CORE

Games, equations and dot-depth two monoids

By: F. Blanchet-Sadri
Blanchet-Sadri, F. (1992) Games, equations and dot-depth two monoids, Discrete Applied Mathematics 39, 99111.

Made available courtesy of Elsevier: http://www.elsevier.com

$* * *$ Reprinted with permission. No further reproduction is authorized without written permission from
Elsevier. This version of the document is not the version of record. Figures and/or pictures may be
missing from this format of the document. $* * *$

Abstract:

Given any finite alphabet A and positive integers m_{1}, \ldots, m_{k}, congruences on A^{*}, denoted by $\sim\left(m_{1}, \ldots, m_{k}\right)$ and related to a version of the Ehrenfeucht-Fraisse game, are defined. Level k of the Straubing hierarchy of
 level 2 and equation systems satisfied in the corresponding varieties of monoids are defined. For $A \geq 2$, a necessary and sufficient condition is given for $A^{* / \sim}\left(m_{1}, \ldots, m_{k}\right)$ to be of dot-depth exactly 2 . Upper and lower

Article:

1. Introduction

In this paper, we present results relative to the characterization of dot-depth k monoids. This topic is of interest from the points of view of formal language theory, symbolic logic and complexity of boolean circuits. The results are obtained by a technical and detailed use of a version of the Ehrenfeucht-Fraisse game.

Let A be a given finite alphabet. The regular languages over A are those subsets of A^{*}, the free monoid generated by A, constructed from the finite languages over A by the boolean operations, the concatenation product and the star. The star-free languages are those regular languages which can be obtained from the finite languages by the boolean operations and the concatenation product only. According to Schützenberger [17], L $\subseteq A^{*}$ is star-free if and only if its syntactic monoid $M(L)$ is finite and aperiodic. General references on the starfree languages are McNaughton and Papert [12], Eilenberg [8] or Pin [14].

Natural classifications of the star-free languages are obtained based on the alternating use of the boolean operations and the concatenation product. Let $A^{+}=A^{*} \backslash\{1\}$, where 1 denotes the empty word. Let

$$
\begin{aligned}
& A^{+} \mathscr{B}_{0}=\left\{L \subseteq A^{+} \mid L \text { is finite or cofinite }\right\}, \\
& A^{+} \mathscr{B}_{k+1}=\left\{L \subseteq A^{+} \mid L\right. \text { is a boolean combination of languages of the } \\
& \\
& \left.\quad \text { form } L_{1} \ldots L_{n}(n \geq 1) \text { with } L_{1}, \ldots, L_{n} \in A^{+} \mathscr{B}_{k}\right\} .
\end{aligned}
$$

Only nonempty words over A are considered to define this hierarchy; in particular, the complement operation is applied with respect to A^{+}. The language classes $A^{+} \mathcal{B}_{0}, A^{+} \mathcal{B}_{1} \ldots$ form the so-called dot-depth hierarchy introduced by Cohen and Brzozowski in [6]. The union of the classes $A^{+} \mathcal{B}_{0}, A^{+} \mathcal{B}_{1}, \ldots$ is the class of star-free languages.

Our attention is directed toward a closely related and more fundamental hierarchy, this one in A^{*}, introduced by Straubing in [20]. Let

$$
\begin{aligned}
& A^{*} \mathscr{V}_{0}=\left\{\emptyset, A^{*}\right\} \quad \text { where } \emptyset \text { is the empty set, } \\
& A^{*} \mathscr{V}_{k+1}=\left\{L \subseteq A^{*} \mid L\right. \text { is a boolean combination of languages of the } \\
& \text { form } L_{0} a_{1} L_{1} a_{2} \ldots a_{n} L_{n}(n \geq 0) \text { with } L_{0}, \ldots, L_{n} \in \\
& \left.A^{*} \mathscr{V}_{k} \text { and } a_{1}, \ldots, a_{n} \in A\right\} .
\end{aligned}
$$

Let $A^{*} \mathcal{V}=\mathrm{U}_{k \geq 0} A^{*} \mathcal{V}_{k} . L \subseteq A^{*}$ is star-free if and only if $L \in A^{*} \mathcal{V}_{k}$ for some $\mathrm{k} \geq 0$. The dot-depth of L is the smallest such k.

For $\mathrm{k} \geq 1$, let us define subhierarchies of $A^{* \mathcal{V}}$ as follows: for all $m \geq 1$, let

$$
\begin{aligned}
& A^{*} \mathscr{V}_{k, m}=\left\{L \subseteq A^{*} \mid L\right. \text { is a boolean combination of languages of the } \\
& \\
& \text { form } L_{0} a_{1} L_{1} a_{2} \ldots a_{n} L_{n}(0 \leq n \leq m) \text { with } L_{0}, \ldots, L_{n} \in \\
& \left.A^{*} V_{k-1} \text { and } a_{1}, \ldots, a_{n} \in A\right\} .
\end{aligned}
$$

We have $\mathrm{A}^{*} \mathcal{V}_{k}=\cup_{m \geq 1} A^{*} \mathcal{V}_{k, m}$. Easily, $\mathrm{A}^{*} \mathcal{V}_{k, m} \subseteq A^{*} \mathcal{V}_{k+1, m}, A^{*} \mathcal{V}_{k, m} \subseteq A^{*} \mathcal{V}_{k, m+1}$. Similarly, subhierarchies of A^{+} \mathcal{B}_{k} can be defined. In $A^{+} \mathcal{B}_{1}$ several hierarchies and classes of languages have been studied; the most prominent examples are the β-hierarchy [5], also called depth-one finite cofinite hierarchy, and the class of locally testable languages.

\mathcal{W} is a *-variety of languages if

(1) for every finite alphabet $A, A^{*} \mathcal{W}$ denotes a class of recognizable (recognizable means recognizable by a finite automaton or regular) languages over A closed under boolean operations,
(2) if $L \in A^{*} \mathcal{V}$ and $a \in A$, then $a^{-1} L=\left\{w \in A^{*} \mid a w \in L\right\}$ and $L a^{-1}=\left\{w \in A^{*} \mid w a \in L\right\}$ are in $A^{*} \mathcal{W}$, and
(3) if $L \in A^{*} \mathcal{W}$ and $\varphi: B^{*} \rightarrow A^{*}$ is a morphism, then $L \varphi^{-1}=\left\{w \in B^{*} \mid w \varphi \in L\right\} \in B^{*} \mathcal{W}$.

Eilenberg [8] has shown that there exists a one-to-one correspondence between *-varieties of languages and some classes of finite monoids called M-varieties. W is an M-variety if
(1) it is a class of finite monoids closed under division, i.e., if $M \in W$ and $M^{\prime}<M$ (<denotes the divide relationship between monoids), then $M^{\prime} \in W$, and
(2) it is closed under finite direct product, i.e., if $M, M^{\prime} \in W$, then $M \times M^{\prime} \in W$.

