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1. INTRODUCTION

The photoeffect is one of the most studied elemen-
tary photoprocesses, and, in this sense, it can be consid-
ered as classical. The role played by this phenomenon
in the development of quantum notions about the nature
of light is well known.

The theoretical investigation of the atomic (molecu-
lar) photoeffect, as well as of other elementary pro-
cesses, can be significantly simplified upon separation
of geometric and dynamic parameters in expressions
for the corresponding cross sections. This problem is
solved by the methods of angular momentum algebra.
The dynamic parameters are determined by the internal
structure of a system, and their calculation is a rather
complex problem, which is still not solved completely.
Therefore, it is important to have at hand simple analyz-
able expressions for the cross sections that allow one to
find the dynamic parameters from experimental mea-
surements.

As is well known, the photoionization cross section
of a freely orientable (unpolarized) atom, which deter-
mines the angular distribution of photoelectrons under
conditions where the spin orientation of a photoelec-
tron is not measured, contains in the dipole approxima-
tion two dynamic parameters: the photoeffect total
cross section 

 

σ

 

 and the angular-asymmetry scalar
parameter 

 

β

 

 [1] (see formula (7) below). In standard
approximations used in atomic calculations [2], the
dynamic parameters 

 

σ

 

 and 

 

β

 

 are expressed in terms of

five independent quantities: the three dipole matrix ele-
ments of bound–free transitions and two phase differ-
ences of photoelectron scattering (see, e.g., [2, 3]).
Consequently, it is fundamentally impossible to deter-
mine all the five independent atomic parameters from
the experimental investigation of the angular distribu-
tion of photoelectrons formed upon photoionization of
unpolarized atoms, i.e., to realize the so-called com-
plete experiment.

For the complete experiment to be realized, more
subtle measurements should be performed. Thus, in [3–
5], it was suggested to measure additionally the spin
polarization of photoelectrons, which makes it possible
to determine three additional dynamic parameters from
experimental data. It has proved possible, at least for
linear and circular polarizations of ionizing radiation,
to write the corresponding expression for the photoef-
fect cross section in a compact invariant form conve-
nient for analysis [3]. However, it has recently been
found that there exists a relation between these three
additional dynamic parameters and the angular asym-
metry parameter 

 

β

 

 [6]; hence, in order to perform the
complete experiment, it is also necessary to measure
the spin polarization of a photoion [7].

As was shown by Klar and Kleinpoppen [8], an
alternative possibility for performing the complete
experiment consists of investigating the angular distri-
bution of photoelectrons escaping from polarized
atoms. An atom is polarized upon light absorption, col-
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lisions, and other processes disturbing the equilibrium
population of its magnetic sublevels. A special method
of polarization of atoms, namely, optical pumping, has
been developed (see reviews [9, 10]). The state of an
axisymmetrically polarized system is specified by

 

2

 

j

 

 independent quantities (

 

j

 

 is the quantum number of
the total angular momentum), for which so-called state
multipoles can be taken [11]. The photoeffect cross sec-
tion is linear in state multipoles and contains a consid-
erably greater number of dynamic parameters, which
can be found from experimental measurements. In turn,
these parameters are expressed in terms of the five inde-
pendent parameters indicated above (the dipole matrix
elements and the scattering phase differences).

In the expression obtained in [8] for the photoion-
ization cross section of a polarized atom, the geometric
and dynamic parameters were separated. However, a
dependence on the direction of motion of a photoelec-
tron and on the direction of the polarization axis of an
atomic target appeared in the expression for the angular
distribution of photoelectrons via bipolar harmonics
[12] (the photoionization cross section taking into
account the photoelectron spin polarization contained
tripolar harmonics). In addition, the expression for the
cross section was written in a noninvariant form in a
coordinate system whose 

 

z

 

 axis coincided either with
the direction of propagation of circularly polarized or
unpolarized light or with the direction of the linear
polarization of the light wave. For such a representation
of the cross section, the separation of the explicit
dependence in it on all the vectors characterizing the
process proved to be not a simple task, which reduced
to expressing the corresponding bipolar harmonics in a
particular coordinate system. In [8], this procedure was
realized for the simplest cases, in which several of the
first state multipoles are different from zero. As a result,
cumbersome and difficult-to-analyze formulas were
obtained, which seemingly made an oppressive impres-
sion on experimenters. In all subsequent theoretical
studies on photoionization of polarized atoms known to
the author that were performed up to 1996, these diffi-
culties were not overcome (see, e.g., [13–16]).

The situation changed radically after the publishing
of a seminal paper by Manakov et al. [17], in which a
method of reduction of bipolar harmonics (and, in the
general case, multipolar harmonics) to the simplest
bipolar harmonics with minimal possible ranks of inter-
nal spherical functions was developed. The method
developed in that study can be applied to a wide range
of problems in atomic and nuclear physics. To illustrate
the method proposed, the authors of [17] considered
several examples, including the problem of photoion-
ization of polarized atoms, which is the subject of this
study. They showed that, in fact, a compact invariant
expression for the cross section of the process, in which
the dependence on all the vectors involved is separated
in the form of scalar and triple scalar products, can be

obtained from the symmetry considerations alone,
without invoking any approximation used in atomic
calculations.

The objective of this study is to develop further the
application of the method of [17] in the theory of pho-
toionization of polarized atomic systems. First of all,
the results of [17] are generalized to the case of a partial
polarization of ionizing radiation. Then, the theory of
photoionization of optically active molecules is devel-
oped. The structure of the photoionization cross section
of optically inactive molecules does not differ from that
of atoms. At the same time, the expression for the pho-
toionization cross section of optically active (chiral)
molecules contains additional terms and, correspond-
ingly, a number of new effects are observed in the
course of ionization.

The paper is organized as follows. In Section 2, the
structure of the expression for the dipole photoioniza-
tion cross section of a polarized atomic–molecular sys-
tem is determined from the general symmetry consider-
ations. Then, compact invariant expressions are
obtained that determine the angular distribution of pho-
toelectrons formed upon photoionization by polarized
radiation of polarized atoms and achiral molecules
(Section 3) and of optically active molecules (Section 4).
The expressions for bipolar harmonics reduced accord-
ing to the method of [17] that are used in this study are
given in the Appendix. In Section 5, we discuss the
structure of the expression for the total photoionization
cross section, which can be obtained both from the gen-
eral symmetry considerations and by direct integration
of the angular distribution of photoelectrons. Then, in
Section 6, the dependence on the Stokes parameters of
ionizing radiation is separated in the formulas obtained
and the expressions for the cross sections become
applicable to the general case of a partial polarization of
a photon. To illustrate the simplicity and efficiency of
the method developed in this study, we consider the
photoionization of atomic–molecular systems oriented
in the first order (Section 7) and aligned in the first
order (Section 8) and analyze the effects of circular
dichroism, the contribution of chirality, and so on. Note
that the expressions for the photoionization cross sec-
tion of an oriented system presented in Section 7 also
describe the structure of the expression for the photo-
ionization cross section of an unpolarized system tak-
ing into account the spin polarization of a photoelectron
or a photoion if the spin of the latter is equal to 1/2.

