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Abstract: 

A partial word of length n over a finite alphabet A is a partial map from {0, … , n - 1} into A. Elements of {0, 

… , n-1} without image are called holes (a word is just a partial word without holes). A fundamental periodicity 

result on words due to Fine and Wilf [1] intuitively determines how far two periodic events have to match in 

order to guarantee a common period. This result was extended to partial words with one hole by Berstel and 

Boasson [2] and to partial words with two or three holes by Blanchet-Sadri and Hegstrom [3]. In this paper, we 

give an extension to partial words with an arbitrary number of holes.  

Keywords: Combinatorial problems, Words, Formal languages. 

 

Article: 

1. INTRODUCTION 

This paper relates to a fundamental periodicity result on words due to Fine and Wilf [1]. This result was 

extended to partial words with one, two, or three holes [2,3], and here we give an extension for an arbitrary 

number of holes. 

 

Throughout the paper, i mod p denotes the remainder when dividing i by p using ordinary integer division. We 

also write i    j mod p to mean that i and j have the same remainder when divided by p; in other words, that p 

divides i — j (for instance, 12   7 mod 5 but 12   7 mod 5 (2 = 7 mod 5)). 

 

1.1. Words 

Let A be a nonempty finite set, or an alphabet. Elements of A are called letters and finite sequences of letters of 

A are called words over A. The unique sequence of length 0, denoted by  , is called the empty word. The set of 

all words over A of finite length (greater than or equal to 0) is denoted by A*. It is a monoid under the 

associative operation of concatenation or product of words (  serves as identity) and is referred to as the free 

monoid generated by A. Similarly, the set of all nonempty words over A is denoted by A
+
. It is a semigroup 

under the operation of concatenation of words and is referred to as the free semigroup generated by A. A word 

of length n over A can be defined by a map u : {0, … , n — 1} → A but is usually represented as u = a0a1 • • • 

an-1 with ai   A. The length of u or n is denoted by |u|. 

 

1.2. Partial Words 

Let A be a finite alphabet. A partial word u of length n over A is a partial map u : {0, … , n —1} → A. If 0 < i < 

n, then i belongs to the domain of u (denoted by Domain(u)) in case u(i) is defined and i belongs to the set of 

holes of u (denoted by Hole(u)), otherwise, (a word over A is a partial word over A with an empty set of holes). 

 

The companion of u (denoted by uo) is the map uo : {0, … , n — 1} → A   {o} defined by 
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The bijectivity of the map u   uo allows us to define for partial words concepts such as concatenation in a 

trivial way. The symbol o is viewed as a "do not know" symbol and not as a "do not care" symbol as in pattern 

matching [2]. The word uo = abobbabo is the companion of the partial word u of length 8 where Domain(u) = 

{0, 1, 3, 4, 5,6} and Hole(u) {2, 7}. 

 

A period of u is a positive integer p such that u(i) = u(j) whenever i, j   Domain(u) and i   j mod p (in such a 

case, we call u p-periodic). Similarly, a local period of u is a positive integer p such that u(i) = u(i + p) 

whenever i, i + p   Domain(u) (in such a case, we call u locally p-periodic). Every locally p-periodic word is p-

periodic but not every locally p-periodic partial word is p-periodic. For instance, the partial word with 

companion aboaoaaa is locally three-periodic but is not three-periodic. 

 

2. PERIODICITY 

In this section, we discuss periodicity results on partial words with zero, one, two, or three holes. 

 

2.1. On Partial Words with Zero or One Hole 

In this section, we restrict ourselves to partial words with zero or one hole. 

 

THEOREM 1. (See [1,2].) Let p and q be positive integers. 

(1) Let u be a word. If u is p-periodic and q-periodic and |u| ≥ p + q — gcd(p, q), then u is gcd(p, q)-

periodic. 

(2) Let u be a partial word such that card(Hole(u)) = 1. If u is locally p-periodic and locally q-periodic 

and |u| ≥ p + q, then u is gcd(p, q)-periodic. 

 

The bound p + q — gcd(p, q) turns out to be optimal in Theorem 1(1). For example, the word abaaba of length 

6 is three-periodic and five-periodic but is not one-periodic. Also, the bound p + q is optimal in Theorem 1(2) as 

can be seen with abaabao of length 7 which is locally three-periodic and locally five-periodic but not one-

periodic. 