To a given *-variety of languages \mathcal{W} corresponds the M-variety $W=\left\{M(L) \mid L \in A^{*} \mathcal{W}\right.$ for some $\left.A\right\}$ and to a given M-variety W corresponds the *-variety of languages \mathcal{W} where $A^{*} \mathcal{W}=\left\{L \subseteq A^{*} \mid\right.$ there is $M \in W$ recognizing $L\}$. The Straubing hierarchy gives examples of $*$-varieties of languages. One can show that $\mathcal{V}, \mathcal{V}_{k}$ and $\mathcal{V}_{k, m}$ are $*$-varieties of languages. Let the corresponding M-varieties be denoted by V, V_{k} and $V_{k, m}$ respectively. V is the M-variety of aperiodic monoids. We have that for $L \in A^{*}, L \in A^{*} \mathcal{V}$ if and only if $M(L) \in$ V, for each $k \geq 0, L \in A^{*} \mathcal{V}_{k}$ if and only if $M(L) \in V_{k}$, and for $k \geq 1, m \geq 1, L \in A^{*} \mathcal{V}_{k, m}$ if and only if $M(L) \in V_{k, m}$.

An outstanding open problem is whether one can decide if a star-free language has dot-depth k , i.e., can we effectively characterize the M-varieties V_{k} ? The variety V_{0} consists of the trivial monoid alone, V_{1} of all finite \mathcal{J} trivial monoids [181. Straubing [21] conjectured an effective characterization, based on the syntactic monoid of the language, for the case $k=2$. His characterization, formulated in terms of a novel use of categories in semigroup theory recently developed by Tilson [24], is shown to be necessary in general, and sufficient for an alphabet of two letters.

In the framework of semigroup theory, Brzozowski and Knast [4] showed that the dot-depth hierarchy is infinite. Thomas [231 gave a new proof of this result, which shows also that the Straubing hierarchy is infinite, based on a logical characterization of the dot-depth hierarchy that he obtained in [221 (Perrin and Pin [131 gave one for the Straubing hierarchy) and the following version of the Ehrenfeucht-Fraisse game.

First, one regards a word $w \in A^{*}$ of length $|w|$ as a word model $w=\left\langle\{1, \ldots,|w|\},<^{w}\left(Q_{a}^{w}\right)_{a \in A}\right)>$ where the universe $\{1, \ldots,|w|\}$ represents the set of positions of letters in $w,<{ }^{w}$ denotes the <-relation in w, Q_{a}^{w} are unary relations over $\{1, \ldots,|w|\}$ containing the positions with letter a, for each $a \in A$. For a sequence $\bar{m}=\left(m_{1}, \ldots, m_{k}\right)$ of positive integers, where $k \geq 0$, the game $\mathcal{G} \bar{m}(u, v)$ is played between two players I and II on the word models u and v. A play of the game consists of k moves. In the i th move, player I chooses, in u or in v, a sequence of m_{1} positions; then player II chooses, in the remaining word, also a sequence of m_{1} positions. After k moves, by
concatenating the sequences chosen from u and v, two sequences $p_{1} \ldots p_{n}$ from u and $q_{1} \ldots q_{n}$ from v have been formed where $n=m_{1}+\ldots+m_{k}$. Player II has won the play if $p_{i}<^{u} p_{j}$ if and only if $q_{i}<^{v} q_{j}$, and $Q_{a}^{u} p_{i}$ if and only if $Q_{a}^{v} q_{i}, a \in A$ for $1 \leq i, j \leq n$. If there is a winning strategy for player II in the game $\mathcal{G} \bar{m}(u, v)$ to win each play we write $u \sim \bar{m} v .-\bar{m}$ naturally defines a congruence on A^{*} which we denote also by $-\bar{m}$. The standard EhrenfeuchtFraisse game [7] is the special case $\mathcal{G}(1, \ldots, 1)(u, v)$. Thomas [22,231 and Perrin and Pin [13] infer the following congruence characterization of the $A^{*} V_{k}$ and the $A^{*} V_{k, m}$, i.e., $L \in A^{*} \mathcal{V}_{k}$ if and only if L is a union of classes of some $\sim\left(m_{1}, \ldots, m_{k}\right)$ and $L \in A^{*} \mathcal{V}_{k, m}$ if and only if L is a union of classes of some $\sim\left(m, m_{2}, \ldots, m_{k}\right)$. This implies the following congruence characterization of the V_{k} and the $V_{k, m}$, i.e., $V_{k}=\left\{A^{*} / \sim \sim \sim \sim \sim\left(m_{1}, \ldots, m_{k}\right)\right.$ for some $\left.m_{i}, i=1, \ldots, k\right\}$, and $V_{k, m}=\left\{A^{\left.* / / \sim \sim \supseteq \sim\left(m, m_{2}, \ldots, m_{k}\right) \text { for some } m_{i}, i=2, \ldots, k\right\} . \text { In [2], it was shown that } 1 \sim 2}\right.$ for fixed $\left(m_{1}, \ldots, m_{k}\right)$, it is decidable if a language is a union of some classes of $\sim\left(m_{1}, \ldots, m_{k}\right)$, or, equivalently, it

Let $u, v \in A^{*}$. A monoid M satisfies the equation $u=v$ if and only if $u \varphi=v \varphi$ for all morphisms : $A^{*} \rightarrow M$. One can show that the class of monoids M satisfying the equation $u=v$ is an M-variety, denoted by $W(u, v)$. Let $\left(u_{n}\right.$, $\left.v_{n}\right)_{n>0}$ be a sequence of pairs of words of A^{*}. Consider the following M-varieties: $W^{\prime}=\bigcap_{n>0} W\left(u_{n}, v_{n}\right)$ and $W^{\prime \prime}=$ $U_{m>0} \bigcap_{n \geq m} W\left(u_{n}, v_{n}\right)$. We say that $W^{\prime}\left(W^{\prime \prime}\right)$ is defined (ultimately defined) by the equations $u_{n}=v_{n}(n>0)$: this corresponds to the fact that a monoid M is in $W^{\prime}\left(W^{\prime \prime}\right)$ if and only if M satisfies the equations $u_{n}=v_{n}$ for all $n>0$ (for all n sufficiently large). The equational approach to varieties is discussed in Eilenberg [8]. Eilenberg showed that every M-variety is ultimately defined by a sequence of equations. For example, the M-variety V of aperiodic monoids is ultimately defined by the equations $x^{n}=x^{n+1}(n>0)$. The M-variety V_{1} is ultimately defined by the equations $(x y)^{m}=(y x)^{\mathrm{m}}$ and $x^{m}=x^{m+1}(m>0)$. This gives a decision procedure for V_{1}, i.e., $M \in V_{1}$ if and only if for all $x, y \in M,(x y)^{m}=(y x)^{m}$ and $x^{m}=x^{m+1}$ with m the cardinality of M. One can show that every M variety generated by a single monoid is defined by a (finite or infinite) sequence of equations. $V_{1, m}$ being generated by $A^{*} / \sim(m)$, are the M-varieties $V_{1, m}$ defined by a finite sequence of equations? An attempt to answer this open problem was made in [3]. There, systems of equations were defined which are satisfied in the $V_{t, m}$ ($[10,11]$ provide an equation system for level 1 of the dot-depth hierarchy). It was shown that those equation systems characterize completely $V_{1,1}, V_{1,2}$ and $V_{1,3}$. More precisely, $V_{1,1}$ is defined by $x=x^{2}$ and $x y=y x, V_{1,2}$ by $x y z x=x y x z x$ and $(x y)^{2}=(y x)^{2}$, and $V_{1,3}$ by $x z y x v x w y=x z x y x v x w y, y w x v x y z x=y w x v x y x z x$ and $(x y)^{3}=(y x)^{3}$.

