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ABSTRACT

GROUP COVERS WITH A SPECIFIED PAIRWISE INTERSECTION

Andrew Penland, M. S.

Western Carolina University (April 2011)

Director: Dr. Risto Atanasov

A collection of subgroups whose union is equal to the whole group is known as a group

cover. Various types of group covers have been explored in recent years. In this work, we

define a new type of cover, an equal L-intersection cover, which is specified by the size

and pairwise intersection of the subgroups involved. We demonstrate that this cover is

in fact distinct from previous classes of group covers. Further, we give tests to determine

whether or not a finite group has this type of cover. These tests are implemented in the

computational algebra program GAP to find new instances of equal L-intersection covers.

These examples lead to interesting questions and conjectures.



Chapter 1

Background on Groups

1.1 Basic Examples and Applications of Groups

Human beings have long been fascinated by symmetry. In mathematics, groups are

algebraic structures which describe the symmetry of physical and mathematical objects.

Though group theory can reach dizzying heights of abstraction, the basic ideas behind

it are easy to understand. Before delving into the mathematically rigorous view of the

subject, it will be nice to have an informal overview of what groups are and how they can

be used.

As an example, imagine a square with a label on each corner. Consider the different

ways in which this shape can be repositioned without changing its location. We can keep

track of the state of the square by recording the relative positions of its labeled corners.

First, we should note that technically the figure could be rotated by 0 degrees, leaving

it exactly as it started. It can also be rotated by 90, 180, or 270 degrees. In addition

to these rotations, the square has four axes of symmetry–horizontal, vertical, and two

diagonal–over which it can be flipped. A little thought reveals that for any sequence of

rotations or reflections, there is another motion which would directly achieve the same

effect. Obviously, a rotation of 90 degrees followed by a degree of 180 degrees is equivalent

to a rotation of 270 degrees, while two rotations of 180 degrees yields the same effect no

rotation. A horizontal flip followed by a vertical flip yields the same state as a rotation by

180 degrees. Two vertical flips return the square to its starting point, leaving it unchanged.
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These eight motions (four rotations and four reflections) form the symmetry group of the

square. Note that any motion can be undone, i.e. the square can always be returned to

its starting point. This is one of the defining notions of a group. This group is known as

the dihedral group of order 8, abbreviated D4 since it acts on a figure with 4 vertices. We

will use this group in several examples.

In addition to D4, familiar examples of groups include the integers with the operation

of addition and the nonzero real numbers with the operation of multiplication [?, ?].

Another important class of groups are the groups of addition modulo n for some integer

n, denoted Zn. These groups consist of the set {0, 1, . . . , n − 1}, with the sum of two

numbers reduced to its remainder when divided by n. These groups are widely used today

to assure the secure and efficient transmission of digital information [?].

In addition to codes, group theory has been used to approach many important mathe-

matical problems. Mathematicians searched for centuries for a general approach to solving

polynomial equations before the ideas behind group theory helped show that such a so-

lution method is impossible for arbitrary polynomials of degree five or higher [?]. The

use of groups is also commonplace in the physical sciences. Chemists use group theory to

describe the structures of molecules and compounds [?]. An understanding of groups is

considered critical to understanding the elementary particles underlying the structure of

the universe [?]. Physicist Steven Weinberg, a recipient of the Nobel Prize, has expressed

the belief that the universe is essentially composed of symmetry groups [?]. Groups also

arise in some surprising and amusing ways related to less scientific pursuits. Several of

M.C. Escher’s artistic optical illusions can be analyzed via group-theoretic methods [?].

Group theory is at the core of the solution to popular puzzles such as the Rubik’s Cube

and Lights Out [?]. The subject can also be used to examine “perfect shuffles,” a technique

used on decks of cards by magicians and dishonest card-players [?].

1.2 Mathematical Preliminaries

We will now review some basic terminology and concepts in group theory. The material

in this section is standard, and references can be found in Gallian[?] or Dummit and Foote
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[?]. We assume that the reader is familiar with basic notation and terminology from set

theory.

Formally, a group is a non-empty set G with a binary operation ◦ : G×G→ G which

satisfies the following requirements

1. Identity. There exists an element e such that e ◦ x = x ◦ e = x for all x ∈ G. i.e.

there is an element which leaves every group element fixed.

2. Inverses. Each element x has an inverse x−1 such that x ◦ x−1 = e = x−1 ◦ x. i.e.

each group member has a corresponding member with which it cancels, leaving the

identity.

3. Associativity. For all x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z) i.e. the grouping of

parentheses doesn’t change the result of the expression

A generic group operation ◦ is often called multiplication. Often, when the operation

is understood, group theorists will dispense with ◦ and simply write xy to mean x ◦ y.

The order of a group, denoted |G|, is the number of elements in the group. If G has

finitely many elements, G is called a finite group. If the order of G is a prime power, i.e.

equal to pn for some prime p and some positive integer n, G is said to be a p-group. The

order of an element is defined to be the minimum number of times the element must be

multiplied by itself to obtain the identity, i.e. the least integer n such that xn = e. If no

such n exists, the element is said to have infinite order. Note that, contrary to the rules of

more familiar examples, there is no requirement that the group be commutative i.e. there

are groups where xy 6= yx. Groups in which all elements commute are called abelian, in

honor of group theory pioneer Niels Abel.

A generating set for a group is a collection of elements such that every element in the

group can be expressed as the product of powers of those elements. The size of a minimal

generating set is called the rank of the group.

There are a few basic families of groups which are frequently encountered as basic

examples. The previously-mentioned Zn groups are an example of an important class of

groups known as cyclic groups, which have a generating set consisting of a single element.
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The cyclic group of order n is also denoted Cn. These groups are also known as Cn. The

dihedral group of order n, also writtenDn, corresponds to the symmetries of a regular n-gon

in the plane. The symmetric group of degree n, written Sn, is the set of all permutations

on a set of n points.

A subgroup is a subset of a group that also forms a group in its own right. For instance,

the set of all even integers under addition form a subgroup of the integers under addition,

and the set consisting only of rotations is a subgroup of D4. The alternating group of

degree n, also known as An, is the subgroup of Sn consisting of all elements which have

even order. Every group is technically a subgroup of itself; a subgroup which is not equal

to the whole group is called a proper subgroup.

Several results in abstract algebra relate properties of a group to its order. One is

Lagrange’s Theorem, which states that in a finite group, the order of a subgroup always

divides the order of the group [?]. Another is Cauchy’s Theorem, which states that if p is

a prime which divides the order of a finite group, the group will have an element of order

p. If there exists a positive integer n such that gn = e for all g ∈ G, we that say that G

has exponent n. This is often denoted exp(G) = n [?].

We can relate groups to one another via homomorphisms. If G1 and G2 are finite

groups, a homomorphism φ is a map from G1 to G2 such that φ(xy) = φ(x)φ(y). In

this case, we say G1 is the homomorphic image of G2. It is not hard to show that

homomorphisms preserve subgroups, i.e. if H is a subgroup of G1, φ(H) is a subgroup

of G2. If the homomorphism is a bijection, it is called an isomorphism. If there is an

isomorphism from G1 to G2, we say that G1 and G2 are isomorphic. We may write this

as G1
∼= G2.

Given two groups G1 and G2, it is possible to form a new group called the direct product

of G1 and G2, denoted G1×G2, by considering all ordered pairs of the form (g1, g2), with

g1 ∈ G1 and g2 ∈ G2, and operation defined componentwise. It is worthwhile to note

that every finite Abelian group is isomorphic to the direct product of cyclic groups [?].

