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Abstract: 

Discrete wavelet analysis is used to resolve the center of pressure time series data into several timescale 

components, providing new insights into postural control. Healthy young and elderly participants stood quietly 

with their eyes open or closed and either performed a secondary task or stood quietly. Without vision, both 

younger and older participants had reduced energy in the long time-scales, supporting the concept that vision is 

used to control low frequency postural sway. Furthermore, energy was increased at timescales corresponding to 

closed-loop (somatosensory and vestibular) and open-loop mechanisms, consistent with the idea of a shift from 

visual control to other control mechanisms. However, a relatively greater increase was observed for older 

adults. With a secondary task a similar pattern was observed—increased energy at the short and moderate 

timescales, decreased energy at long timescales. The possibility of a common strategy—at the timescale level—

in response to postural perturbations is considered. 
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Article: 

Introduction 

Postural sway about an upright equilibrium is maintained by several neuromuscular feedback loops and open-

loop control; these mechanisms continually compensate for internal and external disturbances. Analysis of 

postural sway using mathematical models and statistical tools is of considerable interest because, in principle, it 

can be used to identify changes in the neuromuscular responses that occur with aging, disease, or as individuals 

perform various tasks (i.e. manual or cognitive tasks). This holds great potential for the development of 

―simple‖ clinical tests that can be used in the early detection of neuromuscular impairments and to quantify 

changes in balance control mechanisms. 

 

Typically, postural sway is quantified by the magnitude of center of pressure (CoP) movement over time 

(Blaszczyk et al. 2007; Suarez et al. 1999, 2001, 2007; Laufer et al. 2006; Rama-Lopez et al. 2004). Standard 

Fourier measures of the CoP are then used to quantify changes in CoP dynamics. For example, the mean power 

frequency (MPF) of the CoP signal has been observed to increase when the eyes are closed (e.g. Davis et al. 

2009), reflecting faster changes in the CoP displacement. Other researchers have quantified differences in 

Fourier spectra of the CoP signal (e.g. Gauchard et al. 1999; Perrin et al. 2002) or measures of central tendency 

and/or spectral dispersion (e.g. Dault and Frank 2004; Laufer et al. 2006; Williams et al. 1997), although some 

have quantified the response at various frequency ranges (e.g. Gepner and Mestre 2002; Querner et al. 2000). 

These measures are used regularly, and they may be useful as biomarkers of declines in postural control (e.g. 

Williams et al. 1997). Inferences regarding postural stability and control are then made based on the amount of 

CoP movement; larger CoP movement implies less stable balance and vice versa. However, recent research 

suggests that increased CoP movements do not necessarily indicate an impending postural destabilization 
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(Carello and Turvey 1985; Dault and Frank 2004; Huxhold et al. 2006; Riccio 1991; van Emmerik and van 

Wegen 2002). This is because postural movements generate visual, propriopreceptive, and vestibular sensory 

feedback. CoP movements can be exploratory; they provide information to the individual about the environment 

in which they are moving (e.g. compliancy of the support surface) (Gibson 1979; Riccio 1991; Riccio and 

Stoffregen 1988). Consequently, any minimization of postural sway deprives the individual of these exploratory 

experiences and ultimately makes the postural system less able to effectively respond to a dynamically 

unfolding environment. Therefore, better measures of postural sway are needed that can reliably characterize 

postural sway. 

 

In order to address the limitations inherent in linear measures of sway (that only examine the magnitude of 

postural movements), recent studies are beginning to use time-dependent non-linear measures to analyze CoP 

data. For example, Lyapunov exponents (Collins and DeLuca 1994; Donker et al. 2007; Ladislao and Fioretti 

2007; Roerdink et al. 2006), sample entropy (Donker et al. 2007; Roerdink et al. 2006), approximate entropy 

(Cavanaugh et al. 2005) and recurrence quantification analysis (Haddad et al. 2008; Kinsella-Shaw et al. 2006; 

Schmit et al. 2006) have been used to quantify the complex behavior of the CoP. These researchers have 

inferred that postural systems that exhibit non-linear complex behaviors may be more stable, flexible, and 

adaptable compared to postural systems that exhibit more regular/less chaotic dynamics (see Riley et al. 1999). 