Therefore, it can be stated that this study is devoted
to the theory of spin polarization phenomena related to
the photoeffect that involve the spin of an atom (mole-
cule), the spin of a photoelectron, and the spin of a
photon.
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2. THE GENERAL STRUCTURE
OF THE EXPRESSION

FOR THE PHOTOIONIZATION CROSS SECTION 
OF A POLARIZED ATOMIC–MOLECULAR 

SYSTEM

In the general case, a polarized atom (molecule)
resides in a quantum-mechanical state that is mixed
with respect to the projections of the angular momen-
tum and is described by the density matrix. The decom-
position of the density matrix into irreducible compo-
nents, which are termed state multipoles (statistical ten-
sors) [11], makes it possible to distinguish different
types of polarization. The state multipole 

 

ρ

 

KQ

 

, where

 

K

 

 = 0, 1, 2, …, 2

 

j

 

 and 

 

Q

 

 = –

 

K

 

,

 

 –

 

K

 

 + 1, …, 

 

K

 

 is a

 

K

 

th-rank irreducible tensor. In the absence of polariza-
tion, the system is spherically symmetric; therefore,
only the zeroth-rank state multipole (i.e., the scalar)

 

(1)

 

differs from zero. If at least one odd-rank state multi-
pole is nonzero, the system is referred to as an oriented
system, and, if at least one even-rank state multipole is
nonzero, the system is termed an aligned system. To
specify the particular type of polarization, I, as in my
previous studies on light scattering [18, 19], will distin-
guish orientation and alignment of different orders.
Thus, if the vector 

 

ρ

 

1

 

Q

 

, which is proportional to the
average angular momentum of the polarized system
[11],

 

(2)

 

differs from zero, we will speak of first-order orienta-
tion; if the tensor 

 

ρ

 

3

 

Q

 

 is nonzero, the orientation will be
second-order; and so on. Correspondingly, alignment
of the first, second, etc., order is associated with a non-
zero state multipole of the second, fourth, etc., rank.

As in all previous studies on photoionization of
polarized atoms,

 

1

 

 we will restrict ourselves to the
important particular case of an axisymmetric polariza-
tion, whose symmetry axis is specified by the vector 

 

n

 

.
Such a polarization obviously arises if an external
polarizing perturbation is axisymmetric (for example,
unpolarized electromagnetic radiation or radiation that
is polarized circularly or linearly). In the case of an axi-
symmetric polarization, only the zeroth components

 

ρ

 

K

 

0

 

 = 

 

 of all the state multipoles differ from zero in
a coordinate system whose 

 

z

 

 axis is directed along 

 

n

 

; as
a result, the density matrix of the polarized atom proves
to be diagonal with respect to the projections of the
angular momentum 

 

M

 

 onto the direction 

 

n

 

 and the state
of the atom is an incoherent mixture of states with dif-
ferent 

 

M

 

 [11]. It should be noted here immediately that

 

1

 

For brevity, below, we will speak of an atom implying both an
atom and a molecule. The results pertaining only to optically
active molecules will be described separately; therefore, such a
terminology should not cause ambiguity.

ρ00 2 j 1+( ) 1/2–
=

ρ1Q 1–( )Q
3 j j 1+( ) 2 j 1+( )[ ] 1/2–

j Q– ,=

ρK
n

 

all  of odd rank 

 

K

 

 change their sign upon time rever-
sal and upon spatial inversion (in the latter case, the
vector 

 

n

 

 is changed to 

 

–

 

n

 

); i.e., they are 

 

T

 

-odd pseudo-

scalars, whereas all even-rank  are 

 

T

 

-even scalars.
Using the law of transformation of state multipoles
upon rotations, we can find the state multipoles and the
elements of the density matrix in an arbitrary coordi-
nate system [11],

 

(3)

 

where 

 

Y

 

KQ

 

(

 

n

 

)

 

 is a spherical function.
In order to determine the general structure of the

expression for the photoeffect cross section, we will
proceed from the fact that, in the first order of the per-
turbation theory, the probability of transition of a polar-
ized atom to the state 

 

|

 

f

 

〉

 

 under the action of the pertur-

bation  is proportional to the following expression:

 

(4)

 

Here, 

 

ν

 

i

 

 denotes the set of the internal quantum num-
bers of the atom in the initial state, which already does
not contain 

 

j

 

 and 

 

m

 

, and the dots under the summation
sign refer to the possible summation over the quantum
numbers of the final state 

 

|

 

f

 

〉

 

. Since we are interested
only in the angular distribution of photoelectrons, the
summation is performed over the projections of the
photoelectron and photoion spins. In this case, in the
differential photoionization cross section, which deter-
mines the angular distribution, the dependence on the
direction of motion of a photoelectron (we will set this
direction by the unit vector 

 

p

 

) is retained. The depen-
dence on 

 

p

 

 vanishes upon going to the total cross sec-
tion of the process, in which the integration is per-
formed over all the directions 

 

p

 

.
For the time being, the electromagnetic radiation

ionizing the atom is assumed to be completely polar-
ized, with its polarization being specified by the unit

vector 

 

e

 

. In the dipole approximation, the operator  in
(4) determining the interaction of the atom with the
electromagnetic radiation is proportional to (

 

ed

 

),

 

(5)

ρK
n

ρK
n

ρKQ
4π

2K 1+
---------------- 1–( )Q

YK Q–, n( )ρK
n

,=

jm〈 |ρ̂ jm'| 〉

=  1–( ) j m–
2K 1+( )1/2 j j K

m m'– Q–⎝ ⎠
⎜ ⎟
⎛ ⎞

ρKQ

K Q,
∑

=  4π 1–( ) j m– Q– j j K

m m'– Q⎝ ⎠
⎜ ⎟
⎛ ⎞

YKQ n( )ρK
n

,
K Q,
∑

V̂

f〈 |V̂ νi jm| 〉 jm〈 |ρ̂ jm'| 〉 νi jm'〈 |V̂+
f| 〉.

m m' …, ,
∑

V̂

V̂ ed( )∼ 1–( )q
eqd q– ,

q

∑=
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where d is the dipole moment operator of the atom and
aq, q = 0, ±1, are the spherical components of the vec-
tor a [12].

From formulas (3) and (4), it follows that the photo-

ionization cross section is linear in state multipoles 
and can be written as

(6)

The first term in (6) determines the angular distribution
of photoelectrons formed upon photoionization of
unpolarized atoms; therefore, it can be immediately
written in the standard form2 (see also the next section)

(7)

It remains to clarify how the remaining terms of (6),
which determine the polarization additions to the angu-
lar distribution of photoelectrons, depend on the geo-
metric parameters, i.e., on the vectors e, n, and p.