An elementary abelian group is one of order pn which has exponent p for some prime p

and some positive integer n. Such group are isomorphic to the direct product of n cyclic

groups of order p.
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1.3 Certain Types of Groups and Subgroups

Here we will remind the reader of certain definitions and results which will eventually

be encountered in the remainder of the work. The exposition is intended to be cursory,

and at times we lean heavily on the textbook by Dummit and Foote [?].

Let G be a group. The center of G, denoted by Z(G), is defined to be the set of all

elements which commute with every element in the group, i.e. a subset of the form

Z(G) = {x ∈ G|xg = gx∀x ∈ G}.

If G is a group and H is a subgroup of G, a subsets of the form

aH = {ah|a ∈ G, h ∈ H}

is called a left coset of H. Similarly, the subsets of the form Ha are called right cosets. A

subgroup whose left cosets are equal to its right cosets is called a normal subgroup.

We use the notation H / G to indicate that H is a normal subgroup of G. Note that

an abelian group has only normal subgroups, and the center of a group is always normal.

The number of distinct cosets a subgroup has is called the index of the subgroup and is

denoted [G : H]. In the case of a finite group, we have that

|G|
|H|

= [G : H].

If H is a normal subgroup, we can construct the quotient group (or factor group) G
H ,

where the elements of G
H are representatives of the cosets of H, with the group operation

defined as aH ◦ bH = (a ◦ b)H.

Some classes of groups can be defined in terms of whether or not they possess a

particular series of subgroups. Before we define these groups, we must first define the

series in question. If G is a group, we may define Z0(G) = {e} and Z1(G) = Z(G). An

upper central series is a series of subgroups such that

Z0(G) ≤ Z1(G) ≤ Z2(G) . . .

and Zi+1(G)
Zi(G) = Z(G/Zi(G)).

A group is called nilpotent if there exists n such that Zn(G) = G.
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A group G is said to be solvable if there exist a series of subgroups G1, G2, . . . , Gn such

that

1. G1 = {e}

2. Gn = G

3. Gi / Gi+1 for i < 1 < n

4. Gi+1

Gi
is abelian for i < 1 < n

Example 1.1. Any abelian group is solvable, since the sequence may be obtained by

setting G1 = {e} and G2 = G.

Example 1.2. If G = D4, G1 = {e}, G2 = {e,R180}, G3 = {e,R90, R180, R270},G4 = G

is such a sequence. Hence D4 is solvable.

Every nilpotent group is solvable.

1.4 A Brief Introduction to GAP

As in many other areas of mathematics, computers have had an impact on the study of

abstract algebra. As the name suggests, the field of computational group theory strives to

use computers to answer questions about groups.[?] Several programs have been developed

to deal with abstract algebra, but GAP[?] is one of the most prominent[?]. In the next

section we will note previous research related to this topic performed with GAP. Later, GAP

will be used in the exploration of groups which have subgroups satisfying properties in

which we will be interested.
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Chapter 2

Background on Group Covers

2.1 Introduction to Group Covers

A collection of proper subgroups whose union is equal to the entire group is called a

group cover [?, ?]. Our primary interest in this work will be on covers of finite groups. In

particular, we will introduce and explore a particular type of finite group cover.

A result known as Neumann’s Lemma characterizes groups that have finite covers.

Theorem 2.1 (Neumann’s Lemma). Let G =
⋃n

i=1 giHi, where H1, . . . ,Hn are distinct

(not necessarily distinct) subgroups of G. If we remove any cosets giHi which correspond

to subgroups of infinite index, the union of the remaining cosets is still equal to G.

Corollary 2.2. A group has a finite covering by subgroups if and only if it has a finite

homomorphic image which is not cyclic.

Since any noncyclic finite group has itself as a noncyclic finite homomorphic image, it

follows that every noncyclic finite group has a finite cover.

The fact that no group cover can consist of only two subgroups was first proven by

Scorza, but it has been independently re-discovered many times [?]. One standard proof

of this fact is elegant and instructive, so we include it here.

Proposition 2.3 (Scorza). No group can be written as the union of two proper subgroups.
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Proof. Suppose thatH1 andH2 are proper subgroups such thatH1∪H2 = G. SinceH1 and

H2 are proper, there must exist x1 ∈ H1−H2 and x2 ∈ H2−H1. Their product x1x2 must

either be in H1 or H2. Without loss of generality, suppose x1x2 ∈ H1. Since x1 ∈ H1, we

know also that x−11 ∈ H1. This tells us that x−11 (x1x2) = (x−11 x1)x2 = x2 ∈ H1, which is a

contradiction. Hence no group can be written as the union of two proper subgroups.

This naturally leads to the question of determining how many subgroups are necessary

to cover a particular group. The research done in this very active area will be the focus

of the next section.

2.2 Minimal Covers

Before we discuss group covers any further, let us reduce slightly the type of covers

we will consider. Specifically, we would like to avoid the case when the group cover has a

proper subcollection which is also a group cover. To this end, an irredundant cover of G is

defined to be one in which every member contains at least one element not contained in any

other member of the cover [?]. We will only be concerned with irredundant covers. Cohn

[?] introduced the convention that a group which can be covered by n proper subgroups,

but no fewer, is called an n-sum group. In this case, n is called the covering number of

G, denoted σ(G) = n [?], and a covering by n subgroups is called a minimal cover. Every

minimal cover is irredundant, but not vice versa.

The minimal covering number σ has attracted much study. By Proposition ??, there is

no group G such that σ(G) = 2. If a group has a minimal cover by three subgroups, then it

must have a factor group isomorphic to Z2×Z2, also known as the Klein four-group [?, ?].

Again, this fact was proven first by Scorza and re-discovered several times [?]. Cohn[?]

showed that much information about the covering number of G can be determined by

examining the covering number of factor groups of G; in particular, the covering number

of G is always less than or equal to that of its factor groups. If σ(G) = n and G has no

normal subgroup N such that σ(G/N) = n, then G is called a primitive n-sum group [?].

It follows that if G is an n-sum group, it has a primitive n-sum group as a homomorphic

image. In the same paper where he introduced the concept [?], Cohn presented several
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important facts concerning primitive n-sum groups. He completely described the primitive

n-sum groups for the cases of n equal to 4,5, and p+ 1 for a prime p. In particular, Cohn

showed that

1. If G is nilpotent, G is a primitive (p+ 1)-sum group if and only if it is Cp × Cp.

2. σ(G) = p+ 1 for any non-cyclic p-group and any non-cyclic nilpotent group.

3. C2 × C2 is the only primitive 3-sum group.

4. The primitive 4-sum groups are C3 × C3 and S3.

5. The only primitive 5-sum group is A4.

6. There exists a group G with σ(G) = pn + 1 for every prime power pn.

7. If G is a primitive n-sum group, the center of G is trivial.

Bhargava [?] has recently shown that for each value of n, there is a corresponding finite

(possibly empty) set of primitive n-sum groups.

Cohn [?] also conjectured that there were no 7-sum groups. Tomkinson confirmed this

conjecture [?], and further conjectured that there would be no 11-sum, 13-sum, or 15-sum

groups. This conjecture was confirmed in the case of 11, but both a 13-sum group [?] and

a 15-sum group [?] have been found. These inquiries led to the question of which other

numbers occur as the covering number of a group. For solvable groups, an important class

of groups related to the historical development of abstract algebra [?], Tomkinson showed

the covering number is always pn + 1 for some prime p and some integer n [?]. Recently,

Garonzi [?] completely characterized all groups which have σ ≤ 25 and shows that there

are no n-sum groups for n ∈ {19, 21, 22, 25}. The question of which integers occur as

group covering numbers remains open for most values larger than 25 and not of the form

pn + 1.

