
SAMA, VIVEK REDDY, M.S. Universally Composable Zero Knowledge Protocol
using Trusted Platform Modules. (2011)
Directed by Stephen Tate. 36 pp.

Cryptographic protocols that are established as secure in the Universally Com-

posable (UC) model of security provide strong security assurances even when run

in complex environments. Unfortunately, in order to achieve such strong security

properties, UC protocols are often impractical, and most non-trivial two-party pro-

tocols cannot be secure in the UC model without some sort of external capability

(or "setup assumption") being introduced. Recent work by Hofheinz et al. [18] pro-

vided an important breakthrough in designing realistic universally composable two

party protocols, in which they use trusted, tamper proof hardware as a special type

of helping functionality which they call a catalyst. Hofheinz et al. use government

issued signature cards as a catalyst to design universally composable protocols for

zero-knowledge proofs and commitments, but did not give a complete security proof

for either protocol.

In this thesis, we consider another form of security hardware, Trusted Platform

Modules (TPMs), which are more widespread than signature cards and are currently

shipped as a part of almost every business laptop or desktop. Trusted Module Plat-

forms are tamper evident devices which support cryptographic functionalities includ-

ing digital signatures, but have a di�erent key management model from signature

cards. In this thesis we consider TPMs as catalysts and describe a universally com-

posable zero knowledge protocol using Trusted Platform Modules. We also present a

complete security proof for both the Hofheinz's universally composable zero knowl-

edge protocol from signature cards and our universally composable zero knowledge

protocol using TPMs as a catalyst.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149237321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSALLY COMPOSABLE ZERO KNOWLEDGE PROTOCOL USING

TRUSTED PLATFORM MODULES

by

Vivek Reddy Sama

A Thesis Submitted to
the Faculty of the Graduate School at

The University of North Carolina at Greensboro
in Partial Ful�llment

of the Requirements for the Degree
Master of Science

Greensboro
2011

Approved by

Committee Chair

c© 2011 by Vivek Reddy Sama

To my parents and friends

ii

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of The

Graduate School at The University of North Carolina at Greensboro.

Committee Chair
Stephen Tate

Committee Members
Shanmugathasan Suthaharan

Lixin Fu

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGEMENTS

It is a pleasure to thank all those who made this thesis possible.

First, I would like to express my sincere gratitude to my adviser, Dr. Stephen

Tate, whose encouragement, guidance and support from the initial to the �nal level

enabled me to develop an understanding on my thesis. His guidance helped me all

the time of research and writing of this thesis. I would like to thank my committee

members Dr. Shan Suthaharan and Dr. Lixin Fu for their support and advice, which

helped me to re�ne my work further.

I also thank my family members for being there with me and supporting in all

the ways without which, this was not possible. My special thanks to all my friends

at Warren Street and University village.

iv

TABLE OF CONTENTS

Page

CHAPTER

I. INTRODUCTION . 1

1.1. Zero-Knowledge Proofs . 2
1.2. Universal Composable Framework . 6
1.3. Trusted/Tamper Proof Hardware . 9
1.4. Prior Work . 13
1.5. Motivations and Results Overview . 15

II. UC ZERO-KNOWLEDGE PROTOCOLS 17

2.1. Zero knowledge protocols based on Signature Cards 17
2.2. Zero-knowledge protocols based on TPMs 25

III. CONCLUSION AND FUTURE DIRECTIONS 33

REFERENCES . 35

v

CHAPTER I

INTRODUCTION

The term �cryptography� is derived from the Greek phrase for �hidden writing�

[22]. The story of cryptography goes back thousands of years, and initially cryptog-

raphy dealt with the methods of encryption which used only pen and paper. The de-

velopment of cryptanalysis (the science of breaking secret writing) has been balanced

by the development of cryptography. The �rst glimpses of modern cryptography were

seen during the phases of World War I and World War II, and over the years, the use

of cryptography has drastically increased in military applications. Until 1970's, the

domain of cryptography comprised of only encryption and decryption techniques, i.e.,

keeping messages secret in storage or transmission. Working with data in complex

environments, the protection of data may have the traditional meaning of secrecy

(con�dentiality) but may also include goals such as integrity, authenticity or fair-

