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Abstract: 

Given any finite alphabet A and positive integers m1, …, mk, congruences on A*, denoted by ~(m1, …, mk) and 

related to a version of the Ehrenfeucht-Fraisse game, are defined. Level k of the Straubing hierarchy of 

aperiodic monoids can be characterized in terms of the monoids A*/~(m1, … mk). A natural subhierarchy of 

level 2 and equation systems satisfied in the corresponding varieties of monoids are defined. For A ≥ 2, a 

necessary and sufficient condition is given for A*/~(m1, … , mk) to be of dot-depth exactly 2. Upper and lower 

bounds on the dot-depth of the A*/~(m1, … mk) are discussed. 

 

Article: 

1. Introduction 

In this paper, we present results relative to the characterization of dot-depth k monoids. This topic is of interest 

from the points of view of formal language theory, symbolic logic and complexity of boolean circuits. The 

results are obtained by a technical and detailed use of a version of the Ehrenfeucht-Fraisse game. 

 

Let A be a given finite alphabet. The regular languages over A are those subsets of A*, the free monoid 

generated by A, constructed from the finite languages over A by the boolean operations, the concatenation 

product and the star. The star-free languages are those regular languages which can be obtained from the finite 

languages by the boolean operations and the concatenation product only. According to Schützenberger [17], L  

  A* is star-free if and only if its syntactic monoid M(L) is finite and aperiodic. General references on the star-

free languages are McNaughton and Papert [12], Eilenberg [8] or Pin [14]. 

 

Natural classifications of the star-free languages are obtained based on the alternating use of the boolean 

operations and the concatenation product. Let A
+
 =A*\ {1} , where 1 denotes the empty word. Let 

 
Only nonempty words over A are considered to define this hierarchy; in particular, the complement operation is 

applied with respect to A
+
. The language classes A

+ 0,A
+ 1 ... form the so-called dot-depth hierarchy introduced 

by Cohen and Brzozowski in [6]. The union of the classes A
+ 0,A

+
  1, ... is the class of star-free languages. 

 

Our attention is directed toward a closely related and more fundamental hierarchy, this one in A*, introduced by 

Straubing in [20]. Let 

 
Let A* =      A* k. L   A* is star-free if and only if L   A* k for some k ≥ 0. The dot-depth of L is the 

smallest such k. 
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For k ≥ 1, let us define subhierarchies of A*  as follows: for all m ≥ 1, let 

 
We have A* k =      A* k,m. Easily, A* k,m   A* k+1,m, A* k,m   A* k,m+1. Similarly, subhierarchies of A

+
 

 k can be defined. In A
+ 1 several hierarchies and classes of languages have been studied; the most prominent 

examples are the β-hierarchy [5], also called depth-one finite cofinite hierarchy, and the class of locally testable 

languages. 

 

  is a *-variety of languages if 

 

(1) for every finite alphabet A, A*  denotes a class of recognizable (recognizable means recognizable by a 

finite automaton or regular) languages over A closed under boolean operations, 

 

(2) if L   A*  and a   A, then a
-1

 L = {w   A* | aw   L} and La
-1

 = {w   A* | wa   L} are in A* , and 

 

(3) if L   A*  and  : B* → A* is a morphism, then L -1
= { w   B* | w    L}   B* . 

 

Eilenberg [8] has shown that there exists a one-to-one correspondence between *-varieties of languages and 

some classes of finite monoids called M-varieties. W is an M-variety if 

 

(1) it is a class of finite monoids closed under division, i.e., if M   W and M' < M (< denotes the divide 

relationship between monoids), then M'   W, and 

 

(2) it is closed under finite direct product, i.e., if M, M'   W, then M × M'   W. 

 

To a given *-variety of languages   corresponds the M-variety W= {M(L) | L   A*  for some A} and to a 

given M-variety W corresponds the *-variety of languages   where A*  = {L   A*| there is M   W 

recognizing L}. The Straubing hierarchy gives examples of *-varieties of languages. One can show that  ,  k 

and  k,m are *-varieties of languages. Let the corresponding M-varieties be denoted by V, Vk and Vk,m 

respectively. V is the M-variety of aperiodic monoids. We have that for L   A*, L   A*  if and only if M(L)   

V, for each k ≥ 0, L   A* k if and only if M(L)   Vk, and for k ≥ 1, m ≥ 1, L   A* k,m if and only if M(L)   Vk,m. 