We will show that the dependence of all the terms in
(6) on the geometry can be determined from the sym-
metry considerations alone. Indeed, from the spherical
coordinates of the polarization vector e, one can com-
pose according to the general rule [12] the irreducible
tensors of the ranks r = 0, 1, and 2,

(8)

where  is the Clebsch–Gordan coefficient. Let us
introduce the scalar product of two irreducible tensors,

(9)

and the irreducible tensors Tr of the rth rank, propor-
tional to the tensors defined by (8) [17],

The zeroth- and first-rank irreducible tensors (8) are
expressed in terms of the scalar and vector products of
the corresponding vectors [12],

(10)

2 In the case of unpolarized optically active molecules, the expres-
sion for the angular distribution of photoelectrons should contain
one more term that determines the effect of circular dichroism [3,
20] (see formula (21) below).

ρK
n

dσ n( )
dΩ

--------------- dσ
dΩ
-------

1
4π
------ ρK

n dσK n( )
dΩ

------------------.
K 1=

2 j

∑+=

dσ
dΩ
-------

σ
4π
------ 1 β3 ep 2

1–
2

-----------------------+⎝ ⎠
⎛ ⎞ .=

e e*⊗{ }rp C1q1q'
rp

eq e*( )q' ,
q q',
∑=

Cbβcγ
aα

BrDr( ) 1–( )q
Br q, Dr q–,

q

∑=

=  1–( )r
2r 1+ Br Dr⊗{ }0

Tr 1–( )1 r– 3 r 1+( )
2r 1+

------------------- e e*⊗{ }r.=

T0 ee*( ) 1, T1 i e e*,[ ] ξk,= = = =

T2
3

5
------- e e*⊗{ }2,–=

where k is the unit vector defining the direction of prop-
agation of the electromagnetic wave and the parameter

specifies the degree of its circular polarization (for the
right-hand or left-hand circular polarization, ξ = ±1,
while, for the linear polarization, ξ = 0). Reversing rela-
tion (8), one can express eq(e*)q' in terms of the compo-
nents of the irreducible tensors Tr. Taking into account
expression (4) for the transition probability, we obtain
that the expression for the differential photoionization
cross section should have the following structure:

(11)

where, in view of the fact that the cross section is scalar,
the quantities Ar(n, p) should be irreducible tensors of
the rth rank composed of the vectors n and p. Expres-
sion (3) for the density matrix of the polarized atom

shows that Ar is linear in (n); consequently, the
general structure of these irreducible tensors is obvious:

(12)

Here,

(13)

is the bipolar harmonic (the irreducible tensor com-

posed of two spherical functions) [12] and  are the
atomic dynamic parameters.

Formulas (11), (12), and (10) determine the depen-
dence of the photoionization cross section (correspond-
ingly, all terms in (6)) on the geometric parameters. To
represent this dependence in a compact invariant form,
we will apply the method of reduction of bipolar har-
monics developed in [17]. We will consider separately
optically inactive atomic–molecular systems and opti-
cally active molecules.

3. ANGULAR DISTRIBUTION
OF PHOTOELECTRONS FORMED

UPON PHOTOIONIZATION OF POLARIZED 
ATOMS AND POLARIZED OPTICALLY 

INACTIVE MOLECULES

The dynamic parameters  of an atom3 or an opti-
cally inactive molecule are true scalars; i.e., they
remain invariant under the operation of spatial inver-

sion. At the same time, the product (n) in

3 In this section, unless otherwise stated, the word atom refers both
to an atom and to a molecule having no optical activity.

ξ i k e e*,[ ]( )=

dσ
dΩ
------- Ar n p,( )Tr( ),

r 0=

2

∑=

ρK
n

YKQ

Ar n p,( ) ρK
n

AKl
r

YK n( ) Yl p( )⊗{ }r.
l K r–=

K r+

∑
K 0=

2 j

∑=

YK n( ) Yl p( )⊗{ }rm CKQlM
rm

YKQ n( )YlM p( )
Q M,
∑=

AKl
r

AKl
r

ρK
n

YKQ
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decomposition (12) is also invariant under spatial inver-
sion (is P-even). Therefore, the spherical function
YlM(p) in bipolar harmonic (13) of this decomposition
should also be P-even; in other words, the rank l of the
spherical function should be even. This additional sym-
metry condition, together with the formulas for bipolar
harmonics given in the Appendix, makes it possible to
obtain compact expressions for all the quantities appear-
ing in the angular distribution of photoelectrons (6).

Initially, an expression for the angular distribution
of photoelectrons formed upon photoionization of
unpolarized atoms will be presented, which contains

only two dynamic parameters:  and . Using for-
mulas (A.3) and (A.7), in which one should set K = 0
(in this simple case, one can do without these formulas,
applying the definition of bipolar harmonics), and
expressions (10) for the irreducible tensors Tr, one can
obtain from (11) and (12) the following expression:

(14)

In deriving (14), we also used the identity [12]

(15)

which expresses one of the scalar products in (11) (see
(9) at r = 2) in terms of the scalar products of the vectors
contained in it, and took into account the explicit

expression (1) for . By comparing (14) with the stan-
dard form (7) of the angular distribution of photoelec-
trons, we can relate σ and β with the dynamic atomic
parameters introduced,

(16)

Below, in a similar fashion, we will write the expres-
sions for the quantities dσK/dΩ contained in (6) sepa-
rately for odd K, for which these quantities determine
the contribution of the orientation of an atom to the
photoionization process, and for even K, for which they
determine the contribution of the alignment.

Odd K (Orientation)

With the help of formulas (A.5) and (A.6), reducing
bipolar harmonics; definition (10) of tensors Tr; and
identities (9) and (15), we can obtain from (11) and (12)
the following expression for the sought quantities:

(17)

A00
0

A02
2

dσ
dΩ
-------

1

4π 2 j 1+( )1/2
-------------------------------- A00

0
1 3 pe 2

–( ) 3
2
---A02

2
+ .=

a b⊗{ }2 c d⊗{ }2⊗{ }0

=  1/ 5( ) 1/2( ) ac( ) bd( ) 1/2( ) ad( ) bc( )+[
– 1/3( ) ab( ) cd( ) ],

ρ0
n

σ A00
0

2 j 1+( ) 1/2–
, β 6A02

2
/A00

0
.–= =

dσK n( )/dΩ aK
1( )ξ kn( ) aK

2( )ξ kp( )+=

+ aK
3( )

Re ne( ) p n,[ ]e*( )[ ] aK
4( )

Re pe( ) n p,[ ]e*( )[ ].+

Here, the scalar functions (np) are introduced,
which are defined as follows:

(18)

where the functions (x) are defined in (A.1) and

(A.2). Note that the dynamic parameters 
should be purely imaginary (see formula (A.6), which
contains imaginary unit i on its right-hand side).

Expressions (18) for the functions  and  are
valid at K > 1. At K = 1, it is necessary to discard in
these formulas the terms with the dynamic parameter

, which cannot appear according to the triangle con-
dition ∆(K, l, r) for bipolar harmonic (13). In addition,

at K = 1, the function  = 0 (see (18)); therefore, the
corresponding term in (17) is absent. However, this is
obvious: the third term in (17) is at least quadratic in n
and thus cannot appear in the expression for the photo-
ionization cross section of the atom oriented in the first
order (see expression (3) for the density matrix).

