
REMARKS ON TWO NONSTANDARD VERSIONS OF PERIODICITY IN WORDS 

 

By: Francine Blanchet-Sadri, L. Bromberg, and K. Zipple 

 

F. Blanchet-Sadri, L. Bromberg and K. Zipple, “Remarks on Two Nonstandard Versions of Periodicity in 

Words.” International Journal of Foundations of Computer Science, Vol. 19, No. 6, 2008, pp 1439-1448.  

 

Made available courtesy of World Scientific Publishing: http://www.worldscientific.com/ 

 

***Reprinted with permission. No further reproduction is authorized without written permission from 

World Scientific Publishing. This version of the document is not the version of record. Figures and/or 

pictures may be missing from this format of the document.*** 

 

Abstract: 

In this paper, we study some periodicity concepts on words. First, we extend the notion of full tilings which was 

recently introduced by Karhumäki, Lifshits, and Rytter to partial tilings. Second, we investigate the notion of 

quasiperiods and show in particular that the set of quasiperiodic words is a context-sensitive language that is not 

context-free, answering a conjecture by Dömösi, Horváth and Ito. 
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Article: 

1. Introduction 

The problem of computing periods in words, or finite sequences of symbols from a finite alphabet, has 

important applications in data compression, string searching and pattern matching algorithms. It also finds 

applications in DNA sequencing. In this paper, we investigate the properties of various notions of periodicity on 

words: full tilings, partial tilings, and quasiperiods. 

 

The contents of our paper is as follows: In Section 2, we begin with tiling periodicity recently introduced by 

Karhumäki, Lifshits, and Rytter in [6], generalize their notion of full tiling to partial tiling in which case words 

are not necessarily fully tiled, and compare the properties of the two. In [6], it was conjectured that a full tiling 

is primitive if and only if it is minimal. Both directions are found to fail in the case of partial tilings. We also 

investigate properties of the notion of quasiperiods of words. In Section 3, we give some number theoretical 

properties related to periods: in Section 3.1, we discuss the number of full tilings of a word of length n over a 

unary alphabet and the number of partial tilings of such a word (the latter behaves in a highly irregular fashion), 

and in Section 3.2, we discuss fractions of words with full tilings, partial tilings, or quasiperiods. Finally, in 

Section 4, answering a question from Dömösi, Horváth and Ito in [4], we prove that the set of quasiperiodic 

words is a context-sensitive language that is not context-free. We prove a similar result for the set of words with 

full tilings and the one with partial tilings. 

 

We end this section by reviewing some basic definitions related to words and partial words that we refer to 

throughout the paper. 

 

Let A be a nonempty finite set of symbols, which we call an alphabet. We call a   A a letter. A word over A is a 

finite sequence of letters. The empty word, denoted by ε, is the word consisting of no letters. A word of length n 

over A can be defined by a total function u : {0, . . . , n − 1} → A and is represented as u = a0a1 ... an-1 with ai   

A. The length of u, or n, is denoted by |u|. 

 

A factorization of a word u is any sequence of words u1, u2, . . ., ui such that u = u1u2 ... ui. A word u is a factor 

of a word v if there exist words x, y (possibly equal to ε) such that v = xuy. We say that the word u is a prefix 

(respectively, suffix) of v if x = ε (respectively, y = ε). A word u is said to be bordered if there exists a word x 

that is both a proper prefix and suffix of u, that is, 0 < |x| < |u| and xv = u = wx for some words v, w. In this case, 

x is called a border of u. Every bordered word of length n has a unique minimal border x. Moreover, this unique 
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minimal border x is unbordered and |x| ≤ ⌊
 

 
⌋. 

 

A partial word u of length n over A is a partial function u : {0,.. ., n − 1} → A (the length n of u is denoted by 

|u|). For 0 < i < n, if u(i) is defined, we say that i belongs to the domain of u, denoted by i   D(u). Otherwise we 

say that i belongs to the set of holes of u, denoted by i   H(u). A full word over A is a partial word with an 

empty set of holes. We refer to a partial word over A as a word over the enlarged alphabet A◊ = A U {◊}, where 

◊   A represents a “hole.” We can extend concepts such as prefix, suffix, etc in a trivial way. 

