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Abstract: 

The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). 

The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and 

char-acterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were 

tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of 

helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to 

the hetero-dimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 

is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR 

(LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which 

presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although 

enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying 

degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding 

pocket, I323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle 

modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-

binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein. 
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Article: 

Introduction 

The ligand-binding domain (LBD) of nuclear receptors participates in several functions: ligand binding, 

dimerization, hormonal regulation of transactivation and inter-action with comodulators. Among insects, two 

nuclear receptors, the ecdysone receptor (EcR) and Ultraspiracle (USP), an ortholog of the vertebrate RXR, 

form the functional ecdysteroid receptor. The interaction of 20-hydroxy ecdysone with this heterodimer sets off 

the transcription-al changes associated with insect larval and metamorphic development. Previous studies have 

conclusively demonstrated that ecdysteroids bind only to EcR, and there is less certainty about what ligand, if 

any, interacts with the LBD of USP. Other studies have shown that USP physically interacts with juvenile 

hormone III (JHIII) and can be induced by JHIII with specific promoters (Xu et al., 2002). Moreover, protein 

models suggest that JHIII can bind via specific residues in the USP (LBD) (Sasorith et al., 2003). 

 

The combination of LBDs including the C-terminal part of the hinge region of EcR and USP show the same 

ligand-binding properties as reported for full-length receptors of Drosophila melanogaster (Grebe et al., 

unpublished; Yao et al., 1993) and tags used for purification of receptor proteins or other fused protein moieties 

have no effect (Grebe and Spindler-Barth, 2002). For the ecdysteroid receptor from Chironomus tentans it has 

been shown that purified receptor proteins and crude extracts possess the same Kd values (Grebe and Spindler-

Barth, 2002). Therefore we conclude that hormone-binding capability is an autonomous function of the LBD 

and is influenced only by the dimerization partner. 
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In previous papers we characterized dimerization and hormone-binding properties of the LBD of the ecdysone 

receptor EcR (Lezzi et al., 2002; Grebe et al., 2003) using mutated receptor LBDs created by site-directed 

mutagenesis. We now investigate the impact of USP LBD mutations on ecdysteroid receptor function. 

 

Although Drosophila EcR is able to bind hormone in the absence of USP to a small but significant degree, a 

tenfold increase in ecdysteroid binding is observed after addition of USP (Lezzi et al., 2002; Grebe et al., 2003) 

which is accompanied by an allosteric change of the ligand-binding pocket of EcR (Grebe et al., 2003). Where-

as the three-dimensional structure of the EcR LBD is unknown, some relevant insights have been obtained from 

the structure of the USP(LBD) of D. melanogaster (Clayton et al., 2001) and Heliothis virescens (Billas et al., 

2001). Their structures show that helix 12 of the USP LBD is fixed in an antagonistic position even in the 

absence of a specific ligand because of a hydrophobic interaction between helix 12 residues and other amino 

acids located in the loop between helix 1 and helix 3. The loop is highly conserved in Diptera and Lepidoptera 

but not in other arthropods. According to Billas et al. (2001), the non-specific binding of a phospholipid further 

stabilizes this apoposition of helix 12, involving a different subset of amino acid residues than those associated 

with possible JHIII binding. 

 

Using yeast two-hybrid analysis, previous studies have demonstrated that the LBDs of EcR and USP, fused to 

GAL4 activation (AD) and DNA-binding (DBD) domains, respectively, promote expression of a GAL4-

inducible promoter. This response is enhanced significantly in a dose-dependent fashion by the addition of 

muristerone A (Lezzi et al., 2002). This system has been used previously in conjunction with biochemical 

methods to analyze the effects of several site-directed mutations on the functionality of the EcR LBD (Grebe et 

al., 2003). In this study, mutations in helix 12 of the USP LBD were studied for their effects on the ability of 

helix 12 to maintain its antagonistic position. Mutations in the USP ligand-binding pocket associated with fatty 

acid-binding were also evaluated for their effects on function. 