 

An outstanding open problem is whether one can decide if a star-free language has dot-depth k, i.e., can we 

effectively characterize the M-varieties Vk? The variety V0 consists of the trivial monoid alone, V1 of all finite  -

trivial monoids [181. Straubing [21] conjectured an effective characterization, based on the syntactic monoid of 

the language, for the case k= 2. His characterization, formulated in terms of a novel use of categories in 

semigroup theory recently developed by Tilson [24], is shown to be necessary in general, and sufficient for an 

alphabet of two letters. 

 

In the framework of semigroup theory, Brzozowski and Knast [4] showed that the dot-depth hierarchy is 

infinite. Thomas [231 gave a new proof of this result, which shows also that the Straubing hierarchy is infinite, 

based on a logical characterization of the dot-depth hierarchy that he obtained in [221 (Perrin and Pin [131 gave 

one for the Straubing hierarchy) and the following version of the Ehrenfeucht-Fraisse game. 

 

First, one regards a word w   A* of length |w| as a word model w = <{1, ..., |w|}, <
w
 (  

     ) > where the 

universe {1, ..., |w|} represents the set of positions of letters in w, <
w
 denotes the <-relation in w,   

  are unary 

relations over {1, …, |w|} containing the positions with letter a, for each a   A. For a sequence  ̅ =(m1, ...,mk) 

of positive integers, where k ≥ 0, the game   ̅(u, v) is played between two players I and II on the word models 

u and v. A play of the game consists of k moves. In the ith move, player I chooses, in u or in v, a sequence of m1 

positions; then player II chooses, in the remaining word, also a sequence of m1 positions. After k moves, by 



concatenating the sequences chosen from u and v, two sequences p1 … pn from u and q1...qn from v have been 

formed where n= m1+ … + mk. Player II has won the play if pi <
u
 pj if and only if qi <

v
 qj, and   

 pi if and only if 

  
 qi, a   A for 1 ≤ i, j ≤ n. If there is a winning strategy for player II in the game   ̅(u, v) to win each play we 

write u ~ ̅ v. - ̅ naturally defines a congruence on A* which we denote also by - ̅. The standard Ehrenfeucht-

Fraisse game [7] is the special case  (1, … ,1)(u, v). Thomas [22,231 and Perrin and Pin [13] infer the 

following congruence characterization of the A*Vk and the A*Vk,m, i.e., L   A* k if and only if L is a union of 

classes of some ~(m1,...,mk) and L   A* k,m if and only if L is a union of classes of some ~(m, m2, ...,mk). This 

implies the following congruence characterization of the Vk and the Vk,m, i.e., Vk={A*/~|~   ~(m1, …, mk) for 

some mi, i =1,...,k}, and Vk,m = {A*/ ~|~   ~(m, m2, …, mk) for some mi, i = 2, ... , k} . In [2], it was shown that 

for fixed (m1, …, mk), it is decidable if a language is a union of some classes of ~(m1, ...,mk), or, equivalently, it 

is decidable if the syntactic monoid of a language divides A*/~(m1,...,mk). 

 

Let u, v   A*. A monoid M satisfies the equation u = v if and only if u  = v  for all morphisms  : A* → M. One 

can show that the class of monoids M satisfying the equation u = v is an M-variety, denoted by W(u, v). Let (un, 

vn)n>0 be a sequence of pairs of words of A*. Consider the following M-varieties: W´ =      W(un, vn) and W" = 

          W(un, vn). We say that W' (W") is defined (ultimately defined) by the equations un = vn (n>0): this 

corresponds to the fact that a monoid M is in W' (W") if and only if M satisfies the equations un = vn for all n > 0 