Even K (Alignment)

Using formulas (A.3), (A.4), and (A.8) for bipolar
harmonics; definition (10) of tensors Tr; and identities
(9) and (15), we can obtain from (11) and (12) the fol-
lowing expression for the quantities of interest:

(19)

aK
i( )

aK
1( )

3
AK K 1+,

1

K 1+
-----------------

AK K 1–,
1

K
-----------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

PK
1( ) np( ),=

aK
2( )

3
AK K 1+,

1

K 1+
-----------------PK 1+

1( ) np( )
AK K 1–,

1

K
-----------------PK 1–

1( ) np( )+ ,–=

aK
3( )

3
2

K K 1+( )
-----------------------

1/2

=

×
Im AK K 1+,

2

K 2+
-------------------------

Im AK K 1–,
2

K 1–
-------------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

PK
2( ) np( ),

aK
4( )

3
2

K K 1+( )
-----------------------

1/2

=

×
Im AK K 1+,

2

K 2+
-------------------------PK 1+

2( ) np( )
Im AK K 1–,

2

K 1–
-------------------------PK 1–

2( ) np( )+
⎝ ⎠
⎜ ⎟
⎛ ⎞

,

PK
j( )

AK K 1±,
2

aK
3( )

aK
4( )

A10
2

a1
3( )

dσK n( )/dΩ bK
0( )

bK
1( )ξ k n p,[ ]( )+=

+ bK
2( )

1 3 ne 2
–( ) bK

3( )
1 3 pe 2

–( )+

+ bK
4( )

3Re ne( ) pe*( ) np( )–[ ]{ }.



OPTICS AND SPECTROSCOPY      Vol. 101      No. 3      2006

THEORY OF SPIN POLARIZATION PHENOMENA 361

The scalar functions (np) are defined as follows:

(20)

where

with the parameters  being purely imaginary (see
(A.4)).

Formulas (6) and (17)–(20) represent the results
obtained in [17] in a somewhat different form conve-
nient for further generalizations. The dynamic parame-

ters  introduced here are connected with the coeffi-

cients  of [17] by the relation

where ω is the frequency of the electromagnetic radia-
tion and α is the fine structure constant. The dynamic
parameters depend on the type of a system subjected to
ionization and on approximations used in atomic calcu-
lations. In the case of photoionization of atoms (but not
molecules), the explicit expressions for these parame-
ters were obtained in [8] (see also [17]). As was noted
in the preceding section, if the rank ä is odd (orienta-

tion), the state multipoles  are T-odd pseudoscalars;
therefore, all the terms in (17) should have the same
properties with respect to spatial inversion and time
reversal (the cross section (6) should be T-even scalar).
The pseudoscalarity of all the terms in (17) is obvious.
At the same time, under the operation of time reversal,
which reverses the directions of the vectors p and k and
replaces the vector e with the vector e*, the vector com-
binations in the first and second terms change their
sign, while those in the third and fourth terms remain

unchanged (  and  are odd functions of the sca-
lar product (np)). Consequently, the dynamic parame-

ters  (see (18)) should be T-odd. Under the stan-
dard approximation, the T oddness arises as a result of

bK
j( )

bK
0( )

2K 1+ AKK
0

PK np( ),=

bK
1( )

3 2K 1+( )/K K 1+( )[ ]1/2
Im AKK

1
PK
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bK
2( )

DK K 2+, DK K 2–, DK+ +( )PK
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bK
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+ DK K 2–, PK 2–
2( ) np( ) DKPK

2( ) np( ),+
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2DK K 2–, PK 1–
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+ 2 DK K 2+, DK+( )PK 1+
2( ) np( ) DK 2K 3+( )PK
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the proportionality of these parameters to the sine of the
scattering phase difference of a photoelectron4 [17].
Therefore, at large energies of a photoelectron, at which
the Born approximation holds, the T-odd parameters go
to zero and the third and fourth terms in (17) vanish.

Note that the width of the quasi-stationary level is
also T-odd. This T-odd parameter manifests itself in the
scattering of light by unpolarized [21], oriented [18,
22], and aligned [23] atoms. However, simple physical
considerations show that photoionization via an
autoionization resonance cannot lead to the appearance
of the third and fourth terms in (17). Indeed, the proba-
bility of excitation of an autoionization state upon
absorption of a photon by a polarized atom should
depend on the vectors e and n but not on the vector p
determining the direction of motion of a photoelectron.

The even-rank state multipoles  are T- and P-even;
hence, all the terms in (19) should possess the same
symmetry properties. At the same time, the second term

contains a T-odd combination of vectors (  is an odd
function of the variable (np)); therefore, the dynamic

parameter  should also be T-odd. This parameter,
as well as the second term in (19), vanishes in the Born
approximation.

In conclusion to this section, one more note should
be made concerning the performance of the complete
experiment. Different bipolar harmonics (13) obviously
lead to the appearance of linearly independent scalars
in the expression for the photoionization cross section;
therefore, the coefficients of these scalars can be found
from experimental measurements. The number of dif-
ferent bipolar harmonics and of the corresponding
coefficients, the dynamic parameters , proves to be
as follows (see (14), (17)–(20)).

For K = 0, there are two parameters  and 
directly related (see (16)) with the total photoionization
cross section σ of unpolarized atoms and the angular
asymmetry parameter β. If K = 1 (first-order orienta-

tion), there are three parameters: , , and .
For odd K ≥ 3 (orientation of higher orders), there are

four parameters:  and . Finally, for even

K (alignment), there exist five parameters: , ,

, and .

At K ≥ 1, the dynamic parameters are multiplied by
the corresponding state multipole and are present in the

cross section as ; therefore, to find the dynamic
parameters, knowledge of the polarization state of the
atom is necessary. For given K, the ratio of the experi-

4 The T-odd parameter also contributes to the spin polarization of a
photoelectron [3].
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mentally determined coefficients is independent of .

Therefore, it is possible to find the ratios /
(two quantities at K = 1 and three quantities at K = 3, 5,

7, …) and /  (four quantities at K = 2, 4, 6, …)
from the results of experimental measurements without
knowledge of the polarization state of the system sub-
jected to ionization.

4. PHOTOIONIZATION OF POLARIZED 
OPTICALLY ACTIVE MOLECULES

Optically active (chiral) molecules are characterized
not only by scalar but also by pseudoscalar (P-odd, i.e.,
changing their sign under the operation of spatial inver-
sion) dynamic parameters. Under the operation of spa-
tial inversion, the pseudoscalar parameter that charac-
terizes the dextro(levo)rotatory isomer of a chiral mol-
ecule changes to the corresponding parameter of the
levo(dextro)rotatory isomer of this molecule.

The photoionization cross section of an optically
active molecule should contain additional terms.
Indeed, decomposition (12) of irreducible tensors
Ar(n, p) in terms of bipolar harmonics will now contain
bipolar harmonics with both even and odd internal
ranks l. The odd-rank bipolar harmonics in (12) are
constructed from the P-odd spherical function YlM(p)
and are multiplied by the pseudoscalar dynamic param-

eter  (l is odd) of the chiral molecule. In atoms and

optically inactive molecules,  = 0 for odd l. From
the above, using the results of Section 3, it is easy to
determine the dependence of the photoionization cross
section (6) on the geometric parameters.