 
 

Results and discussion 

Fusion proteins of USP(LBD) with Gal4(DBD) and Gal4(AD)-EcR(LBD) were used to study the influence of 

mutations in the LBD of USP on EcR(LBD)/USP(LBD) heterodimer function. First the induction of reporter 



gene activity by the heterodimer was measured by two-hybrid assay and the influence of hormone determined. 

DNA binding, a prerequisite for reporter gene induction, was tested by gel mobility shift assays and ligand-

binding studies were performed to determine the influence of the USP(LBD) on the binding of ecdysteroid with 

USP’s dimerization partner, EcR. The results are summarized in Table 1. 

 

Most of the mutated USP fusion proteins were highly reduced in their ability to induce reporter gene activity, 

although it was unclear from this result alone whether the effect reflected a loss of expression, a destruction of 

all activity, or a specific loss of transactivation capability. By contrast, ligand binding among EcR-mutated 

proteins ranges from nearly normal levels to no binding at all, thus demonstrating that general receptor function 

was not destroyed, but that specific functions were affected by each mutation (Grebe et al., 2003). Indeed, the 

mutated proteins included in this study were expressed and formed heterodimer complexes that showed at least 

some ligand-binding and DNA-binding activity. In other words, these USP mutations affected the ability of the 

GAL4 fusion protein to induce transcription, but did not eliminate other LBD functions. 

 

DNA-binding properties were characterized by gel mobility shift assays using Gal4-specific UAS. The identity 

of the band representing Gal4(DBD)-USP(LBD)-complex with DNA was verified by a supershift in the 

presence of a c-Myc specific antibody recognizing the Gal4(DBD) fusion protein (Figure 1). This confirms that 

the retarded band was in fact due to USP(LBD) and not another transcription factor present in the yeast extract 

also interacting with the radiolabeled oligonucleotide. Competition with the corresponding non-labeled oligo-

nucleotides also demonstrated the specificity of the DNA-receptor interaction. No corresponding band was 

observed in non-transformed yeast. No heterodimerization with GAL4(AD)-EcR(LBD) was visible in the 

absence of ecdysteroid (Figure 1; Grebe et al., 2003). A supershift indicating heterodimerization was observed 

only in the presence of muristerone A (Figure 3B, 5B, 6B). 

 
The expression rates of various mutated USP fusion proteins varied approximately 6 fold for individual 

mutations (Figure 2). Therefore the receptor concentrations of the mutated USPs were determined by 

quantification of the Western blot signals using a standard curve derived from wild-type USP fusion protein to 

ensure that the same receptor concentration was used for subsequent biochemical studies. 

 

Functional role of helix 12 

Helix 12 is essential for hormone-dependent transactivation in most nuclear receptors and is also required for 

ligand binding in some receptors like EcR (Lezzi et al., 2002; Grebe et al., 2003). Helix 12 of USP is unique 

compared to all other nuclear receptors and is fixed to an antagonistic position even in the absence of a ligand 

(Billas et al., 2001; Clayton et al., 2001). Therefore we were especially interested in the functional role of helix 



12. Truncation of USP’s helix 12 abolished reporter gene induction on the two-hybrid assay (Table 1), 

interaction with DNA, and the hormone-binding capability of USP’s dimerization partner, EcR (Figure 3). All 

of these receptor functions depend on the ability of the receptors to dimerize with each other. To measure 

dimerization directly, Gal4(DBD) fusion proteins with wild-type USP(LBD) and truncated USP(LBD) were 

further examined by gel filtration (Figure 4). Gal4 (DBD) eluted at a much lower apparent molecular weight 

(  ) than calculated due to interactions with the gel in the absence of a Gal4 specific UAS. Dimerization 

mediated by the DBD was only observed in the presence of DNA. The elution pattern of the fusion protein with 

wild-type USP(LBD) showed a main peak even in the absence of DNA that corresponded to the predicted    of 

the homodimer. Since dimerization via the DBD is not possible without an UAS, dimerization in this case must 

be mediated by the USP(LBD). The truncated receptor protein eluted at an apparent molecular weight    that 

corresponds fairly well to the calculated value of the homodimer without UAS. This is in agreement with the 

EMSA which showed no DNA binding if helix 12 of USP(LBD) was deleted (Figure 3B). 

