product 

operations, which GPUs can process efficiently, and concluded that their GPU 

implementation was 5 times faster than the CPU version, which led to a speedup of 35% on a 

large vocabulary task. 

 Kerr et al. developed an implementation of the Vector Signal Image Processing 

Library (VSIPL) for GPUs in 2008 [4].  This group implemented two versions: a time-

domain finite impulse response filtering runtime and a fast Fourier Transform runtime.  They 

achieved an 82 times speedup for their time-domain runtime and a 14.5 times speedup for 

their fast Fourier Transform runtime. 

 Nieuwpoort and Romein developed a GPU version of a software correlator to filter 

out noise from radio astronomy signals [8].  A correlator is a streaming, real-time application 

that is more I/O intensive than typical applications developed for multiple-core architectures 

(such as GPUs).  They found that using an NVIDIA GPU gave them a speedup of 6.3 times 

over a CPU. 
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 In 2010, Nexiwave announced that the next version of their speech indexing 

application will be accelerated by using NVIDIA GPUs [7].  The application by Nexiwave 

for speech indexing has the ability to search for and locate spoken words in media, such as 

videos.  They claim to have achieved a speedup of 70 times over the existing solutions. 

In 2009, Frederik Fabritius described the use of GPUs for audio processing, including 

convolution as reverberation [3].  His goal was to determine whether or not GPUs were 

suitable for convolution and to investigate how they compare with CPUs in performance, 

specifically using the fastest known approach to convolution.  This convolution method 

involves using the frequency domain in which a signal is described in terms of frequency and 

power.  Convolution is performed by multiplying the spectra of the two signals.  Fabritius 

concluded that in all practical cases, it is either as fast, or faster, to compute reverberation on 

GPUs. 
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Chapter 4 – GPU Optimization Strategies 

 Software developers have been writing code for CPUs for a while now.  They have 

gotten used to the underlying architecture and have developed numerous strategies for 

speeding up their programs.  GPUs have different hardware from CPUs and the optimization 

strategies are more specialized.  While there are some strategies, such as memory coalescing, 

that will always work, some depend on the specifics of the problem and the algorithm used.  

Many optimization strategies involve utilizing the GPUs memory or memories in an efficient 

way.  Figure 4.1 shows the layout of memory on an NVIDIA CUDA GPU.  Each block has 

its own register file and shared memory, while every block has access to the same constant 

and global memory. 

 

4.1 – Memory Coalescing 

 One tried-and-true method to improve efficiency is to make sure that most, if not all, 

memory accesses to global memory are coalesced.  Global memory loads and stores, under 

certain requirements, can be reduced to a single instruction [9].  Recall from chapter 2 that 

the smallest execution unit is a warp (or 32 threads).  Depending on the compute capability 

of the GPU, memory instructions are either executed by a half-warp or a full warp.  This 

means that it is possible for 16 or 32 load or store instructions to be reduced to a single 

instruction. 
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Figure 4.1 – Memory layout on CUDA GPUs [15] 
 
 

 Coalescing is achieved when all threads of a half-warp or full warp (depending on the 

hardware version or compute capability) access different, but contiguous, areas of memory.  

The only other option is for all the threads to access the same memory location.  For 

example, the following code segment has coalesced access: 

int index = threadIdx.x; 

float element = globalArray[index]; 

This segment has coalesced access because each thread is accessing a different element of 

globalArray, but are contiguous in memory.  Thread 0 accesses element 0, thread 1 accesses 

element 1, and so on.  Since this can be reduced to a single instruction, global memory is 

only accessed one time.  This removes up to 31 global memory accesses, and with each 
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global memory access taking hundreds of clock cycles, hence saves a significant amount of 

time [9]. 

 

4.2 – Shared Memory 

 Unlike CPU architectures, which include a hardware cache for memory, GPU 

architectures have not had a hardware cache.  Only the most recent GPUs have hardware 

caching (compute capability 2.0).  This means that every global access will always go to the 

global memory.  However, GPUs do have a type of cache on-chip which is entirely software 

managed - shared memory [9]. 

 Shared memory exists for threads in the same block, which allows all threads in a 

block to share information.  The latency in accessing data from shared memory is about 100 

times lower than that of accessing data from global memory [9].  If the same data is used 

more than once, significant gains can be realized by storing the data in shared memory rather 

than fetching it from global memory each time. 

 Shared memory is divided into banks so that all threads can access shared memory at 

the same time.  For example, element 0 is located in bank 0, element 1 in bank 1, and so on.  

The number of banks differs by compute capability (32 for compute capability 2.x and 16 for 

lower) [9].  This means that in order to get the most out of shared memory, it is best to access 

data in such a way that every thread accesses a different bank, or all threads access the same 

address (thus one bank can broadcast its data to every thread). 
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4.3 – Texture Memory 

 Textures are images that are used to decorate polygons in graphics rendering, such as 

a texture of a tabletop looking like wood.  Accessing textures is a very common operation, 

and GPU hardware has texture units to help speed up that process by optimizing reads by 2D 

spatial locality [9].  In general purpose computing, this provides a type of hardware cache for 

memory to which the GPU will not write (since textures do not change), especially prior to 

compute capability 2.0 when there was no hardware for caching.  In cases where memory has 

been “bound” as a texture and its access is generally in a way to take advantage of 2D spatial 

locality, it is possible to achieve a higher bandwidth. 