ness, and so cryptography has expanded to cover techniques that support goals other

than secrecy. For example, the authenticity of data in a complex environment can

be addressed using digital signatures [21]. In the 1970's and 1980's breakthroughs

in computer science fundamentally changed the way cryptography was viewed. In

the 1970's, the data encryption standard (DES) [24] and public-key cryptography

[10] were introduced. The invention of the key exchange mechanism by Di�e and

Hellman [10] in 1976, and the �rst public key encryption algorithm by Rivest, Shamir

and Adleman [21] in 1978 played a vital role in building the new idea of public key

cryptosystems. In 1984, the concept of an interactive proof system was introduced

1

by Goldwasser et al. [14]. The proposed systems led to the development of new

computational models of security. Later, many additional cryptographic techniques

and concepts were introduced, including one-way functions, pseudo-random genera-

tors, zero-knowledge proofs [13] and witness indistinguishable arguments [11]. Unlike

the classical view of cryptography, which focused on only secret messages, modern

cryptography has a much expanded domain.

In this work we present a zero-knowledge protocol using Trusted Platform Mod-

ules (TPMs) to achieve universal composable security. This chapter mainly focuses

on background information, which sets a foundation for us to present our work. In

Section 1.1, we present background information on zero-knowledge proofs. The uni-

versal composable model of security is discussed in Section 1.2. We discuss protocols

related to trusted/tamper proof hardware in Section 1.3. Prior work and an overview

of our results are given in Section 1.4 and Section 1.5 respectively.

1.1 Zero-Knowledge Proofs

In 1985, Goldwasser et al.[13] introduced a new concept called zero-knowledge

proof, which is an interactive protocol between two parties, prover P and veri�er

V , where P 's job is to convince V that a common input x is in some language L.

For example, x might be a graph, and P needs to convince V that x contains a

Hamiltonian cycle. In a zero knowledge proof P proves to V that a statement is

true, without revealing any information other than the veracity of the statement.

Formally, P and V are probabilistic Turing machines such that at the end of this

interactive protocol, V outputs either �Accept� or �Reject� as a result. To be an

interactive proof, this protocol should have two properties: It should be complete,

2

where an honest prover will always gets acceptance, and it should be sound, meaning

that no cheating prover can convince an honest veri�er that a false statement is true,

except with small probability.

De�nition I.1. Interactive Proof System

A pair of interactive machines 〈P, V 〉 with prover P and veri�er V is called an interac-

tive proof system for a language L if machine V is polynomial-time and the following

two conditions hold:

Completeness: For every x ∈ L, Pr [〈P, V 〉(x) = 1] ≥ 2
3

Soundness: For every x /∈ L and every interactive machine B, Pr [〈B, V 〉(x) = 1] ≤ 1
3

To be a zero-knowledge proof, it also should have a property called zero knowledge,

where no cheating veri�er learns any information other than statement to be proven.

To illustrate the zero knowledge proof concept, we consider an example with partici-

pants Alice and Bob. Consider a situation in which Alice knows a Hamiltonian cycle

C for a large graph G. She wants to prove to Bob that G has a Hamiltonian cycle,

but does not want to reveal the cycle to him. Alice posts G publicly such that both

Alice and Bob share a common input graph G. Alice creates a graph H isomorphic

to G by randomly permuting the vertices of G. She commits H but doesn't reveal H

to Bob. Lets say she writes each edge of H on a slip of paper and turns them over

so that they are visible to both of them so that Alice cannot change anything about

H at a later part of the protocol. Bob �ips a coin. If heads, Alice shows how H is

isomorphic to G by turning all pieces of paper that she put on the table. If tails, Alice

shows the Hamiltonian cycle in H to Bob by just turning over just the edges in the

Hamiltonian cycle. This interactive game of Alice and Bob works accordingly with

3

the above mentioned thee properties, i.e., completeness, soundness and zero knowl-

edge. In the above scenario, the Hamiltonian cycle C is secret information, sometimes

called a witness to the fact that G has a Hamiltonian cycle, and veri�er V does not

gain any information about the witness even at the end of the protocol.