 
 

X-Ray studies revealed that helix 12 in USP is fixed in an antagonistic position even in the absence of a specific 

ligand (Billas et al., 2001; Clayton et al., 2001). Two amino acids were tested: L490 which interacts with the 

L1-L3 loop and stabilizes the antagonistic position of helix 12 and E493 which is not engaged in fixation of 

helix 12. The results show that reporter gene induction was severely affected by both mutations, but that 

hormone binding, DNA binding and hormone-dependent hetero-dimerization still occurred at an observable 

level (Figure 3). Comparison of USP
L490R

 and USP
E493K

 showed that the antagonistic position of helix 12 was 

indispensible for reporter gene induction, but did not disrupt ligand binding. Since dimerization is a prerequisite 

for the observed level of ligand binding (Grebe et al., 2003), it was inferred that dimerization is nearly normal in 



USP
E493K

 and only moderately reduced in USP
L490K

. DNA binding as shown by EMSA was reduced for L490R 

but was normal for E493K. The data obtained with E493K demonstrate clearly that, besides dimerization and 

DNA binding, an additional factor is important for reporter gene induction. 

 
 

A functional role of helix 12 according to the model proposed by Westin et al. (1998) requiring a flexible helix 

seems questionable. Based on homology models (Sasorith et al., 2003), an agonistic position preferred after 

docking of a putative ligand such as juvenile hormone seems possible, although this ligand does not contact 

amino acid residues of helix 12 directly (Sasorith et al., 2003). 

 

Helix 12 of USP is centrally important not only for DNA binding and transactivation but also for hormone 

binding with the heterodimerization partner, EcR. The retained ability for dimerization in the absence of helix 

12 in USP rules out the possibility that the observed effects are caused by a generally altered three-dimensional 

structure of the ligand-binding pocket that affects all receptor functions simultaneously. Rather, the influence of 

helix 12 in USP(LBD) on ligand binding of the heterodimerization partner EcR and on DNA-binding ability of 

the Gal4 (DBD) demonstrates both intra- and intermolecular allosteric effects of the USP(LBD). Interdomain 

interaction as well as intermolecular signaling are common in nuclear receptors as described previously 

(Scheller et al., 1998; Kumar et al., 1999) and may help to couple and coordinate different receptor functions. 

Gel filtration experiments confirmed that dimerization mediated by the Gal4(DBD) moiety depends on the 

presence of DNA and is required for reporter gene induction. By contrast, dimerization via the USP(LBD) is 

DNA-independent and is not necessarily linked with the transactivation potency of the receptor complex. 

 

Mutations of amino acids that contact the non-specifically bound phospholipid 

Another set of mutations is characterized by substituted residues that form a salt bridge with the hydrophilic end 

of a phospholipid such as the one that copurified with USP extracted from E. coli (Clayton et al., 2001). While 



the phospholipid has not generally been viewed as a natural ligand for USP, it apparently is important for 

stabilizing USP structure during purification. Among the putative phospholipid-binding sites, S376 is 

universally con-served among known USP proteins, but K379 is not. In both cases, mutational changes severely 

reduced the activity in two-hybrid experiments, and hormone inducibility was also eliminated at a hormone 

concentration of 25 mM (Table 1). The reduced hormone binding (Figure 5A) in combination with the weak 

DNA binding (Figure 5B) may be partially responsible for this effect, although weak heterodimerization in the 

presence of hormone was still observed in EMSAs. However, S376A did not completely eliminate hormone-

induced two-hybrid activity. In fact, USP
S376A

 evoked a higher level of induction at an elevated dosage of 

muristerone A (80 μM=13.94-fold induction, 150 μM=51.60-fold induction) further revealing a residual level of 

ligand-binding activity in the heterodimer. 