(for all n sufficiently large). The equational approach to varieties is discussed in Eilenberg [8]. Eilenberg 

showed that every M-variety is ultimately defined by a sequence of equations. For example, the M-variety V of 

aperiodic monoids is ultimately defined by the equations x
n 

= x
n+1 

(n> 0). The M-variety V1 is ultimately defined 

by the equations (xy)
m
 = (yx)

m
 and x

m 
= x

m+1 
(m >0). This gives a decision procedure for V1, i.e., M   V1 if and 

only if for all x, y   M, (xy)
m
 = (yx)

m
 and x

m
 = x

m+1 
with m the cardinality of M. One can show that every M-

variety generated by a single monoid is defined by a (finite or infinite) sequence of equations. V1,m being 

generated by A* /~(m), are the M-varieties V1,m defined by a finite sequence of equations? An attempt to answer 

this open problem was made in [3]. There, systems of equations were defined which are satisfied in the Vt,m 

([10,11] provide an equation system for level 1 of the dot-depth hierarchy). It was shown that those equation 

systems characterize completely V1,1, V1,2 and V1,3. More precisely, V1,1 is defined by x = x
2
 and xy = yx, V1,2 by 

xyzx = xyxzx and (xy)
2
 = (yx)

2
, and V1,3 by xzyxvxwy = xzxyxvxwy, ywxvxyzx = ywxvxyxzx and (xy)

3
 = (yx)

3
. 

 

This paper is concerned with applications of the above mentioned congruence characterization of the Vk and the 

Vk,m. Other applications appear in [1-3]. [2] answers a conjecture of Pin [15] concerning tree hierarchies of 

monoids. The problem of finding equations satisfied in the V2,m problem related to the effective characterization 

of the V2,m and hence of V2, is the subject of Section 3. More precisely, systems of equations are defined which 

are satisfied in the V2,m. In Section 4, we are interested in the following question: for an alphabet of at least two 

letters, find a necessary and sufficient condition for A*/~(m1,...,mk) to be of dot-depth exactly d. Such a 

condition is given for d =1 and d= 2. It is also shown that for all sufficiently large mi, A*/~(m1,...,mk) is of dot-

depth exactly k. The proofs rely on some properties of the congruences ~ ̅ stated in the next section. The reader 

is referred to the books by Pin [14] and Enderton [9] for all the algebraic and logical terms not defined in this 

paper. 

 

2. Some properties of the ~ ̅ 

2.1. An induction lemma 

The following lemma is a basic result (similar to one in [16] regarding ~(1.....I)) which allows to resolve games 

with k + 1 moves into games with k moves and thereby allows to perform induction arguments. In what follows, 

u[1, p)(u(p, |u|]) denotes the segment of u to the left (right) of position p and u(p, q) the segment of u between 

positions p and q. 

 

Lemma 2.1. Let  ̅ = (m1,...,mk). u ~(m, m1, …, mk) v if and only if 

(1) for every p1, …, pm   u (p1 ≤ … ≤ pm) there are qi,...,qm   v (q1 ≤ … ≤ qm) such that 

(i)   
    if and only if   

   , a   A for 1 ≤ i ≤ m, 

(ii) u[1, p1) ~ ̅ v[1, q1), 



(iii) u(pi, pi+1) ~ ̅ v(qi, qi+1) for 1 ≤ 1 ≤ m - 1, 

(iv) u(pm, |u|] ~ ̅ v(qm, |v|] and 

(2) for every q1, …, qm   v(q1 ≤ … ≤ qm) there are p1, …, pm   u (p1 ≤ … ≤ pm) such that (i), (ii), (iii) and 

(iv) hold. 

 

2.2. An inclusion lemma 

Define  (m1,  …, mk) = (m1+1) … (mk + 1)-1 . We can show that x
N
 ~(m1, … , mk) x

N+1 
(N =  (m1, …, mk)) and 

that N is the smallest n such that x
n
 ~(m1, …, mk) x

n+1 
for |x| = 1 (the proof is similar to the one of a property of 

~(1, ..., 1) in [23]). It follows that if u, v   A* and u ~(m1, …, mk) v, then |u|a = |v|a <  (m1, …, mk) or |u|a, |v|a ≥ 

 (m1, …, mk) (here |w|a denotes the number of occurrences of the letter a in w). The following lemma follows 

easily from Lemma 2.1 and the above remarks. 