 

A (partial) word u is said to be periodic with period p if u (i) = u (i + p) whenever i, i+ p are defined. If p is a 

period that divides |u|, then we call p a “full” period of u. For example, 5 is a period of ababaaba (we also say 

that ababa is a period), but 5 is not a full period since 5 does not divide 8. A word is primitive if it has no proper 

full period. 

 

2. Full Tilings, Partial Tilings, and Quasiperiods 

A tiler is a word over the alphabet A U {◊}, where ◊ is an undefined, or placeholder letter. The size of a tiler x is 

the number of defined positions in x. The following notion of a full tiling period extends that of a full period. 

 

Definition 1 ([6]) A tiler x is called a full tiling period (or simply a full tiling) of a word w if w can be split into 

disjoint parallel copies of x satisfying the following: 

 

• All defined (nonplaceholder) letters of copies of x match w’s letters, 

 

• Every letter of w is covered by exactly one defined letter. 

 

Similarly, we define a full tiling period of a tiler. In [6], it was shown that a word w of length n having a full 

tiling period must have a breakdown into multiperiods, defined as follows: w has a multiperiod (p, q) if q 

divides n, and if w = w1w2 ... wi is a factorization of w into factors of length q, then each wj has p as a full period. 

 

As an example, the word w = aaaaaaaaaabbaabb can be fully tiled by four parallel copies of x = a◊a◊◊◊◊◊a◊b: 

 
We can check that w has multiperiod (4,8) for instance. 

 

We extend the notion of a full tiling period to a partial tiling period, meaning that in addition to the parallel 

copies matching up exactly, there can be “extra” letters at the end of the word that are not covered. 

 

Definition 2 A tiler x is called a partial tiling period (or simply a partial tiling) of a word w if 

w = uv 

where x is a full tiling period of u, and v is a prefix of x. 

 

The word w = aabbaaa has no proper full tiling, but does have partial tiling x = a◊b◊a. Note that a◊b is not a 

partial tiling of w because aaa is not a prefix of a◊b. Also note that a◊b is a partial tiling for the word aabba, 

where v = a. 

 

Since v must be a prefix of the tiler x, it is clear that the only way in which x can be a strictly partial tiling is if w 

is bordered. 

 

Remark 1 A word w has a partial tiling if and only if w is bordered or w has a full tiling. 

 



A full (respectively, partial) tiling period of a word w is minimal if it has the smallest size among all other full 

(respectively, partial) tiling periods of w. A full (respectively, partial) tiling period is said to be primitive if it 

has no proper full (respectively, partial) tiling period. There exists a word that has two distinct primitive full 

tilings of minimal size [6]. Indeed, the word aaaaaaaabaabbaabaaaaaaaa has two primitive full tiling periods 

of minimal size: 

 
Conjecture 1 ([6]) All primitive full tiling periods of a word are minimal. 

 

As a consequence of Fine and Wilf’s theorem [5], the conjecture is true in case of primitive full tiling periods 

that are full words. 

 

If x and y are two distinct primitive partial tilings of w, then x does not necessarily have the same size as y. For 

example, aaaaaaaabaabbaabaa has two primitive partial tilings: 

x = aaaa◊◊◊◊baab 

and 

y = aaa◊◊◊aab◊◊◊baa 

of size 8 and 9 respectively. This example shows that for partial tilings, primitivity does not imply minimality. 

 

Upon further inspection, minimality does not imply primitivity for partial tilings either. Indeed, the word w = 

aaaaaaaaaabbaabbaaa has minimal primitive partial tiling a◊a◊a◊a◊a◊b◊a◊b◊a, which has size 9. The 

minimal partial tiling of w is given by x = aaaa◊◊◊◊aabb, which has size 8. It is not a primitive partial tiling, 

since it can be tiled by y = a◊a◊◊◊◊◊a◊b. However, y is not a partial tiling of w. 