 
 

A third set of mutations was created for hydrophobic residues that lie within the ligand-binding pocket of USP 

(L281, W318, L322, I323, V326) and apparently contact the phospholipid via hydrophobic interactions. Each of 

these residues is partially to highly conserved among USP proteins in insects. Four of these mutations 

eliminated both basal and ligand-induced activity on the two-hybrid assay, whereas two different substitutions 

of a residue that lies at the base of the USP ligand-binding pocket, I323A and I323V, behaved as superinducers 

on the two-hybrid assay (Table 1, Henrich et al., 2000). Position 323 is occupied by an amino acid that encodes 

a leucine or isoleucine in all known insect USPs. Ligand-induced activity is much higher at both low (Table 1) 

and high dosages of muristerone A (unpublished results). This is especially remarkable because ligand binding 

was slightly reduced by these same mutations. The opposite effects of these mutations compared to the other 

amino acids involved in phospholipid binding suggests an additional or different role for I323. In fact, both the 

alanine and valine substitutions of I323 remove the large side chains that protrude into the ligand-binding 

pocket. Other substitutions, notably I323D, which introduces a negative charge, and I323F (data not shown) 



with a rather bulky side chain are deleterious and eliminate yeast two-hybrid activity. Hormone binding is 

reduced (Table 1, Figure 5A) in heterodimers carrying a mutation of amino acids engaged in phospholipid 

binding (Clayton et al., 2001; Billas et al., 2001). 

 

The size of the side chain seems to be very critical in L322, because reduction in L322G caused a complete loss 

of receptor activities. The length of the side chain was sufficient to allow DNA binding in USP
L322R

, and seems 

to be more important than the introduction of an additional charge. 

 
 

Amino acids of the ligand-binding pocket of USP with no contact to a putative ligand 

In USP
D349S

, hormone binding to EcR was reduced indicating that hormone-induced dimerization is still 

possible. DNA binding was reduced only partially, but two-hybrid activity was abolished completely. This 

example revealed that an additional condition for the receptor heterodimer is necessary for transactivation of 

reporter gene activity. Its failure also shows that specific functions are selectively destroyed by individual 

mutations. 

 

The E392 residue is highly conserved among all USP receptors and we, therefore expected that this amino acid 

plays an essential role for USP function. Ligand binding of the heterodimer carrying the USP
E392A

 mutation was 

almost destroyed and two-hybrid activity was severely reduced, but not completely abolished (Figure 6A). 

 

For L41 0F, I414A, L415F, a hormone-dependent super-shift indicating heterodimerization was still observed 

although the DNA-binding capacity was reduced in the absence of hormone. This was further confirmed by the 

observation that ponasterone A binding to EcR was reduced in the presence of these mutated USPs. Two-hybrid 

activity was completely abolished, thus underlining the general importance of amino acids in the ligand-binding 

pocket of USP for reporter gene induction and indicating once more that ligand and DNA binding alone is not 

sufficient for two-hybrid activity. 

 

P463 is located in helix 10, which lies along a dimerization interface. It is reasonable to assume that exchange 

of proline by asparagine destroys the dimerization capability of USP(LBD). All receptor functions were 



abolished except DNA binding, demonstrating that dimerization mediated by the LBD of USP is not required 

for DNA binding of the fusion protein, but that dimerization of the Gal4 moieties is sufficient. 

 

Two-hybrid assay 

The behavior of the USP mutations on the yeast two-hybrid assay revealed a different pattern of effects than 

previously noted for analogous EcR mutations (Lezzi et al., 2002; Grebe et al., 2003). In the former case, 

mutations of the EcR LBD evoked a range of effects. Many of the mutations impaired both basal and ligand-

induced functions indicating that a basal process is disturbed. 

 

Two-hybrid assays are generally considered to be dimerization assays. This may be justified, when the bait is 

the same and the interaction with different preys is examined as was shown with the EcR mutations which were 

coupled to the activation domain of Gal4 and probed with the wild-type Gal4(DBD)-USP(LBD). In experiments 

presented in this paper the bait itself was modified, meaning that mutated USP(LBD)s fused to the DNA-

binding domain of Gal4 were used. Consequently, the Gal4(DBD) is not considered as a constitutive functional 

unit for monitoring reporter gene activity. Instead, its functionality, especially DNA binding, is modified by 

alterations of the USP(LBD) to which it is fused. 