 

Although non-linear time-dependent measures have proven to be a valuable tool in assessing the health of the 

postural system (Vaillancourt and Newell 2002), they do not provide information regarding the several 

timescales that constitute the CoP signal (Collins and DeLuca 1993). Collins and DeLuca (1993) found that the 

CoP position migrates within the bounds of the base of support and is controlled by both long (closed-loop) and 

short (open-loop) timescale processes that appear to change with age (Collins et al. 1995). Similarly Duarte and 

Zatsiorsky (2001); Zatsiorsky and Duarte (1999, 2000); Zatsiorsky and King (1998) suggest the presence of two 

timescales in the ―rambling and trembling‖ decomposition of CoP motion. Such studies have focused on 

extracting only two timescale components (one fast and one slow) in the CoP signal. 

 

Wavelet decomposition is a useful tool in the analysis of postural control and stability because several 

neuromuscular feedback loops act at different discrete timescales and are not visible during the entire time 

series but instead are intermittent. Wavelets can examine many different time-scales at different time instants 

(Addison 2002; Misiti et al. 1996) and provide useful results to identify changes in posture control due to aging, 

development, and disease. Wavelets can be used in many different ways to characterize postural dynamics, of 

which only a handful have been explored thus far. Wavelet analyses have been used to examine coherence 

values between motion of a moving room and postural adjustments (Slobounov et al. 2007). Wavelet transforms 

have been applied as continuous (Suarez et al. 1999, 2001) or discrete (Bertrand et al. 2001; Khandoker et al. 

2007) to explore wavelet coefficients (WCs) of CoP trajectories. In addition, discrete wavelet transforms have 

been used to decompose CoP trajectories in the time domain at multiple timescales (Uetake et al. 2004); 

however, few conclusions were drawn from the decompositions. Discrete wavelet transforms have been used to 

examine the variance over time of WCs at specific timescales (Thurner et al. 2000). Using discrete wavelet 

transforms the multi-fractal spectra of the CoP signal has been quantified to describe the ―smoothness‖ of the 

signal and the variety of fractal structures (Morales and Kolaczyk 2002; Shimizu et al. 2002; Thurner et al. 

2002; Zhu et al. 2007). Thus, the CoP signal is amenable to wavelet analysis. We propose to further these 

analyses to answer the following questions: What can be learned from decomposing the CoP data in the time 

domain into several timescales? Which timescale is dominant in CoP data? How can timescale content be 

quantified in CoP data? Which timescales are most sensitive to postural manipulations such as closing of eyes, 

timing task, and age? Can the dominant or sensitive timescales be correlated to underlying closed-loop 

(somatosensory and vestibular) and open-loop mechanisms of postural stability? All these are important and 

relevant, yet unaddressed questions that can be answered using wavelet analysis. 

 

In this article, we build upon prior wavelet-related postural research in order to: (a) espouse a method using the 

discrete wavelet transform to explore and quantify the different timescales in CoP data and (b) increase our 

understanding of postural control mechanisms through the application of discrete wavelet transforms. We 



quantify the effects of commonly used postural manipulations (age, vision, and concurrent task performance) at 

multiple timescales. Aging and visual information have been shown to be powerful determinants of postural 

behavior (Guerraz and Bronstein 2008; Stelmach et al. 1990; Woollacott and Velde 2008) while concurrent 

timing tasks require cerebellar processes (Ivry et al. 2001; Zelaznik et al. 2008). Given that postural control also 

requires cerebellar processes, it is expected that the joint task of standing in combination with performing a 

timed tapping task should produce changes in the underlying structure of postural movements, which should be 

discernible with a fine grained wavelet analysis. 