 

We also investigate quasiperiodic words. These are similar to periodic words, except that in addition to the 

regular idea of periodicity, there can exist overlaps of the repetition. 

 

Definition 3 A word w of length n is quasiperiodic with quasiperiod y if the following hold: 

 

• The word y is a factor of w of length m where m < n, 

 

• Each position of w falls within an occurrence of y in w. 

 

To denote the quasiperiodicity of a word w of length n, we say that w is 
 

 
-quasiperiodic, where m is the length 

of the quasiperiod y. For instance, the word w = ababa is 
 

 
-quasiperiodic, with quasiperiod aba. The word 

abaabaaba also has quasiperiod aba, but it is 
 

 
-quasiperiodic. Clearly any word that has a proper full period is 

also quasiperiodic. Moreover, if a word w is quasiperiodic, then it is bordered. 

 

We say that a word w is strongly primitive if it is not quasiperiodic. Since any word with a proper full period is 

quasiperiodic, every strongly primitive word is primitive. However, the converse of either of these statements is 

false. 

 

Remark 2 Let w be a quasiperiodic word with quasiperiod y. If y is unbordered, then w has y as a full period. 

 

3. Number Theoretical Properties Related to Periods 

In this section, we discuss some number theoretical properties related to full tilings, partial tilings, and 

quasiperiods. 

 

3.1. Counting full and partial tilings over a unary alphabet 

In [6], the authors give a recursive formula for the number of full tilings of the word of length n over a unary 



alphabet, F(n), based on the divisors of n. In this section, we relate this number to the number of partial tilings 

of the word of length n over such alphabet, P(n). 

 

The number F(n), is as follows: 

 
A list of the first 1000 elements of the sequence (F(n))n≥1 can be found on the OnLine Encyclopedia of Integer 

Sequences (A067824) [8]. Bodini and Rivals [2] showed that F(n) is equal to the number of polynomials over x, 

p(x), with coefficients in the set {0, 1} such that 
    

(   ) ( )
 also has coefficients in the set {0, 1}.  

 

Proposition 1 For distinct primes p and q, the following equality holds: 

 
Using this formula we can derive closed form expressions of F(n) for particular prime signatures, based on the 

fact that F(p
n
) = 2

n
 for prime p. 

 

Proposition 2 For distinct primes p and q, the following equalities hold:  

 

F(p
n
) = 2

n
, n ≥ 0; 

 

F(p
n
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n
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n + 8), n ≥ 3. 

 

Proof. These can be derived by simple induction arguments given F(p) = 2, F(pq) = 6, F(p
2
q

2
) = 52, and F(p

3
q

3
) 

= 504.  

 

To find a formula for P(n), note that a partial tiler of a word must be a full tiler of a prefix of that word. So we 

look at the relationship between F(n) and the number of partial tilers that are “inherited” from words of shorter 

length. The chart above shows how many tilers a word of length n, 1 ≤ n ≤ 36, “inherits.” Since P(n) not only 

depends on F(n), but also on the proximity of n to integers with many divisors, and hence many full tiling 

periods, there is no apparent way to directly determine the value of P(n). 

 



 
 

Although one might initially think that P(n) is a monotonically increasing function, it is clear from looking at 

the chart that this is not the case. As we have seen, the value for P(n) is at least as great as the corresponding 

value of F(n), which is not a monotonic function. In addition, for every full tiling x of a unary word of length n, 

we have that x is a partial tiling for all words of length l, n ≤ l ≤ n + m, where m is the length of the longest 

defined prefix of x. For example, the full tiling aaa◊◊◊aaa of a
12

 is also a partial tiling for a
13

, a
14

, and a
15

. So 

words like a
13

, which would not intuitively have many partial tilings as they do not have many full tilings, 

actually have just as many as a
12

. 

 

3.2. Fractions of words with full tilings, partial tilings, or quasiperiods 

In this section, we consider frequency of occurrence, that is, what fraction of words of a given length have full 

tilings, partial tilings, or quasiperiods. 