In order to de�ne the security of an interactive proof protocol we have to consider

the following setting. Consider a cheating veri�er V ∗ interacting with P on input

x ∈ L. Since P and V ∗ are probabilistic, the output of V ∗ is a random variable for

each x ∈ L, or is an ensemble, which we denote Rx∈L (this is �real� output). Next,

consider creating a simulatorMV ∗ which simulates the cheating veri�er V ∗ with same

input x ∈ L and generates the ensemble Sx∈L. Since MV ∗ does not interact with

P , it can't discover P 's information, so if MV ∗ behaves essentially the same as V ∗

interacting with P , then V ∗ similarly can not gain information. Technically, this

holds if Rx and Sx are computationally indistinguishable which means that for every

probabilistic polynomial-time algorithm D, for every polynomial p(.), and for all

su�ciently large |x|, it holds that

|Pr[D(x,Rx) = 1]− Pr[D(x, Sx) = 1]| < 1
p(|x|) .

De�nition I.2. Zero-knowledge Proof

Let 〈P, V 〉 be an interactive proof system for a language L. We say the proof system

〈P, V 〉 is zero knowledge if for every expected polynomial time interactive Turing

machine V ∗ , there exists an ordinary expected polynomial time machine MV ∗ such

that the probability ensembles {MV ∗(x)}x∈L and {P (x), V ∗(x)}x∈L are polynomial

indistinguishable.

The zero-knowledge property is not necessarily preserved in a scenario where mul-

4

tiple zero-knowledge protocol instances are executed simultaneously (in parallel) in

the same environment [12]. To preserve the privacy in such a scenario, we consider a

notion called Witness Indistinguishable proofs. This notion was introduced in 1990

by Shamir et al. [11] as a weaker variant of zero-knowledge proofs, but is still strong

enough to be very helpful in providing security in some speci�c applications. In many

interactive proof scenarios, there may be witnesses that prove that x ∈ L. In our pre-

vious Hamiltonian cycle example, any Hamiltonian cycle serves as a witness. The

main idea of witness indistinguishable proof is to guarantee that the veri�er will not

be able to distinguish between provers that use di�erent witnesses. In order to un-

derstand witness indistinguishablity, consider an example where Alice and Bob will

be participating in an interactive proof system. Alice knows more than one Hamil-

tonian cycle to a graph G, say two Hamiltonian cycles C and D. Both Alice and

Bob share graph G as common input. The goal for Alice is to convince Bob that

it has a Hamiltonian cycle for graph G. Alice interacts with Bob using one of her

Hamiltonian cycles, C or D. Bob will verify the validity of the proof but his view on

the P 's proof will be indistinguishable no matter which Hamiltonian cycle Alice uses.

Therefore, the interactive proof between Alice and Bob is witness indistinguishable

because Bob cannot tell which Hamiltonian cycle Alice uses to construct the proof.

Witness indistinguishabilty can be formally de�ned as follows.

De�nition I.3. Witness Indistinguishable Arguments of Knowledge (WIAOK)

Let 〈P, V 〉 be an interactive proof system for a language L ∈ NP and V ∗ be a

probabilistic polynomial-time interactive machine and RL be a witness relation for

a language L, i.e., if x ∈ L there exist a witness w such that xRLw. We say the

proof system 〈P, V 〉 is witness indistinguishable over RL if for any V ∗ and every two

5

w1
x, w

2
x ∈ RL(x), the two ensembles {〈P (w1

x), V
∗〉(x)}x∈L and {〈P (w2

x), V
∗〉(x)}x∈L are

computationally indistinguishable. In other words, for every probabilistic polynomial-

time algorithm D, every polynomial p(.) and all su�ciently long x ∈ L, it holds that

Pr[D(x, 〈P (w1
x), V

∗〉(x) = 1]− Pr[D(x, 〈P (w2
x), V

∗〉(x) = 1]| < 1
p(|x|) .

In our work we assume that there exists witness indistinguishable arguments of

knowledge (WIAOK) (which is true under the standard cryptographic assumption

that one-way functions exist). WIAOK satisfy three properties. First, these argu-

ments are computationally convincing proofs, i.e., a computationally limited prover

can make the veri�er accept high negligible probability. Second, they are arguments

of knowledge, which means that from a prover which is giving convincing arguments

a witness can be extracted. Third, the arguments of knowledge are witness indistin-

guishable: the protocol runs are indistinguishable for di�erent witnesses.