This paper is concerned with applications of the above mentioned congruence characterization of the V_{k} and the $V_{k, m}$. Other applications appear in [1-3]. [2] answers a conjecture of Pin [15] concerning tree hierarchies of monoids. The problem of finding equations satisfied in the $V_{2, m}$ problem related to the effective characterization of the $V_{2, m}$ and hence of V_{2}, is the subject of Section 3. More precisely, systems of equations are defined which are satisfied in the $V_{2, m}$. In Section 4, we are interested in the following question: for an alphabet of at least two letters, find a necessary and sufficient condition for $A^{* / \sim}\left(m_{1}, \ldots, m_{k}\right)$ to be of dot-depth exactly d. Such a condition is given for $d=1$ and $d=2$. It is also shown that for all sufficiently large $m_{i}, \mathrm{~A} * / \sim\left(m_{1}, \ldots, m_{k}\right)$ is of dotdepth exactly k. The proofs rely on some properties of the congruences $\sim \bar{m}$ stated in the next section. The reader is referred to the books by Pin [14] and Enderton [9] for all the algebraic and logical terms not defined in this paper.

2. Some properties of the $\sim \bar{m}$

2.1. An induction lemma

The following lemma is a basic result (similar to one in [16] regarding $\sim(1 \ldots . . \mathrm{I})$) which allows to resolve games with $k+1$ moves into games with k moves and thereby allows to perform induction arguments. In what follows, $u[1, p)(u(p,|u|])$ denotes the segment of u to the left (right) of position p and $u(p, q)$ the segment of u between positions p and q.

Lemma 2.1. Let $\bar{m}=\left(m_{1}, \ldots, m_{k}\right) . u \sim\left(m, m_{1}, \ldots, m_{k}\right) v$ if and only if
(1) for every $p_{1}, \ldots, p_{m} \in u\left(p_{1} \leq \ldots \leq p_{m}\right)$ there are $q_{i}, \ldots, q m \in v\left(q_{1} \leq \ldots \leq q_{m}\right)$ such that
(i) $Q_{a}^{u} p_{i}$ if and only if $Q_{a}^{v} q_{i}, a \in A$ for $1 \leq i \leq m$,
(ii) $u\left[1, p_{1}\right) \sim \bar{m} v\left[1, q_{1}\right)$,
(iii) $u\left(p_{i}, p_{i+1}\right) \sim \bar{m} v\left(q_{i}, q_{i+1}\right)$ for $1 \leq 1 \leq m-1$,
(iv) $u\left(p_{m},|u|\right] \sim \bar{m} v(q m,|v|]$ and
(2) for every $q_{1}, \ldots, q_{m} \in v\left(q_{1} \leq \ldots \leq q_{m}\right)$ there are $p 1, \ldots, p m \in u\left(p_{1} \leq \ldots \leq p_{m}\right)$ such that (i), (ii), (iii) and (iv) hold.

2.2. An inclusion lemma

Define $\mathcal{N}\left(m_{1}, \ldots, m_{k}\right)=\left(m_{1}+1\right) \ldots\left(m_{k}+1\right)-1$. We can show that $x^{N} \sim\left(m_{1}, \ldots, m_{k}\right) x^{N+1}\left(N=\mathcal{N}\left(m_{1}, \ldots, m_{k}\right)\right)$ and that N is the smallest n such that $x^{n} \sim\left(m_{1}, \ldots, m_{k}\right) x^{n+1}$ for $|x|=1$ (the proof is similar to the one of a property of $\sim(1, \ldots, 1)$ in [23]). It follows that if $u, v \in A^{*}$ and $u \sim\left(m_{1}, \ldots, m_{k}\right) v$, then $|u|_{a}=|v|_{a}<\mathcal{N}\left(m_{1}, \ldots, m_{k}\right)$ or $|u|_{a},|v|_{a} \geq$ $\mathcal{N}\left(m_{1}, \ldots, m_{k}\right)$ (here $|w|_{a}$ denotes the number of occurrences of the letter a in $\left.w\right)$. The following lemma follows easily from Lemma 2.1 and the above remarks.

Lemma 2.2. $\sim\left(m_{l}, \ldots, m_{k}\right) \subseteq \sim\left(\mathcal{N}\left(m_{1}, \ldots, m_{k}\right)\right)$, and $\sim\left(m_{1}, \ldots, m_{k}\right) \nsubseteq \sim\left(\mathcal{N}\left(m_{1}, \ldots, m_{k}\right)+1\right)$. If $k \leq k^{\prime}$ and $\exists 0=j_{0}<$ $\ldots<j_{k-1}<j_{k}=k^{\prime}$ such that $m_{i} \leq \mathcal{N}\left(m_{j}^{\prime} \quad, \ldots, m_{i}^{\prime}\right)$ for $1 \leq i \leq k$, then $\sim\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right) \subseteq \sim\left(m_{1}, \ldots, m_{k}\right)$.

2.3. Some combinatorial lemmas

We will need the following combinatorial properties of the congruences $\sim(m)$.
Lemma 2.3 (Simon [181). Let $m \geq 1$. Let $u, v \in A^{*}$. If $u \sim(m) v$, then there exists $w \in A^{*}$ such that u is a subword of w, v is a subword of w and $u \sim(m) w \sim(m) v\left(a\right.$ word $a_{1} \ldots a_{n}$ (where a_{1}, \ldots, a_{n} are letters) is a subword of w if there exist words w_{0}, \ldots, w_{n} such that $\left.w=w_{0} a_{1} w_{1} a_{2} \ldots a_{n} w_{n}\right)$.

Lemma 2.4 (Simon [18]). Let $m \geq 1$. Let $u, v \in A^{*}$. Then
(1) $u \sim(m) u v$ if and only if there exist $u_{1}, \ldots, u_{m} \in A^{*}$ such that $u=u_{1} \ldots u_{m}$ and $v \alpha \subseteq u_{m} \alpha \subseteq \ldots \subseteq u_{1} \alpha$ (here $w \alpha$ denotes the set of letters in w).
(2) $u \sim(m) v u$ if and only if there exist $u_{1}, \ldots, u_{m} \in A^{*}$ such that $u=u_{1} \ldots u_{m}$ and $v \alpha \subseteq u_{1} \alpha \subseteq \ldots \subseteq u_{m} \alpha$.
3. Equations and the $\boldsymbol{V}_{2, m}$

Simon's effective characterization of V_{1} [18] depends on a detailed study of combinatorial properties of the congruences $\sim(m)$ (like those in Lemmas 2.3 and 2.4). A monoid M in V_{1} satisfies $(x y)^{m}-(y x)^{m}$ and $x^{m}=x^{m+1}$ for some m since $M<A^{*} / \sim(m)$ for some m and $(x y)^{m} \sim(m)(y x)^{m}$ and $x^{m} \sim(m) x^{m+1}$. It turns out that these two equations form a complete system of equations for V_{1}. Subsection 3.1 studies some combinatorial properties of the congruences $\sim(1, m)$ and gives equations satisfied in $V_{2,1}$.

3.1. Equations and $V_{2,1}$

In the following, we talk about positions spelling the first and last occurrences of every subword of length $\leq m$ of a word w. We illustrate what we mean by this with the following example. Let $A=\{a, b, c\}$ and

$w=$	$a b c c c c a a b b a b b a c c c a b a b a b c c a a a a b b a a \ldots$.
	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \quad \uparrow \uparrow \uparrow \uparrow \quad \uparrow \uparrow \uparrow \uparrow$

p
The six arrows on the left point to the positions which spell the first occurrences of every subword of length ≤ 2 in $w[1, p$) and the eight arrows on the right (before the one pointing to p) to the positions which spell the last occurrences of every subword of length ≤ 2 in $w[1, p)$.