 
 

 



DNA binding of Gal4(DBD) fused to mutated USP(LBD) 

DNA binding, a prerequisite for induction of reporter genes, is impaired or even abolished in several mutated 

USP fusion proteins. As shown by EMSA (Figure 6B), the positive impact of wild-type USP(LBD) on DNA 

binding of the Gal4 moiety depends not only on the presence but also on the unique antagonistic position of 

helix 12 in Ultraspiracle. These results may explain the failure to observe any effects of helix 12 USP mutations 

used in transfection studies with insect cells (Hu et al., 2003). Because the mutated USP proteins may have lost 

their ability to interact with DNA, only the positive DNA binding of endogenously expressed wild-type USP 

would be measured in the insect cells, thus masking the effect of the mutated protein. 

 

Dimerization, ligand and DNA binding are not sufficient for transactivation 

A comparison of the two-hybrid data and the results of DNA- and ligand-binding tests of some mutations 

(USP
S376A

, USP
I323V

 and USP
I323A

) are not always in parallel. The superinduced reporter gene levels evoked by 

USP
I323V

 and USP
I323A

 may be interpreted as the consequence of enhanced dimerization that offsets a reduction 

in ligand-binding capability by the EcR/USP dimer, although direct experimental proof is missing. 

Alternatively, the results may indicate an additional regulatory step necessary for transactivation besides ligand 

and DNA binding or dimerization partners such as a comodulator. This is illustrated by USP
E493K

 which clearly 

demonstrates that despite retaining its dimerization, hormone- and DNA-binding abilities, an additional factor 

or comodulator is required for transactivation as pro-posed already by Tran et al. (2001) and VomBaur et al. 

(1998) for vertebrate receptors. Mutations that allow a normal fold-induction but at a highly reduced 

quantitative level and the superinducer mutations indicate that USP plays an active role in transactivation of the 

reporter gene and that its function is not restricted to dimerization only. 

 

Dimerization in nuclear receptors is mediated by several dimerization interfaces. Our aim is to study each 

dimerization site and its regulation separately to evaluate the impact of each site. In the present study we 

concentrated on the dimerization properties of the ligand-binding domains of EcR and USP. In the Gal4 fusion 

proteins the A/B domains of EcR and USP were absent. Therefore the dimerization properties of this receptor 

domain (Rymarczyk et al., 2003) did not influence our results. We are currently determining the influence of the 

C and D domain on dimerization properties. 

 

Materials and methods  

Yeast strain 

Saccharomyces cerevisiae strain Y190 was cultured according to manufacturer instructions (Clontech 

Laboratories, Palo Alto, CA, USA). Cells were transformed with lithium acetate (Guthrie and Fink, 1991) and 

selected by auxotrophy for tryptophan (pAS2-1) and leucine (pACT2), respectively. 

 

Yeast expression plasmids 

DNA encoding the C-terminal part of the D domain and the E domain of the Drosophila ecdysone receptor EcR 

(aa 375–652) was cloned into the expression vector pACT2 (Li et al., 1994; Lezzi et al., 2002) resulting in a 

Gal4(AD)-EcR(LBD) fusion. For expression of Gal4(DBD)-USP(LBD) the corresponding domain of 

Ultraspiracle (aa 172–508) was cloned either into the vector pGBKT7 (Louvet et al., 1997) or into the vector 

pAS2-1 (Harper et al., 1993; Lezzi et al., 2002). 

 

Construction of site-directed mutations 

All site-directed mutations in Gal4(DBD)-USP(LBD) were carried out with a site-directed mutagenesis kit 

(Stratagene, Amsterdam, Netherlands) following the manufacturer’s instructions. Briefly, the plasmid vector is 

amplified by polymerase chain reaction with a pair of oligonucleotide primers in which the site of mutagenesis 

is included, so that during replication cycles, the mutated plasmid is the predominant PCR product. The original 

template strands are methylated and destroyed by the restriction enzyme, DpnI, and the new plasmids were 

transformed into E. coli and recovered. All mutated products were verified by sequencing and also checked for 

possible second site mutations in both the USP(LBD) and the GAL4(DBD) portion of the plasmid. In  H12 aa 

490–508 were deleted. The oligonucleotides used to produce the mutations described are available upon 

request. 