 

4.4 – Pinned Memory 

 Pinned memory is memory that has been specifically allocated so that it cannot be 

swapped to disk [12].  This makes it safe for the operating system to allow the application to 

access the physical address space of the memory.  In the case of GPU programming, this 

allows the GPU to use Direct Memory Access (DMA) to copy data to and from the CPU.  

The CPU is not involved with DMA, and allows a potential speed increase due to not 

needing to execute memory copying instructions.  Even if a developer does not allocate 

pinned memory and performs a copy, the driver copies the memory to a pinned memory 

region and then moves it to the GPU.  Therefore, a copy from pageable memory occurs twice 

– first from the pageable memory to temporary pinned memory, and then from pinned 

memory to the GPU. 
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4.5 – float2/float4 Data Type 

 The float2 and float4 data types are built-in vectors, represented as structures that 

contain two or four floats, respectively.  Because they are built-in, it may be possible to 

slightly optimize memory accesses for accessing two or four floats, depending on the 

application, access pattern, and usage. 

 

4.6 – Control Flow and Padding 

 Branching instructions are executed differently on GPUs than CPUs.  The reason is 

because of the minimum number of threads that are executed at the same time (the warp 

size).  The branching condition is checked by all threads.  If the results do not agree for all 

threads in the warp, the execution paths need to be serialized [10].  This means that all 

statements in the clause, both that are executed when the condition is true and when it is 

false, are executed serially.  This increases the total amount of instructions executed by the 

warp, and can drastically reduce the execution speed. 

 A possible way to reduce the number of control flow statements is to use array 

padding.  Padding an array changes the size of the array but does not change the resulting 

value of calculations on the array.  For example, with convolution, an array can be padded 

with zeroes without changing the result.  This is because the multiplication step will produce 

a value of zero, and then adding zero to the sum will not change the sum.  Padding works in 

this case by completely removing all bounds checking in the convolution calculation.  

Normally, convolution will go out of bounds on the Dry array at both ends.  However, adding 

padding to both sides allows all accesses to stay in bounds, thus removing the need to check 

for negative accesses and greater-than-length accesses. 
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 Padding arrays to become a certain size or a certain multiple of a size can also be 

beneficial.  A good example is to allow chunks of data to fit in shared memory with a number 

of elements equal to the number of threads per block. 

 

4.7 – Streams 

 Streams can be thought of as self-contained parts of an application.  As GPUs’ 

hardware have advanced, it became possible to execute kernels at the same time as copying 

memory to and from the GPU.  In order to accomplish that, however, a new method had to be 

employed to separate the execution from the memory copying.  This method uses streams.  A 

stream can be copying data to the GPU at the same time that another stream is executing its 

kernel.  This allows some of the work to overlap and can save time.  The only caveat is that 

streams must operate only on pinned memory. 

 Starting with compute capability 2.0, multiple streams can be executed on the GPU 

simultaneously, provided that resources are available.  Therefore, if a kernel does not use a 

lot of resources, or if the GPU has an abundance of resources, multiple streams can execute 

at the same time where previously queued streams had to wait.  A common situation is when 

one stream is finishing up and is not using as many resources, in which case the next stream 

can start using the resources that the previous stream does not need anymore. 

 

4.8 – Launch Configuration 

 A simple way to optimize a kernel is to write it so that it can run with any 

configuration of threads per block, number of blocks per grid, and number of grids.  This 

allows the programmer to try different launch configurations to find the most suitable one for 
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the program.  A tool to help is known as the CUDA Occupancy Calculator, provided by 

NVIDIA.  It is a spreadsheet in which the programmer fills in information about the kernel 

and it shows them the limitations of the kernel and potentially new configurations to try.  It 

also shows the occupancy of each multiprocessor, which is defined as the ratio of the number 

of active warps to the maximum number of active warps [9].  A higher occupancy does not 

always yield better performance – there is a point at which a higher occupancy does not 

increase performance. 

 

4.9 – Prefetching 

 Another use for shared memory is to use the prefetching technique.  Prefetching is an 

algorithm in which the next chunk of data is read from memory before the data is actually 

needed.  The goal is to overlap the memory reading instructions (more specifically, the delay 

in accessing the data) with instructions performing calculations on the data already retrieved 

with the hope of reducing the time spent waiting on data from memory.  However, 

prefetching requires twice the amount of shared memory (to store the data to do the 

calculations on and the data to be prefetched) and may use more registers, which may reduce 

the number of warps that can be executed simultaneously. 
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Chapter 5 – Methodology 

The algorithm used on this thesis for the implementation of time domain convolution 

on GPUs can be broken down into three major steps: 1) acquiring the sampled data of the 

Dry and impulse response Signals, 2) preparing the devices, and 3) performing the 

convolution.  Figure 5.1 illustrates the computation process.  The sampled data are broken 

into chunks guaranteed to be a multiple of the number of threads per block.  A stream will 

process one chunk of data with the number of streams determined at compile time.  The GPU 

will hold a circular buffer into which chunks of sampled Dry data will be written.  After 

streams finish convolution on their chunk, the chunk gets copied back to the CPU where the 

audio data are played. 

 

 

 

 

 

 
 

Figure 5.1- High-level algorithm design 

 

Acquire Data 

Preparing Devices 

Convolution 
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5.1 – Acquisition of Sampled Data 

 The first step in the process is to acquire the samples for both sounds: the Dry Signal 

and the impulse response.  The standard WAVE file is selected for the ease of obtaining the 

signal data.  The raw data read from the WAVE file must be converted to floating point, 

mapped as a float2 type, and padded with zeroes before it can be used.  Figure 5.2 illustrates 

this process. 