Lemma 3.1. Let $m \geq 1$. Let $u, v \in A^{+}$and let p_{1}, \ldots, p_{s} in $u\left(p_{1}<\ldots<p_{s}\right)\left(q_{1}, \ldots, q s\right.$, in $\left.v\left(q_{1}<\ldots<q_{s}\right)\right)$ be the positions which spell the first and last occurrences of every subword of length $\leq m$ in $u(v) . u \sim(1, m) v$ if and only if
(1) $s=s^{\prime}$
(2) $Q_{a}^{u} p_{i}$ if and only if $Q_{a}^{v} q_{i}, a \in A$ for $1 \leq i \leq s$ and
(3) $u\left(p_{i}, p_{i+1}\right) \sim(1) v\left(q_{i}, q_{i+1}\right)$ for $1 \leq i \leq s-1$.

Proof. Assume (1), (2) and (3) hold. A winning strategy for player II in the game $\mathcal{G}(1, m)(u, v)$ to win each play is described as follows. Let p be a position in u chosen by player I in the first move (the proof is similar when starting with a position in v). Assume $Q_{a}^{u} p$.

Case 1: p is among p_{1}, \ldots, p_{s}, i.e., $p=p_{i}$ for some $i, l \leq i \leq s$. Since (1) holds, we can consider $q=q_{i}$. (2) implies that $Q_{a}^{v} q$.

Case 2: $p \in u\left(p_{i}, p_{i+1}\right)$ for some $i, l \leq I i \leq s-1$. From (3), there is $q \in v\left(q_{i}, q_{i+1}\right)$ such that $Q_{a}^{v} q$. In either case, (1), (2), (3) and the choice of q imply that $u(p,|u| \sim(m) v(q,|v|]$ and $u[1, p) \sim(m) v[1, q)$.

Conversely, assume $u \sim(1, m) v$. (1) and (2) obviously hold. Also, $u\left(p_{i}, p_{i+1}\right) \sim(1) v\left(q_{i}, q_{i+1}\right)$ for $1 \leq i \leq s-1$. To see this, let p be in $u\left(p_{i}, p_{i+1}\right)$ (the proof is similar when starting with q in $v\left(q_{i}, q_{i+1}\right)$). Consider the following play of the game $\mathcal{G}(1, m)(u, v)$. Player I, in the first move, chooses p. Hence there exists q in v such that $u(p,|u|]$ $\sim(m) \vee(q,|v|]$ and $u[1, p) \sim(m) v[1, q)$. Assume that $q \notin v\left(q_{i}, q_{i+1}\right)$. Hence $q \in v\left[1, q_{i}\right]$ or $q \in v\left[q_{i+1},|v|\right]$. From the choice of the p_{i} and the q_{i}, either $u(p,|\mathrm{u}|] \nsim(m) v(q,|v|]$ or $u[1, p) \nsim(m) v[1, q)$. Contradiction. The result follows.

Proposition 3.2. Let $m \geq 1$. Let $u, v \in A^{*}$. If $u \sim(1, m) u$, then there exists $w \in A^{*}$ such that u is a subword of w, v is a subword of w and $u \sim(1, m) w \sim(1, m) v$.

Proof. Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$. If $r=1, u=v$ or $|u|,|v| \geq \mathcal{N}(1, m)$ by Section 2. For $r>1$, let $p_{1}, \ldots, p_{s}\left(p_{1}<\cdots<p_{s}\right)$ be the positions which spell the first and last occurrences of every subword of length $\leq m$ in $u . s$ is no more than $2 m$ $(r+1)^{m}$. Assume $Q_{a_{j_{1}}}^{u} p_{\text {. }}$. Since $u \sim(1, m) v$, by Lemma 3.1, the positions $q_{1}, \ldots, q_{s}\left(q_{1}<\cdots<q_{s}\right)$ in v which spell the first and last occurrences of every subword of length $\leq m$ in v are such that $Q_{a_{j_{1}}}^{v} q_{i}$ for $1 \leq i \leq s$ and $u\left(p_{i}, p_{i+1}\right)$ $\sim(1) v\left(q_{i}, q_{i+1}\right)$ for $1 \leq i \leq s-1$. Hence by Lemma 2.3, since $u\left(p_{i}, p_{i+1}\right) \sim(1) v\left(q_{i}, q_{i+1}\right)$, there exists w_{i} such that $u\left(p_{i}\right.$, $\left.p_{i+1}\right)$ is a subword of $w_{i}, v\left(q_{i}, q_{i+1}\right)$ is a subword of w_{i} and $u\left(p_{i}, p_{i+1}\right) \sim(1) w_{i} \sim(1) v\left(q_{i}, q_{i+1}\right)$. Let $\mathrm{w}=a_{j_{1}} w_{1} a_{j_{2}} w_{2}$ $\ldots a_{j_{s-1}} w_{s-1} a_{j_{s}} . u$ is a subword of w, v is a subword of w and $u \sim(1, m) w \sim(1, m) v$ by Lemma 3.1.

Now, let us define classes of equations as follows. For $m \geq 1, \mathcal{C}_{(1, m)}^{1}$ is a class of equations consisting of

$$
u_{1} \ldots u_{m} x y v_{1} \ldots v_{m}=u_{1} \ldots u_{m} y x v_{1} \ldots v_{m}
$$

where the u and the v are of the form $x^{e} y, y^{e} x, x y^{e}$ or $y x^{e}$ for some $e, 1 \leq e \leq \mathcal{N}(1, m)$. The equation $(x y)^{m} x y(x y)^{m}$ $=(x y)^{m} y x(x y)^{m}$ is an example.
$\mathcal{C}_{(1, m)}^{2}$ consists of the equations

$$
u_{1} \ldots u_{i} x^{m-i} x x^{m-j} v_{1} \ldots v_{j}=u_{1} \ldots u_{i} x^{m-i} x^{2} x^{m-j} v_{1} \ldots v_{j}
$$

where the u and the v are as above and $0 \leq i, j \leq m$. The equation $(x y)^{m} x(x y)^{m}=(x y)^{m} x^{2}(x y)^{m}$ is an example.
Note that the equations in $\mathcal{C}_{(1, m)}^{1}$ are of the form $w_{1} x y w_{2}=w_{1} y x w_{2}$ and the ones in $\mathcal{C}_{(1, m)}^{2}$ of the form $w_{3} x w_{4}=$ $w_{3} x^{2} w_{4}$. Recall from Section 1 that $x y=y x$ and $x=x^{2}$ are the defining equations for $V_{1,1}$.

Theorem 3.3. Every monoid in $V_{2,1}$ satisfies $\mathcal{C}_{(1, m)}^{1} \cup \mathcal{C}_{(1, m)}^{2}$ for all sufficiently large m.
Proof. It is easily seen, using Lemma 3.1, that monoids in $V_{2,1}$ satisfy $\mathcal{C}_{(1, m)}^{1} \cup \mathcal{C}_{(1, m)}^{2}$ for some $m \geq 1$. This comes from the fact that if $M \in V_{2,1}$, then $M<A^{*} / \sim(1, m)$ for some $m \geq 1$. Since $A^{* / \sim(1, m) \text { satisfies } \mathcal{C}_{(1, m)}^{1} \cup \mathcal{C}_{(1, m)}^{2}, \mathrm{M}, ~(1)}$ satisfies $\mathcal{C}_{(1, m)}^{1} \cup \mathcal{C}_{(1, m)}^{2}$. Moreover, if M in $V_{2,1}$ satisfies $\mathcal{C}_{(1, m)}^{1} \cup \mathcal{C}_{(1, m)}^{2}$ for some $m \geq 1$, then it satisfies $\mathcal{C}_{(1, n)}^{1} \cup \mathcal{C}_{(1, n)}^{2}$ for all $n \geq m$ since $\sim(1, n) \subseteq \sim(1, m)$ for those n.