Where precise values for σ(G) have yet to be obtained, upper and lower bounds may

be of interest. The number of subgroups involved in any cover of G provides an upper

bound on σ(G). Maroti [?], as well as Kappe and Redden [?], have provided values and

bounds for the covering numbers of the symmetric and alternating groups up to degree
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10. Kappe and Redden have used GAP extensively in establishing their results [?]. Based

on our personal experience, we believe that if n ≥ 11, An is too large to explore with GAP

on a personal computer at this time. We should note that Maroti[?] has established the

precise value of σ(Sn) in the case that n is an odd number not equal to 9, an upper bound

on the value of σ(Sn) in the case that n is even, and an upper bound for σ(An) in the case

that n is not equal to 7 or 9.

Many authors have investigated the σ-values for certain classes of groups, and this

topic has been particularly active in recent years. Serena has collected and summarized

many results from the 20th century[?]. For a thorough description of recent results, the

reader is referred to the introduction in [?].

2.3 Group Covers by Subgroups with Given Properties

A related focus of research activity is the existence of coverings of groups by subgroups

which share a certain property. G.A. Miller is believed to have instigated the study of

group covers, with a 1901 paper [?] which explored groups whose covers have trivial

pairwise intersection. Such group covers eventually came to be known as partitions [?].

Miller showed that the only such abelian groups were elementary abelian groups; he also

showed that the members of such a partition must have equal order.

While the partitions of abelian groups were settled by Miller’s brief note, for non-

abelian groups the matter is more complicated and is still not completely settled [?].

Several significant group theorists, including Hughes, Baer, and Suzuki, have been linked

with the study of partitions [?, ?].

Bryce and Serena [?] determined groups which have minimal covers consisting of

abelian subgroups. Bhargava [?] has shown that a group can be covered by proper normal

subgroups if and only if it has a quotient group isomorphic to Cp×Cp for some p; he calls

such groups anti-simple. Brodie and Kappe [?] investigated groups which have a covering

by subgroups with group properties closely related to commutativity. Foguel and Ragland

[?] investigated which classes of groups can be covered by isomorphic abelian subgroups.

They used GAP in parts of this work. The 2002 survey article by Serena [?] covers many
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of the group covers by subgroups with certain properties.
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Chapter 3

Introduction to Equal

L-Intersection Group Covers

Our objective is to explore a new class of group covers. In particular, we require

that the members of the cover be subgroups of equal order and have equal but nontrivial

pairwise intersection. We will be especially interested in the case when this pairwise

intersection is isomorphic to a cyclic group of prime order.

The intersection of subgroups arising in certain types of covers has been touched upon

in some previous work. In particular, Greco [?] considered groups which could be covered

by five subgroups with equal pairwise intersection. Neumann [?] considered a function

f(n) defined to be the maximal value of [G : ∩ni=1Hi], where {Hi}ni=1 is an irredundant

cover of G. Tomkinson [?] established an upper bound for this function. Bryce, Fedri,

and Serena [?] showed that f(5) = 16.

In these works, the subgroup intersections (whether pairwise or total) were considered

as a side effect of determining group covers with certain properties. In our work, the

pairwise intersection is given primary importance, and we investigate the number and

type of subgroups involved the covers which occur as a result.

We begin by relating this class of group covers to other types of group covers. While

the class we will define overlaps with these covers, we will show that it is not identical to

any of them.
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3.1 Known Classes of Equal Covers

In this section we will examine some existing work on group covers whose members

are of equal order.

Definition 3.1. Let G be a group. An equal partition of G is a collection of subgroups

{H1, H2, . . . ,Hn} such that

1. G =

n⋃
i=1

Hi (the collection is a group cover)

2. |Hi| = |Hj | for 1 ≤ i, j,≤ n (all subgroups are the same size)

3. Hi ∩Hj = {e} for 1 ≤ i, j ≤ n and i 6= j (the pairwise intersection is trivial).

Definition 3.2. Let G be a finite group with an equal partition H = {H1, H2, . . . ,Hn}.

If HiHj = G for 1 ≤ i, j,≤ n, i 6= j, H is called a spread of G.

The following result, due to Miller [?], provided one of the first results on group covers

of any type.

Theorem 3.3. Let G be an abelian group. There exists an equal partition of G if and

only if G is an elementary abelian group.

Proof. Let G be a finite group. We need to show that G has order pk for some prime p

and some integer k, and that the exponent of G is equal to p.

Let {Hi}ni=1 be an equal partition of G. Let x, y be non-identity elements of G such

that x ∈ Hj , y ∈ Hk and j 6= k. First, we will show that xy ∈ Hr for some 1 ≤ r ≤ n such

that r 6= j, k. If xy ∈ Hj , then (x)−1xy = y ∈ Hj , hence y ∈ Hj ∩Hi, and the pairwise

intersection is nontrivial. A similar contradiction arises if xy ∈ Hk.

Next, we will show that |G| is a prime power. To obtain a contradiction, suppose that

|G| is divisible by distinct primes p1 and p2. By Cauchy’s Theorem, we can select a ∈ G

such that |a| = p1 and b ∈ G such that |b| = p2 such that a and b are contained in distinct

subgroups Hi and Hj , and, without loss of generality, assume p1 > p2. As noted above, ab

must be in a subgroup Hr distinct from Hi and Hj . Then we have (ab)p2 = ap2 6= e. As a

power of ab, ap2 ∈ Hr; however, since it is a power of a, ap2 ∈ Ha. Since Ha and Hab must
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be distinct, this contradicts our assumption that the intersection of distinct subgroups

contains only the identity. Thus, the order of an element in G can only be divisible by a

single prime p, which means that for all g ∈ G, |g| = pk

Now we will show that k < 2. To this end, we will show that G does not contain an

element of order pr for 2 ≤ r. Again, for contradiction’s sake, suppose there exist a ∈ G

such that a has order p and b ∈ G such that b has order pr. Again, let a ∈ Hi and b ∈ Hj .

Then ab ∈ Hr, with (ab)p = apbp = bp ∈ Hr ∩Hj , which contradicts our assumption that

distinct subgroups have trivial pairwise intersection. This means that all non-identity

elements in G have order p; hence G is elementary abelian.

Isaacs [?] provided the following results which characterized all groups with an equal

partition.

Theorem 3.4. Let G be a finite group. G has an equal partition if and only if G is a

p-group of exponent p. Also, G has a spread if and only if it is elementary abelian.

Isaacs’ paper concludes with the following question, which we have reason to believe

is still open[?]:

Question 3.5. Does there exist a group with an equal partition in which not all of the

subgroups are abelian?

Foguel and Ragland [?] investigated a class of groups covered by isomorphic abelian

subgroups; such groups are known as CIA-groups. Obviously, isomorphic subgroups must

have equal order. However, the definition of CIA-groups places no restriction on the pair-

wise intersection of the subgroups. While the pairwise intersections must be isomorphic

subgroups, they may not be equal in the set-theoretic sense.

We would note that every equally partitionable group is a CIA-group, since it is covered

by cyclic subgroups of order p, and cyclic subgroups of prime order are abelian groups

unique up to isomorphism [?].

The following theorem tells us how to tell when an abelian group is a CIA-group.

Theorem 3.6. Abelian groups are CIA-groups if and only if they have Cpn × Cpn as a

direct factor for some prime p and some integer n.
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Foguel and Ragland also asked the following:

Question 3.7. Does there exist an CIA-group which has a trivial center?

Recall that Cohn showed that non-abelian primitive n-sum groups always have a trivial

center. Thus, a negative answer to this question would imply that the classes of non-

abelian primitive n-sum group and CIA-groups are mutually exclusive.