 

First, we consider words with full tilings. The nature of multiperiods allows us to give an upper bound on the 

number of words of length n over an alphabet of size k which have full tilings. Since a multiperiod is given by a 

pair of positive integer divisors of n, there can be at most n
2
 possible multiperiods. Generally it is smaller than 

this, one of the divisors must divide the other. Each one contains n' characters where n' divides but does not 

equal n. This means that, given a multiperiod there are at most  
 

  multiperiods of that size.  

 

Proposition 3 

 

The above fraction is strictly less than 
   

 
 

  
, which clearly converges to 0. 

 

Now, we consider words with partial tilings. By the above proposition and Remark 1, it is enough to consider 

the fraction of words of length n over a k-size alphabet that are bordered. We first define the function 

 
where k is the size of the alphabet, Uk(i) is the number of unbordered words (minimal borders) of length i over a 

k-letter alphabet, Uk(i)k
n−2i 

is the number of words of length n over a k-letter alphabet that have a minimal 



border of length i, ∑   
⌊
 

 
⌋

   
(i) k

n−2i 
is the number of words of length n over a k-letter alphabet with a border of 

any length, and n is the length of the word. 

 

The problem of enumerating all unbordered words of length i over a k-letter alphabet yields to a conceptually 

simple and elegant recursive formula: Uk(0) = 1, Uk(1) = k, and for i > 0, 

 

Uk (2i) = kUk (2i − 1) − Uk (i) 

Uk(2i + 1) = kUk(2i) 

 

These equalities can be seen from the fact that if a word has odd length 2i + 1, then it is unbordered if and only 

if it is unbordered after removing the middle letter. If a word has even length 2i, then it is unbordered if and 

only if it is obtained from an unbordered word of length 2i − 1 by adding a letter next to the middle position 

unless doing so creates a word that is a perfect square. 

 

The fraction Pk(n) is between 0 and 1 for all values of k and n. Moreover, Pk(n + 1) is greater than or equal to 

Pk(n). Since (Pk(n))n≥1 is a nondecreasing sequence bounded above by 1, it converges. In particular, (P2(n))n≥1 

converges to approximately .73, and (P3(n))n≥1 to .44. 

 

Finally, we consider quasiperiodic words. Similarly to words with full tilings, it seems fairly intuitive that the 

fraction of quasiperiodic words converges to zero as the length of the words increases. Empirical evidence 

suggests the following. 

 

Conjecture 2 The fraction of quasiperiodic words of length n over an alphabet of size k, denoted by Qk (n), 

converges to zero as n goes to infinity for all values of k. 

 

One reason for this stems from the border compositions associated with quasiperiodic words. All words of 

length n with quasiperiod y can be denoted by a border composition, a sequence matching  *|y|, with terms 

summing to n. Here,  

  = ⋃ * |y| - bi}   {|y|} 

where bi is the length of a border of y. For example, we construct all words of length 11 with quasiperiod y = 

aba. First, the only border of y is a which gives   = {2,3}. Therefore, we write 11 as a sum of 2’s and 3’s, 

ending in a 3. There are four ways to do this: 2333, 3233, 3323, and 22223. These correspond to the words 

ababaabaaba, abaababaaba, abaabaababa, and abababababa. 

 

Proposition 4 The number of words of length n having quasiperiod y, denoted by Qy(n), can be computed as 

follows: 

For n > |y|, Qy(n) = ∑        (n — i) 

 

Proof. For n > |y|, consider the set of border compositions beginning with an element i of  . If we remove i 

from the beginning of these border compositions, then we are left with the set of border compositions of words 

of length n — i.  

 

Since the coefficients of the terms of the recursive formula given in Proposition 4 are either 0 or 1, we have the 

following proposition. 

 

Proposition 5 For any quasiperiod y, there exists some integer N such that Qy (n+ 1) < 2Qy(n) for all n > N. 