 

Lemma 2.2. ~(m1, …, mk)   ~( (m1, …, mk)), and ~(m1, …, mk)   ~( (m1, …, mk) + 1). If k ≤ k´ and  0=j0 < 

… < jk-1 < jk = k' such that mi ≤  (  
       , …,   

 ) for 1 ≤ i ≤ k, then ~(  
 ,…,   

 )   ~(m1, …, mk). 

 

2.3. Some combinatorial lemmas 

We will need the following combinatorial properties of the congruences ~(m). 

 

Lemma 2.3 (Simon [181). Let m ≥ 1. Let u,v   A*. If u ~(m)v, then there exists w   A* such that u is a subword 

of w, v is a subword of w and u ~(m) w ~(m) v (a word a1 … an (where a1,...,an are letters) is a subword of w if 

there exist words w0, …, wn such that w = w0a1w1a2 … anwn). 

 

Lemma 2.4 (Simon [18]). Let m ≥ 1. Let u,v    A*. Then 

(1) u ~(m)uv if and only if there exist u1,...,um   A* such that u = u1 ...um and vα   umα   …   u1α (here wα 

denotes the set of letters in w). 

(2) u ~(m) vu if and only if there exist u1,...,um   A* such that u = u1 ...um and vα   u1α   …   umα. 

 

3. Equations and the V2,m 

Simon's effective characterization of V1 [18] depends on a detailed study of combinatorial properties of the 

congruences ~(m) (like those in Lemmas 2.3 and 2.4). A monoid M in V1 satisfies (xy)
m
 —(yx)

m
 and x

m
 =x

m+1 
for 

some m since M < A*/ ~(m) for some m and (xy)
m
 ~(m)(yx)

m
 and x

m
 ~(m)x

m+1
. It turns out that these two 

equations form a complete system of equations for V1. Subsection 3.1 studies some combinatorial properties of 

the congruences ~(1, m) and gives equations satisfied in V2,1. 

 

3.1. Equations and V2,1 

In the following, we talk about positions spelling the first and last occurrences of every subword of length ≤m of 

a word w. We illustrate what we mean by this with the following example. Let A = {a, b, c} and 

 
The six arrows on the left point to the positions which spell the first occurrences of every subword of length ≤2 

in w[1,p) and the eight arrows on the right (before the one pointing to p) to the positions which spell the last 

occurrences of every subword of length ≤2 in w[1,p). 

 

Lemma 3.1. Let m ≥ 1. Let u, v   A
+
 and let p1, …, ps in u (p1< …< ps)(q1, …, qs, in v (q1 < … < qs)) be the 

positions which spell the first and last occurrences of every subword of length ≤m in u (v). u ~(1,m)v if and only 

if 

(1) s=s´ 

(2)   
 pi if and only if   

 qi, a   A for 1 ≤ i ≤ s and 

(3) u(pi, pi+1) ~(1) v(qi, qi+1) for 1 ≤ i ≤ s - 1. 



Proof. Assume (1), (2) and (3) hold. A winning strategy for player II in the game  (1, m)(u, v) to win each play 

is described as follows. Let p be a position in u chosen by player I in the first move (the proof is similar when 

starting with a position in v). Assume   
 p. 

 

Case 1: p is among p1, …, ps, i.e., p=pi for some i, 1 ≤ i ≤ s. Since (1) holds, we can consider q = qi. (2) implies 

that   
 q. 

 

Case 2: p   u(pi, pi+1) for some i, 1 ≤ Ii≤ s - 1. From (3), there is q   v(qi,qi+1) such that   
 q. In either case, (1), 

(2), (3) and the choice of q imply that u(p, |u| ~(m) v(q, |v|] and u[1, p) ~(m) v[1, q). 

 

Conversely, assume u ~(1, m) v. (1) and (2) obviously hold. Also, u(pi, pi+1) ~(1) v(qi, qi+1) for 1 ≤ i ≤ s-1. To 

see this, let p be in u(pi, pi+1) (the proof is similar when starting with q in v(qi, qi+1)). Consider the following 

play of the game  (1, m)(u, v). Player I, in the first move, chooses p. Hence there exists q in v such that u(p, |u|] 

~(m) v(q, |v|] and u[1, p) ~(m) v[1, q). Assume that q   v(qi, qi+1). Hence q   v[1, qi] or q   v[qi+1, |v|]. From the 

choice of the pi and the qi, either u(p, |u|]  (m) v(q, |v|] or u[1, p)  (m) v[1, q). Contradiction. The result 

follows.  