3.2 Definition and Examples of Equal L-Intersection Cover

It seems natural to generalize the notion of an equal partition to covers whose members

are equal but nontrivial. This leads to the following definition:

Definition 3.8. Let G and L be finite groups. If there exist subgroups H1, H2, . . . ,Hn

and a subgroup K of G such that

• G =
⋃n

i=1Hi (the subgroups are a group cover)

• |Hi| = |Hj | for 1 ≤ i, j ≤ n (the subgroups are of equal size)

• Hi ∩Hj = K for 1 ≤ i, j,≤ n, i 6= j

• K ∼= L

we say that G has an equal L-intersection cover.

We have a similar generalization of the notion of a spread.

Definition 3.9. An L-intersection spread is an L-intersection cover such that HiHj = G

for 1 ≤ i, j,≤ n, i 6= j.

In our terminology, an equal partition can be called an equal {e}-intersection cover,

while a spread would be an {e}-intersection spread.

Example 3.10. The Dihedral group of order 8 has an equal C2-intersection cover con-

sisting of {R0, R90, R180, R270}, {R0, R180, V,H}, and {R0, R180, D,D
′}.

20



This was our original motivating example, as it shows that a group which has an equal

L-intersection cover need not be a CIA-group. However, certain results about CIA-covers

have nice analogs for equal L-intersection covers. For instance, Foguel and Ragland show

how to construct a CIA-covering for the direct product of two CIA-groups. Mimicking

their approach, we can show how to construct a group which has an equal L-intersection

cover when we know that L is isomorphic to the direct product of two groups L1 and L2.

Theorem 3.11. Let G1 and G2 be finite groups. If G1 has an equal L1-intersection cover

and G2
∼= L2, then G1 ×G2 has an equal L1 × L2-intersection cover.

Proof. Suppose that G1 is a finite group with a cover by subgroups {Hi}ni=1 which have

equal order and pairwise intersection equal to K, where K is isomorphic to L1. Then

taking the direct product of G1 and G2, we have the following.

G1 ×G2 =

(
n⋃

i=1

Hi

)
×G2

=
n⋃

i=1

(Hi ×G2)

Hence G1 × G2 is covered by the n subgroups Hi × G2. Since |Hi| = |Hj |, we have

|Hi × G2| = |Hi||L2| = |Hj ||L2| = |Hj × G2|; hence these subgroups are of equal order.

Also,

(Hi × L2) ∩ (Hj × L2) = (Hi ∩Hj)× (L2 ∩ L2)

= (Hi ∩Hj)× L2

= L1 ×G2

∼= L1 × L2

This completes the proof.

Since every abelian group can be expressed as the direct product of cyclic groups, this

gives us a way to construct a group which has an L-intersection cover for any abelian L.
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First, we need to be able to find a Cn-intersection for any choice of n. The following result

allows us to do that.

Corollary 3.12. If G1 is a p-group of exponent p, then G1 × G2 has an equal G2-

intersection cover.

Proof. We know from Theorem ?? that since G1 is a p-group of exponent p, G1 has an

equal partition. By definition, an equal partition is an equal {e}-intersection cover. Hence

G×G2 has an {eG1} ×G2-intersection cover. Since {eG1} ×G2 is isomorphic to G2, this

gives a G2-intersection cover.

Example 3.13. Applying the corollary, we see that C2 × C2 × D4 has an equal D4-

intersection cover by 3 groups of order 16 isomorphic to C2 ×D4. This is an example of

a group which is covered by isomorphic non-abelian subgroups.

Corollary 3.14. Let G be an elementary abelian group of order pn. G has an equal

(Cp)
i-intersection cover for 1 ≤ i ≤ (n− 2).

Proposition 3.15. Let n be a square-free integer, i.e. n = p1p2 . . . pk, where p1, . . . , pk

are distinct prime numbers. Let mi = p1 . . . pi−1pi+1 . . . pk for 1 ≤ i ≤ k. If G = Cn×Cn,

G has an equal Cmi × Cmi-cover for each mi.

Proof. We know that Cn×Cn
∼= Cp1p2...pn×Cp1p2...pn . Further, since the pi are all relatively

prime, Cp1p2...pn is isomorphic to Cpi × Cp1 × Cp2 × . . . Cpi−1 × Cpi+1 · · · × Cpn . Hence we

have

Cp1p2...pn × Cp1p2...pn
∼= (Cpi × Cpi)

×
(
Cp1 . . . Cpi−1 × Cpi+1 · · · × Cn

)
×
(
Cp1 . . . Cpi−1 × Cpi+1 · · · × Cn

)
∼= (Cpi × Cpi)× (Cmi × Cmi)

We know that Cpi × Cpi is a p-group of exponent p. Thus it has an equal partition,

i.e. an {e}-intersection cover, and we can apply ?? to achieve the desired result.
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Proposition 3.16. Let p be a prime number. If G = Cp2 × Cp, then G has an equal

Cp-intersection cover.

Proof. For 0 ≤ i ≤ (p− 1), let Hi = 〈(1, i)〉. Let Hp = 〈(p, 0), (1, 0)〉. Each subgroup has

order p2, and their pairwise intersections correspond to the subgroup K = 〈(p, 0)〉, which

is a cyclic group of order p.

For various choices of L, we have shown some methods and examples of how to find an

equal L-intersection cover. These covers may allow us to explore open questions related

to equal partitions.

Remark 3.17. Let G be a finite group with an equal L-intersection cover {Hi}ni=1, where

Hi∩Hj = K and K ∼= L. If K is a normal subgroup of G and there exists 1 ≤ k ≤ n such

that both Hk and Hk

/
K are non-abelian, an example to satisfy Question ?? will have

been found.

3.3 Methods used to find equal L-intersection covers

The previous section established how to construct equal L-intersection covers for vari-

ous choices of L. Now we turn our attention to the following problem: given finite groups

G and L, determine whether or not G has an equal L-intersection cover. Throughout the

remainder of this work, all groups are finite unless otherwise specified.

Let G and L be finite groups. We would like to be able to determine whether or not

G has an equal L-intersection cover. Thus, at the beginning of our investigation, G and

L (and hence |G| and |L|) are known. A first step is to determine properties which the

number and order of subgroups in such a cover must possess. This will give us tests to

determine whether or not such a cover or spread is even possible. We can use these tests

to help automate the search for groups with equal L-intersection covers, as well as to

demonstrate that certain groups do not have such a cover.
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3.3.1 Properties of the Size and Number of Subgroups

Our objective in this section is to determine what can be said about the number and

size of the subgroups involved in an equal L-intersection cover. Throughout, n will denote

the number of subgroups in the cover, while |H| will denote the size of any such subgroup.

First we present a proof that a finite group can not be covered by two proper subgroups.

This proof relies only on some counting arguments and Lagrange’s Theorem. We have not

encountered it in the existing literature. While we have already demonstrated a stronger

result which holds for all groups, we include this proof because it illustrates the types of

counting and divisibility arguments which we will utilize throughout this section.

Theorem 3.18. No finite group can be written as the union of two proper subgroups.

Proof. Let G be a finite group. Suppose there exist proper subgroups A and B such that

G = A ∪ B. Let M = A ∩ B. Let a = |A|, b = |B|, and m = |M |. Note that a, b > m,

otherwise M = A = B = G. Also note that since M is the intersection of two subgroups,

it must also be a subgroup; hence m > 0.

By the Inclusion-Exclusion Principle, we know that

|G| = |A|+ |B| − |A ∩B| = a+ b−m.

First, we will show that a 6= b. To obtain a contradiction, assume a = b. By Lagrange’s

Theorem, there exist positive integers c1, c2 such that c1a = |G| = a + b −m and c2b =

|G| = a+b−m. Since a = b, we have c1a = a+a−m = 2a−m, hence m = a(2−c1). Since

A is a proper subgroup, we must have c1 > 1. If c1 = 2, m = 0, which is a contradiction.