Yeast two-hybrid conditions 

All wild-type and mutated plasmids were tested according to the procedures described by Lezzi et al. (2002), 

except that yeast transformations were carried out with the Frozen EZ Transformation II kit (ZymoResearch; 

Orange, CA, USA) following manufacturer’s protocols. In all cases, three colonies were tested for each 

replicate, and three replicates were performed for each mutation. Additionally, all mutational results were 

compared with simultaneously run wild type controls, since the absolute level of lacZ activity reported on the 

yeast two-hybrid assay varies even under controlled conditions, though general levels of relative performance 

were stable. 

 

Preparation of yeast extracts 

Single colonies (not older than 4 days) of yeast transformants carrying the expression plasmids were picked and 

cultured at 30'C overnight in 5 ml selective medium containing 2% glucose with vigorous shaking (150–200 

rev./min) to disperse the cells thoroughly. They were then diluted in 50 ml YPD medium (20 g/l peptone, 10 g/l 

yeast extract, 2% glucose) and grown under the same conditions until the OD600 reached 0.6–0.8. Cells were 

harvested by centrifugation (1500 g, 5 min, 4°C) in pre-chilled tubes and washed with 50 ml ice-cold binding 

buffer (20 mM HEPES, 20 mM NaCl, 20% glycerol, 1 mM EDTA, 1 mM 2-mercaptoethanol, pH 7.9). The 

pellets were frozen in liquid nitrogen for approximately 20 s and disrupted for 2 min at 2000 rev./min using a 

Micro-dismembrator S (B. Braun Biotech International, Melsungen, Germany). After thawing, homogenates 

were diluted with binding buffer and supplemented with a mixture of protease inhibitors (aprotinin, leupeptin, 

pepstatin, benzamidine, antipain, chymostatin; final concentration 2 μg/ml each and 1 mM phenylmethyl-

sulfonyl fluoride) immediately before use. After short treatment with ultrasonic power (microtip 2×2 s, 90 Watt, 

Branson Sonifier, B-12; Branson, Danbury, CT, USA) the samples were centrifuged (100 000 g, 1 h, 4°C) and 

frozen in aliquots at -80°C until use. 

 

Western blot and quantitative determination of fusion proteins 

Yeast extracts were diluted with sample buffer (final concentration: 100 mM Tris, 3% SDS, 2% 2-

mercaptoethanol, 10% glycerol, 0.05% bromphenol blue, pH 8.8) and boiled for 3 min (Laemmli, 1970). 10–20 

μg protein (Bradford, 1976) were applied on each lane of an acrylamide gel and subjected to electrophoresis 

using a Hoefer miniVe, (300 V, 15 mA; Amersham Biosciences, Freiburg, Germany). Gels were electroblotted 

on nitrocellulose membranes (BA 85, 45 μm pore size, Schleicher and Schuell, Dassel, Germany) according to 

Khyse-Andersen (1984). The membranes were soaked in blocking buffer (5% milk powder, 1 % fat in 20 mM 

Tris-HCl, 137 mM NaCl, 0.1 % Tween 20, pH 7.6, 0.02% Thimerosal). EcR(LBD) fusion protein was probed 

with a Gal4(AD)-specific antibody (5398-1, Clontech Laboratories) diluted in blocking buffer 1:5000. USP 

fusion proteins were probed either with Gal4(DBD) specific antibody(# sc-577, Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA) diluted 1:100 or with c-Myc specific antibody (3800-1, Clontech Laboratories) diluted 

1:1000. Specific Western signals were detected with peroxidase conjugated secondary antibodies diluted 1:1000 

(anti-mouse IgG, Sigma A-5906, Sigma-Aldrich, Taufkirchen, Germany) or 1:500 (anti-rabbit IgG, Sigma A-

6667), in TBS-T (20 mM Tris-HCl, 137 mM NaCl, 0.1 % Tween 20, pH 7.6). Detection and quantification was 

done as described in detail by Rauch et al. (1998). Specific signals were imaged with Fluor-S MultiImager (Bio-

Rad Laboratories, Hercules, CA, USA) and evaluated with the software Multi-Analyst/PC (Version 1.1, Bio-

Rad Laboratories). 