In the angular distribution of photoelectrons escap-
ing from unpolarized chiral molecules, an additional
term appears containing the pseudoscalar parameter

. By repeating the calculations that resulted in (14)
and applying either formula (A.5) or simply the defini-
tions of the bipolar harmonic and spherical function,
we can write the sought angular distribution as

(21)

Here, the relation of the total cross section σ and the
angular-asymmetry scalar parameter β with the

dynamic parameters  and  was already found
(see (16)) and the angular asymmetry pseudoscalar
parameter is given by

The last term in (21), which vanishes upon integration
over all the directions of motion of the photoelectron,
determines the effect of circular dichroism in the angu-
lar distribution of photoelectrons (CDADP). The
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effects of spin polarization of photoelectrons formed
upon photoionization of unpolarized chiral molecules
were discussed by Cherepkov [3].

To determine the dependence of the quantities
dσK/dΩ present in (6) on the geometric parameters, it
suffices to apply in a certain fashion formulas (17)–(20)
of the preceding section.

Odd K (Orientation)

Additional terms on the right-hand side of (17)
appear due to bipolar harmonics containing YlM(p) with
odd l in decomposition (12). Therefore, as follows from
formulas (A.3), (A.4), (A.7), and (A.8) reducing bipo-
lar harmonics, these terms should be determined by the
right-hand side of (19), in which the pseudoscalar func-

tions (n) (K is odd) differ only in sign from the
functions defined in (20). The difference in sign is due
to the fact that the above-listed formulas reducing bipo-
lar harmonics contain the factor (–1)K. Therefore, to
find dσK/dΩ, it is necessary to subtract from the right-
hand side of (17) the right-hand side of (19) with the

functions  defined in (20). The pseudoscalars 
are expressed via the pseudoscalar dynamic parameters

of the optically active molecule  with odd l.

At K = 1 (first-order orientation), the term with the
coefficient D1, –1 in (20), which formally contains the

parameter , should be discarded; the correspond-
ing bipolar harmonic simply does not exist (see (13) at

l = –1). In addition, at K = 1, the function  = 0 and
the corresponding term in (19) is absent, which is quite
natural: due to the first-order orientation, the expression
for the photoionization cross section should contain
only terms proportional to n.

Even K (Alignment)

Considerations similar to those given above show
that, in order to find dσK/dΩ in this case, it is necessary
to subtract the right-hand side of (17) from the right-
hand side of (19) (see formulas (A.5) and (A.6) reduc-
ing bipolar harmonics). The pseudoscalar functions

(np) defined by formulas (18) with even K are lin-

ear in the dynamic pseudoscalars  (l is odd) of an
optically active molecule.

Note also that the pseudoscalars  (K is even)

and  (K is odd) are T-odd and, as was discussed in
Section 3, vanish in the Born approximation.

In the case of an optically active molecule, the gen-
eral number of dynamic parameters that can be deter-
mined from experimental measurements increases (see
the discussion at the end of the preceding section). At
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K = 0, there are three parameters, , , and ,
which are related to σ, β, and βa. At K = 1, four addi-

tional pseudoscalar parameters appear, , , ,

and , so that there are seven parameters altogether.

At odd K ≥ 3, we have five additional parameters, ,

, , and , and nine parameters in all.
Finally, at even K, there are four additional parameters

,  and nine parameters altogether.

5. THE TOTAL PHOTOIONIZATION 
CROSS SECTION

The dependence of the total photoionization cross
section of an axisymmetrically polarized atom on the
geometric parameters can be determined from the sym-
metry considerations, without addressing the differen-
tial cross section (6). Indeed, by analogy with (11), we
can write the total cross section in the form

(22)

where the irreducible r-rank tensors Tr composed of the
polarization vector e are defined in (10), while the irre-
ducible tensors Arm(n) should be proportional to the
spherical functions Yrm(n). Based on the general struc-
ture of the transition probability (4) and density matrix
of the polarized atom (3), we obtain that

where γ1 and γ2 are scalar dynamic parameters, while
the scalar A0 coincides with the total photoionization
cross section σ of the unpolarized system. Substituting
these expressions for Ar(n) into (22) and taking into
account the definition (10) of the tensors Tr and identi-
ties (9) and (15), we obtain the following general
expression for the total photoionization cross section of
a polarized atomic–molecular system:

(23)

Therefore, the expression for the total photoionization
cross section can contain only the first-order orientation
and alignment.

It is underlined once more that the structure of the
expression for the total photoionization cross section of
chiral molecules is the same (23) as that for atoms and
optically inactive molecules. This means that all addi-
tional chiral terms present in the expression for the dif-
ferential photoionization cross section of an optically
active molecule vanish after integration over the direc-
tions of motion of a photoelectron. The symmetry con-
siderations used in substantiation of (23) clearly point
to the reason why chiral effects do not manifest them-

A00
0

A02
2

A01
1

A11
0

A11
1

A11
2

A13
2

AKK
0

AKK
1

AKK
2

AK K 2±,
2

AK K 1±,
1

AK K 1±,
2

σ n( ) Ar n( )Tr( ),
r 0=

2

∑=

A1 n( ) γ 1ρ1
nn, A2 n( ) 5γ 2ρ2

n n n⊗{ }2,= =

σ n( ) σ ρ1
nγ 1ξ kn( ) ρ2

nγ 2 1 3 ne 2
–( ).+ +=

selves in the expression for the total photoionization
cross section: no pseudoscalar can be composed of the

P-even irreducible tensors (n) and Trm; therefore,
no pseudoscalar dynamic parameters of an optically
active molecule can appear in the expression for the
total cross section of the process (as was noted above,
the parameters γ1 and γ2 are scalars). For the same rea-
son, chiral effects do not manifest themselves in the
processes of dipole emission and absorption and scat-
tering of light by optically active molecules.

The coefficients γ1 and γ2 in (23) can be associated

with the dynamic parameters . For this, it suffices,
by integrating the angular distribution (6) over all the
directions p of motion of a photoelectron, to obtain by
another method the expression determining the photo-
effect total cross section. The integration is easy to per-
form if one notices that the dependence on the vector p
in (6) arises because the expressions for the bipolar har-
monics contain the spherical functions Ylm(p) (see (11)
and (12)). At the same time,

if l ≠ 0. Therefore, after the integration, only terms con-

taining the dynamic parameters  (the contribution

of the unpolarized system),  (the contribution of the

first-order orientation), and  (the contribution of the
first-order alignment) will remain in the expression for
the total cross section. It is clear that, in the case of an
optically active molecule, all the chiral terms (the terms
proportional to the spherical functions of odd rank l)
vanish after integration. By gathering the terms in (14)
(or in (7)), (17), and (19) containing these dynamic
parameters (such terms are independent of p) and per-
forming elementary integration (which reduces to mul-
tiplying by 4π), we obtain the expression for the total
photoionization cross section in the form of (23), where

The relation between σ and  was already given
above (see (16)).