If c1 > 2, m is negative, which is also a contradiction. Thus, in the above equation a 6= b.

Now, assume without loss of generality that b > a. Since |G| = a+b−m, by Lagrange’s

Theorem we know that a divides a + b −m, hence a divides b −m. Similarly, b divides

a −m. Hence there exist n1, n2 such that n1a = b −m and n2b = a −m, which implies

that b = n1a + m and n2b + m = a. Substituting the first equation into the second, we

obtain that

n2(n1a+m) +m = a
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. Then

n2n1a+ n2m+m = a,

where n1, n2,m > 0. However, this gives us the following chain of relationships

|A| = n2n1a+ n2m+m

> n2n1a+ n2m

≥ n2n1a+ n2

> n2n1a

≥ n1a

≥ a

= |A|

This implies that |A| > |A|, a contradiction. This completes the proof.

The following result, due to Cohn, gives the first condition relating the number of

subgroups n and the size of subgroups |Hi| in a group cover. In Cohn’s notation, the

subgroups are arranged such that |Hi| ≤ |Hj | for i < j. Thus we assume that H1 has

order equal to the minimum order of all the subgroups in the cover.

Proposition 3.19 (Cohn). If G =
⋃n

i=1Hi, then |G| ≤
∑n

i=2 |Hi|, with equality if and

only if

a) H1Hr = G for 1 6= r, and

b) Hr ∩Hs ⊂ H1, r 6= s for all 1 ≤ r, s ≤ n

Proof. Suppose Hr 6= H1. We need to count the number of elements contained in Hr

which are not contained in H1. Obviously, this number is equal to |Hr| − |H1 ∩Hr|.

We know that

|H1||Hr|
|H1 ∩Hr|

= |H1Hr|,

which we can manipulate to obtain

|H1 ∩Hr| =
|H1||Hr|
|H1Hr|

.
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Hence,

|Hr| − |H1 ∩Hr| = |Hr| − |H1||Hr|
|H1Hr|

= |Hr|
(

1− |H1|
|H1Hr|

)

We know that |H1Hr| ≤ |G|, which clearly becomes an equality if and only if |H1Hr| =

G. Then |H1|
|G| ≤

|H1|
|H1Hr| , so 1− |H1|

|G| ≥ 1− |H1|
|H1Hr| , hence

|Hr| − |H1 ∩Hr| ≤ |Hr|(1−
|H1|
|G|

).

Now we know that

|G| ≤ |H1|+
n∑

r=2

|Hr −H1| ≤ |H1|+ (1− H1

G

n∑
r=2

|Hr|).

The first inequality in the line above is an equality and if only if the intersection of any

two distinct subgroups Hi, Hj for 2 ≤ i, j ≤ n is contained in H1.

Then we have

|G| − |H1|
1− |H1|

|G|

≤
n∑

r=2

|Hr|

|G| − |H1|
|G|−|H1|
|G|

≤
n∑

r=2

|Hr|

|G| ≤
n∑

r=2

|Hr|

Note that in the case of an equal L-intersection cover, all subgroups have equal index,

and hence the arrangement of the subgroups in the cover is arbitrary. This allows any

group to play the role of H1. We note also that by definition of an equal L-intersection

cover, condition (b) is always satisfied. This means that for the type of cover we are

investigating, we can say the following:
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Corollary 3.20. If G has an equal L-intersection cover by n subgroups of the same order

as order H, then |G| ≤ (n−1)|H|, with equality if and only if the Hi form a L-intersection

spread.

Corollary 3.21. If G is a group with an equal L-intersection cover by n subgroups of

order |H|, then n ≥ 1 +
|G|
|H|

, with equality if and only if the cover is an L-intersection

spread.

The above results hold for all covers by subgroups of equal order, regardless of their

pairwise intersections. Now we will explore the restrictions related to n and |H| which

result from our choice of L.

Theorem 3.22. If G is a group with an equal L-intersection cover by n subgroups of order

|H|, then |G| = n|H| − (n− 1)|L|.

Proof. Since the {Hi}ni=1 are a cover of G we have |G| = |
⋃n

i=1Hi|. Applying the Inclusion-

Exclusion Principle and noting that all pairwise intersections, and hence all intersections

for any choice of k > 2 subgroups, are equal, we have

∣∣∣∣∣
n⋃

i=1

Hi

∣∣∣∣∣ =
n∑

i=1

|Hi| −
(
n

2

)
|Hi ∩Hj |+

(
n

3

)
|Hi ∩Hj ∩Hl| − . . . (−1)n

n⋂
i=1

Hi

=
n∑

i=1

|Hi| −
(
n

2

)
|L|+

(
n

3

)
|L|+ · · ·+ (−1)n

(
n

n

)
|L|

= (
n∑

i=1

|Hi|)− |L|

(
n∑

i=2

(−1)i
(
n

i

))

Recalling that |H1| = |Hi| and letting x =
∑n

i=2(−1)i
(
n
i

)
, we we can rewrite this as

|G| = (n− 1)|Hi| − |L|x.

Our goal is to express this x in terms of n. Note that by the Binomial Theorem, we can
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say

0 = (1− 1)n

=

n∑
i=0

(−1)i
(
n

i

)

= 1− n+

n∑
i=2

(−1)i
(
n

i

)

(n− 1) =

n∑
i=2

(−1)i
(
n

i

)

Hence x = (n− 1), and the desired result follows.

We can combine this result with our corollary to Theorem ?? to obtain more informa-

tion about the relationship between n and |H|.

Corollary 3.23. If {Hi}ni=1 are an L-intersection cover for G, n ≥ 1 + |H|
|L| , with equality

if and only if the Hi are an L-intersection spread.

Proof. Let G be a group with an equal L-intersection cover by n subgroups of order |H|.

We know from Theorem ?? that G = n|H| − (n− 1)|L|, while we know from Proposition

?? that G ≤ (n− 1)|H|. Combining these two results, we obtain

n|H| − (n− 1)|L| = |G|

n|H| − (n− 1)|L| ≤ (n− 1)|H|

n|H| − (n− 1)|L| ≤ n|H| − |H|

−(n− 1)|L| ≤ −|H|

(n− 1)|L| ≥ |H|

The inequality in the second line is an equality if and only if the Hi form an L-

intersection spread.

Corollary 3.24. If G is a group with an equal L-intersection cover by n subgroups, n ≥

1 +
√
|G|
|L| . If the cover is an L-intersection spread, n = 1 +

√
|G|
|L| .
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Proof. Let G be a group with an equal L-intersection cover by subgroups of order |H|.

Combining the above results, we know that |G| ≤ (n − 1)|H| ≤ (n − 1)(n − 1)|L| =

(n − 1)2|L|. Since |G| ≤ (n − 1)2|L|, we can obtain divide both sides by |L|, take the

square root of both sides, and add 1 to achieve the desired result.

Proposition 3.25. If G is a group with an equal L-interseection cover by subgroups of

order |H|, then
√
|G||L| ≥ |H|, with equality if and only if the cover is an L-intersection

spread.

Proof. Let G be a subgroup. Let Hi and Hj be arbitrary elements of an equal L-

intersection cover. Then

|G| ≥ |HiHj | =
|Hi||Hj |
Hi ∩Hj

=
|H|2

|L|
,

hence

|G||L| ≥ |H|2,

and √
|G||L| ≥ |H|.

Again, |G| = |HiHj | if and only if the Hi form an L-intersection spread.

This means that if G has an L-intersection spread, the size of the subgroups in the

spread are completely determined by the choice of L. Since for an L-intersection spread,

n =
√
|G|
|L| + 1, this means the value of n is determined by the choice of L, as well.