 

 

 

Figure 5.2 – Conversion process from WAVE data to usable data for convolution 

 

5.1.1 – Brief Overview of the WAVE File Format 

 The data in the WAVE files are split into chunks.  There are three main chunks: the 

RIFF - or Resource Interchange File Format - chunk, the format chunk, and the data chunk.  

Each chunk has a size field that defines its size.  The RIFF chunk defines that the file is a 

WAVE file.  The format chunk describes the properties of the signal, including the number 

of channels (for example, mono or stereo), the sample rate, the byte rate, the number of bits 

per sample, and the audio format (usually uncompressed).  The data chunk contains the 

actual sampled data [14].  Figure 5.3 describes the format in detail. 

 In order to access the sampled data, each chunk must be visited.  The RIFF chunk is 

used to verify that the file is a WAVE file.  The fields of the format chunk are read first 

which define how the audio will be sent to the speakers after convolution.  Finally, the 

sampled data are read in as described by the format chunk, with attention given to the 

Conversion to 
floating point

WAVE Data Mapping to 
float2 type Zero Padding 
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number of channels and bits per sample.  If a chunk is read that is not of type format or data, 

it can be skipped by reading the size field and by skipping the specified number of bytes. 

 
Figure 5.3 – Description of the Wave file format [14]. 

 

5.1.2 – Conversion of Sampled Data 

 In the WAVE format, sampled audio data are stored as integral data types, such as a 

char or short.  GPUs have excelled in floating point calculations and have dedicated 

hardware specifically designed for fast floating point computation.  Especially useful is a 

single instruction (known as a fused multiply-add instruction) that multiplies two floating 



24 
 

point numbers and adds the result to another.  In order to take advantage of this, the data 

must be converted to a floating point data type before convolution. 

 

5.1.3 – Sample Frame Representation 

 The audio data are separated into channels.  Stereo signals, which are audio signals 

with a left channel and a right channel, are a common format.  A sample frame is a sample 

from every channel that is played at the same time.  Figure 5.4 illustrates an example of a 

two-channel sample frame.  Thus, for stereo audio, a sample frame consists of two samples; 

one for the left channel, and one for the right.  The float2 data type, a built-in structure that 

holds two floating point values, was selected to represent one sample frame of data because it 

maps well to stereo audio.  Figure 5.5 illustrates the mapping of the float2 type to a sample 

frame. 

 

 

 
 

Figure 5.4 – Example of a two-channel sample frame 
 
 
 

 

 

 

 

Figure 5.5 – The mapping of a sample frame to the float2 data type 
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5.1.4 – Zero Padding 

The impulse response and Dry Signals are zero padded to eliminate bounds checking 

and thus reduce the number of branching instructions in the kernel code.  The impulse 

response data has zeroes added to the tail end to make it a multiple of the number of threads 

per block.  This allows ease of access from shared memory so that each thread of a block can 

always access and store one element.  The Dry Signal has leading and trailing zeroes added 

such that when performing convolution on the GPU, the indices never become less than zero 

or greater than the size of the array holding the Dry data.  To make sure the indices never go 

out of bounds, the Dry Signal is padded by one less than the number of sample frames in the 

impulse response on both ends. 

 

5.2 – Preparing Devices 

 Before any GPU kernel code can be executed on a GPU, all data on which the kernel 

operates must to be allocated appropriate space.  In addition, the GPU streams need to be 

defined and the device for playing audio needs to be configured.  Figure 5.6 illustrates this 

process. 

 

 

 

 

 

 

Figure 5.6 – Setup process for convolution  
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5.2.1 – GPU Memory Allocation 

 Unlike programs that are developed on the CPU, in the case of programming for 

GPUs the programmer has explicit access to many types of memory, which vary in size, 

scope, and purpose.  Not including registers, four types of memory, constant, texture, global, 

and shared, are used in the final algorithm designed for this thesis.  Three types are defined in 

the CPU code. 

 Constant memory is useful if a kernel needs access to small constant data.  For 

convolution, the length of the impulse response and the length of the buffer for the Dry data 

do not change.  Since the length variables are well within the limit of the constant cache size 

of 64 KB, it is possible to store them in constant memory.  The first read of every element in 

constant memory will be read from global memory and also stored in the constant memory 

cache.  Each subsequent read will then be routed to the constant memory cache; therefore 

using constant memory will not increase efficiency in the case of one read [10].  Using 

constant memory reduces the number of parameters needed for each kernel, making the code 

simpler. 

 Texture memory can be used as a type of hardware cache provided that the access 

pattern that takes advantage of 2D spatial locality.  Texture memory is used for the impulse 

response because of the way the impulse response data is accessed.  Every sample of the 

calculated Wet data needs every sample of the impulse response.  This means that every 

sample of the impulse response is accessed many times, and having some or all of the data in 

cache is beneficial.  After allocation, the impulse response is copied to the GPU. 

 Global memory is used to store the Dry and Wet sample frames.  Since each sample 

frame of the Wet data is only accessed once to store the calculated value, there is no need to 
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use any special memory.  The access pattern of the Dry data does not map well to the 

properties of any special memory, thus global memory is used.  Since compute capability 2.0, 

a hardware cache exists to handle access patterns that do not map well to the other memories. 