 

2.2. On Partial Words with Two or Three Holes 

In [3], it was shown that the concept of (2,p, q)-special (respectively, (3,p, q)-special) partial word is crucial for 

extending Theorem 1 to two holes (respectively, three holes). 

 

DEFINITION 1. (See [3].) Let p and q be positive integers satisfying p < q. A partial word u is called 

(1) (2, p, q)-special if at least one of the following holds. 

(a) q = 2p and there exists p ≤ i < |u| — 4p such that i + p, i + 2p   Hole(u). 

(b) There exists 0 ≤ i < p such that i + p, i + q   Hole(u). 

(c) There exists |u| — p ≤ i < |u| such that i — p, i — q   Hole(u). 

(2) (3,p, q)-special if it is (2,p, q)-special or if at least one of the following holds. 

 (a) q = 3p and there exists p ≤ i < |u| - 5p such that i + p, i + 2p, i + 3p   Hole(u) or there exists p ≤ i 

< |u| - 7p such that i + p, i + 3p, i + 5p   Hole(u). 

(b) There exists 0 ≤ i < p such that i + q, i + 2p, i +p+ q   Hole(u). 

(c) There exists |u| - p ≤ i < |u| such that i - q, i - 2p, i-p- q   Hole(u). 

(d) There exists p ≤ i < q such that i - p, i + p, i + q   Hole(u). 

(e) There exists |u| - q ≤ i < |u| - p such that i - p, i + p, i - q   Hole(u). 

(f) 2q = 3p and there exists p ≤ i < |u| - 5p such that i + q, i + 2p, i +p + q   Hole(u). 

 

If p and q are positive integers satisfying p < q and gcd(p, q) = 1, then the infinite sequence (ab
p-1

ob
q-p-1

ob
n
)n>0 

consists of binary (2,p, q)-special partial words with two holes that are locally p-periodic and locally q-periodic 

but not one-periodic. Similarly, the infinite sequence (oab
p-1

obq-p-1ob
n
)n>0 consists of binary (3,p, q)-special 

partial words with three holes that are locally p-periodic and locally q-periodic but not one-periodic. 

 



THEOREM 2. (See [3].) Let p and q be positive integers satisfying p < q. 

(1) Let u be a partial word such that card(Hole(u)) = 2 and assume that u is not (2,p,q)special. If u is 

locally p-periodic and locally q-periodic and |u| ≥ 2(p + q) - gcd(p, q), then u is gcd(p, q)-periodic. 

(2) Let u be a partial word such that card(Hole(u)) = 3 and assume that u is not (3, p, q)-special. If u is 

locally p-periodic and locally q-periodic and |u| ≥ 2(p + q), then u is gcd(p, q)-periodic. 

 

The bound 2(p + q) - gcd(p, q) turns out to be optimal in Theorem 2(1). For instance, the partial word with 

companion abaabaooabaaba of length 14 is locally three-periodic and locally five-periodic but is not one-

periodic. A similar result holds for the bound 2(p + q) in Theorem 2(2) by considering abaabaooabaabao. 

 

3. SPECIAL PARTIAL WORDS 

In this section, we give an extension of the notions of (2,p, q)- and (3,p, q)-special partial words. We first 

discuss the case where p = 1 and then the case where p > 1. 

 

3.1. p = 1 

Throughout this section, we fix p = 1. Let q be an integer satisfying q > 1. Let u be a partial word of length n 

that is locally p-periodic and locally q-periodic. The companion of u, uo = uo(0)uo (1) ... uo(n - 1), can be 

represented as a two-dimensional structure in the following fashion: 

 
If we wrap the array around and sew the last row to the first row so that uo(q - 1) is sewn to uo(q), uo(2q - 1) is 

sewn to uo(2q), and so on, then we get a cylinder for uo. 

 

We say that i - p (respectively, i + p) is immediately above (respectively, below) i whenever p ≤ i < n 

(respectively, 0 ≤ i < n - p). Similarly, we say that i - q (respectively, i + q) is immediately left (respectively, 

right) of i whenever q ≤ i < n (respectively, 0 ≤ i < n - q). The fact that u is locally p-periodic implies that if i, i 

+ q   Domain(u), then u(i) = u(i+p). Similarly, the fact that u is locally q-periodic implies that if i, i + q   

Domain(u), then u(i) = u(i + q). 