3.2. Equations and the $V_{2, m}$ where $m>1$

This subsection generalizes the equation systems of the preceding subsection so that the generalized equations
are satisfied in the $V_{2, \mathrm{~m}}$.
Lemma 3.4. Let $m_{1}>1, m_{2} \geq 1$. Let $u, v \in A^{+}$and let p_{1}, \ldots, p_{s} in $u\left(p_{1}<\cdots<p_{s}\right) q_{1}, \ldots, q_{s^{\prime}}$, in $v\left(q_{1}<\cdots<q_{s^{\prime}}\right)$ be the positions which spell the first and last occurrences of every subword of length $\leq m_{2}$ in $u(v) . u \sim\left(m_{1}, m_{2}\right) v$ if and only if
(1) $s=s^{\prime}$,
(2) $Q_{a}^{u} p_{i}$ if and only if $Q_{a}^{v} q_{i}, a \in A$ for $1 \leq i \leq s$,
(3) $u\left(p_{i}, p_{i+1}\right) \sim\left(m_{1}-2, m_{2}\right) v\left(q_{i}, q_{i+1}\right)$ for $1 \leq i \leq s-1$,
(4) for $1 \leq i \leq s-1$ and for every $p_{1}^{\prime}, \ldots, p_{m_{1}-1}^{\prime} \in u\left(p_{i}, p_{i+1}\right)\left(p_{1}^{\prime}<\ldots<p_{m_{1}-1}^{\prime}\right)$, there exist $q_{1}^{\prime}, \ldots, q_{m_{1}-1}^{\prime} \in$ $v\left(q_{i}, q_{i+1}\right)\left(q_{1}^{\prime}<\ldots<q_{m_{1}-1}^{\prime}\right)$ such that
(1') $Q_{a}^{u} p_{j}^{\prime}$ if and only if $Q_{a}^{v} q_{j}^{\prime}, a \in A$ for $1 \leq j \leq m_{l}-1$,
(2') $u\left(p_{j}^{\prime}, p_{j+1}^{\prime}\right) \sim\left(m_{2}\right) v\left(q_{j}^{\prime}, q_{j+1}^{\prime}\right)$ for $1 \leq j \leq m_{l^{-}}-2$ and
($\left.3^{\prime}\right) u\left(p i, p_{1}^{\prime}\right) \sim\left(m_{2}\right) v\left(q i, q_{1}^{\prime}\right)$.
Also, there exist $q_{1}^{\prime}, \ldots, q_{m_{1}-1}^{\prime} \in v\left(q_{i}, q_{i+1}\right)$ (which may be different from the positions which satisfy (1^{\prime}), ($\left.2^{\prime}\right)$ and $\left.\left(3^{\prime}\right)\right)\left(q_{1}^{\prime}<\ldots<q_{m_{1}-1}^{\prime}\right)$ such that $\left(1^{\prime}\right),\left(2^{\prime}\right)$ and $\left(3^{\prime \prime}\right) u\left(p_{m_{1}-1}^{\prime}, p_{i+1}\right) \sim\left(m_{2}\right) v\left(q_{m_{1}-1}^{\prime}, q_{i+1}\right)$ hold. Similarly, for every $q_{1}^{\prime}, \ldots, q_{m_{1}-1}^{\prime} \in v\left(q_{i}, q_{i+1}\right)\left(q_{1}^{\prime}<\ldots<q_{m_{1}-1}^{\prime}\right)$, there exist $p_{1}^{\prime}, \ldots, p_{m_{1}-1}^{\prime} \in u\left(p_{i}, p_{i+1}\right)\left(p_{1}^{\prime}<\ldots<p_{m_{1}-1}^{\prime}\right)$ such that (1'), (2'), (3') hold (also (1'), (2'), (3") hold) and
(5) for $1 \leq i \leq s-1$ and for every $p_{1}^{\prime}, \ldots, p_{m_{1}}^{\prime} \in u\left(p_{i}, p_{i+1}\right)\left(p_{1}^{\prime}<\ldots<p_{m_{1}}^{\prime}\right)$, there exist $q_{1}^{\prime}, \ldots, q_{m_{1}}^{\prime} \in v\left(q_{i}\right.$, $\left.q_{i+1}\right)\left(q_{1}^{\prime}<\ldots<q_{m_{1}}^{\prime}\right)$ such that
$\left(1^{\prime \prime \prime}\right) Q_{a}^{u} p_{j}^{\prime}$ if and only if $Q_{a}^{v} q_{j}^{\prime}, a \in A$ for $1 \leq j \leq m_{l}$ and
$\left(2^{\prime \prime \prime}\right) u\left(p_{j}^{\prime}, p_{j+1}^{\prime}\right) \sim\left(m_{2}\right) v\left(q_{j}^{\prime}, q_{j+1}^{\prime}\right)$ for $1 \leq j \leq m_{1}-1$.
Similarly, for every $q_{1}^{\prime}, \ldots, q_{m_{1}}^{\prime} \in v\left(q_{i}, q_{i+1}\right)\left(q_{1}^{\prime}<\ldots<q_{m_{1}}^{\prime}\right)$, there exist $p_{1}^{\prime}, \ldots, p_{m_{1}}^{\prime} \in u\left(p_{i}, p_{i+1}\right)\left(p_{1}^{\prime}<\ldots<p_{m_{1}}^{\prime}\right)$ such that ($1^{\prime \prime \prime}$) and ($2^{\prime \prime \prime}$) hold.

Proof. Assume (1), (2), (3), (4) and (5) hold. A winning strategy for player II in the game $\mathcal{G}\left(m_{1}, m_{2}\right)(u, v)$ to win each play is described as follows. Let $p_{1}^{\prime}, \ldots, p_{m_{1}}^{\prime}\left(p_{1}^{\prime} \leq \boldsymbol{\bullet} \leq p_{m_{1}}^{\prime}\right)$ be positions in u chosen by player I in the first move (the proof is similar when starting with positions in v).

Case 1. If some of the p_{j}^{\prime} are among p_{1}, \ldots, p_{s}, then for such a p_{j}^{\prime}, there exists $i_{j}, 1 \leq i_{j} \leq s$ such that $p_{j}^{\prime}=p_{i_{j}}$. For such a p_{j}^{\prime}, since (1) holds, we may consider $q_{j}^{\prime}=q_{i_{j}}$. (2) implies that $Q_{a}^{u} p_{j}^{\prime}$ if and only if $Q_{a}^{v} q_{j}^{\prime}$.