Corollary 3.26. If G has an equal L-intersection cover, max{|g||g ∈ G} ≤
√
|L||G|.

Proof. The order of each element must divide the Hi, and hence |g| ≤ |H| ≤
√
|L||G|.

For a fixed subgroup size |H|, these bounds give us information about n. Likewise,

for a fixed cover size n, we have information about potential subgroup sizes. It would be

nice to have information about the possible values of n which depends only on |G| and

|L|. This next result allows us to do exactly that.

Proposition 3.27. If G has an equal L-intersection cover by n subgroups of order equal

to |H|, n is a proper divisor of |G| − |L|.
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Proof.

|G| = n|H| − (n− 1)|L|

|G| = n|H| − n|L|+ |L|

|G| − |L| = n(|H| − |L|)

This shows that n divides |G|− |L|. Since |L| divides |H|, |H|− |L| must be an integer

greater than 1, and hence n is a proper divisor of |G| − |L|.

Proposition 3.28. If G has an equal L-intersection cover by n subgroups of order |H|,

|H| divides (n− 1)|L|.

Proof. Again, we begin with the fact that |G| = n|H| − (n− 1)|L|. Since |H| is a divisor

of |G| by Lagrange’s Theorem, reducing both sides mod |H|, we have

0 ≡ −(n− 1)L( mod |H|)

0 ≡ −nL+ L( mod |H|)

nL ≡ L( mod |H|)

Combining the previous propositions, we can state the following theorems:

Theorem 3.29. Let G be a finite group. If H1, H2, . . . ,Hn is an equal L-intersection

cover for G, then

• n ≥ max{ |G||H| + 1, |H||L| + 1,
√
|G|
|L| + 1}

•
√
|G||L| ≥ |H| ≥ max{|g| : g ∈ G}

• |G| ≡ |L|( mod n)

• n|L| ≡ |L|( mod |H|)
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Theorem 3.30. Let G be a finite group. If G has subgroups H1, H2, . . . ,Hn which form

an equal L-intersection spread for G, then

• n = |G|
|H| + 1 = |H|

|L| + 1 =
√
|G|
|L| + 1

•
√
|G||L| = |H| ≥ max |g||g ∈ G

• |G| ≡ |L|( mod n)

• n|L| ≡ |L|( mod |H|)

Now we will consider the special case when G is a p-group. Since every subgroup of G

is a p-group, we may assume that |G| = pa, |H| = pb, and |L| = pc for integers a, b, and c

such that a > b > c. We can apply the results in the above theorems to illuminate some

specific cases.

1. We can apply the fact that
√
|G||L| ≥ |H|. In this instance, we have that

√
papc ≥ pb

(papc)
1
2 ≥ pb

(pa+c)
1
2 ≥ pb

p
a+c
2 ≥ pb

a+ c

2
≥ b

As before, this inequality is an equality if and only ifHiHj = G for 1 ≤ i, j ≤ n, i 6= j.

This tells us that if a+ c is odd, G does not have an L-intersection spread.

2. From the above, we can say that the maximum order of the elements in G must be

less than or equal to p
a+c
2 .

3. If the subgroups Hi in the cover are assumed to be maximal, then the Hi must be

an L-intersection spread. Also, we know that the Hi must have order pa−1. Then we

have a+c
2 = a−1, hence a+c = 2(a−1) = 2a−2, which implies that c = a−2 = b−1.
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4. If L is assumed to be minimal (i.e. isomorphic to Cp), then we know that c = 1.

Hence a+1
2 ≥ b, or a ≥ 2b− 1, with equality if the Hi are an L-intersection spread.

5. If the Hi are maximal and L is minimal, c = b − 1 becomes 1 = (a − 1) − 1. This

means a = 3.

In the previous section, we determined examples of abelian groups which have Cp-

intersection covers for some prime p. Now we will use the above results to show that some

abelian groups do not have such a cover.

Proposition 3.31. Cpk × Cp does not have an equal Cp-intersection cover for k > 2.

Proof. In this case, |G| = pk+1 and |L| = p. However, G has elements of order pk, and

pk = p
2k
2 = p

k+k
2 > p

k+2
2 =

√
|G||L|

.

3.3.2 Functions in GAP to find equal L-intersection covers

Applying the results in the previous section, we can implement algorithms in GAP to

compute whether or not a certain group G has an equal L-intersection cover. The first

algorithm in GAP is called EqualLIntersectionCoverValues; it takes a group G and an

isomorphism class for the subgroup L and returns a list of ordered pairs (n, |H|) which

could be the n and |H| values for an equal L-intersection cover.

The SmallGroups library in GAP contains data about all small groups of order less than

2000, except for groups of order 1024. Using this library, we can apply our commands to

groups in a given small range.

First, we need a way for GAP to find subgroups of a given group. Because large groups

have many subgroups, GAP focuses first on finding the conjugacy classes of subgroups.[?]

As the name suggests, the command

ConjugacyClassesSubgroups(G)

returns the conjugacy classes of subgroups of G. Since every subgroup of G is contained

in some conjugacy class, the command
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Union(ConjugacyClassesSubgroups(G))

returns all the elements in every conjugacy class, i.e. all subgroups of G.

Then we can use the following command in GAP to find all subgroups of a given group

of a particular size k.

kSubgroups := function(G,k);

return Filtered(Union(

ConjugacyClassesSubgroups((G)),

x -> Size(x) = k);

The following command iterates over these potential values and sizes to determine

whether or not G does in fact possess an equal L-intersection cover. Its logic is based on

the results of the previous section–by testing to see whether or not certain values obey

the conditions we have established, we can determine whether or not it is possible for a

group to have an equal L-intersection cover.

5in

EqualLIntersectionCoverValues := function(G,L);

local g,l,maxorder,n1,n2,N,H,i,subgrps,values;

g := Size(G);

l := Size(L);

maxorder := Maximum(List(G, x -> Order(x)));

values := List([]);

if maxorder > RootInt(g * l, 2) then

return values;

fi;

n1 := [RootInt(g)/RootInt(l) .. (g - l) - 1];

n2 := DivisorsInt(g - l);
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N := Intersection(n1,n2);

H := List(N, x -> (g + (x - 1)*l) / x);

subgrps := Union(ConjugacyClassesSubgroups(G));

for i in [1 .. Size(H)] do

if (H[i] in DivisorsInt(g)) and

(l in DivisorsInt(H[i])) then

if (maxorder <= H[i])

and (H[i] in DivisorsInt((N[i]-1) * l)) then

if kSubgroups(G,H[i]) >= N[i] then

if RootInt(g*l) >= H[i] then

Add(values,[N[i],H[i]]);

fi;

fi;

fi;

fi;

od;

return values;

end;

Using that command, we implement a GAP function EqualLIntersectionCovers which,

given a group G and an isomorphism class L, finds L-intersection covers of G. For each

potential (n, |H|) pair returned by EqualLIntersectionCoverValues, the algorithm con-

siders every potential combination of n subgroups of order H, removing first those which

are not group covers, then those whose total intersection is not isomorphic to L, then

finally those which do not have equal pairwise intersections. The remaining collections

are the desired covers. The code for the algorithm is as follows.