 

The following define three types of isolation that will be acceptable in our definition of special partial word. In 

Type 1, we have a continuous sequence of holes isolating a subset of defined positions (this type of isolation 

occurs at the beginning of the partial word). In Type 2, a continuous sequence of holes completely surrounds a 

subset of defined positions. Finally, in Type 3, a continuous sequence of holes isolates a subset of defined 

positions (this type of isolation occurs at the end of the partial word). 

 

DEFINITION 2. Let S be a nonempty proper subset of Domain(u). We say that Hole(u) one-isolates S (or that S 

is one-isolated by Hole(u)) if the following hold. 

(1) Left: if i   S and i ≥ q, then i—q  S or i—q   Hole(u). 

(2) Right: if i   S, then i+q   S or i + q   Hole(u). 

(3) Above: if i   S and i ≥ p, then i—p   S or  i— p   Hole(u). 

(4) Below: if i   S, then i+p  S or i+ p   Hole(u). 

 

DEFINITION 3. Let S be a nonempty proper subset of Domain(u). We say that Hole(u) two-isolates S (or that S 

is two-isolated by Hole(u)) if the following hold. 

(1) Left: if i   S, then i — q   S or i — q   Hole(u). 

(2) Right: if i   S, then i + q   S or i + q   Hole(u). 

(3) Above: if i   S, then i — p   S or i — p   Hole(u). 

(4) Below: if i   S, then i + p   S or i + p   Hole(u). 

 



DEFINITION 4. Let S be a nonempty proper subset of Domain(u). We say that Hole(u) three-isolates S (or that 

S is three-isolated by Hole(u)) if the following hold. 

(1) Left: if i   S, then i — q   S or i — q   Hole(u). 

(2) Right: if i   S and i < n — q, then i + q   S or i+ q   Hole(u). 

(3) Above: if i   S, then i — p   S or i — p   Hole(u). 

(4) Below: if i   S and i < n — p, then i + p   S or i+ p   Hole(u). 

 

EXAMPLE 1. As a first example, consider the partial word u1 with companion (u1)o represented as the two-

dimensional structure of Figure 1. Here, u1 is locally one-periodic and locally five-periodic. 

 
The set of positions with letter a is one-isolated by Hole(u1); the set of positions with letter b is two-isolated by 

Hole(u1); the set of positions with letter c is one-isolated by Hole(u1); the set of positions with letter d is two-

isolated by Hole(u1); the set of positions with letter e is two-isolated by Hole(u1); the set of positions with letter 

f is three-isolated by Hole(u1); the set of positions with letter g is two-isolated by Hole(u1); the set of positions 

with letter h is two-isolated by Hole(u1); the set of positions with letter i is three-isolated by Hole(u1). 

 

EXAMPLE 2. As a second example, consider the locally one-periodic and locally five-periodic partial word u2 

with companion (u2)o represented as the two-dimensional structure of Figure 2. We can see that Domain(u2) 

does not contain a nonempty subset of isolated positions. 

 

DEFINITION 5. Let q be an integer satisfying q > 1. For 1 ≤ i ≤ 3, the partial word u is called (card(Hole(u)), 

1, q)-special of type i if Hole(u) i-isolates a nonempty proper subset of Domain(u). The partial word u is called 

(card(Hole(u)), 1, q)-special if u is (card(Hole(u)), 1, q)-special of type i for some i   {1, 2,3}. 

 
It is a simple matter to check that the above definition extends the notion of (2,1, q)-special and the notion of (3, 

1, q)-special (as given in Definition 1). Definition 1(1) corresponds to arrays like 

 

 



 

 



and the symmetrical of (b) for Definition 1(2)(c) as well as the symmetrical of (d) for Definition 1(2)(e). 

 

We can also check that the partial word u1 depicted in Figure 1 is (25, 1, 5)-special, but the partial word u2 

depicted in Figure 2 is not (18, 1, 5)-special. 

 

3.2. p > 1 

Throughout this section, we fix p > 1. Let q be an integer satisfying p < q. Let u be a partial word of length n 

that is locally p-periodic and locally q-periodic. We illustrate with examples how the positions of the 

companion of u can be represented as a two-dimensional structure. 

 

In a case where gcd(p, q) = 1 (like p = 2 and q = 5), we get one array 

 
If we wrap the array around and sew the last row to the first row so that uo(3) is sewn to uo(5), uo(8) is sewn to 

uo(10), and so on, then we get a cylinder for the positions of uo. 