Case 2. If $p_{j}^{\prime}, p_{j+1}^{\prime}, \ldots, p_{j+l}^{\prime} \in u\left(p_{i}, p_{i+1}\right)$ for some $i, 1 \leq i \leq s-1,1 \leq j \leq j+1 \leq m_{l}$ and $l \leq m_{1}-3, p_{1}^{\prime}, \ldots, p_{j-1}^{\prime} \in$ $u\left[1, p_{i}\right]$ and $p_{j+l+1}^{\prime}, \ldots, p_{m_{1}}^{\prime} \in u\left[p_{i+1},|u|\right]$, then from (3), there exist $q_{j}^{\prime}, q_{j+1}^{\prime}, \ldots, q_{j+1}^{\prime} \in v\left(q_{i}, q_{i+1}\right)\left(q_{j}^{\prime} \leq q_{j+1}^{\prime} \leq \ldots\right.$ $\left.\leq q_{j+1}^{\prime}\right)$ such that $Q_{a}^{u} p_{r}^{\prime}$ if and only if $Q_{a}^{v} q_{r}^{\prime}$ for $j \leq r \leq j+1, u\left(p_{r}^{\prime}, p_{r+1}^{\prime}\right) \sim\left(m_{2}\right) v\left(q_{r}^{\prime}, q_{r+1}^{\prime}\right)$ for $j \leq r \leq j+l-1$, $u\left(p_{i}, p_{j}^{\prime}\right) \sim\left(m_{2}\right) v\left(q_{i}, q_{j}^{\prime}\right)$ and $u\left(p_{j+1}^{\prime}, p_{i+1}\right) \sim\left(m_{2}\right) v\left(q_{j+1}^{\prime}, q_{i+1}\right)$.

Case 3. If $p_{j}^{\prime}, p_{j+1}^{\prime}, \ldots, p_{j+m_{1}-2}^{\prime} \in u\left(p_{i}, p_{i+1}\right)$ and $p_{j}^{\prime}<\ldots<p_{j+m_{1}-2}^{\prime}$ for some $i, 1 \leq i \leq s-1\left(j=1\right.$ and $p_{m_{1}}^{\prime} \in$ $\left.u\left[p_{i+1}, \mid u\right]\right)\left(j=2\right.$ and $p_{1}^{\prime} \in u\left[1, p_{i}\right]$ is similar $)$, then from (4), there exist $q_{1}^{\prime}, \ldots, q_{m_{1}-1}^{\prime} \in v\left(q_{i}, q_{i+1}\right)\left(q_{1}^{\prime}<\ldots<\right.$ $\left.q_{m_{1}-1}^{\prime}\right)$ such that (1'), (2') and (3") hold.

Case 4. If $p_{1}^{\prime}, \ldots, p_{m_{1}}^{\prime} \in u\left(p_{i}, p_{i+1}\right)$ and $p_{1}^{\prime}<\ldots<p_{m_{1}}^{\prime}$ for some $i, 1 \leq i \leq s-1$, then from (5), there exist q_{1}^{\prime}, \ldots, $q_{m_{1}}^{\prime} \in v\left(q_{i}, q_{i+1}\right)\left(q_{1}^{\prime}<\ldots<q_{m_{1}}^{\prime}\right)$ such that ($\left.1^{\prime \prime \prime}\right)$ and ($\left.2^{\prime \prime \prime}\right)$ hold.

From the choice of the p_{i}, q_{i} and $q_{1}^{\prime}, \ldots, q_{m_{1}}^{\prime}, q_{1}^{\prime}, \ldots, q_{m_{1}}^{\prime} \in v$ are such that $q_{1}^{\prime} \leq \ldots \leq q_{m_{1}}^{\prime}, Q_{a}^{u} p_{j}^{\prime}$ if and only if $Q_{a}^{v} q_{j}^{\prime}, a \in A$ for $1 \leq j \leq m_{1}, u\left[1, p_{1}^{\prime}\right) \sim\left(m_{2}\right) v\left[1, q_{1}^{\prime}\right), u\left(p_{j}^{\prime}, p_{j+1}^{\prime}\right) \sim\left(m_{2}\right) v\left(q_{j}^{\prime}, q_{j+1}^{\prime}\right)$ for $1 \leq j \leq m_{1}-1$ and $u\left(p_{m_{1}}^{\prime},|\mathrm{u}|\right]$ $\sim\left(m_{2}\right) v\left(q_{m_{1}}^{\prime},|v|\right]$. By Lemma 2.1, $u \sim\left(m_{1}, m_{2}\right) v$.

Conversely, assume $u \sim\left(m_{1}, m_{2}\right) v$. (1) and (2) obviously hold. (3) holds. To see this, let $p_{1}^{\prime}, \ldots, p_{m_{1}-2}^{\prime}\left(p_{1}^{\prime} \leq \ldots\right.$ $\left.\leq p_{m_{1}-2}^{\prime}\right)$ in $u\left(p_{i}, p_{i+1}\right)$ (the proof is similar when starting with $q_{1}^{\prime}, \ldots, q_{m_{1}-2}^{\prime}$ in $v\left(q_{i}, q_{i+1}\right)$). Consider the following play of the game $\mathcal{G}\left(m_{1}, m_{2}\right)(u, v)$. Player I, in the first move, chooses $p_{i}, p_{1}^{\prime}, \ldots, p_{m_{1}-2}^{\prime}, p_{i+1}$. Hence there exist $q_{1}^{\prime}, \ldots, q_{m_{1}-2}^{\prime}\left(q_{1}^{\prime} \leq \ldots \leq q_{m_{1}-2}^{\prime}\right)$ in $v\left(q_{i}, q_{i+1}\right)$ such that $u\left(p_{i}, p_{1}^{\prime}\right) \sim\left(m_{2}\right) v\left(q_{i}, q_{1}^{\prime}\right), u\left(p_{j}^{\prime}, q_{j+1}^{\prime}\right) \sim\left(m_{2}\right)$ $v\left(q_{j}^{\prime}, q_{j+1}^{\prime}\right)$ for $1 \leq \mathrm{j} \leq m_{1}-3$ and $u\left(p_{m_{1}-2}^{\prime}, p_{i+1}\right) \sim\left(m_{2}\right) v\left(q_{m_{1}-2}^{\prime}, q_{i+1}\right)$ (note that from the choice of the p_{i} and the $q_{i}, q_{1}^{\prime}, \ldots, q_{m_{1}-2}^{\prime}$ must be in $\left.v\left(q_{i}, q_{i+1}\right)\right)$ (4) and (5) similarly follow.

We are now interested in the M-varieties $V_{2, m_{1}}$ for $m_{1}>1$. For $m_{2} \geq 1, \mathcal{C}_{\left(m_{1}, m_{2}\right)}^{1}$ is a class of equations consisting of

$$
\begin{gathered}
u_{1} \ldots u_{m_{2}}(x y)^{m_{1}+\left(m_{1}-1\right) m_{2}}(x y)(y x)^{m_{1}+\left(m_{1}-1\right) m_{2}} v_{1} \ldots v_{m_{2}} \\
=u_{1} \ldots u_{m_{2}}(x y)^{m_{1}+\left(m_{1}-1\right) m_{2}}(y x)(y x)^{m_{1}+\left(m_{1}-1\right) m_{2}} v_{1} \ldots v_{m_{2}}
\end{gathered}
$$

where the u and the v are of the form $x^{e} y, y^{e} x, x y^{e}$ or $y x^{e}$ for some $e, 1 \leq \mathrm{e} \leq \mathcal{N}\left(m_{1}, m_{2}\right)$. The equation

$$
\begin{aligned}
& (x y)^{m_{2}}(x y)^{m_{1}+\left(m_{1}-1\right) m_{2}}(x y)(y x)^{m_{1}+\left(m_{1}-1\right) m_{2}}(x y)^{m_{2}} \\
& =(x y)^{m_{2}}(x y)^{m_{1}+\left(m_{1}-1\right) m_{2}}(y x)(y x)^{m_{1}+\left(m_{1}-1\right) m_{2}}(x y)^{m_{2}}
\end{aligned}
$$