 The real time convolution algorithm developed for this thesis is designed to use a Dry 

Signal of arbitrary length; therefore, a method is needed that allows operations on the data 

either if the entire signal would not fit within global memory or if the entire signal is not 

known at once, such as if it were streaming across the Internet.  The method chosen is to use 

a circular buffer in global memory such that a signal of any size would fit.  The length of the 

buffer must be chosen carefully, otherwise corruption can occur.  The minimum length of the 

circular buffer must be based upon the number of streams (so that no data currently being 

used is overwritten) and the number of sample frames per chunk.  To calculate one sample 

frame of the Wet signal, a number of Dry sample frames equal to the length of the impulse 

response is needed.  Because of this, there must always be in memory a contiguous number 

of sample frames of the Dry signal equal to the length of the impulse response.  This means 

that the total length of the circular buffer also must not be smaller than the length of the 

impulse response.  This problem can be alleviated by allowing each stream a number of 

buffers of a length equal to the Dry chunk size, as part of the circular buffer. 

 To calculate the minimum length of the circular buffer, first we determine the total 

length of the Dry data, l, that must be used in calculations at a single time: 

݈ ൌ ݊ כ (2) ݎ

In this definition, ݊ is the number of streams and ݎ is the number of sample frames per 

chunk.  This represents the number of sample frames that cannot be overwritten because 

kernels of different streams are currently using this data. 
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 Once the minimum length of the circular buffer has been determined, the number of 

buffers, b, needed for each stream to allow replacement of data is calculated by (3). 

ܾ ൌ ቞
ሺ݅ ൅ ݈ሻ ൅ ሺ݈ െ 1ሻ

݈ ቟ 
(3)

In this equation, ݅ is the length of the impulse response and ݈ is the total length of the Dry 

data buffer. 

The buffers are arranged in memory sequentially by increasing stream first, then 

buffer.  For example, if there are two streams and two buffers needed, the layout in memory 

would look like Figure 5.7. 

 

 

 
Figure 5.7 – Layout sequence of stream buffers in GPU memory 

 

Finally, the total length, s, of the circular buffer is calculated using (4). 

ݏ ൌ ܾ כ ݈.  (4)

The buffer is allocated on the GPU of size ݏ and then cleared.  Clearing the data achieves the 

same effect as padding leading zeroes to the signal; when the buffer wraps around, the data 

being read are zeroes.  

 

5.2.2 –Definition of Streams 

 The Dry signal is being copied to GPU memory at the same time the kernel is 

processing this data.  Thus, it is beneficial to use streams.  Streams are used to compute 

convolution on a chunk of data independently of other chunks.  This allows possible overlaps 
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to be exploited.  Before streams can be used, they must be defined.  In addition, for the 

implementation of this thesis, each stream has a non-pageable (pinned) memory buffer that 

holds the most recent chunk of Dry data to be sent to the GPU for computation. 

 

5.2.3 – Definition of Audio Devices 

 Before audio can be sent to an audio output device such as speakers, the device must 

be configured.  The configuration uses the sample rate, block align, and byte rate of the input 

files.  The number of channels is always two because this is convolution on stereo data, the 

format is PCM since the data was read from WAVE files, and the number of bits per sample 

is 16, which is a common bit depth. 

 

5.3 – Convolution 

 The main process for this convolution algorithm is to: 

• send the current chunk of the Dry Signal to the GPU 

• send the previously received Wet data to the speakers 

• use the GPU to compute the Wet data on the current chunk 

• copy the Wet data back to the CPU. 

The CPU is responsible for manipulating data and keeping track of CPU-GPU coordination 

(via streams) whereas the GPU is focused solely on the computation of the Wet data.  Figure 

5.8 illustrates this process. 
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Figure 5.8 – Overall convolution algorithm 

 

 5.3.1 – CPU 

 The CPU is the driving force behind the entire process.  It has the responsibility of 

copying memory to and from the GPU, coordinating between streams, and playing audio. 

 The convolution step begins with the CPU copying the current chunk of Dry data to 

the pinned memory buffer of the current stream.  If there is insufficient data left to fill the 

pinned buffer completely, zeroes are appended to the end until the buffer is full.  This is 

equivalent to padding the Dry Signal with trailing zeroes. 

Once the GPU has finished executing the previous stream, the next chunk of the Dry 

data is asynchronously copied to the circular buffer on the GPU.  Upon completion of this 

step, the function returns immediately, allowing the copying of the computed section of the 

Wet signal of the current stream to the CPU.  The copy to the GPU is conducted first because 

it is possible to asynchronously copy memory to the GPU, but not from the GPU.  
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Asynchronously copying the data to the GPU allows the copy from the GPU to begin as soon 

as possible.  Since the newer GPUs can support simultaneous memory copies to and from the 

GPU, ordering the memory copies in this way provides a benefit for the new GPUs without 

sacrificing efficiency on older GPUs. 

 Once the GPU has the next section of the Dry data, the kernel is launched.  The 

kernel launch is asynchronous thus control returns to the CPU immediately.  While the GPU 

is computing the next section of the Wet signal, the CPU normalizes the data of the chunk 

recently copied from the GPU.  The CPU scans through the chunk and compares the largest 

value of the chunk to the largest value of all chunks.  Each element is then divided by the 

largest value, which is guaranteed to keep the data clamped between -1 and 1.  This 

eliminates any distortion and clicking in the audio signal while keeping the volume as 

consistent as possible with other chunks.  This also results in reducing the overall volume if a 

new maximum value is found. 