 

Methods 

Ground reaction forces and moments were recorded while an individual stood on a force plate (AMTI, 

Watertown, MA, USA). These data were sampled at 200 Hz and used to calculate CoP time series (Winter 

1995). The data were not filtered. CoP data were collected for 11 young subjects (5 males, 6 females; age range 

19–30 years; mean 21.9 years) and 6 elderly subjects (4 males, 2 females; age range 67–72 years; mean 69.8 

years). Each subject stood on a force plate in each of four conditions: quiet standing with eyes open, quiet 

standing with eyes closed, finger tapping with eyes open, and finger tapping with eyes closed. Standing still 

required the subjects to stand quietly on a force plate with their feet together for 70 s. The finger tapping task 

required the subject to stand on the force plate, and hold their arms so their forearms were parallel to the 

ground. In tapping, participants were required to flex and extend both index fingers at the metacarpophalangeal 

joint so that each finger reached its max flexion coincident with the beep of a metronome (set to 2 Hz). When 

the metronome engaged, the subjects entrained their movements to it. After 16 beeps of the metronome (8 s) the 

metronome disengaged and the subject continued to tap as though the metronome was still engaged, for a 

duration of 70 s. Tapping movements were performed ―in the air‘‘ such that no tactile information from an 

external source was provided (see Lackner et al. 1999). In all conditions, subjects wore blinders that removed 

visual information from the lower hemisphere of the visual field. Thus, the participant could not see their hands 

and ground immediately below them. Each subject completed three trials for each of the four postural tasks 

(Fig. 1). 

 
Background on wavelet transform analysis 

Mathematically, the continuous wavelet transform is a convolution of the time series signal with wavelets of 

various scales and translations (Addison 2002), 

 
where x(t) represents the time series data, the function   a,b(t) represents a ―wavelet‘‘ at timescale ―ta =   

  

         
‘‘ and time instant ―b‖, fsampling being the sampling frequency of the signal, and the symbol ―*‘‘ 



represents the complex conjugate of a function. T(a,b) then is the ―wavelet coefficient‘‘ (WC) at timescale ta 

and time instant b. These wavelets   a,b(t) are also known as ―child wavelets‘‘ and are derived from a basis 

function referred to as the ―mother wavelet,‘‘  (t) (Addison 2002), 

 
A child wavelet then essentially is a function of time of timescale ta and localized near the time instant b. There 

are a number of mathematical requirements that wavelets must satisfy (Addison 2002; Misiti et al. 1996), and 

the commonly used wavelets such as Haar, Daubechies, Biorthogonal, and Discrete Meyers satisfy these 

criteria, each representing a specific signal localized in time. 

 

The continuous wavelet transform converts a real time series signal x(t) into a real two dimensional space (a,b) 

by using Eq. 1 to calculate the WCs T(a,b) at each timescale ta and time instant b. This continuous spectrum of 

WCs was computed using MATLAB for the anterior–posterior CoP time series data for a 23-year-old male in 

the quiet standing with eyes closed condition. The results can be seen in Fig. 2b. Details of the WCs at 

timescales 1.8 and 0.8 s are shown in Fig. 2c. Figure 2 clearly shows that short time-scale (say 0.8 s) corrections 

to the posture take place intermittently and often at different time instants compared to the longer timescale 

corrections (for example at 1.8 s). By way of comparison, a Fourier transform of the same time series data 

would average frequency components over the signal, and thus would not be able to discriminate the different 

timescale corrections that can occur at different time instants. 

 



As useful as the continuous wavelet transform is in identifying the important timescales and the WCs in the 

time series data, it cannot be used directly to reconstruct the signal at specific timescales. For this reason, the 

decomposition of a signal requires a discrete wavelet transform. This is accomplished by determining the WCs 

in the same manner as described earlier; however, both the timescale ta and time instant b become discrete (a 

and b are now integers). In this paper, we follow the commonly used prescription for discrete wavelet transform 

scales (Addison 2002), 

a = 2
j
 and b = 2

j
k,  (3) 

where j = 1,..., J are now the discrete levels of timescales at which the signal can be represented so that the 

timescale range at level j is tj = {
         

         
 

     

         
} and k = 0,..., K(j) are the discrete locations K(j) = floor 

(
    

  ), where ―floor‖ stands for the floor function and rounds down to the next integer. The discrete wavelet 

transform converts a real time series signal x(ti) sampled at discrete time instants ti into a real two dimensional 

space (j,k) by using Eqs. 1 and 3 to calculate the WCs, T(j,k), at each discrete level j and discrete location k. 