is an example.
$\mathcal{C}_{\left(m_{1}, m_{2}\right)}^{2}$ consists of the equations

$$
\begin{aligned}
& u_{1} \ldots u_{i} x^{m_{2}-i} x^{m_{1}+\left(m_{1}-1\right) m_{2}} x^{m_{2}-j} v_{1} \ldots v_{j} \\
& =u l \ldots u_{i} x^{m_{2}-i} x^{m_{1}+\left(m_{1}-1\right) m_{2}+1} x^{m_{2}-j} v_{1} \ldots v_{j}
\end{aligned}
$$

where the u and the v are as above and $0 \leq i, j \leq m_{2}$. The equation

$$
(x y)^{m_{2}} x^{m_{1}+\left(m_{1}-1\right) m_{2}}(x y)^{m_{2}}=(x y)^{m_{2}} x^{m_{1}+\left(m_{1}-1\right) m_{2}+1}(x y)^{m_{2}}
$$

is an example.
Theorem 3.5. Let $m_{l} \geq 1$. Every monoid in $V_{2, m_{1}}$ satisfies $\mathcal{C}_{\left(m_{1}, m_{2}\right)}^{1} \cup \mathcal{C}_{\left(m_{1}, m_{2}\right)}^{2}$ for all sufficiently large m_{2}.
Proof. Similar to Lemma 3.3 using the preceding lemma. The power $m_{1}+\left(m_{1}-1\right) m_{2}$ in $\mathcal{C}_{\left(m_{1}, m_{2}\right)}^{2}$ comes from condition (5) in Lemma 3.4.
4. On the dot-depth of the $A^{*} / \sim\left(m_{1}, \ldots, m_{k}\right)$

Let A contain at least two letters. Let $k \geq 1$. Let m_{1}, \ldots, m_{k} be positive integers. We are interested in the problem of finding necessary and sufficient conditions for $A^{*} / \sim\left(m_{1}, \ldots, m_{k}\right)$ to be of dot-depth exactly d. This section gives conditions on m_{1}, \ldots, m_{k} for $d=1$ and $d=2$. Also, we show that for $k \geq 3$, and $m_{i} \geq 2$ for $2 \leq i \leq k-1, A^{* /}$ $\sim\left(m_{1}, \ldots, m_{k}\right)$ is of dot-depth exactly k. Other results about upper bounds and lower bounds are also discussed.

Theorem 4.1. Let $k \geq 1$. Let m_{1}, \ldots, m_{k} be positive integers. $A^{*} / \sim\left(m_{1}, \ldots, m_{k}\right)$ is of dot-depth exactly 1 if and only if $k=1$.

Proof. We show that for $m_{1}, m_{2} \geq 1$, there is no $m>0$ such that $A^{* /} \sim\left(m_{1}, m_{2}\right)$ satisfies the equation $u_{m}=(x y)^{m}=$ $(y x)^{m}=v_{m}$, where x and y are arbitrary distinct letters. We illustrate a winning strategy for player I. (I, $\left.i\right)((\mathrm{II}, i))$ denotes a position chosen by player I (II) in the i th move, $I=1,2$. Let $N \geq \mathcal{N}\left(m_{1}, m_{2}\right)$.

$$
\begin{gathered}
u_{N}=\ldots(x y)(x y) \\
(\mathrm{II}, 1) \uparrow(\mathrm{I}, 2) \\
v_{N}=\ldots(y x)(y x) \\
\uparrow(\mathrm{I}, 1)
\end{gathered}
$$

Player I, in the first move, chooses the last x in v_{N}. Player II, in the first move, has to choose the last x in u_{N} (if not, player I in the second move could win by choosing the last x in u_{N}). Player I, in the second move, chooses the last y in u_{N}. Player II, in the second move, cannot choose a y in v_{N} to the right of the previously chosen position in v_{N}. Hence II loses.

Theorem 4.2. Let $k \geq 3$. Let $m_{i}, 1 \leq i \leq k$ be positive integers and $m_{i} \geq 2$ for $2 \leq i \leq k-1$. Then $A^{*} / \sim\left(m_{1}, \ldots, m_{k}\right)$ is of dot-depth exactly k.

Proof. Let $m>0$. Consider $u_{m}=\left(x^{(\mathrm{k}-1)} y^{(\mathrm{k}-1)}\right)^{m}, v_{m}=\left(y^{(k-1)} x^{(k-1)}\right)^{m}$ (here, $x^{(1)}=x, y^{(1)}=y$ and $x^{(r+1)}=$ $\left.\left(x^{(r)} y^{(r)}\right)^{m} x^{(r)}\left(x^{(r)} y^{(r)}\right)^{m}, y^{(r+1)}=\left(x^{(r)} y^{(r)}\right)^{m} y^{(r)}\left(x^{(r)} y^{(r)}\right)^{m}\right)$. A result of Straubing [191 implies that monoids in V_{k-1} satisfy $u_{m}=v_{m}$ for all sufficiently large m. However, for every $N \geq \mathcal{N}(1,2, \ldots, 2,1)$ where $(1,2, \ldots, 2,1)$ is a k - tuple, u_{N} $\nsim(1,2, \ldots, 2,1) v_{N}$. A winning strategy for player I in the game $\mathcal{G}(1,2, \ldots, 2,1)\left(u_{N}, v_{N}\right)$ is as follows. (I, $\left.i\right)(($ II, $i))$ denotes a position chosen by player I (II) in the i th move, $i=1, \ldots, k$. Let $N \geq \mathcal{N}\left(m_{1}, \ldots, m_{k}\right)$. Using $x^{N} \sim\left(m_{1}, \ldots\right.$, $\left.m_{k}\right) x^{N+1}$ (Section 2), one sees that

$$
\begin{aligned}
& u_{N} \sim\left(m_{1}, \ldots, m_{k}\right) \ldots\left(x^{(k-2)} y^{(k-2)}\right)^{N} x \\
& \uparrow \\
& \uparrow(11,1) \\
& \left(x^{(k-3)} y^{(k-3)}\right)^{N} x\left(x^{(k-3)} y^{(k-3)}\right)^{N} y\left(x^{(k-3)} y^{(k-3)}\right)^{N}\left(x^{(k-2)} y^{(k-2)}\right)^{N-2} \\
& \left(x^{(k-3)} y^{k-3)}\right)^{N} x\left(x^{(k-3)} y^{(k-3)}\right)^{N} y\left(x^{(k-3)} y^{(k-3)}\right)^{N} y\left(x^{(k-2)} y^{(k-2)}\right)^{N} \\
& \uparrow \quad(1,2)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& v_{N} \sim\left(m_{1}, \ldots, m_{k}\right) \ldots\left(x^{(k-2)} y^{(k-2)}\right)^{N} x \\
& \uparrow \\
& (I, 1) \\
& \left(x^{(k-3)} y^{(k-3)}\right)^{N} x\left(x^{(k-3)} y^{(k-3)}\right)^{N} y\left(x^{(k-3)} y^{(k-3)}\right)^{N} \\
& \left(x^{(k-2)} y^{(k-2)}\right)^{M_{1}-1}\left(x^{(k-3)} y^{(k-3)}\right)^{N} x\left(x^{(k-3)} y^{(k-3)}\right)^{N} \\
& y\left(x^{(k-3)} y^{(k-3)}\right)^{N} x\left(x^{(k-3)} y^{(k-3)}\right)^{N} y\left(x^{(k-3)} y^{(k-3)}\right)^{N}\left(x^{(k-2)} y^{(k-2)}\right)^{M_{2}} \\
& \uparrow
\end{aligned}
$$