 The audio device expects the audio data to be 16-bit integer samples instead of 

floating point data.  Therefore, the normalized floating point data is converted to the short 

integer data type.  After the audio device is finished playing the current stream, the CPU 

writes the audio data, which is in short integer form, to the audio device. 

At least two streams must be present for real-time audio, which is similar to the 

concept of double buffering.  In the case of one stream, there is only one buffer for audio, 

thus when the stream is finished being played, there is no audio data ready to play.  The data 

received from the GPU must be copied into the buffer, and that can only occur after the 

stream has finished playing.  Waiting for the device to finish playing and then copying the 

data to the buffer takes a small amount of time, which causes a gap in the audio that is heard 
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as a clicking sound.  Following this step, the stream number is incremented and set to zero 

if it is greater than the number of streams.  When the stream is set to zero, the buffer number 

is incremented.  If the buffer number exceeds the number of buffers for each stream, it is also 

set to zero.  The loop continues until all Dry data and its trailing zeroes have been sent to the 

GPU for computation. 

 

5.3.2 – GPU 

 The main task of the GPU is to perform the necessary calculations for convolution.  

Figure 5.9 illustrates the GPU process for the convolution algorithm of this thesis.   
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The GPU kernel needs four parameters – the address of the Wet data array, the 

address of the Dry data array, the index from which the kernel is starting to read the Dry data, 

and the starting index in which the calculated results are to be saved.  The addresses of the 

arrays are assigned to variables on the CPU when the memory for the arrays is allocated on 

the GPUs.  The addresses are pointers to global memory on the GPU.  

The first step is to assign each individual thread the data used as input and the 

location where it stores the result.  This is accomplished via the blockIdx, blockDim, and 

threadIdx variables.  The data are one-dimensional and the calculation to guarantee every 

sample frame is assigned to only one thread is as shown in (5). 

൅ൌݔ݁݀݊݅ .ݔ݀ܫ݇ܿ݋݈ܾ ݔ כ .݉݅ܦ݇ܿ݋݈ܾ ݔ ൅ .ݔ݀ܫ݀ܽ݁ݎ݄ݐ ݔ (5)

This assignment also makes efficient use of memory by allowing the GPU hardware to 

coalesce memory accesses since each thread has an index adjacent to its neighboring threads.  

The same assignment is used to calculate the index used to store the Wet data. 

After completing the above task, a while loop is used to guarantee that all sample 

frames in the chunk are processed by not allowing the kernel to terminate until all sample 

frames have been computed.  This is dependent on the number of threads per block and the 

number of blocks.  If there are not sufficient threads in the kernel to process all of the sample 

frames, a stride value is needed.  This stride value is the total number of threads in the grid 

and is calculated by (6). 

݁݀݅ݎݐݏ ൌ ݉݅ܦ݇ܿ݋݈ܾ כ ݉݅ܦ݀݅ݎ݃ (6)

During each iteration of the while loop, the stride is added to the index variable of the thread.  

Note that if the kernel is launched with a sufficient number of threads per grid to process all 

the sample frames in the chunk, the condition code of the while loop and the stride 
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instructions can be omitted.  This can save computation time and reduces the size of the 

kernel.  The minimum number of blocks needed to guarantee all sample frames in the chunk 

are processed as shown in (7). 

ݏ݇ܿ݋݈ܾ ൌ ඌ
݁ݖ݅ݏ ݇݊ݑ݄ܿ

 ඐ݇ܿ݋݈ܾ ݎ݁݌ ݏ݀ܽ݁ݎ݄ݐ
 
(7)

 Every sample frame of the Wet data depends on every sample of the impulse 

response.  Each thread in the block is using the same element of the impulse response at the 

same time, on different sample frames of the Dry data.  Using shared memory can improve 

the performance of this access pattern over using global memory. 

 Each thread of a block grabs a sample frame of the impulse response from texture 

memory and stores the value in a shared memory array.  Because all data accesses are 

neighboring, all the accesses are coalesced.  Therefore the number of sample frames in 

shared memory of the impulse response is equal to the number of threads per block.  The 

block waits for every thread to access its sample frame before continuing execution.  Each 

sample frame in the shared memory is then accessed in a loop.  The current Dry sample 

frame is read from global memory using the current index.  One is subtracted from the 

current index for the next calculation, resetting to the other end of the circular buffer if the 

value is -1.  The Dry sample frame is multiplied with the impulse response sample frame and 

added to a running sum. 

 When all the samples from shared memory have been processed, the loop starts again, 

this time accessing the next group of sample frames from the impulse response.  After all 

values have been calculated and all samples of the impulse response processed, the resulting 

sum is stored in global memory.  Finally, the stride mentioned previously is added to both the 

Dry index and the Wet index. 
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 The real time kernel is intended for applications where the entire Dry signal is not 

known in advance, such as streaming across the Internet.  In such a case, some optimizations 

cannot be performed.  In order to view many optimizations, in addition to the real time 

kernel, a separate kernel that computes the entire signal at once was developed as part of the 

research for this thesis.  The algorithm is similar to that of the real time kernel, except that 

the Dry signal is explicitly padded with zeroes, is bound to texture memory, and a single 

kernel computes the entire Wet signal. 

 Figures 5.10 and 5.11 illustrate the main differences between the offline and real time 

kernels by showing a simplified version of the optimized kernels.  The main difference is the 

circular buffer check for the real time kernel.  Because the offline kernel has all the Dry data, 

there is no need for a check.  The other main difference is the use of texture memory.  