 

WCs at each of the discrete levels of timescales can be thought of as ―detail WCs‖ and can be used in the 

reconstruction of the time series signal at the specified level resulting in a ―detail‖ time series signal (Addison 

2002), 

 
Similar to determining ―detail WCs‖ one can determine ―approximation WCs‖ (Addison 2002), 

 
where  j,k(t) is a scaling function of a wavelet which is associated with the smoothing of the signal (Addison 

2002) and S(j,k) then is the ―approximation WC‖ at level j and location k. These scaling functions  j,k(t) derive 

from a basis function referred to as the ―father wavelet,‖  (t) (Addison 2002), 

 
The ‗‗approximation‖ time series signal can then be constructed as (Addison 2002), 

 
This discrete spectrum of WCs was computed using MATLAB for the anterior–posterior CoP time series data 

for the same 23-year-old male in the quiet standing with eyes closed condition. The reconstruction of the 

‗‗detail‖ and ‗‗approximation‖ time series signals can be seen in Fig. 3. One can see that the CoP time series is 

composed of CoP motion at multiple timescales. 

 

One interesting application of decomposing the CoP data into signal components at different timescales is 

shown in Fig. 4. The time series data at different timescales for the 23- year-old male in the quiet standing with 

eyes closed condition was differentiated, and the CoP velocity and position are simultaneously plotted in a state 

space or phase diagram for the time series data presented in Fig. 2. Interestingly at levels 10–12 the CoP 

features large loops in phase space suggesting significant low frequency, large amplitude oscillations, possibly 

caused by closed-loop control. This result is consistent with the notions of Collins and DeLuca (1993) or the 

rambling idea of Zatsiorsky and Duarte (1999, 2000). In addition, at levels 9 and below the CoP exhibits loops, 

which suggest high frequency, short amplitude oscillation possibly caused by open-loop control explained by 

Collins and DeLuca (1993) or the trembling of Zatsiorsky and Duarte (1999, 2000). While these prior works 

quantify two timescales in the CoP signal, the present approach is able to extract the CoP data at multiple time 

scales. 

 

 



 
Data analysis 

One advantage of decomposing the CoP signals into different discrete timescales is that the energy content at 

each timescale can be easily evaluated. For example the energy content at the level ‗‗j‖ can be expressed in 

terms of the detail WCs at that scale [E(j), see Eq. 8 in Appendix 1]. The total energy of signal is calculated by 

summing the energy over all J levels, and the energy content at each scale can be expressed as a percentage of 

the total energy of the signal [E%(j), see Eqs. 9 and 10 in Appendix 1]. An example of the percentage of energy 

content at each timescale for the anterior–posterior CoP trajectory of a 23- year-old male is shown for the quiet 

standing with eyes open (SEO) condition (Fig. 5a) and quiet standing with eyes closed (SEC) condition (Fig. 

5c) (average and standard error calculated for three trials). 

 

The vision effect was examined by comparing changes in postural response between the quiet standing with 



eyes open and quiet standing with eyes closed conditions by defining the energy percentage change between 

these conditions for each subject [ΔEEYE%(j), see Eq. 11 in Appendix 2, 3] (see example for same subject in 

Fig. 5e). Similarly, the energy percentage change for tapping was calculated using the quiet standing eyes open 

versus standing while tapping (also with eyes open) [ΔETAP%(j), see Eq. 12 in Appendix 2, 3]. 

 
Results 

Energy content during quiet standing 

The percentage of energy content was very low at the shortest timescales and gradually increased at the 

moderate timescales and leveled off at the moderate to long time-scales (Fig. 5b); a dominant timescale was not 

observed. When the eyes were closed, a reduction in the longest timescales is visible in the data (Fig. 5d), but 

shorter timescales appear relatively unchanged. When expressed as a percentage change (Eq. 11) from eyes 

open to eyes closed, the decrease at the longer timescale is quantified as a negative value (Fig. 5f). However, it 

becomes apparent that there was also a relatively large increase in the short and moderate timescales (Fig. 5f). 