 

In a case where gcd(p, q) = 2 (like p = 6 and q = 8), we get two arrays 

 
If we wrap the first array around and sew the last row to the first row so that uo(2) is sewn to uo(8), uo(10) is 

sewn to uo (16), and so on, then we get a cylinder for some of the positions of uo. The other positions are in the 

second array where we wrap around and sew the last row to the first row so that uo (3) is sewn to uo (9), uo (11) 

is sewn to uo (17), and so on. 

 

In general, if gcd(p, q) = d, we get d arrays. In this case, we say that i — p (respectively, i + p) is immediately 

above (respectively, below) i (within one of the d arrays) whenever p ≤ i < n (respectively, 0 ≤ i < n — p). 

Similarly, we say that i — q (respectively, i + q) is immediately left (respectively, right) of i (within one of the d 

arrays) whenever q ≤ i < n (respectively, 0 ≤ i < n — q). As before, the fact that u is locally p-periodic implies 

that if i, i + p   Domain(u), then u(i) = u(i + p). Similarly, the fact that u is locally q-periodic implies that if i, i 

+ q   Domain(u), then u(i) = u(i + q). 

 

In what follows, we define Nj = {i | i ≥  0 and i   j mod gcd(p, q)} for 0 ≤ j < gcd(p, q). 

 

DEFINITION 6. Let p and q be positive integers satisfying p < q. For 1 ≤ i ≤ 3, the partial word u is called 

(card(Hole(u)),p, q)-special of type i if there exists 0 ≤ j < gcd(p, q) such that Hole(u) i-isolates a nonempty 

proper subset of Domain(u)   Nj. The partial word u is called (card(Hole(u)),p, q)-special if u is 

(card(Hole(u)), p, q)-special of type i for some i   {1, 2, 3}. 

 

EXAMPLE 3. As a first example, the partial word u3 of Figure 3 is (5, 2, 5)-special (p = 2 and q = 5). The set of 

positions {0,2,4,9} is one-isolated by Hole(u3). 



 
EXAMPLE 4. As a second example, the partial word u4 of Figure 4 is not (6, 6, 8)-special. 

 
4. GRAPHS ASSOCIATED WITH PARTIAL WORDS 

Let p and q be positive integers satisfying p < q. In this section, we associate to a partial word u that is locally p-

periodic and locally q-periodic an undirected graph G(p,q) (u). Whether or not u is (card(Hole(u)), p, q)-special 

will be seen from G(p,q)(u). 

 

As explained in Section 3, the companion of u, uo = uo(0)uo(1) … uo(|u|-1), can be represented as a two-

dimensional structure. Each of the gcd(p, q) arrays of u is associated with a subgraph G = (V, E) of G(p,q) (u) as 

follows. 

 

V is the subset of Domain(u) comprising the defined positions of u within the array, E = E1   E2   E3   E4 

where 

 

For 0 ≤ j < gcd(p, q), the subgraph of G(p,q)(u) corresponding to Domain(u)   Nj will be denoted by       
 

(u). 

Whenever gcd(p, q) = 1,       
 (u) is just G(p,q)(u). 

 

EXAMPLE 5. As a first example, the graph of the partial word u3 of Figure 3, G(2,5)(u3), is shown in the 

following figure and is seen to be disconnected. 

 
EXAMPLE 6. As a second example, consider the partial word u4 of Figure 4. The subgraphs of G(6,8)(u4) 

corresponding to the two arrays of u4,       
 (u4) and       

 (u4), are shown below and are seen to be connected. 



 
We now define the critical lengths. We consider an even number of holes 2N and an odd number of holes 2N + 

1. 

 

DEFINITION 7. Let p and q be positive integers satisfying p < q. The critical lengths for p and q are defined as 

follows: 

(1)  (2N,p,q) = (N + 1)(p + q) — gcd(p, q) for N ≥ 0, and 

(2)  (2N+l,p,q) = (N + 1)(p + q) for N ≥ 0. 

 

LEMMA 1. Let p and q be positive integers satisfying p < q, and let H be a positive integer. Let u be a partial 

word such that card(Hole(u)) = H and assume that |u| >  (H,p,q). Then u is not (H, p, q)-special if and only if 

      
 

(u) is connected for all 0 ≤ j < gcd(p, q). 

 

PROOF. We first show that if u is (H, p, q)-special, then there exists 0 ≤ j < gcd(p, q) such that       
 

(u) is not 

connected. Three cases arise. 