(II,2)
where $M_{1}+M_{2}=N-2$. Player I, in the first move, chooses the middle x of the last $x^{(k-2)}$ followed immediately by an $x^{(\mathrm{k}-2)}$ in v_{N}. Player II, in the first move, has to choose the middle x of the last $x^{(\mathrm{k}-2)}$ followed immediately by an $x^{(k-2)}$ in u_{N} (if not, player I in the next k-1 moves could win by choosing in the second move the middle x of the last two consecutive $x^{(k-2)}$ in u_{N}). Player I, in the second move, chooses the middle y of the last two consecutive $y^{(\mathrm{k}-2)}$ in u_{N}. Player II, in the second move, cannot choose the middle y of the last two consecutive $y^{(k-}$ ${ }^{2)}$ in v_{N} to the right of the previously chosen position. Hence he is forced to choose two $y^{(k-2)}$ by an $x^{(k-2)}$. Player I , in the third move, chooses the middle x of the last two consecutive $x^{(k-3)}$ in v_{N} between the positions chosen in the preceding move by II. Player II, in the third move, cannot chose the middle x of the last two consecutive $x^{(k-3)}$ in u_{N} between the previously choosen position by I. Hence he is forced to choose two $x^{(k-3)}$ separated by an $y^{(k-3)}$ and so on. Player I, in the $(k-1)$ th move, chooses the last two consecutive x (or y) in v_{N} (or u_{N}) between the chosen positions in the preceding move by II. Player II, in the ($k-1$)th move, is forced to choose two x (or y) in u_{N} (or v_{N}) separated by a y (or an x). Player I, in the last move, selects that y (or x). Player II loses since he cannot choose a y (or x) between the two consecutive x chosen in the $(k-1)$ th move by I. The result follows.

Note that the infinity of the Straubing hierarchy for an alphabet of at least two letters follows from the preceding theorem.

Theorem 4.3. Let $k \geq 2$ and d be the dot-depth of $A * / \sim\left(m_{1}, \ldots, m_{2 k-2}\right)$. Then $k \leq d \leq 2 k-2$.
Proof. For $k \geq 3$, the upper bound follows from the congruence characterization of $V_{2 k-2}$. Now, by Lemma 2.2,

$$
\sim(1, \underbrace{1, \ldots, 1}_{2 k-4}, 1) \subseteq(1, \underbrace{2, \ldots, 2}_{k-2}, 1) .
$$

If

is of dot-depth $<k$, then

is also of dot-depth $<k$ since

But by Theorem 4.3,

is of dot-depth k. For $k=2$, the result follows from Theorem 4.1.
Theorem 4.4. Let $k \geq 1$. Let m_{1}, \ldots, m_{k} be positive integers. $A * / \sim\left(m_{1}, \ldots, m_{k}\right)$ is of dot-depth exactly 2 if and only if
(1) $k=2$ or
(2) $k=3$ and $m_{2}=1$.

Proof. A result of [1] states that $A^{* /} \sim\left(m_{1}, m_{2}, m_{3}\right)$ is of dot-depth exactly 2 if and only if $m_{2}=1$. The theorem follows from that result, Theorems 4.1 and 4.3 and the fact that $u_{N}=\left(x^{(2)} y^{(2)}\right)^{\mathrm{N}}, v_{N}=\left(y^{(2)} x^{(2)}\right)^{N}$ for $N \geq \mathcal{N}(1,2,1)$ in Theorem 4.2 are such that $u_{N}=(1,2,1) v_{N}$ and hence $u_{N} \nsim(1,1,1,1) v_{N}$ by Lemma 2.2.

Other upper and lower bounds results follow for monoids like $A^{*} / \sim(1,1,1,2,1)$. Since $\sim(1,1,1,2,1) \subseteq \sim(1,3,2,1)$ by Lemma 2.2, and $A^{* /} \sim(1,3,2,1)$ is of dot-depth exactly 4 by Theorem $4.2, A^{* /} \sim(1,1,1,2,1)$ is of dot-depth \geq 4 and ≤ 5. Similarly, for $A^{* /} \sim(1,2,1,1,1)$,

References

[1] F. Blanchet-Sadri, On dot-depth two, RAIRO Inform. Theor. Appl. 24 (1990) 521-530.
[2] F. Blanchet-Sadri, Some logical characterizations of the dot-depth hierarchy and applications, Tech. Rept. 88-03, Department of Mathematics and Statistics, McGill University, Montreal, Que. (1988) 1-44.
[3] F. Blanchet-Sadri, Games, equations and the dot-depth hierarchy, Comput. Math. Appl. 18 (1989) 809-822.
[4] L.A. Brzozowski and R. Knast, The dot-depth hierarchy of star-free languages is infinite, J. Comput. System Sci. 16 (1978) 37-55.
[5] L.A. Brzozowski and 1. Simon, Characterizations of locally testable events, Discrete Math. 4 (1973) 243271.
[6] R.S. Cohen and J.A. Brzozowski, Dot-depth of star-free events, J. Comput. System Sci. 5 (1971) 1-16.
[7] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math. 49 (1961) 129-141.
[8] S. Eilenberg, Automata, Languages and Machines Vol. B (Academic Press, New York, 1976).
[9] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press, New York, 1972).
[10] R. Knast, A semigroup characterization of dot-depth one languages, RAIRO Inform. Theor. 17 (1983) 321330.
[11] R. Knast, Some theorems on graph congruences, RAIRO Inform. Theor. 17 (1983) 331-342.
[12] R. McNaughton and S. Papert, Counter-Free Automata (MIT Press, Cambridge, MA, 1971).
[13] D. Perrin and J.E. Pin, First order logic and star-free sets, J. Comput. System Sci. 32 (1986) 393-406.
[14] T.E. Pin, Varietes de Languages Formels (Masson, Paris, 1984).
[151 J.E. Pin, Hierarchies de concatenation, RAIRO Inform. Theor. 18 (1984) 23-46. [16] . 1 G. Rosenstein, Linear Orderings (Academic Press, New York, 1982).
[171 M.P. Schritzenberger, On finite monoids having only trivial subgroups, Inform. and Control 8 (1965) 190194.
[18] 1. Simon, Piecewise testable events, in: Proceedings of the 2nd GI Conference, Lecture Notes in Computer Science 33 (Springer, Berlin, 1975) 214-222.
[19] H. Straubing, A generalization of the Schritzenberger product of finite monoids, Theoret. Comput. Sci. 13 (1981) 137-150.
[20] H. Straubing, Finite semigroup varieties of the form V `D, J. Pure Appl. Algebra 36 (1985) 53-94.
[21] H. Straubing, Semigroups and languages of dot-depth two, in: Proceedings of the 13th !CALF, Lecture Notes in Computer Science 226 (Springer, New York, 1986) 416-423.
122] W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25(1982) 360-176.
[23] W. Thomas, An application of the Ehrenfeucht-Fraisse game in formal language theory, Bull. SOC Math. France 16 (1984) 11-21.
[24] B. Tilson, Categories as algebra, J. Pure Appl. Algebra 48 (1987) 83-198.