 

Proposition 3.2. Let m ≥ 1. Let u, v   A*. If u ~(1, m) u, then there exists w   A* such that u is a subword of w, v 

is a subword of w and u ~(1, m) w ~(1,m) v. 

 

Proof. Let A = {a1, …, ar}. If r =1, u=v or |u|, |v| ≥  (1, m) by Section 2. For r > l, let p1, …, ps (p1< ••• <ps) be 

the positions which spell the first and last occurrences of every subword of length ≤m in u. s is no more than 2m 

(r + 1)
m
. Assume     

 pi. Since u ~(1,m) v, by Lemma 3.1, the positions q1, ...,qs (q1 < ••• < qs) in v which spell 

the first and last occurrences of every subword of length ≤m in v are such that     

 qi for 1 ≤ i ≤ s and u(pi, pi+1) 

~(1) v(qi, qi+1) for 1 ≤ i ≤ s-1. Hence by Lemma 2.3, since u(pi, pi+1) ~(1) v(qi, qi+1), there exists wi such that u(pi, 

pi+1) is a subword of wi, v(qi, qi+1) is a subword of wi and u(pi, pi+1) ~(1) wi ~(1) v(qi, qi+1). Let w =    w1    w2 

…      
ws-1   . u is a subword of w, v is a subword of w and u ~(1, m) w ~(1, m) v by Lemma 3.1.  

 

Now, let us define classes of equations as follows. For m≥ 1,       
  is a class of equations consisting of 

u1 … umxyv1 … vm = u1 … umyxv1 … vm 

where the u and the v are of the form x
e
y, y

e
x, xy

e
 or yx

e
 for some e, 1 ≤ e ≤  (1, m). The equation (xy)

m
 xy(xy)

m
 

= (xy)
m
yx(xy)

m
 is an example. 

 

      
  consists of the equations 

u1 … uix
m-i

xx
m-j

v1 … vj = u1 … uix
m-i

x
2
x

m-j
v1 … vj 

where the u and the v are as above and 0 ≤ i, j ≤ m. The equation (xy)
m
x(xy)

m
 = (xy)

m
x

2
(xy)

m
 is an example. 

 

Note that the equations in       
  are of the form w1xyw2 = w1yxw2 and the ones in       

  of the form w3xw4 = 

w3x
2
w4. Recall from Section 1 that xy = yx and x = x

2 
are the defining equations for V1,1. 

 

Theorem 3.3. Every monoid in V2,1 satisfies       
        

  for all sufficiently large m. 

 

Proof. It is easily seen, using Lemma 3.1, that monoids in V2,1 satisfy       
        

  for some m ≥ l. This comes 

from the fact that if M   V2,1, then M < A* /~(1, m) for some m ≥ 1. Since A*/~(1,m) satisfies       
        

 , M 

satisfies       
        

 . Moreover, if M in V2,1 satisfies       
        

  for some m ≥ 1, then it satisfies 

      
        

  for all n ≥ m since ~(1, n)   ~(1, m) for those n.  

 

3.2. Equations and the V2,m where m > 1 

This subsection generalizes the equation systems of the preceding subsection so that the generalized equations 



are satisfied in the V2,m. 

 

Lemma 3.4. Let ml>l, m2 ≥ 1. Let u,v   A
+
 and let p1, …, ps in u (p1 < ••• < ps) q1,...,   , in v (q1< ••• <    ) be 

the positions which spell the first and last occurrences of every subword of length ≤m2 in u (v). u ~(m1,m2)v if 

and only if 

(1) s=s', 

(2)   
 pi if and only if   

 qi, a   A for 1 ≤ i ≤ s, 

(3) u(pi,pi+1) ~(m1-2,m2)v(qi, qi+1) for 1 ≤ i ≤ s - 1, 

(4) for 1 ≤ i ≤s-1 and for every   
 , …,      

     u(pi, pi+1) (  
  < … <     

 ), there exist   
 , …,      

     

v(qi,qi+1) (  
  < … <      

 ) such that 

(1')   
   

  if and only if   
   

 , a   A for 1 ≤ j ≤ m1 - 1, 

(2') u(  
 ,     

  ) ~(m2) v(  
 ,     

 ) for 1 ≤ j ≤ m1- 2 and 

(3') u(pi,   
 ) ~(m2) v(qi,   

 ). 

