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Abstract: 

Lakes N-1 and N-2 at the Arctic Long Term Ecological Research site at Toolik Lake, Alaska, U.S.A. were 

fertilized with nitrogen and phosphorus for 5 and 6 years, respectively. The response and recovery of the 

microplankton community (protozoans, rotifers and crustacean nauplii) differed in the two lakes. Microplankton 

biomass in Lake N-1 increased five-fold while that in Lake-N-2 only doubled, despite larger nutrient additions 

to N-2. Microplankton community structure in Lake N-1 shifted toward dominance by few taxa, while the 

community in Lake N-2 maintained diversity. Finally, the recovery of Lake N-1 to near prefertilization 

microplankton biomass levels was rapid, while Lake N-2 showed at least a 1-year lag in recovery. These 

differences appear to be related to differences in the structure of lake sediments. 
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Article: 

Introduction 

Alaskan arctic aquatic ecosystems are of interest because the arctic region is expected to undergo significant 

global climate change (e.g. Lachenbruch & Marshall, 1986; Abelson, 1989; Schindler et al., 1990). The impact 

of increased temperature and altered rainfall is expected to lead to changes in the physical, chemical, and 

biological character of the relatively pristine lakes and streams in this region (McDonald et al., 1996; Rouse et 

al., 1997; Hobbie et al. In Press). Since microbial communities are characterized by rapid metabolism and short 

life cycles, they include organisms that could demonstrate rapid response to environmental change. 

 

Previously, we have reported on the increased biomass and species changes of the microplankton community in 

response to increased nutrient (N and P) loadings in artificially divided Lake N-2 (Rublee, 1992), and in Lake 

N-1 (Rublee, 1998; Rublee & Bettez, 1995). In this paper, we report observations that demonstrate subtle 

differences in the recovery of the microplankton community after fertilization of the lakes stopped. 

 

Site description 

The arctic LTER site lies in the northern foothills of the Brooks Mountain range of Alaska (68° N, 149° W). 

The area is a region of arctic tundra, underlain by permafrost, with an average annual temperature of about -9 

°C and low rainfall. Lakes are covered by up to 2 m of ice from late September to mid-June. The site has been 

under study for 25 years, although microplankton populations have been monitored only since 1989. Lakes are 

of glacial origin and generally highly oligotrophic. More complete descriptions of Toolik and other LTER lakes 

can be found in O’Brien (1992) and O’Brien et al. (1997). 

 

Methods 

We sampled from three lakes: two of these Lake N1 and Lake N-2 were subject to experimental nutrient loading 

and the third one, Toolik Lake, served as a reference lake (Table 1). Water samples (2-l) collected weekly from 

a depth of 1 m by a Van Dorn bottle from June to August were concentrated to 60 ml by reverse flow filtration 
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through a 20 μm mesh net. Glutaraldehyde was added to a final concentration of 1% for fixation. For 

enumeration, 5–20 ml of the concentrated sample was stained with rose bengal for 10–15 min (Baldock,1986), 

followed by observation under a light microscope at 100–400 × magnification for identification and 

enumeration. Biomass (as μg carbon l
−1

) was derived from literature values (cf. Rublee, 1992) 

 
Results 

Microplankton biomass in Toolik Lake varied from 3 to 9 μg C l
−1

 from 1989 to 1999 (Fig. 1). Rotifers 

averaged 15% (range 7–22%) of the biomass of the microplankton over the 11 year sampling period. Both Lake 

N-1 and the fertilized side of Lake N-2 demonstrated a clear response to the nutrient amendment. In Lake N-1, 

microplankton mean biomass increased five-fold during fertilization from a mean value of 11 μg C l
−1

 to 50 μg 

C l
−1

(Fig. 1). Microplankton populations shifted from a mixed assemblage to one dominated by the rotifer 

Conochilus unicornis during the first- year of fertilization, to peritrich protozoans during the second year of 

fertilization, the rotifers Synchaeta and Polyarthra during the third year of fertilization, and finally to a 

dominance of Trichocerca species in the fourth and fifth years (for details see Rublee & Bettez, 1995). The 

biomass of micro-plankton returned to near prefertilization levels in the first year following fertilization. 

Although biomass of rotifers was higher during years of fertilization, the proportion of microplankton biomass 

comprised by rotifers was similar during fertilized (average 30%, range 3–71%) vs non-fertilized years (average 

26%, range 3–65%). 

 

The microplankton community in Lake N-2, a divided lake (reference and treatment sides) was followed during 

1989 and 1990, the last 2 years of fertilization, and for 9 additional years (Fig. 1). The average biomass of the 

microplankton in Lake N-2 during the years of fertilization was 20 μg C l
−1

, about twice the average value 

found in the control side of Lake N-2. The microplankton community was a mixed assemblage of ciliate and 

peritrich protozoans and rotifers. No individual taxon comprised more than about 20% of the biomass of the 

community, and the rotifer assemblage was similar to that in unfertilized control lakes, mostly composed of 

Keratella cochlearis, K. quadrata, Kellicotia longispina and Polyarthra and Conochilus species. After 

fertilization ceased, biomass in the treatment side of Lake N-2 returned to prefertilization levels after a one to 

two year lag (Fig. 1). 

 

Discussion 

Despite annual variability shown in microplankton values in Toolik Lake, and in the reference side of Lake N-2, 

there were pronounced responses of the microplankton community to nutrient additions. Differences in the 

response and recovery of Lake N-1 and Lake N-2 included: (1) a much greater increase in biomass in Lake N-1 

as compared with Lake N-2, despite a heavier nutrient loading regime in Lake N2; (2) decrease in the diversity 

of microplankton in Lake N-1 to a community dominated by a single or few protozoan or rotifer taxa; and (3) 

slower return of Lake N-2 to prefertilization levels of microplankton biomass. 

 

The differences in response of Lake N-1 and N-2 to fertilization are likely the result of the character of the 

bottom sediments. Soils in this region are characterized by high iron content, which strongly adsorbs 

phosphorus (Prentki et al., 1980; Kipphut, 1988; Cornwell & Kipphut, 1992; Sugai & Kipphut, 1992). Thus, in 

Lake N-2, which has a relatively thick layer of sediment, phosphorus was adsorbed onto sediments during the 

earlier years of fertilization, effectively reducing the loadings to the pelagic. However, by 1989 and for several 

years after fertilization ceased, there was a net flux of phosphorus out of sediments (cf. Sugai & Kipphut, 1992; 



Hobbie et al., In Press) which appears to have had the effect of extending the term of nutrient enrichment in this 

lake. This effect was minimal in Lake N-1, which has a rocky bottom and a very thin layer of sediment. 

Microplankton are affected indirectly by the supply of nutrients through phytoplankton growth, which provides 

food for microplankton. 

 
In summary, relatively subtle differences in lake structure may contribute to differential responses of aquatic 

organisms to environmental change. Thus, designing studies to determine response to global warming or other 

perturbations must take into account any unique characteristics of study sites. 
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