Because the offline kernel has all the Dry data, it can bind the Dry data as a texture.  Since 

the real time kernel does not have the full Dry signal at any one time and because more 

recent chunks of Dry data overwrite previous chunks, it cannot utilize texture memory. 
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Figure 5.10 – Simplified offline kernel 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.11 – Simplified real time kernel  

while(THREADS_PER_BLOCK * loopNum < impulseResponseSize) { 
  impulseResponseCache[threadIdx.x] = 
    tex1Dfetch(impulseResponseTexture, 
    (THREADS_PER_BLOCK * loopNum) + threadIdx.x); 
 
  __syncthreads(); 
 
  for(j = 0; j < THREADS_PER_BLOCK; j++) { 
    drySampleFrame = tex1Dfetch(dryTexture, dryIndex); 
    dryIndex--; 
    sum.x += (impulseResponseCache[j].x * drySampleFrame.x); 
    sum.y += (impulseResponseCache[j].y * drySampleFrame.y); 
  } 
 
  loopNum++; 
  __syncthreads(); 
} 

while(THREADS_PER_BLOCK * loopNum < impulseResponseSize) { 
  impulseResponseCache[threadIdx.x] = 
    tex1Dfetch(impulseResponseTexture, 
    (THREADS_PER_BLOCK * loopNum) + threadIdx.x); 
 
  __syncthreads(); 
 
  for(j = 0; j < THREADS_PER_BLOCK; j++) { 
    drySampleFrame = dry[dryIndex]; 
    dryIndex--; 
 
    if(dryIndex == -1) 
      dryIndex = bufferSize; 
 
    sum.x += (impulseResponseCache[j].x * drySampleFrame.x); 
    sum.y += (impulseResponseCache[j].y * drySampleFrame.y); 
  } 
 
  loopNum++; 
  __syncthreads(); 
} 
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Chapter 6 – Results 

 For proper comparison of running a convolution algorithm on the CPU against 

convolution running on a GPU, the best kernel for offline and the best kernel for real time 

were selected.  The selection process involved testing a 16-second Dry signal with a 2.5-

second impulse response, with a sampling rate of 44.1 KHz.  The time, in milliseconds, of 

the kernels, was recorded using the CUDA API’s cudaEventRecord() function.  In the case of 

the real time kernel, the kernel time is the sum of each kernel launch.  The GPU used was an 

EVGA Nvidia GTX260 Superclocked version with 216 cores and a compute capability of 

1.3.  The CPU was an Intel E5320 1.86 GHz. 

 

6.1 – Improving GPU Kernels with Optimizations 

The optimizations selected are to use texture memory, shared memory, loop, 

prefetching, and removal of the outer loop by making sure the kernel launches with a 

sufficient number of blocks to complete the computation.  The “simple” kernel is the kernel 

without any optimizations. 

Figure 6.1 shows the results for the offline kernel in which it is apparent using shared 

memory and texture memory achieved better performance.  This is because there is no 

hardware cache on the GTX260 as it is of compute capability 1.3.  Prefetching the impulse 

response did not affect the performance much, but still saw a small speedup.  A loop unroll 

of eight was found empirically to provide the best performance, and yielded an approximate 
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speedup of 1.8 times.  Finally, removing the outer loop slightly hindered the performance.  

This has more to do with launching more blocks rather than reusing already executing ones 

than removing the loop logic. 

 

Figure 6.1 – Comparison of execution time of the offline kernel using different optimizations 
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 Figure 6.2 illustrates the results for the real time kernel using a chunk size for the Dry 

data of 22,528 sample frames.  This sample frame size was found experimentally to produce 

the best performance.  Similar to the offline kernel, shared memory and texture memory 

resulted in improved performance.  Shared memory improved the performance 

approximately the same amount as in the offline kernel. However texture memory did not 

have as much effect on performance, because in the real time kernel, only the impulse 

response can be bound as a texture as the CPU is constantly writing data to the Dry data 

circular buffer.  While removing the outer loop only saved 6 milliseconds, it also reduced the 

amount of registers used by four.  This can be important for developers who need to reduce 

the amount of registers their kernels use to keep the occupancy high. 

As contrasted to the offline kernel, prefetching the impulse response data did not 

improve performance, because each of the real time kernels are running for less time than the 

offline kernels and the overhead of prefetching overcomes the benefit on the shorter kernels.  

Similar to the drop in performance with prefetching, unrolling the loop decreased 

performance.  A loop unroll of 4 was found to yield the best loop-unroll performance, but 

still reduced overall performance while using five more registers.  The reduction in 

performance and use of more registers is caused by the circular buffer checks to make sure 

wrap around is applied if necessary. 
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Figure 6.2 – Comparison of execution time of the real time kernel using different 
optimizations   
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6.2 – Improving Convolution 

 Among the offline kernels, the kernel with all optimizations without the removal of 

the outer loop performed best.  Of the real time kernels, the kernel utilizing shared memory, 

texture memory, and the removal of the outer loop performed best.  For this reason, these two 

kernels will be compared in time domain convolution and frequency domain multiplication 

on the CPU.  The CPU functions are built-in functions for MATLAB.  MATLAB’s conv() 

function performs time domain convolution and cconv() performs frequency domain 

multiplication.  The tests were performed on an Intel E5320 1.86 GHz processor.  All tests 

were run on two different impulse responses: one created digitally by generating white noise 

and the other recorded from an unfinished chapel and obtained from the Real Rooms online 

repository [11].  Both were edited to be exactly 2.5 seconds long.  Figure 6.3 illustrates the 

waveform for the chapel impulse response, and Figure 6.4 illustrates the waveform for the 

white noise impulse response. 