 

Proof. In the limit, Qy(n) can be closely approximated by the exponential function aq
n
, where a is a scaling 

constant and q is to be determined below. This formula must still satisfy the recursion, so we have aq
n
 = 

∑           , or ∑        = 1. If we allow   to equal the set of positive integers, we have ∑
 

  
 
    = 1, or q = 2. 



Since none of our recurrence relations can grow that quickly, we have that q is less than 2 for any quasiperiod y.  

 

While we do not have a bound on the number of quasiperiods generating words of a given length, the fact that 

the fraction of words with any particular quasiperiod converges to 0 seems significant. 

 

4. The Chomsky Hierarchy 

In this section, we discuss the position of the languages of quasiperiodic words, and of words with full or partial 

tilings in the Chomsky hierarchy. 

 

In [4], the authors ask where in the Chomsky hierarchy the set of strongly primitive words (or words without 

quasiperiods) falls. And we ask where in the Chomsky hierarchy the set of words with full (respectively, partial) 

tilings falls. The proofs that these sets are context-sensitive languages are simple. 

 

Remark 3 *  The set of quasiperiodic (respectively, strongly primitive) words is a context-sensitive 

language. 

 

* The set of words with full (respectively, partial) tilings is a context-sensitive language. 

 

We now show that the set of quasiperiodic words and the set of words with full (respectively, partial) tilings are 

not context-free languages. 

 

Proposition 6 The set of quasiperiodic words is not a context-free language. 

 

Proof. We show that the set of quasiperiodic words does not satisfy the pumping lemma. Let n be the constant 

dictated by the lemma [7]. Consider the quasiperiodic word w = ab
n
ab

n
ab

n
a. Then we write w = xuyvz, where 

|uyv| < n, |uv| > 0, and xu
i
yv

i
z is quasiperiodic for all i ≥ 0. There are now four choices for uv: uv matches the 

pattern b*, ab*, b*a, or b*ab*. These are the only possibilities, because there can never be two a’s, since 

consecutive occurrences of a are separated by n b’s, thereby contradicting |uyv| < n. 

 

In the first case, xu
0
yv

0
z is of the form ab

n'
ab

n"
ab

n
a or ab

n
ab

n'
ab

n"
a, where at least one of n' and n" is less than n, 

words that are clearly not quasiperiodic leading to a contradiction. In the second case, if uv = a, then xu
n
yv

n
z is 

of the form a
n
b

n
ab

n
ab

n
a or ab

n
a

n
b

n
ab

n
a or ab

n
ab

n
a

n
b

n
a, none being quasiperiodic. If uv = ab

n'
, where 1 ≤ n' < n 

— 1, then xu
0
yv

0
z is of the form b

n−n'
ab

n
ab

n
a or ab

n+n−n'
ab

n
a or ab

n
ab

n+n−n'
a, words that are not quasiperiodic. 

The third and fourth cases are similar.  

 

Proposition 7 The set of words with full (respectively, partial) tilings is not a context-free language. 

 

Proof. First, consider the case of partial tilings. Let n be the constant dictated by the pumping lemma. Consider 

the word w = a
n+1

b
n+1

a
n+1

b
n+1

 which obviously has a partial tiling (in fact, it has a full tiling). As before, we 

write w = xuyvz, with |uyv| < n, |uv| ≠ 0, and xu
i
yv

i
z having a partial tiling for all i ≥ 0. This tells us that uv 

matches the pattern a*, b*, a*b*, or b*a*. The word xu
0
yv

0
z is of the form a

k
b

n+1
a

n+1
b

n+1 
or a

n+1
b

k
a

n+1
b

n+1 
or 

a
n+1

b
n+1

a
k
b

n+1
 or a

n+1
b

n+1
a

n+1
b

k
 or a

k
b

l
a

n+1
b

n+1
 or a

n+1
b

k
a

l
b

n+1 
or a

n+1
b

n+1
a

k
b

l
 where 1 < k, l < n. But none of 

these words has a partial tiling, a contradiction. 

 

Now, the word w has a full tiling, but its above mentioned pumped forms do not. Therefore the set of words 

with full tilings is also not a context-free language.  
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