 

CASE 1. u is (H, p, q)-special of Type 1. 

There exists 0 ≤ j < gcd(p, q) such that Hole(u) one-isolates a nonempty proper subset S of Domain(u)   Nj. 

The subgraph of       
 

(u) with vertex set S constitutes a union of components (one component or more). 

There are, therefore, at least two components in       
 

(u) since S is proper. 

 

CASE 2. u is (H, p, q)-special of Type 2.  

This case is similar to Case 1. 

 

CASE 3. u is (H, p, q)-special of Type 3.  

This case is similar to Case 1. 

 

We now show that if there exists 0 ≤ j < gcd(p, q) such that       
 

(u) is not connected, then u is (H, p, q)-special 

(or Hole(u) isolates a nonempty proper subset of Domain(u)   Nj). Consider such a j. Put p = p' gcd(p, q) and q 

= q' gcd(p, q). As before, the partial word uj is defined by 

 



If H = 2N for some N, uj, is of length at least (N + 1)(p' + q') — 1; and if H = 2N + 1 for some N, uj is of length 

at least (N + 1)(p'+ q'). In order to simplify the notation, let us denote G(p' ,q')(uj) by G
j
. Our assumption implies 

that G
j
 is not connected. 

 

(1) Let   
 
 be the graph constructed for the companion word (uj)o, so there are no holes. Then G

j
 is a 

subgraph of   
 
 obtained by removing the "hole" vertices. 

 

(2) Consider a set of consecutive indices in the domain of (uj)o, say i, i + gcd(p, q), . . , i + n gcd(p, q). Call 

such a set a "domain interval", of length n + 1. 

 

(3) Every domain interval of length p' + q' is the set of vertices of a cycle in   
 
; that is, there is a closed path 

in   
 
 which goes through exactly this set of vertices. The point is that a cycle cannot be disconnected by 

just one point. 

 

(4) Suppose C and C' are components of G
j
 with vertex sets S and S', and suppose neither S nor S' is 

isolated. Then each domain interval of length p' + q' must contain a point v from S and a point v' from S'. 

 

(5) There must be two holes in each domain interval of length p' + q', since otherwise the points v and v' 

from Item 4 would be connected by a path in the cycle formed by the domain interval. 

 

(6) If the number of holes is 2N + 1 and the length of (uj)o is at least (N + 1)(p' + q'), then Item 5 is 

impossible, since (uj)o would have N + 1 pairwise disjoint domain intervals of length p' + q' and Item 5 

would then require 2(N + 1) holes. Similarly, if the number of holes is 2N and the length of (uj)o is at least 

(N +1)(p' + q') —1, then Item 5 is impossible since (uj)o would have N pairwise disjoint intervals of length 

p' + q' and one remaining of length p' + q' — 1, and so Item 5 would require 2N + 1 holes. 

 

Note that this proves the lemma in case the number of holes is positive, and in fact Item 3 is essentially the 

proof in the case of exactly one hole. The case of zero holes follows from the fact that every domain interval of 

length p' + q' — 1 is the set of vertices of a path in   
 
. 

 

5. AN ARBITRARY NUMBER OF HOLES 

In this section, we give our main result which extends Theorems 1 and 2 to an arbitrary number of holes. 

 

LEMMA 2. Let p and q be positive integers satisfying p < q and gcd(p, q) = 1. Let u be a partial word that is 

locally p-periodic and locally q-periodic. If G(p,q)(u) is connected, then u is one-periodic. 

 

PROOF. Let i be a fixed position in Domain(u). If i'   Domain(u) and i'   i, then there is a path in G(p,q)(u) 

between i' and i. Let i', i1, i2, …, in, i be such a path. We get u(i') = u(i1) = u(i2) = … = u(in) = u(i). 

 

THEOREM 3. Let p and q be positive integers satisfying p < q. Let u be a partial word that is locally p-

periodic and locally q-periodic. If       
 (u) is connected for all 0 ≤ i < gcd(p, q), then u is gcd(p, q)-periodic. 

 

PROOF. The case where gcd(p, q) = 1 follows by Lemma 2. So consider the case where gcd(p, q) > 1. Define 

for each 0 ≤ i < gcd(p, q) the partial word ui by 

(ui)o = uo(i)uo(i + gcd(p, q))uo(i + 2 gcd(p, q)) . . . . 