6. PARTIAL POLARIZATION
OF IONIZING RADIATION

It was assumed in the preceding sections that elec-
tromagnetic radiation ionizing an atom is completely
polarized, so that its polarization can be specified by the
vector e. In the more general case of a partial polariza-
tion, the polarization state of a photon is determined by
three polarization parameters, for example, the Stokes
parameters ηi, i = 1, 2, 3 [11, 24]. The parameter η2
determines the degree of circular polarization, the
parameter η3 characterizes the degree of linear polar-

ρr
n
Yrm

AKl
r

Ylm p( ) Ωd∫ 0,=

A00
0

A10
1

A20
2

γ 1 3A10
1

, γ 2 3/2A20
2

.= =

A00
0



364

OPTICS AND SPECTROSCOPY      Vol. 101      No. 3      2006

AGRE

ization along the axes x and y (the axis z is oriented
along the direction of propagation of the light wave),
and the parameter η1 determines the degree of linear
polarization along the axes p and q that are rotated in
the positive direction by an angle of 45° in the xy plane
with respect to the axes x and y. The Stokes parameters
satisfy the relation

with the equality sign corresponding to the complete
polarization. For unpolarized light, all the three Stokes
parameters go to zero.

As was shown in [25], the cross section of any pho-
toprocess accompanied by either absorption or induced
emission of a partially polarized photon can be
expressed in terms of the Stokes parameters and three
dichroism terms of this process,

(24)

Here, dσ0/dΩ is the photoprocess cross section with the
participation of an unpolarized photon; dσ+–/dΩ is the
difference between the cross sections for the cases of
the right- and left-hand circular polarizations, specified
by the vector e± (the circular dichroism of the process);
and dσxy/dΩ is the difference between the cross sec-
tions for the cases of linear polarizations along the
axes x and y (the linear xy dichroism). The correspond-
ing vectors of the linear polarizations will be denoted as
ex and ey. Finally, dσpq/dΩ is the linear pq dichroism of
this process. Formula (24) makes it possible to separate
comparatively simply the dependence on the Stokes
parameters in the expression for the photoprocess cross
section; as a result, this expression becomes applicable
in the general case of a partial polarization of electro-
magnetic radiation.

The passage to unpolarized light is reduced to the
averaging with the statistical weight 1/2 of all the
expressions for the photoionization cross section
obtained above over two orthogonal polarization vec-
tors eλ. In this case, the terms with the degree of circular
polarization ξ vanish and the remaining terms contain-
ing the polarization vector e can be easily averaged with
the help of the identity [26]

(25)

The term for linear dichroism is found by simple sub-
stitution of the corresponding real-valued vectors of
linear polarizations into the expression for the photo-
ionization cross section. To find the term for circular
dichroism, in all the terms, the parameter ξ, equal to ±1
for the right-hand and left-hand polarizations, respec-
tively, is replaced with 2. As a result, according to (24),
these terms will be present in the final expression virtu-
ally unchanged and only the parameter ξ will be
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changed to η2.
5 All the remaining terms do not contrib-

ute to the circular dichroism, which can be easily shown
with the help of the identity

After these remarks, we can easily obtain the expres-
sions for the quantities dσ/dΩ and dσK/dΩ, which
determine the angular distribution of photoelectrons (6)
and the total photoionization cross section in the gen-
eral case of a partial polarization of electromagnetic
radiation ionizing an atom (molecule).

By going to the partial polarization of light in for-
mulas (7) and (21) according to rule (24), we obtain the
following expression for the angular distribution of
photoelectrons escaping from unpolarized atoms (mol-
ecules):

(26)

where

Here, the angular-asymmetry pseudoscalar parameter
βa differs from zero only in the case of photoionization
of optically active molecules.

Then, we pass to the partial polarization of electro-
magnetic radiation in formulas (17) and (19) and obtain
expressions for the quantities dσK/dΩ, which enter the
angular distribution of photoelectrons escaping from
polarized atoms and achiral molecules.

Odd-Rank K State Multipoles (Orientation)

In this case, we have

(27)

where

and the scalar functions (np) are defined in (18).

5 According to the definition, ξ = η2 in the case of a completely
polarized electromagnetic wave.
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Even-Rank K State Multipoles (Alignment)

Here,

(28)

where

and the scalar functions (np) are defined in (20).

In the case of optically active molecules, as follows
from the results of Section 5, the expressions for
dσK /dΩ in (6) can be obtained by combining formu-
las (27) and (28). In the case of odd-rank K state
multipoles, dσK/dΩ is determined by the difference
between the right-hand sides of (27) and (28) and the

functions (np) defined in (20) are pseudoscalars,
which are expressed via the pseudoscalar dynamic
parameters of the chiral molecule. For even-rank K
state multipoles, dσK/dΩ can be found by subtracting
the right-hand side of (27) from the right-hand side of

(28). In this case, the functions (np) defined in (18)
are pseudoscalars.

Expression (23) for the total photoionization cross
section can also be easily transformed to the general
case of the partial polarization of an electromagnetic
wave,

(29)

where

Another form of the expression for the photoprocess
cross section with the participation of a partially polar-
ized photon, which was briefly discussed in [25], can be
obtained by a special selection of the coordinate sys-
tem. Let , and  be the axes of a coordinate system,
in which the Stokes parameter  = 0 and which is
rotated by some angle in the plane perpendicular to the
direction of propagation of a wave. The rotation corre-
sponds to the diagonalization of the real-valued part of
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x̃ ỹ
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the polarization density matrix of a photon defined in a
Cartesian basis [24], and the Stokes parameter

is termed the degree of linear polarization of the wave,
while the angle of rotation ϕ is defined by the condi-
tions

The state of the partial polarization of the photon is now
specified by the following three parameters: l, ϕ, and
η2. Further, we will denote the real-valued basis vector
ex by g and say that the vector g is directed along the
principal axis of the linear polarization (for each speci-
fied polarization state of the wave, the degree of linear
polarization along the axes  and  is maximal possi-
ble and equal to l). It is easy to show that, in the case of
the complete polarization of light, defined by the vector

e (  + l2 = 1), the  and  axes coincide with the axes
of the polarization ellipse, while the vector g is directed
along the major axis of this ellipse.

The form of the expression for the photoprocess
cross section in the coordinate system ( , ) will be
termed the (g, l) form. To obtain this form, it suffices to
set in (24) η1 =  = 0 and η3 =  = l and to express
the term for linear  dichroism via the photoprocess
cross section dσg/dΩ with the participation of a photon
polarized linearly along the principal axis of the linear
polarization g and the photoprocess cross section
dσ0/dΩ with the participation of an unpolarized pho-
ton,

Therefore, the (g, l) form of the cross section is given by

(30)

Here, for the linear polarization along g, η2 = 0 and l = 1;
for the left-hand (right-hand) circular polarization, l = 0
and η2 = ±1; and, for the unpolarized light, l = η2 = 0.
Note that, in [17], the dependence of the cross section
on l and g was artificially separated for the case of the
complete polarization and termed a new convenient
parameterization of the polarization state of a wave. As
follows from the above, (g, l) form (30) should be con-
sidered as a partial case of the expression for the cross
section in terms of the Stokes parameters in a coordi-
nate system oriented in a particular way. Thus, in a pre-
vious study [27], the dependence of the cross section of
two-electron photoionization on the Stokes parameters
was presented in precisely this form.