 
Effects of vision and age 

A positive energy percentage change as a function of vision [(ΔEEYE%(j)] indicates that there was more energy 

at that timescale when quiet standing with eyes closed versus eyes open and vice versa (Eq. 11). In the young 

adults standing with eyes closed, energy content decreased in the long timescales (j = 12, 13, corresponding to a 

range of timescales 0.012–0.049 Hz) and energy content increased at the shorter timescales (j = 1,..., 11 

corresponding to 0.049–100 Hz) (Fig. 6a). Older adults had a similar pattern (Fig. 6c), although the magnitudes 

are larger for older adults. The energy percent change for older and younger adults is plotted in Fig. 6e to 

facilitate comparison; the older adults have larger changes in energy at all timescales. 

 

Effects of timing tasks and age 

When young adults tapped their fingers at 2 Hz while standing with their eyes open, energy decreased in the 

long timescales (j = 12, 13, corresponding to 0.012–0.049 Hz) and energy content increased at the shorter 

timescales (j = 1–11, corresponding to 0.049–100 Hz) (Fig. 6b). Older adults had a similar pattern (Fig. 6d). The 

magnitudes were similar across young and older adults, although there was a tendency for older adults to have 

slightly less change in energy at the shorter and longest timescales (Fig. 6f), with a greater change in energy at 

moderate timescales (j = 9–11) (Fig. 6f). 

 

Fourier analysis 

To provide a comparison of wavelet to Fourier analysis of the CoP data, the time histories of various subjects in 

all four conditions were analyzed using discrete Fourier transform (DFT) in MATLAB by sampling the CoP 

data at 200 Hz and down sampling to 100 Hz. As one typical example considers the anterior–posterior CoP time 

series data for a 23-year-old male in the quiet standing with eyes closed condition. As shown in Fig. 7, no key 

frequencies were observed in the CoP Fourier spectrum. 

 



 
Wavelet Type 

The change in energy percentage at each timescale for three different wavelet functions, Haar, Discrete Meyer, 

and Biorthogonal 1.3 (Misiti et al. 1996) are shown in Fig. 8. 

 
Discussion 

The contribution of different sensory systems to postural control is not yet well understood. Parsing the CoP 

time series into several timescales will lead to increased understanding of not only individual sensory systems 

but also the contribution of open-loop control to postural control. A dominant timescale was not observed in the 

CoP signal, consistent with the concept that several mechanisms are contributing to the CoP displacement. Very 

little energy was observed at the shortest timescales with gradually increasing energy at the moderate to long 

timescales, reflecting that closed-loop mechanisms have a relatively higher contribution to CoP displacement 



compared to open-loop mechanisms. In this work, we have focused on 13 timescale ranges and found that the 

influence of vision, tapping tasks, or age can be captured in differences in energy content at these timescale 

ranges. For the present CoP data, our wavelet analysis does not focus on specific timescales that relate to 

specific neuromuscular loops. To isolate specific feedback loop timescales in the CoP data one may need to 

design experiments to specifically excite the specific feedback loop and the wavelet analysis, in principle, could 

be used to extract that effect in the CoP data. 

 
While standing with the eyes closed, both young and older adults demonstrated increased energy for most of the 

timescales (Fig. 6a, c). Increased energy is consistent with the observation typically reported in the literature: 

sway increases with eyes closed (e.g. Paulus et al. 1984). However, the fine-grain nature of the wavelet analysis 

provides relevant, quantitative information about the energy levels at each timescale. For example, the decrease 

in energy content at the longer timescales is consistent with literature regarding the visual control of posture. 

Vision stabilizes sway primarily at frequencies below 0.1 Hz (e.g. Horak and Machpherson 1996; Oppenheim et 

al. 1999). The wavelet analysis strengthens the argument that vision stabilizes sway at low frequencies. 

However, it is important to note that the energy content at the longest timescales did not decrease 100%, i.e. 

mechanisms other than vision are still contributing to the low frequency component of the CoP time series. 