 

Ligand-binding assays 

Yeast extracts were diluted with binding buffer and supplemented with protease inhibitors as described above 

immediately before use. Ligand binding was determined with [
3
H]-ponasterone A (specific activity 2.5 

TBq/mmol; kind gift of Dr H. Kayser, Syngenta, Basel, Switzerland) using a filter assay described in detail 

previously (Turberg and Spindler, 1992). Radiolabeled ponasterone A was used, because the affinity to EcR is 

higher com-pared to 20-OH-ecdysone. Fusion proteins were quantified by Western blots as described above and 

normalized based on wild-type expression levels. Receptor proteins were mixed with 4-5 nM [
3
H]-ponasterone 

A and incubated for 1 h at room temperature. Non-specific binding determined in the presence of 0.1 mM non-

labeled 20-OH-ecdysone was subtracted. Purity of [
3
H]-ponasterone A was checked routinely by HPLC 

analysis. Ligand-binding data of mutated receptors were expressed as % of wild-type hormone binding 



(=100%). 

 

Electrophoretic mobility shift assay (EMSA) 

The oligonucleotides dgal 1: 5’-GATCGCACAGTGCCGGAGGACAGTCCTCCGGTTCGAT-3’ and dgal: 5’-

GATCATCGAACCGGAGGACTGTCCTCCGGCACTGTGC3’ were formed by annealing 5’ extensions using 

the sequence GATC labeled with [α
32

P]-dCTP by fill-in reaction with Klenow polymerase. 

 

The reaction mix contained EMSA buffer w20 mM HEPES, pH 7.4, 100 mM KCl, 5% (v/v) glycerol, 2 mM 

dithiothreitol, 0.1 % NP-40x, yeast cell extracts with EcR or USP fusion proteins, 1 μg non-specific competitor 

poly[dIdC] and approximately 10 f mol labeled oligonucleotide. 10
-5

 M muristeroneA (final con-centration) was 

used where indicated. Muristerone A was used instead of 20-OH-ecdysone, because the affinity to EcR is high-

er. After incubation for 30 min at room temperature, the samples were loaded on a 5% nondenaturing 

polyacrylamide gel in 0.5xTBE (45 mM Tris, 45 mM boric acid, 0.5 mM EDTA pH 8.0) and separated at 10 

V/cm for 2 h. Gels were dried, scanned with a phosphoimager (Fluorescent Image Analyzer FLA-3000 series, 

FUJIFILM, Düsseldorf, Germany) and evaluated with software Aida Image Analyzer 3.25 (Raytest 

Isotopenmeßgeräte GmbH, Straubenhardt, Germany). 

 

Chromatography Samples were prepared exactly as described for gel shift experiments. 500 μg protein (1 μg/μl) 

were incubated for 30 min at room temperature and subjected to size exclusion chromatography (Superdex 200 

HR 10/30, Amersham Pharmacia Biotech, Uppsala, Sweden) using an ÄktaTM purifier (Amersham Pharmacia 

Biotech). After equilibration of the column with elution buffer (20 mM K-phosphate, pH 7.4, 50 mM KCl, 1 

mM EDTA, 10% glycerol), the sample was loaded on the column and separated (flow rate of 0.25 ml/min, 

4°C). Fractions were collected (500 μl) and proteins precipitated with 7.5% TCA (final concentration). A 

molecular weight marker kit (Sigma-Aldrich) was used to calibrate the column. Fractions were subjected to 

Western blotting with Gal4(DBD) or c-Myc specific antibodies and quantified as described above. 
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