 

Also, there exist   
 ,...,     

    v(qi, qi+1) (which may be different from the positions which satisfy (1'), (2') and 

(3')) (  
  < …<     

 ) such that (1'), (2') and (3") u(     
 , pi+1) ~(m2) v(     

  , qi+1) hold. Similarly, for every 

  
 , …,      

    v(qi, qi+1) (  
 < …<      

 ), there exist   
 , …,      

    u(pi, pi+1) (  
 < … <      

 ) such that 

(1'), (2'), (3') hold (also (1'), (2'), (3") hold) and 

(5) for 1 ≤ i ≤ s – 1 and for every   
 ,...,    

    u(pi, pi+1) (  
  < … <    

 ,), there exist     
 ,...,    

    v(qi, 

qi+1)(   
  < … <    

 ) such that 

(1´´´)   
   

  if and only if   
   

 , a    A for 1≤ j ≤ m1 and 

(2´´´) u(  
      

 ) ~(m2) v(  
 ,     

 ) for 1 ≤ j ≤ m1 - 1. 

 

Similarly, for every   
 ,...,    

   v(qi, qi+1) (  
  < … <   

 ), there exist   
 , …,    

    u(pi, pi+1)(  
  < … <   

 ) 

such that (1''') and (2''') hold. 

 

Proof. Assume (1), (2), (3), (4) and (5) hold. A winning strategy for player II in the game  (m1,m2)(u, v) to win 

each play is described as follows. Let   
 , …,    

 (  
  ≤ ••• ≤    

 ) be positions in u chosen by player I in the first 

move (the proof is similar when starting with positions in v). 

 

Case 1. If some of the   
  are among p1, …, ps, then for such a   

 , there exists ij, 1 ≤ ij ≤ s such that   
  =    

. For 

such a   
 , since (1) holds, we may consider   

  =    
. (2) implies that   

   
  if and only if   

   
 . 

 

Case 2. If   
 ,     

 , …,     
    u(pi, pi+1) for some i, 1 ≤ i ≤ s- 1, 1 ≤ j ≤ j + 1 ≤ ml and l ≤ m1 - 3,   

 , …,     
   

u[1, pi] and       
 ,...,    

    u[pi+1, |u|], then from (3), there exist   
 ,     

 , …,     
    v(qi, qi+1) (  

  ≤     
  … 

≤     
 ) such that   

   
  if and only if   

   
  for j ≤ r ≤ j + 1, u(  

 ,     
 ) ~(m2) v(  

 ,     
 ) for j ≤ r ≤ j + l -1, 

u(pi,   
 ) ~(m2) v(qi,   

 ) and u(    
 , pi+1) ~(m2) v(    

 , qi+1). 

 

Case 3. If   
 ,     

 , …,        
    u(pi, pi+1) and   

  < … <        
  for some i, 1 ≤ i ≤ s - 1 (j = 1 and    

       

u[pi+1, |u]) (j= 2 and   
    u[1, pi] is similar), then from (4), there exist   

 , …,      
    v(qi, qi+1) (  

  < … < 

     
 ) such that (1'), (2') and (3") hold. 

 

Case 4. If   
 , ...,    

    u(pi, pi+1) and   
  < … <    

  for some i, 1 ≤ i ≤ s - 1, then from (5), there exist   
 , …, 

   
   v(qi, qi+1) (  

  < … <    
 ) such that (1''') and (2''') hold. 

 

From the choice of the pi, qi and   
 , …,    

 ,   
 , …,    

   v are such that   
  ≤ … ≤    

 ,   
   

  if and only if 

  
   

 , a   A for 1 ≤ j ≤ m1, u[1,   
 ) ~(m2) v[1,   

 ), u(  
 ,     

 ) ~(m2) v(  
 ,     

 ) for 1 ≤ j ≤ m1 -1 and u(   
 , |u|] 

~(m2) v(   
 , |v|]. By Lemma 2.1, u ~(m1, m2) v. 