 

Figure 6.3 – The waveform of the chapel impulse response 
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Figure 6.4 – The waveform of the white noise impulse response 

 

Figure 6.5 illustrates using a logarithmic scale the comparison of MATLAB’s conv() 

function to the best-performing GPU kernels for the impulse response recorded in a chapel.  

Both GPU kernels performed better than the CPU, with speedups ranging from 106 times to 

125 times faster.  These results show that CPU time domain convolution has a very steep 

linear nature.  The GPU kernels, however, have a slight parabolic curve.  

 Figure 6.6 shows the comparison of MATLAB’s cconv() function to the best-

performing GPU kernels.  While the cconv() function performs better in most cases, the 

offline kernel performs close to it or performs better for impulse response lengths less than 

three seconds.  As Figure 6.5 illustrates, the processing time for the cconv() function does not 

follow a specific curve.  This may be due to the frequencies present in the impulse response. 
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Figure 6.5 – Comparison of the CPU function conv() and the GPU kernels for the chapel 
impulse response 
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Figure 6.6 – Comparison of the CPU function cconv() and the GPU kernels
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Figure 6.7 illustrates using a logarithmic scale the comparison of the conv() function 

for the white noise impulse response.  The execution time for both GPU kernels and the 

conv() function are almost identical to those for the chapel impulse response.  This is 

opposite of the cconv() function, in which the processing time depends upon the signal.  It 

appears that unlike time domain convolution, where processing time is only dependent on the 

length, frequency domain multiplication appears to be dependent on the frequencies of the 

signals. 

 

Figure 6.7 - Comparison of the CPU function conv() and the GPU kernels for the white noise 
impulse response 
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 Figure 6.8 illustrates the frequency spectrum for the chapel impulse response.  As the 

figure illustrates, the spectrum is not flat.  For this spectrum, as the frequency goes up, the 

amplitude of the frequency goes down.  This means that there are less high frequency 

components than low frequency components for the chapel impulse response.  This could be 

the result of the air dissipating the high frequency energy faster than the low frequency 

energy, the properties of the microphone used to record the impulse response, or the gunshot 

used to create the sound file [11]. 

 

Figure 6.8 – Spectrum for the chapel impulse response 

 

 Figure 6.9 illustrates the frequency spectrum for the white noise impulse response.  

As the figure illustrates, the spectrum is flat, indicating that the amplitude of all frequencies 

in the impulse response is very similar.  White noise was chosen as a baseline for comparing 

to a recorded impulse response for its properties of having a flat spectrum.  
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Figure 6.9 – Spectrum for the white noise impulse response 
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Figure 6.10 – Performance comparison between CPU cconv() and GPU kernels 
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 In addition to testing various lengths of impulse responses, a variety of Dry lengths 

and a constant length impulse response were tested to see how performance scales with 

increasing Dry length.  Dry lengths tested were 30-second increments from a length of 30 

seconds to five minutes.  The Dry signals were created via Audacity, a free, open source 

application for editing sound files [1].  The left channel was a Sine wave sweep from 20 Hz 

to 20 KHz and the right channel was white noise.  This arrangement was chosen to give the 

broadest test possible by including all frequencies and by having the samples both close to 

each other (the sine wave sweep) and far apart (white noise).  The impulse response used was 

the 2.5-second chapel impulse response. 

Figure 6.11 illustrates using a logarithmic scale the performance comparison between 

different Dry lengths on the two GPU kernels and the CPU conv() function.  The conv() 

function takes significantly longer to execute in all cases.  The growth is similar to the 

growth for increasing impulse response lengths and is steep.  Again, the offline kernel 

performs better than the real time kernel in all cases. 

Figure 6.12 illustrates the performance comparison between different Dry lengths on 

the two GPU kernels and the CPU cconv() function.  Similarly to the impulse response 

lengths test, the cconv() function performed better than the GPU in all cases and the offline 

kernel outperformed the real time kernel. 

Upon completion of testing with the GTX260 GPU, a new GPU became available.  

The results from initial simple test cases on the new GPU, an Nvidia Tesla C2050 with 

compute capability 2.0, are illustrated in figure 6.13.  The performance comparison between 

different lengths of impulse responses for the real time kernel running on the C2050 GPU 

and the GTX260 GPU is presented in this figure. 
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Figure 6.11 – Performance comparison between GPU kernels and CPU conv() function for 
various Dry lengths 
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Figure 6.12 - Performance comparison between GPU kernels and CPU cconv() function for 
various Dry lengths 
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Figure 6.13 – Performance comparison of the real time kernel for a GTX260 and a C2050 
GPU   
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Chapter 7 – Conclusions and Future Work 

7.1 – Conclusions 

 In this research, real time computation of time domain convolution on graphics cards 

and GPU optimizations were studied.  The research investigated the optimization strategies 

of utilizing shared memory, texture memory, prefetching, loop unrolling, and removal of the 

outer loop that checks that all Wet data has been calculated. 