Put p = p' gcd(p, q) and q = q' gcd(p, q). Each ui is locally p'-periodic and locally q'-periodic. If       
 (u) is 

connected for all i, then G(p',q')(ui) is connected for all i. Consequently, each ui is one-periodic by Lemma 2, and 

u is gcd(p, q)-periodic. 

 

THEOREM 4. Let p and q be positive integers satisfying p < q, and let H be a positive integer. Let u be a 



partial word such that card(Hole(u)) = H and assume that u is not (H, p, q)-special. If u is locally p-periodic 

and locally q-periodic and |u| ≥  (H, p,q), then u is gcd(p, q)-periodic. 

 

PROOF. If u is not (H, p, q)-special and |u| ≥  (H,p,q), then       
 (u) is connected for all 0 ≤ i < gcd(p, q) by 

Lemma 1. Then u is gcd(p, q)-periodic by Theorem 3. 

 

The bound  (2N,p,q) turns out to be optimal for an even number of holes 2N, and the bound  (2N + 1,p,q) optimal for 

an odd number of holes 2N +1. The following builds a sequence of partial words showing this optimality. 

 

DEFINITION 8. Let p and q be positive integers satisfying 1 < p < q and gcd(p, q) = 1. Let N be a positive 

integer. 

(1) The partial word u(2N,p,q) over {a, b} of length  (2N,p,q) — 1 is defined by 

(a) Hole(u(2N,p,q)) = {p+ q — 2,p+ q — 1, 2(p + q) — 2,2(p+ q) — 1, … , N (p + q) — 2, N(p + q) — 1}. 

(b) The component of the graph G(p,q)(u) containing p — 2 is colored with letter a. 

(c) The component of the graph G(p,q)(u) containing p — 1 is colored with letter b. 

(2) The partial word u(2N+1,p,q) over {a, b} of length  (2N+1,p,q) —1 is defined by (u(2N+1,p,q))o = u(2N, p, q)o so that 

Hole(u(2N+1,p,q)) = Hole(u(2N,p,q))   {(N + 1)(p + q) — 2}. 

 

The partial word u(2N,p,q) can be thought of as two bands of holes Band1 = {p + q — 1, 2(p + q) — 1, ... , N(p + 

q) — 1} and Band2 = {p + q — 2, 2(p + q) — 2, ... , N(p + q) — 2} where between the bands the letter is a and 

outside the bands it is b or vice versa (a similar statement holds for u(2N+1,p,q)). 

 

EXAMPLE 7. For example, the partial word u(4,2,5) of length 19 has companion represented as the two-

dimensional structure: 

 
It is locally two-periodic and locally five-periodic but is not one-periodic (it is not (4, 2, 5)-special). 

 

EXAMPLE 8. Similarly, the partial word u(5,2,5) of length 20 has companion represented as the two-dimensional 

structure: 

 
It is locally two-periodic and locally five-periodic but is not one-periodic (it is not (5, 2, 5)-special). 

 

PROPOSITION 1. Let p and q be positive integers satisfying 1 < p < q and gcd(p, q) = 1. Let H be a positive 

integer. The partial word u(H,p,q) of length  (H,p,q) — 1 is not (H, p, q)-special, but is locally p-periodic and 

locally q-periodic. However, u(H,p,q) is not one-periodic. 

 

PROOF. We prove the result when H = 2N for some N (the odd case H = 2N + 1 is similar). As stated earlier, 

the partial word u(2N,p,q) of length (N + 1)(p + q) — 2 can be thought of as two bands of holes Band1 = {p + q — 

1,2(p + q) — 1, …, N(p + q) — 1} and Band2 = {p + q —2, 2(p + q) — 2, ... , N(p + q) — 2}. The position p — 

1 is between the bands and p — 2 is outside the bands or vice versa. Let S1 be the component that contains p — 

1 and S2 be the component that contains p — 2. The partial word u(2N,p,q) is not (2N,p, q)-special of Type 2 since 

neither S1 nor S2 is two-isolated by Hole(u(2N,p,q)). To see this, Definition 3(1) fails with i = p — 1 or i = p — 2. 

To show that u(2N,p,q) is not (2N,p,q)-special of Type 3, we can use Definition 4(1) with i = p — 1 or i = p — 2. 

To show that u(2N,p,q) is not (2N, p, q)-special of Type 1, we can use Definition 2(2) with i = N(p + q) — 1 + q or 



i = N(p + q) — 2 + q. 
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