Conversely, assume u ~(m1, m2) v. (1) and (2) obviously hold. (3) holds. To see this, let   
 , …,      

  (  
  ≤ … 

≤      
 ) in u(pi, pi+1) (the proof is similar when starting with   

 , … ,      
  in v(qi, qi+1)). Consider the 

following play of the game  (m1, m2)(u, v). Player I, in the first move, chooses pi,   
 , …,      

 , pi+1. Hence 

there exist   
 , …,      

  (  
  ≤ … ≤      

 ) in v(qi, qi+1) such that u(pi,   
 ) ~(m2) v(qi,   

 ), u(  
 ,     

 ) ~(m2) 

v(  
 ,     

 ) for 1 ≤ j ≤ m1 - 3 and u(     
 , pi+1) ~(m2) v(     

 , qi+1) (note that from the choice of the pi and the 

qi,   
 , …,      

  must be in v(qi, qi+1)) (4) and (5) similarly follow.  

 

We are now interested in the M-varieties      
 for m1 > 1. For m2 ≥ 1,         

  is a class of equations consisting 

of 

u1 ...    
(xy            (xy)( yx            v1 …    

 

= u1 …    
(xy            (yx)(yx            v1 …    

  

where the u and the v are of the form x
e
y, y

e
x, xy

e
 or yx

e
 for some e, 1 ≤ e ≤  (m1, m2). The equation 

(xy   (xy            (xy)(yx            (xy    

 = (xy   (xy            (yx)(yx            (xy    

is an example. 

 

        
  consists of the equations 

u1 … ui                      v1 … vj 

= u1 … ui                        v1 … vj 

where the u and the v are as above and 0 ≤ i, j ≤ m2. The equation 

(xy               (xy    = (xy                 (xy    

is an example. 

 

Theorem 3.5. Let m1 ≥ 1. Every monoid in      
 satisfies         

           
  for all sufficiently large m2. 

 

Proof. Similar to Lemma 3.3 using the preceding lemma. The power m1 + (m1—l)m2 in         
  comes from 

condition (5) in Lemma 3.4.  

 

4. On the dot-depth of the A* / ~(m1, …, mk) 

Let A contain at least two letters. Let k ≥ 1. Let m1, …, mk be positive integers. We are interested in the problem 

of finding necessary and sufficient conditions for A* / ~(m1, …, mk) to be of dot-depth exactly d. This section 

gives conditions on m1, …, mk for d=1 and d=2. Also, we show that for k ≥ 3, and mi ≥ 2 for 2 ≤ i ≤ k - 1, A*/ 

~(m1,...,mk) is of dot-depth exactly k. Other results about upper bounds and lower bounds are also discussed. 

 

Theorem 4.1. Let k ≥ 1. Let m1, …, mk be positive integers. A*/ ~(m1, ...,mk) is of dot-depth exactly 1 if and only 

if k =1. 

 

Proof. We show that for ml, m2 ≥ 1, there is no m > 0 such that A*/ ~(m1, m2) satisfies the equation um = (xy)
m
 = 

(yx)
m
 = vm, where x and y are arbitrary distinct letters. We illustrate a winning strategy for player I. (I, i) ((II, i)) 

denotes a position chosen by player I (II) in the ith move, I = 1,2. Let N ≥  (m1, m2). 

 
Player I, in the first move, chooses the last x in vN. Player II, in the first move, has to choose the last x in uN (if 

not, player I in the second move could win by choosing the last x in uN). Player I, in the second move, chooses 

the last y in uN. Player II, in the second move, cannot choose a y in vN to the right of the previously chosen 

position in vN. Hence II loses.  

 



Theorem 4.2. Let k ≥ 3. Let mi, 1 ≤ i ≤ k be positive integers and mi ≥ 2 for 2 ≤ i ≤ k —1. Then A*/ ~(m1,...,mk) is 

of dot-depth exactly k. 