The results indicate that the offline GPU kernel performs better than the real time 

kernel by executing approximately 2.4 times faster in all cases.  Compared to the CPU conv() 

function for the impulse response length test, the offline kernel which has 216 cores, 

performed up to 125 times faster.  For the Dry length test, the offline kernel performed up to 

133 times faster. 

However, it is not always the case that the entire Dry signal is known.  In this case, 

the real time kernel provides sufficient performance over the CPU to warrant its use over the 

CPU for time domain convolution.  The real time kernel performed convolution up to 51 

times faster than the CPU conv() function on the test files for the impulse response length 

test.  For the Dry length test, the real time kernel performed up to 53 times faster than the 

CPU conv() function. 

For impulse response lengths of approximately one second or less, the offline GPU 

kernel matches or performs better than frequency domain multiplication on the CPU.  The 

real time kernel still performs well enough to process approximately 4.6 seconds in real time.  



54 
 

For impulse response lengths greater than that, the kernels will not finish fast enough to meet 

the deadline and will cause gaps in the audio. 

 For optimizations, the results are clear.  For problems such as time domain 

convolution, considerable effort should be made on using texture memory and shared 

memory whenever possible.  Texture memory allowed the offline kernel a 1.61 times speed 

increase and a 1.22 times speed increase for the real time kernel.  Shared memory sped the 

offline kernel up by 1.36 times and the real time kernel by 1.22 times.  Using both 

optimizations together gave an overall speed increase of 1.84 times for the offline kernel and 

1.23 times for the real time kernel.  Both optimizations provided considerable speedup over 

accesses to global memory. 

For kernels that have inner loops that have no conditionals, manually unrolling the 

loop is strongly encouraged.  For the offline kernel, manually unrolling the inner loop 

increased performance by 1.75 times that of the kernel already using the shared memory, 

texture memory, and prefetching optimizations.  Compared to the offline kernel with no 

optimizations, it is running 3.34 times faster. 

 Prefetching is encouraged only if there is time left in the development cycle, as it did 

not guarantee a performance boost.  When it did boost performance, in the offline kernel, it 

was only sped up by 1.04 times.  Using prefetching in the real time kernel hindered 

performance by 0.97 times.  Similarly, loop unrolling of loops with condition statements is 

also suggested to only test if time permits.  As well as extra register usage, it is not 

guaranteed to increase performance.  Unrolling the inner loop reduced the performance of the 

real time kernel using the shared memory and texture memory optimizations by 0.90 times.  

In contrast to the offline kernel, unrolling the loop did not increase the ratio of instructions 
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calculating data and those checking conditional statements.  Unrolling this loop also added 

more conditional checks, which reduced performance. 

 When writing kernels, it is a good idea to support any number of threads and blocks 

with an outer loop.  After testing many configurations for best performance, if it is possible 

to determine the number of blocks needed at runtime for the data, it is encouraged to test 

without the outer loop.  Even if there is no increase in performance, it may reduce the 

number of registers used by the kernel.  This can allow more warps to execute 

simultaneously and allow a higher occupancy.  Even if no performance gain occurs, it may 

still be possible on different GPUs, especially future GPUs, to improve performance since a 

lower register usage may mean another stream may start execution while the current stream 

is executing. 

 Initial testing for the real time kernel on the Nvidia C2050 may indicate that new 

GPUs with compute capability 2.0 can perform much better than older compute capabilities 

without any changes to the code.  The only change was a compiler option for compute 

capability 2.0 instead of compute capability 1.3.  The C2050 GPU executed the real time 

kernel approximately 3.1 times faster than the GTX260 GPU.  In addition, the C2050 GPU 

was able to process an impulse response of 14.1 seconds in real time.  The addition of a 

hardware cache and ability to execute multiple streams simultaneously led to this 

improvement. 

 

7.2 – Future Recommendations 

 With the exception of the single test case of the C2050 GPU, these kernels were 

compiled for and executed on GPUs of compute capability 1.3.  Compute capability 2.0 has 
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numerous improvements, including a hardware cache for global memory and a choice of a 

larger shared memory.  Every access of a Dry data element is always one element less than 

before.  Because a thread of one index less will have used that data in the last iteration, it is 

highly likely the value will be in the hardware cache.  It would be worth investigating how 

hardware caching improves performance in more than a single, simple test case, especially of 

the real time kernel where the Dry data cannot be bound to a texture.  In addition, tweaking 

the code for the new architecture, such as testing a larger shared memory or prefetch cache, 

would be beneficial to determine how convolution scales to multiple GPUs. 

 The CPU that the conv() was tested on was perhaps slow by today’s standards.  

Testing on a variety of different CPU types and speeds will provide better performance 

increase numbers.  It would also be beneficial to include special chips designed to do digital 

signal processing as part of the comparisons. 
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Appendix A – User Manual for Executables 

Please see the enclosed CD for executables and application code developed for this 

thesis.  There are two executables, OfflineConvolution.exe and RealTimeConvolution.exe.  

Both are compiled for GPUs of compute capability 1.3 and higher.  Both are executable via 

the command line using command line arguments.  The first argument is the file location of 

the Dry data.  The second argument is the file location of the impulse response.  

OfflineConvolution.exe requires a third argument, the location to save the output WAVE file.  

The input files must: 1) be in WAVE files, 2) be in stereo format (contains two audio 

channels), 3) have equivalent sample rates, 4) have equivalent block align, and 5) have 

equivalent bit depth (bits per sample). 

If either of the input files does not match these five requirements, the application will exit 

before performing convolution. 
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