The simplest way to express formulas (26)–(29) in
the (g, l) form without using (30) is to set η1 = 0 and
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η̃1 η̃3

x̃ ỹ
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/dΩ–=

=  2dσg/dΩ 2dσ0/dΩ.–

dσ/dΩ 1 l–( )dσ0/dΩ ldσg/dΩ+=

+ 1/2( )η2dσ+–/dΩ.



366

OPTICS AND SPECTROSCOPY      Vol. 101      No. 3      2006

AGRE

η3 = l in these formulas and to apply the identity (see
(25))

The final expressions are as follows:

(31)

for odd K and

(32)

for even K,

(33)

Expressions (31) and (32) determine the quantities
dσK/dΩ present in the angular distribution of photo-
electrons (6) escaping from polarized atoms and polar-
ized optically inactive molecules. In the case of opti-
cally active molecules, the expressions for these quan-
tities are composed of (31) and (32), as was shown
above.

Note that the second term in expressions (23), (29),
and (33) for the complete cross section, which is related
to the orientation, depends on the circular polarization of
light and, therefore, determines the effect of circular
dichroism in the photoionization process [13], whereas
the dependence of the total cross section on the degree of
linear polarization of light arises due to the alignment.
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7. PHOTOIONIZATION 
OF AN ORIENTED SYSTEM

In this section, we will analyze in more detail the
influence of the effects of the orientation of an atom or
molecule on the angular distribution of photoelectrons.
We will restrict ourselves to the simplest case of first-
order orientation. It should be kept in mind that, at j =
1/2, at which the system is characterized by only one
state multipole of nonzero rank ρ1Q, the polarization of
the system is equivalent to its first-order orientation. If
j > 1/2, the first-order orientation is a particular type of
polarization at which the state multipoles of the second
and higher ranks are equal to zero. Note also that, for
first-order orientation, all the formulas obtained for the
axisymmetric polarization retain their form in the gen-
eral case of an asymmetrically polarized system if n is
taken to mean the unit vector collinear to the average
angular momentum  of the polarized atom. Indeed, as
follows from formula (2), in a coordinate system whose
z axis is directed along n, ρ1, ±1 = 0 and only one com-

ponent of the state multipole, ρ10 = , is nonzero.

The structure of the expression for the angular dis-
tribution of photoelectrons is the same as that of (6),
where the first term (see (7), (21), and (26)) character-
izes the angular distribution of photoelectrons formed
upon photoionization of an unpolarized system, while
the contribution of the effects of the first-order orienta-
tion is determined by the quantity dσ1/dΩ. As was
shown in Sections 3, 4, and 6, to find this quantity, it
suffices to represent in the explicit form the scalar func-

tions (np) given by (18) and, in the case of optically

active molecules, the pseudoscalar functions (np)
from (20) as well. To write the result in a more compact
form, we will introduce scalars proportional to the sca-

lar dynamic parameters ,

and pseudoscalars related to the pseudoscalar dynamic
parameters of an optically active molecule,

In accordance with definitions (18), (20), (A.1), and
(A.2), we have

(34)

j
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n
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Then, as was described in Section 4, by subtracting the
right-hand side of (19) from the right-hand side of (17),
we obtain the expression for dσ1/dΩ for the case where
the complete polarization of ionizing radiation is
defined by the vector e,

(35)

In the general case, expression (35) contains seven
dynamic parameters: three scalars and four pseudosca-
lars (see the end of Section 4). Upon ionization of
atoms and achiral molecules, the pseudoscalars ν and νj

turn to zero and the number of terms in (35) decreases.
The formulas obtained in the preceding section also

allow one to write the expression for dσ1/dΩ in the
more general case of a partial polarization of electro-
magnetic radiation. Subtracting from the right-hand
side of (27) the right-hand side of (28) with the func-

tions  and  from (34), we find that

(36)

where

In a similar manner, with the help of (31) and (32)
or by simple rotation of the axes, one can write dσ1/dΩ
(36) in the (g, l) form.

Formulas (35) and (36) make it possible to analyze
various effects that can be observed in the angular dis-
tribution of photoelectrons formed upon photoioniza-
tion of oriented systems. Thus, the first, second, and
fifth terms in (35) (and the corresponding terms propor-
tional to the Stokes parameter η2 in (36)) determine the
effect of circular dichroism in the angular distribution
of photoelectrons escaping from oriented systems. In
this case, the fifth term in (35) (the seventh in (36))
characterizes the CDADP effect determined by the ori-
entation and chirality. If the direction of propagation of
electromagnetic radiation k is perpendicular to the
symmetry axis n of a polarized system and photoelec-
trons are observed in the direction p perpendicular to
either n or k, then only the orientational CDADP effect
associated with the chirality is observed. It should be

dσ1 n( )/dΩ Γξ kn( ) Γ1ξ 3 kp( ) np( ) kn( )–[ ]+=

+ Γ2 Re pe( ) p n,[ ]e*( )[ ] ν np( )+

+ ν1ξ k n p,[ ]( ) ν2 Re ne( ) pe*( )[ ]+

+ ν3 pn( ) pe 2
.

a1
j( )

b1
j( )

dσ1 n( )/dΩ Γ2 k n p,[ ]( ) kp( )/2=

+ ν ν2/2 ν3/2+ +( ) np( ) ν3 np( ) kp( )2
/2–

– ν2 kn( ) kp( )/2 Γ Γ1–( )η2 kn( )+

+ 3Γ1η2 kp( ) pn( ) ν1η2 k n p,[ ]( )+

+ η1δ1 pq, η3δ1 xy, ,+

δ1 ij, Γ2 ei pei( ) e j pe j( )–[ ] p n,[ ]( )/2=

+ ν2 nei( ) pei( ) ne j( ) pe j( )–[ ]/2

+ ν3 pn( ) pei( )2 pe j( )2
–[ ]/2.

kept in mind that no such effect is observed for photo-
electrons escaping from unpolarized optically active
molecules in the direction perpendicular to k (see (21));
therefore, for the experimental geometry indicated
above, one can observe only the CDADP effect deter-
mined simultaneously by the orientation and the chiral-
ity. Note also that the CDADP effect associated with
the chirality of molecules depends on the sign of p (see
the term in (25) and (36) proportional to ν1).

Recall that the parameters Γ2 and ν1 are T-odd and,
therefore, vanish at large energies of photoelectrons,
i.e., in the Born approximation (see Section 3). There-
fore, at large energies of photoelectrons, the CDADP
effect determined by the orientation and optical activity
vanishes, while the dependence of the angular distribu-
tion of photoelectrons on the degree of linear polariza-
tion of ionizing radiation, which is related to the orien-
tation, is retained only due to the optical activity of
molecules (36).