 

As noted above, an increase in percent energy was observed at most of the timescales. Of these timescales, 

several (j = 7–10) are still within closed-loop timescales (critical point for open- versus closed-loop is about 1 s 

or 1 Hz, taken from Table 3 in Collins and DeLuca 1993). These timescales include frequency ranges that are 

sensitive to vestibular (0.1–0.5 Hz, j = 8–10) and somatosensory activity (0.5–1.0 Hz, j = 7–8) (Oppenheim et 

al. 1999). Assuming that these frequency bandwidths reflect the individual sensory systems, we can determine 

changes in contributions of the various sensory systems to the change in energy of the CoP data. Decreased 

energy in the 0.02–0.1 Hz timescales, coupled with increased energy at 0.1–1.0 Hz may reflect the nervous 



system placing greater weight on the vestibular and somatosensory receptors when vision is unavailable, 

consistent with the idea of sensory weighting (e.g. Peterka 2002). In addition, subjects appear to rely more on 

open-loop control (greater than 1 Hz, or j = 1–7) when vision was removed. This open-loop control may 

manifest from the subjects adopting more of a stiffness strategy to compensate for the lack of visual feedback. 

Therefore, the young adults have adopted a strategy in the stand quietly without vision condition: decreased 

energy at long timescales—typically described as being controlled by vision—and increased energy at the 

moderate to short timescales—typically described as being controlled by vestibular, somatosensory, and open-

loop mechanisms. 

 

Older adults showed a similar pattern of changes when the eyes were closed (see Fig. 6e), but the magnitude 

was greater, with most changes double or greater for the older adults (Fig. 6e). Therefore, older adults adopted 

similar changes at each timescale, consistent with the idea that healthy older adults used similar strategies to 

stand without vision, only the magnitudes of the change were modified. Note that the largest changes occurred 

at the shortest time scales (Fig. 6e), indicating an increased reliance on open-loop mechanisms, such as 

increased stiffness. This is consistent with the findings of Collins and DeLuca (1995). 

 

When performing concurrent tasks, performance on any or all tasks can be compromised if the combined 

capacity demands are greater than the amount of limited capacity attention available. This type of interference 

historically has been called capacity interference (Kahneman 1973). Cerebellar resources are required for both 

the timing task (Spencer et al. 2003) and the standing task (Woollacott and Velde 2008). Surprisingly, the 

change in energy while tapping showed a similar pattern to that observed for eyes closed, although the shape of 

the response is different and the response is different at the first two timescales (see Fig. 6a vs. b, c vs. d). That 

is, decreased energy was observed at the longer timescales with increased energy at the moderate and shorter 

timescales. 

 

The decreased energy at the longer timescales may reflect that longer, larger amplitude sway oscillations may 

interfere with the ability to keep time to a 2-Hz beat. Therefore, energy was decreased to reduce ―exploratory 

behavior‖ at low frequencies during this task. The increased reliance on the shorter timescales is consistent with 

the idea of weighted contributions of various mechanisms. As with vision, healthy older adults showed a similar 

change as young adults when tapping while standing with the eyes open (see Fig. 6b, d, e). As observed with the 

quiet standing with eyes closed condition, older healthy adults appear to use the same strategy as younger 

adults, with changes in the magnitude of energy change at several timescales. 

 

The next point we wish to make is more speculative. We expected to find fairly diverse energy changes as a 

function of the postural manipulations due to the robust observation that postural performance is a function of 

context (see review in Horak 2004). However, we observed strikingly similar patterns at the multiple 

timescales; these patterns were observed independent of task and age. Energy decreased at the longest 

timescales when the eyes were closed or when subjects tapped at 2 Hz with the eyes open. Energy increased or 

stayed about the same at the moderate and short timescales for both manipulations. This leads to the postulate 

that, when examined at the level of time-scales, the nervous system adopts a fixed strategy when faced with a 

postural perturbation: increased energy at the shorter to moderate timescales and decreased at the longest 

timescales. The magnitude of the change may be specific to the perturbation but not the direction of change. Of 

course, our observations are limited to just two tasks, and many more observations are required to fully examine 

similarities and differences across multiple tasks and contexts. Overall, for both tasks and age groups, no single 

timescale demonstrated a relatively greater change than the remaining timescales. This is consistent with the 

idea that a single sensory system or control mechanism is not responsible for adapting to the postural 

manipulations, rather the various mechanisms all contribute, and their weighting is adjusted up or down. 