5in
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EqualLIntersectionCovers := function(G,L)

local values,covers,subgrps,i,j,colls,pairs,intersects;

Read("EqualLIntersectionCoverValues.txt");

covers := [];

values := EqualLIntersectionCoverValues(G,L);

for i in values do

subgrps := kSubgroups(G,i[2]);

colls := Combinations(subgrps,i[1]);

colls := Filtered(colls, x -> IsSubset(Union(x),G));

for j in colls do

if StructureDescription(Intersection(j))

= StructureDescription(L) then

pairs := Combinations(j,2);

intersects = List(pairs, x -> Intersection(x));

if Size(Collected(intersects)) = 1

and Flat(Collected(intersects) = Size(L)

then

Add(covers,j);

fi;

fi;

od;

od;

return covers;

end;

The main advantage of this algorithm is that for a choice of L, it explicitly deter-

mines all such covers and can be automated to search all groups of a given size. The

disadvantage is that it is memory-intensive. If we suppose that G has r subgroups of

order |H|. Unfortunately, generating all
(
r
n

)
collections of n subgroups of order |H| can
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be memory-intensive for large values of r. We will quickly encounter circumstances where

this restriction renders this algorithm impractical. In certain circumstances, there are

ways to work around these difficulties. However, the computational approach will allow

us to find many examples.
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Chapter 4

Finding 2-groups with equal

C2-intersection covers

The previous section developed computational methods to search for equal L-intersection

covers. In this section, we will give the results of applying those methods to a particular

class of groups.

4.1 Results on Equal C2-intersection covers for some 2-groups

We will be exploring groups of order 2k for some positive integer k to see which ones

have an equal C2-intersection cover. In this case, since |L| = 2, one previously proven

result becomes very sharp. We have shown already that if G has an equal L-intersection

cover by n subgroups of order |H|, |H| must be a divisor of n|L|−|L|. If |L| = 2, it follows

that |H| must be a divisor of 2n− 2 = 2(n− 1). Hence |H|2 must be a divisor of (n− 1).

Since H is a power of 2, this tells us that n must be odd.

After examining the data about these groups acquired computationally, we will present

conjectures and questions inspired by these examples.
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4.1.1 Groups Of Order 8

There are 4 noncyclic groups of order 8: the dihedral group of order 8 s(D4), the

quaternions (Q8), C4 × C2, and C2 × C2 × C2. Each one has an equal C2-intersection

cover by subgroups of order 4. We know that C4 × C2 and C2 × C2 × C2 have equal

C2-intersection covers by theorems in Section 1. We gave an equal C2-intersection cover

for D4 as the first example of such a cover. The quaternions are covered by the equal-

order subgroups H1 = {1,−1, i,−i}, H2 = {1,−1, j,−j}, and H3 = {1,−1, k,−k}, which

have pairwise intersection {1,−1} ∼= C2. This is the only instance which we were able to

determine completely by hand.

4.1.2 Groups of order 16

Using the GAP algorithm EqualLIntersectionCovers which we previously introduced,

we search for all groups which have equal C2-intersection covers.

Since the number of subgroups n in such a cover must divide 16− 2 = 14 and n 6= 2,

n must be equal to 7. Hence 7, which can not occur as a minimal covering number, does

occur as an equal L-intersection covering number.

We can eliminate the cyclic group C16 from consideration. Similarly, we know that

C2 × C2 × C2 × C2 will have an equal C2-intersection cover, and we do not force GAP to

look for it.

Our GAP algorithm tells us that the following groups of order 16 have equal C2-

intersection covers.

1. C4 × C2 × C2

2. C2 ×D4

3. C2 ×Q8

4. (C4 × C2) n C2

We note that every group in this list occurrs as either the direct product or the semi-

direct product of C2 and a group of order 8 with an equal C2-intersection cover. In each

case, GAP found only one equal C2-intersection cover for each group.
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4.1.3 Groups of order 32

Again, we begin by determining the value of n, the number of subgroups involved

in an equal L-intersection cover. This number must be a proper divisor of 32 − 2 = 30.

Removing 2, this leaves 3, 5, 6,and 15 as possible values. Since we know that
√
|G|
|L| +1 ≤ n,

we can eliminate 3 as a possible value. Substituting n = 6 into the equation |G| =

n(|H|) − (n − 1)|L|, we obtain 32 = 6(|H|) − (5)(2), from which it follows that |H| = 7,

an impossibility in a group of order 32. It follows that such a cover must either involved

5 subgroups of order 8, or 15 subgroups of order 4.

The following groups of order 32 have been found in GAP to have equal C2 intersection

covers:

1. C4 × C2 × C2 × C2

2. C2 × C2 ×D4

3. (C2 ×D4) n C2

4. (C2 ×Q8)× C2

5. C2 × ((C4 × C2) : C2)

6. (C2 ×D4) n C2

For each group, GAP found at least one cover by 5 subgroups of order 8 and at least

one cover by 15 subgroups of order 4. Multiple covers by subgroups of order 8 were found

for several instances.

Again, the groups in this list are expressed as the direct product or semi-direct products

of C2 with groups of order 16 which have equal C2-intersection covers.

4.1.4 Groups of order 64

According to GAP, there are 267 groups of order 64. First, we need to determine the

number and order of subgroups which would be involved in an equal C2-intersection cover

of such a group. Since n must be a proper divisor of 62 (64 - 2), n is equal to either 2 or

31. We know that n = 2 is impossible, so n must be equal to 31. Substituting this back
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into the equation 64 = 31(H)−30(2), we see that the subgroups in an equal L-intersection

cover must have order 4.

This particular collection illustrates some of the downsides of the brute-force approach.

Many groups have substantially more than 31 subgroups of order 4, making it impossible

to enumerate all the combinations. Even for a group such as C4 × C4 × C4 which has 35

subgroups of order 4, this brute force approach would require GAP to calculate
(
35
31

)
= 52360

different potential covers. Therefore, we will need to use theory in conjunction with GAP

to attack this and other cases.

Using GAP, we can disqualify the groups which do not have at least 31 subgroups of

order 4. Since every element of G must be contained in a subgroup of order 4, we can also

eliminate any group with exponent greater than 4. This leaves just 97 of the original 267

groups as candidates.

We can work around this problem by noting that if G has an equal C2-intersection

cover by 31 groups of order 4, there must be an element of order 2 which appears in

31 distinct 4-subgroups of G. Then we can use GAP to determine the elements in each

subgroup and count the number of subgroups in which a particular element is contained.

We will use the following command to have GAP count how many times each element

is contained in a subgroup of order k.

Collected(Flat(List(kSubgroups(G,k),

x -> Elements(x)));

In the above command,

List(kSubgroups(G,k),x -> Elements(x)

returns a list of lists. The entries are lists corresponding the elements of every subgroup

of a given order. The

Flat()

command concatenates this into a single list where the multiplicity of each group element

corresponds to the number of subgroups of order k in which it appears. Finally,
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Collected()

counts how many time each element appears in the flattened list; these counts tell us how

many subgroups contained each group element.

The identity will appear in every subgroup. We modify the above command to ignore

it by filtering the original list to only include elements with order greater than 1.

Collected(Flat(Union(List(kSubgroups(G,k),

x -> Filtered(Elements(x),

x -> Order(x) > 1)));

Finally, we can use the

Maximum

command in conjunction with the above command to determine the largest number of such

subgroups in which any particular element is contained. Groups for which this number is

less than the required value of n can be disqualified during a particular search. If G has

an element of order 2 contained in exactly 31 subgroups of order 4, G must have an equal

C2-intersection cover. The proof of a more general version of this fact will be supplied in

the next section.

Using GAP and our more refined approach to brute force, we can determine that the

following groups have non-identity elements which appear in exactly 31 subgroups of order

4.

• C4 × C2 × C2 × C2 × C2

• C2 × C2 × C2 ×D4

• C2 × C2 × C2 ×Q8

• C2 × C2 × ((C4 × C2) n C2)

• C2 × ((C2 ×D4) n C2)

• C2 × ((C2 ×Q8) n C2)
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• (C2 × ((C4 × C2) n C2)) n C2

• C2 × C2 × C2 × C2 × C2 × C2

Hence, each group has an equal C2-intersection cover. Again, each of these groups is

the direct product or semi-direct product of C2 with a group of order 32 which possesses

an equal C2-intersection cover.