In conclusion to this section, it should be noted that
formulas (35) and (36) have a wider domain of applica-
bility. In particular, these formulas describe effects
associated with the orientation of photoelectron spin in
the photoionization process of unpolarized atomic–
molecular systems. The formula for the photoioniza-
tion cross section is obtained if (35) (or (36)) is added
to (21) (or, correspondingly, to (26)) multiplied by 1/2.
In this case, the vector n should be replaced with the
pseudovector s, defining the direction of the spin of a
photoelectron; the numerical values of the coefficients
Γ, Γj, ν, and νj will also change. Furthermore, if the
quantum number of the total angular momentum of the
residual photoion proves to be equal to 1/2, the expres-
sion for the photoionization cross section of an unpolar-
ized system taking into account the orientation of the
photoion spin should have a similar structure. In partic-
ular cases of the linear and circular polarizations of
electromagnetic radiation, invariant expressions for the
photoionization cross section taking into account the
spin polarization of photoelectrons were obtained by
Cherepkov [3], and, in the general case of the complete
polarization of radiation, the corresponding expression
for the photoionization cross section of atoms and
achiral molecules was reported in [17].

8. PHOTOIONIZATION 
OF AN ALIGNED SYSTEM

Let us consider in more detail the photoionization of
systems aligned in the first order. Note that, if an exter-
nal action polarizing an atom or a molecule is not only
axisymmetric, but also mirror symmetric (for example,
unpolarized or linearly polarized light), the magnetic
sublevels with opposite projections of the angular
momentum onto the symmetry axis n are equally pop-
ulated and all odd-rank state multipoles turn to zero
[11]. In this case, the system proves to be aligned, and,
at j = 1 or 1/2, when only one state multipole of even
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rank ρ2, Q is nonzero, it is aligned in the first order. The
state multipoles of the third and higher ranks are also
not excited upon single-photon dipole absorption of
electromagnetic radiation.

At  ≠ 0, the angular distribution of photoelectrons
is defined by formula (6), in which the quantity dσ2/dΩ
characterizes the structure of the addition determined
by the first-order alignment. Initially, the explicit form

of the scalar functions (np) from (20) and pseudo-

scalar functions (np) from (18) present in the
expression for dσ2/dΩ will be presented. For compact-
ness, we will introduce the five different scalar param-
eters

and the four different pseudoscalar parameters

.

Altogether, as was mentioned at the end of Section 4,
there are nine different parameters. From (18) and (20),
we obtain

(37)

Subtracting from the right-hand side of (19) the right-

hand side of (17) with  and  from (37), we
obtain the expression for the quantity dσ2/dΩ for the
case of a complete polarization of ionizing radiation
defined by the vector e. Here, a more general expres-
sion corresponding to the case of a partial polarization
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is presented, which is obtained by subtraction of the
right-hand side of (27) from the right-hand side of (28),

(38)

where

Using (31) and (32), expression (38) can be trans-
formed to the (g, l) form. Recall that the pseudoscalars
di differ from zero only for optically active molecules.

In (38), the terms proportional to the Stokes param-
eter η2 characterize the CDADP effect arising due to
alignment. The achiral CDADP effect upon alignment
is determined by the first of these terms, which is pro-
portional to the scalar c1. This effect vanishes if photo-
electrons escape in the direction perpendicular to the
symmetry axis n of an aligned system, as well as if the
vectors k, n, and p are coplanar (in particular, if p and
k are collinear, i.e., upon detection of photoelectrons
escaping along or against the direction of propagation
of an electromagnetic wave). An additional CDADP
effect determined by the chirality of molecules is
retained in this experimental geometry (see (38)). This
additional effect is also retained if the vectors k and p
are perpendicular, where the CDADP effect in unpolar-
ized optically inactive molecules vanishes (see (21) and
(26)). Consequently, if the vectors k, n, and p are copla-
nar and photoelectrons are detected perpendicularly to
the direction of propagation of the electromagnetic
wave, the CDADP effect should be observed only due
to the alignment of chiral molecules. Note also that, for
optically active molecules, this effect depends on the
sign of p; i.e., it is somewhat different for photoelec-
trons moving in opposite directions.

The parameters c1, d4, and d5 are T-odd and, there-
fore, vanish in the Born approximation. Hence, at large
energies of photoelectrons, the CDADP effect is deter-
mined precisely by the chirality of aligned molecules
(38). Conversely, the dependence of the angular distri-
bution of photoelectrons on the Stokes parameters η1
and η3 (i.e., on the degrees of linear polarization of
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radiation) in this energy range is in no way related to
the chirality.

Finally, I stress that, as follows from the results
obtained in this and preceding sections of this study,
some qualitative features of the process of photoioniza-
tion of oriented and aligned systems are retained in the
case of orientation and alignment of an arbitrary order.

In conclusion, I would like to recall that 2005 marks
100 years since Einstein published his famous studies
that encompassed three fundamental physical prob-
lems. As is known, one of these problems was con-
nected with the photoeffect. The year 2005 was
declared the International Year of Physics by the Gen-
eral Assembly of the United Nations Organization. I
would like to consider this study as my modest contri-
bution to the celebration of this remarkable anniversary.

APPENDIX

It was shown in [17] that bipolar harmonics (13) of
a given rank r can be reduced, i.e., represented as a
superposition of the simplest bipolar harmonics of this
rank with the minimal possible ranks of internal spher-
ical functions allowed by the selection rules. The coef-
ficients of this superposition are scalar functions of the
variable (np) (of the cosine of the angle between the
vectors n and p) and are expressed in terms of the Leg-
endre polynomials

(A1)

and their derivatives of the jth order

(A2)

where j ≤ K. At j > K  = 0.

Here, the reduced expressions for some bipolar har-
monics used in this study will be presented for refer-
ence purposes. It should be kept in mind that, in (13),
the ranks K and l of the tensors and the rank r of the
bipolar harmonics satisfy the triangle condition ∆(K, l, r),
from which it follows that |K – r | ≤ l ≤ K + r. This con-
dition imposes some restrictions on the ranks of inter-
nal spherical functions in the formulas given below.

The first formula can be obtained using the well-
known summation theorem for spherical functions,

(A3)

The next four formulas were presented in the appen-
dix of [17]:

(A4)
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YK n( ) YK p( )⊗{ }0 1–( )K 2K 1+
4π
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YK n( ) YK p( )⊗{ }1
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4π
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1/2

PK
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where K = 1, 2, 3, …;

(A5)

where, at K = 0, only one bipolar harmonic with the
rank of the second spherical function equal to K + 1 = 1
remains;

(A6)

where K = 1, 2, 3, … and, at K = 1, only one bipolar har-
monic with the rank of the second spherical function
equal to K + 1 = 2 remains; and

(A7)

where, at K = 0 and 1, only the bipolar harmonic with
the rank of the second spherical function equal to K + 2
remains. Finally, the latter bipolar harmonic was
reduced directly according to the method of [17] since,
in the corresponding expression, which was presented
in the appendix to the cited paper, the procedure of
reduction was not accomplished. The result is as fol-
lows:

(A8)

where K = 1, 2, 3, ….
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