 

Proof. Let m>0. Consider um= (x
(k - 1) 

y
(k – 1)

)
m
, vm = (y

(k - 1)
x

(k - 1)
) 

m
 (here, x

(1) 
= x, y

(1) 
= y and x

(r+1)
 =  

(x
(r)

y
(r)

)
m
x

(r)
(x

(r)
y

(r)
)
m
, y

(r+1)
 = (x

(r)
y

(r)
)
m
y

(r)
(x

(r)
y

(r)
)
m
). A result of Straubing [191 implies that monoids in Vk-1 satisfy 

um = vm for all sufficiently large m. However, for every N ≥  (1,2, ...,2,1) where (1,2, …, 2, 1) is a k- tuple, uN 

 (1,2, ...,2,1) vN. A winning strategy for player I in the game  (1, 2, ...,2,1)(uN, vN) is as follows. (I, i) ((II, i)) 

denotes a position chosen by player I (II) in the ith move, i = 1, …, k. Let N ≥  (m1, …, mk). Using x
N
 ~(m1, …, 

mk) x
N+1 

(Section 2), one sees that 

 
where M1 + M2 = N— 2. Player I, in the first move, chooses the middle x of the last x

(k-2) 
followed immediately 

by an x
(k-2)

 in vN. Player II, in the first move, has to choose the middle x of the last x
(k-2)

 followed immediately 

by an x
(k-2) 

in uN (if not, player I in the next k-1 moves could win by choosing in the second move the middle x 

of the last two consecutive x
(k-2)

 in uN). Player I, in the second move, chooses the middle y of the last two 

consecutive y
(k-2) 

in uN. Player II, in the second move, cannot choose the middle y of the last two consecutive y
(k-

2)
 in vN to the right of the previously chosen position. Hence he is forced to choose two y

(k-2) 
by an x

(k-2)
. Player I, 

in the third move, chooses the middle x of the last two consecutive x
(k-3)

 in vN between the positions chosen in 

the preceding move by II. Player II, in the third move, cannot chose the middle x of the last two consecutive   

x
(k-3)

 in uN between the previously choosen position by I. Hence he  is forced to choose two x
(k-3) 

separated by an 

y
(k- 3)

 and so on. Player I, in the (k – 1)th move, chooses the last two consecutive x (or y) in vN (or uN) between 

the chosen positions in the preceding move by II. Player II, in the (k— 1)th move, is forced to choose two x (or 

y) in uN (or vN) separated by a y (or an x). Player I, in the last move, selects that y (or x). Player II loses since he 

cannot choose a y (or x) between the two consecutive x chosen in the (k – 1)th move by I. The result follows. 

 

Note that the infinity of the Straubing hierarchy for an alphabet of at least two letters follows from the 

preceding theorem. 

 

Theorem 4.3. Let k ≥ 2 and d be the dot-depth of A*/ ~(m1, …, m2k-2). Then k ≤ d ≤ 2k – 2. 

 

Proof. For k ≥ 3, the upper bound follows from the congruence characterization of V2k-2. Now, by Lemma 2.2, 

 

~(1,       ⏟     1)   (1,       ⏟         

      2k – 4       k – 2 

If 

 



 
is of dot-depth k. For k = 2, the result follows from Theorem 4.1.  

 

Theorem 4.4. Let k ≥ 1. Let m1, …, mk be positive integers. A*/ ~(m1,...,mk) is of dot-depth exactly 2 if and only 

if 

(1) k = 2 or 

(2) k = 3 and m2=1. 

 

Proof. A result of [1] states that A*/ ~(m1, m2, m3) is of dot-depth exactly 2 if and only if m2= 1. The theorem 

follows from that result, Theorems 4.1 and 4.3 and the fact that uN = (x
(2)

y
(2)

)
N
, vN = (y

(2)
x

(2)
)
N
 for N ≥  (1, 2, 1) 

in Theorem 4.2 are such that uN = (1,2, 1)vN and hence uN  (1,1, 1, 1)vN by Lemma 2.2.  

 

Other upper and lower bounds results follow for monoids like A*/ ~(1, 1,1,2,1). Since ~(1,1,1,2, 1)   ~(1,3,2, 1) 

by Lemma 2.2, and A*/ ~(1,3,2,1) is of dot-depth exactly 4 by Theorem 4.2, A*/ ~(1, 1, 1,2, 1) is of dot-depth  ≥ 

4 and ≤ 5. Similarly, for A*/ ~(1,2, 1, 1, 1), 
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