 

When examining patient populations, such as Parkinson‘s disease or multiple sclerosis, the wavelet analysis can 

discover differential changes at particular timescales, shedding light on the regulation and mechanisms of 

various components of the postural control system. Knowing the energy at several timescales would be 

especially useful for those disorders where the disrupted feedback loop is known, such as vestibular disorders or 



‗visual vertigo‘, where balance disruption is provoked by dynamic visual environments. These groups have 

been described as more ―visually dependent‖ (Guerraz et al. 2001); the wavelet analysis would provide a fine 

grained analysis of changes in postural sway in this group, increasing our knowledge of postural control 

strategies in the face of disease. 

 

Wavelet versus Fourier versus stabilogram diffusion analysis versus rambling and trembling 

As mentioned earlier, the conventional analysis of CoP signals are performed using Fourier spectral methods. 

Fourier analysis breaks a time series signal into various sine wave frequency components; whereas, a wavelet 

analysis breaks a time series signal into scaled and translated mother wavelets. When comparing our wavelet 

analysis to the standard spectral analysis of other papers, the following key advantages of using the wavelet 

approach emerge when compared to the standard Fourier spectrum-based analysis: 

 

1. It is easy to see that the wavelet analysis provides much more ―sensitive‖ results for changes in postural 

conditions such as vision and age. A typical percentage change in MPF for a change in vision of healthy 

subjects is less than 10% (Laufer et al. 2006; Williams et al. 1997); whereas, the percentage change in our 

wavelet analysis for a change in vision of healthy subjects is up to 50%. Likewise, a typical percentage 

change in MPF for a change in age of healthy subject is less than 10% (Laufer et al. 2006; Williams et al. 

1997), whereas the percentage change in our wavelet analysis for a change in age of healthy subjects is up to 

100%. 

 

2. The wavelet analysis provides ―robust‖ results for changes in postural conditions such as vision and age. 

When examining the effects of vision, the results of typical MPF measurements for healthy subjects show 

relatively large error bars which overlap for the eyes open and eyes closed conditions (Laufer et al. 2006; 

Williams et al. 1997); likewise, when examining the effects of age, the results of typical MPF measurements 

for healthy subjects show relatively large error bars which overlap for the eyes open conditions for both 

young and elderly subjects and also for the eyes closed condition for both young and elderly subjects 

(Laufer et al. 2006; Williams et al. 1997). The findings of these experimental results are thus limited since 

no significant difference can be determined for these MPF measurements of different conditions. While our 

wavelet analysis does show error bars intersecting for some levels (mainly for small changes in levels), it is 

very clear that the error bars do not overlap for many cases through the different timescales of the signal, 

and as a result provide much more robust measures of changes in CoP dynamics with respect to age, vision, 

etc. 

 

3. The wavelet approach provides a much deeper insight into which timescales are affected by changes in a 

neuromuscular feedback loop, while this information is not available with standard MPF approaches. This is 

because the wavelet approach examines the signal at multiple timescales and energy from the different 

timescales can be compared to show significant differences at different timescales. On the other hand, the 

MPF measurement lacks this timescale resolution as it is simply used to determine the mean frequency used 

in the signal. Upon examination of a DFT from the anterior–posterior CoP trajectory (see Fig. 7), it is clear 

that no key frequencies or timescales are dominant other than the very low frequency component. Some 

prior works have shown increased postural sway at specific moderate frequencies (Zatsiorsky and Duarte 

1999). However, the DFT averages frequency components over the entire signal, transient occurrences 

cannot be identified. Therefore, a DFT is not able to discriminate the different timescale corrections that 

occur at the different time instants in the signal. Moreover, strictly speaking, Fourier analysis is applicable 

to stationary signals, and it is well documented that frequencies in postural sway change over time (e.g. 

Carroll and Freedman 1993; Schumann et al. 1995). However, wavelet transforms are particularly well-

suited for intermittent, time-localized dynamics that occur in nonlinear systems with time delays. 

 

These four main advantages of the wavelet approach over the Fourier approaches make wavelets an ideal tool 

for CoP time signals, and provide much more clear and significant results, which can be used to confidently 

distinguish differences in postural characteristics for different conditions. 

 



Finally, we note that our emphasis in this work has been on quantifying energy content of the CoP signal at 

different timescales which involves the integration of WCs over the time series so that time-localized effects are 

not isolated but rather summed to the total energy content. Even so, as we have shown, the wavelet-based 

extraction of energy content at different timescales resolves the different energy content at different timescales 

much better than a Fourier transform-based energy analysis. This is because the mother and child wavelets 

better represent the CoP data locally compared to the smooth harmonic functions in Fourier analysis. 