4.1.5 Groups of Order 128

GAP tells us that there are 2328 groups of order 128, so we will restrict to our attention

only to determining whether certain groups of this size have an equal C2-intersection cover.

Supposing that G is a group of order 128 which has an equal C2-intersection cover, we

first wish to determine the size and number of subgroups in the cover. Since n must be

a proper divisor of 128 − 2 = 126 which is not equal to 2, we can say that n must be an

element of {3, 6, 7, 9, 14, 18, 21, 42, 63}. Further, we know that n ≥
√
|G|
|L| + 1; hence, n ≥ 9

and it follows that we can eliminate 3,6, and 7 from consideration.

Also, since n must be odd, we can eliminate 14, 18, and 42 as choices of n. If n = 9,

then 128 = 9|H| − (8)(2) = 9|H| − 16, hence 144 = 9|H|. Since 9 divides 144, this means

that 9 subgroups of order 16 is one possibility. If n = 21, 21|H| = 168, which implies that

|H| = 8. If n = 63, 63|H| = 128 + 124 = 252, whence |H| = 4. Thus G is covered by 9

subgroups of order 16, 21 subgroups of order 8, or 63 subgroups of order 4. Again, the

number of subgroups of these orders makes exhaustive enumeration of the possible covers

prohibitive at this time. We instead will focus on groups which fit the pattern previously

established.

Based on what we have seen so far, we would expect groups isomorphic to one of

1. C4 × C2 × C2 × C2 × C2 × C2

2. C2 × C2 × C2 × C2 ×D4

3. C2 × C2 × C2 × C2 ×Q8

4. C2 × C2 × C2 × ((C4 × C2) n C2)
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5. C2 × C2 × ((C2 ×D4) n C2)

6. C2 × C2 × ((C2 ×Q8) n C2)

7. C2 × (C2 × ((C4 × C2) n C2)) n C2, and

8. C2 × C2 × C2 × C2 × C2 × C2 × C2

to have equal C2-intersection covers. Based on a result previously proven, we know

that C2 × C2 × C2 × C2 × C2 × C2 × C2 has such a cover. One way to demonstrate that

the other groups have such a cover is to find an element of order 2 which appears in 63

subgroups of order 4. Using GAP, we are able to find that each of the groups in the above

list has such an element, and hence has an equal C2-intersection cover.

4.2 Conjectures and Questions

In the previous section, we used GAP to enumerate all the 2-groups of order 128 or less

which had equal C2-intersection covers. For n > 3, the groups of 2n which we encountered

could be described as the direct or semi-direct product of a group isomorphic to C2 and

a group of order 2n−1. This leads us to the following conjecture.

Conjecture 4.1. Let k ≥ 3 and G be a group of order 2k with an equal C2-intersection

cover. Then G× C2 is a group of order 2k+1 with an equal C2-intersection cover.

The approach used to find the cover in this instance suggests a general test to determine

when a 2-group has an equal C2-intersection cover.

Proposition 4.2. Let G be a group such that |G| = 2n for n > 2. If G has an element

of order 2 which appears as an element in 2n−1 − 1 subgroups of order 4, G has an equal

C2-intersection cover.

Proof. Suppose that G is a finite group such that |G| = 2n for some n > 2. Suppose

further that G has 2n−1− 1 subgroups of order 4, and that g is an element which appears

in each of these subgroups. By assumption, these subgroups are of equal order. The

pairwise intersection of distinct subgroups must contain only the identity and g, hence the

43



pairwise intersection is a cyclic group of order 2. Finally, we must show that the union of

these elements is equal to the order of the group.

The union of these subgroups must be a subset of G. We have that

(2n−1 − 1)4− (2n−1 − 2)2 = 2n+1 − 4− 2n + 4 = 2n+1 − 2n

= 2n(2− 1)

= 2n

Since
⋃n2−1−1

i=1 Hi is a subset with 2n elements in a group with 2n elements, it must be

equal to the group. This completes the proof.

The above result depends on unique arithmetic properties of the number 2. We have

been unable to find a generalization for an arbitrary prime p.

In this instance, however, we can provide an explicit description of the subgroups

{Hi}2
n−1−1

i=1 . If x is an element of order 2 contained in each of the Hi, then L = 〈x〉 has 2n−1

cosets, and 2n−1− 1 cosets of the form aL for some a ∈ G−L. Each Hi = aL∪L = 〈x, a〉

for some a ∈ G − L. This means that there is a one-to-one mapping from the nontrivial

cosets of L to the subgroups of order 4 in the L-intersection cover.

In each of the cases we have demonstrated so far, every group which has had an equal

C2-intersection by subgroups of order 8 has also had such a cover by subgroups of order

4. In this instance, each subgroup of order 4 is equal to aL ∪ L for some a ∈ G− L. This

motivates the following question:

Question 4.3. Let G be a group of order 2k for k > 3. Suppose that G has an equal

C2-intersection cover by n noncyclic subgroups of order 8. Does G also have an equal

C2-intersection cover by 3n subgroups of order 4?

We have reason to believe that the answer to this question is yes. Suppose that

G =
⋃n

i=1, where |Hi| = |Hj | = 8 for 1 ≤ i, j ≤ n and i 6= j, and Hi ∩Hj = L ∼= C2. Since

any noncyclic subgroup of order 8 can be written as the union of 3 subgroups of order 4,

we could replace each Hi with the subgroups Hi,1 ∪ Hi,2 ∪ Hi,3, of order 4 to obtain an

equal cover.
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For any choice 1 ≤ i, j ≤ n and any choice of k1 and k2 in {1, 2, 3}, Hi,k1 and Hj,k2

must be distinct, since otherwise Hi and Hj would intersect in a subgroup of order 4

not isomorphic to C2. To finish proving the result, it would remain only to show that

Hj,k1 ∩ Hi,k2 = L for any 1 ≤ k1, k2 ≤ 3. In particular, we would need to show that

Hj,k1 ∩Hi,k2 is nontrivial. However, we do not know whether or not this final statement

is true.

Finding the answer to this question would determine whether or not to investigate the

following more general case.

Question 4.4. Let G be a group of order 2n. If G has an equal C2-intesection cover by

subgroups of order 2k, where 2 < k < n, must G also have an equal C2-intersection cover

by subgroups of order 4?

If this question has an affirmative answer, it would reduce the study of equal C2-

intersection covers in 2-groups to those groups whose subgroups of order 4 are in one-to-

one correspondence with the cosets of some cyclic 2-subgroup L. On the other hand, a

counterexample would lead one to wonder whether there are equal C2-intersection covers

by subgroups of size 2k for any integer k.

Another area of interest would be the relationship between the pairwise intersection

and total intersection of subgroups in a cover. At this time, we are uncertain whether

having a cover by equal subgroups whose pairwise intersections are isomorphic is enough

to determine that all pairwise intersections must also be equal as sets.

Question 4.5. Are there cases of groups with covers by subgroups of equal order which

have isomorphic but unequal pairwise intersections?

As with many other questions, the search for such a cover could be facilitated by using

GAP to search for such examples.

The results given in this work are a first step towards investigating a new class of group

covers, which are interesting in their own right and may be able to provide insights into

open questions regarding other covers of finite groups. The examples which we present

suggest several questions regarding the structure of 2-groups with a specified pairwise
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intersection isomorphic to C2. The generalization to other groups and other isomorphism

classes of intersection could prove very fruitful for future research.
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