 

The stabilogram diffusion analysis proposed by Collins and Deluca (1993, 1994) has been used for the past 15 

years to quantify the level of effective stochastic activity in open- and closed-loop control during quiet standing. 

The analysis determines the critical time interval to distinguish short- and long-term diffusion regions for each 

subject. The wavelet analysis provides information different from stabilogram diffusion analysis or the ram-

bling–trembling analysis of Zatsiorsky and Duarte (2000). The wavelet analysis distinguishes between multiple 

time scales producing a finer grained output which is quantifiable and objective, and is complementary to the 

other analyses. 

 

Effect of wavelet type 

The energy analyses have been for a specific choice of wavelet function, the ―Haar‖ wavelet. It is interesting to 

ascertain whether the results change if other wavelets are chosen to represent the data. Figure 8 shows the 

discrete wavelet transform energy percentage change in the vision effect for all subjects using the Haar, 

Discrete Meyer, and Biorthogonal 1.3 wavelet functions (Misiti et al. 1996). When taking a closer look at these 

three wavelets in the discrete wavelet transform analysis, it is seen that the Haar and Biorthogonal 1.3 wavelet 

functions both show similar trends in energy contents at different timescales, albeit with different percentage 

changes. The Discrete Meyer wavelet analysis also shows that postural corrections contain more energy at 

middle timescales when visions is removed, and the energy content is extremely sensitive to certain time-scales; 

however; the associated variance of change in energy content is quite large to draw any statistically relevant 

conclusions about the relative change at different timescales. In conclusion, the choice of wavelet for CoP 

analysis should be made while taking the following issues into consideration: (a) the variance of difference in 

energy content between postural manipulations needs to be small enough so that comparisons between 

timescales can be made with a high degree of confidence, and (b) if the focus is on examining changes at a 

specific timescale then there may be interest in choosing wavelets to provide great sensitivity to postural 

manipulations compared to others. 

 

Conclusions 

Wavelet transforms revealed changes in CoP dynamics that are not observable using more traditional analytical 

techniques. These changes were mapped to various feedback loops used in the maintenance of posture. With the 

eyes closed, energy was reduced at the longer timescales, consistent with the postulate that vision controls 

postural sway at low frequencies. Energy was increased at the short to moderate time scales, indicating a shift to 

vestibular and somatosensory feedback loops and open-loop control mechanisms. The secondary task resulted 

in a similar pattern of energy change: increased energy at short and moderate timescales coupled with decreased 

energy at the longest timescales. 

 

Appendix 1: Calculating the energy content of the signal 

The energy content at the level ―j‖ can be expressed in terms of the detail WCs at that scale as, 

 
Similarly, the total energy content of the signal can be found by summing the energy content of the 

approximated signal and the energy content over all J levels of the detail signals: 

 
where the energy at each discrete scale j = 1,..., J and discrete location k = 0,..., K(j) are summed. The energy 

content of the different scales can be expressed as a percentage of the total energy of the signal which is the sum 



of the decomposed scale energies 

 
 

Appendix 2: Energy content percentage for vision effect 

The percentage of energy content for the vision effect was examined by comparing the quiet standing with eyes 

open (SEO) and quiet standing with eyes closed (SEC) conditions for each trial of a subject as, 

 
where ESEO%(j) and ESEC%(j) are the energy content percentages averaged over the three trials for the quiet 

standing with eyes open and quiet standing with eyes closed conditions, respectively. ΔEEYE%(j),j = 1,..., 3 for 

one young individual (subject 14) are shown in Fig. 5c. 

 

Appendix 3: Energy content percentage for tapping effect 

The percentage of energy content for the tapping effect was examined by comparing the quiet standing with 

eyes open (SEO) and tapping with eyes open (TEO) conditions for each trial of a subject as 

 
where ESEO%(j) and ETEO%(j) are the energy content percentages averaged over the three trials for the quiet 

standing with eyes open and tapping with eyes open cases, respectively. The calculation was conducted for each 

of the young and older subjects. 
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