1.2 Universal Composable Framework

Imagine a complex cryptographic environment with several types of protocols like

identi�cation protocols, key exchange protocols and several other interactive proto-

cols. Lets say each type of protocol may be executed many times and each party

in that environment may take part in several protocol executions simultaneously.

Even if individual protocols are secure in isolation, one important question to ask

is whether protocols retain security in such a complex environment. Lets say there

exists a cheating party which participates in this environment and obtains valuable

information by executing some protocols of that environment which it can use to

compute responses of other protocols of the same environment. Traditional security

de�nitions of cryptographic protocols treat protocols as stand-alone applications and

6

are helpful for simple analysis of protocols. These security de�nitions do not address

security when these protocol instances are composed with other arbitrary protocol

instances. Extending de�nitions of security of these protocols in such an environment

is a way to address the issues with those cheating parties. Clearly, there is a need for

a model of security which can better address security in such complex environments.

In 2001, Canneti proposed a framework called Universal Composablity, which

guarantees that security de�ned for protocols as stand alone applications is preserved

in the composition of these protocols instances with other arbitrary protocol instances

in an unpredictable environment. A cryptographic functionality can be executed

either in an �ideal world� in which all operations are performed by a completely trusted

party (and hence the execution is secure), or in the �real world� where there is no

trusted party and the parties have to execute the protocol just amongst themselves.

The UC framework considers an algorithmic entity called the environment (observer)

which gives inputs to the participating parties of a protocol (implementing some

cryptographic task) and collects outputs from the parties of the protocol in course

of its execution. Finally, the environment produces an output bit which can be

interpreted as saying whether it thinks it has interacted with ideal functionality of a

cryptographic task or a real protocol implementing same cryptographic task. Since

the ideal world is inherently secure, if an environment cannot distinguish between

this ideal functionality and a real protocol implementing the same cryptographic

task, then that real protocol securely implements the ideal functionality, and we say

that it is universally composable.

Consider the protocol π that is executed in real world and ideal functionality F

is works in ideal world. Formally, the participants of both worlds will be interactive

7

Turing machines, and we describe both worlds below.

Ideal Model: The participants in the ideal model are the environment Z, ideal

adversary S, the ideal functionality F , and dummy parties. Z can write inputs to

these dummy parties and the outputs of these parties will be given to Z. Z cannot

see the communication between the F and dummy parties. Inputs given to dummy

parties will be sent to F and anything received by F will be written to their local

outputs. S communicates with Z and F . S can corrupt parties such that it can see

all the interactions between F and corrupted parties. There are no direct interactions

between these dummy parties.

Real Model: In the real world, the protocol π will be implemented by the

parties interacting with each other. The participants of this world are environment

Z, real adversary A and participating parties. Z can write inputs to these real parties

and the outputs of these parties will be given to Z. Parties may communicate with

each other in the course of the protocol, but Z cannot see these communications

between the parties. A communicates with Z and F . A can corrupt any parties

in this protocol and A will participate in the protocol π on behalf of any corrupted

parties.

Realizing an ideal functionality: Protocol π securely realizes ideal function-

ality F if for any real-life adversary A there exists an ideal adversary S such that no

environment Z can tell with non-negligible probability whether it is interacting with

A and π in the real model or with S and F in the ideal world.

Since universally composable security is a strict notion of security, designing re-

alistic cryptographic tasks in universally composable framework need additionally

helping functionalities. In earlier works, Hofheinz and Muller-Quade [17], and Backes

8

et al. [1] use helping functionalities random oracle and key registration authorities,

respectively. These functionalities are de�ned in such a way that if a protocol instance

implements some instance of helping functionality, then the helping functionality can-

not be used by other applications without compromising UC security.

Hofheinzet al. [18] introduce the concept of catalyst, where a catalyst is a help-

ing functionality which can be used simultaneously for di�erent purposes without

compromising universal composable security. C is a catalyst for functionality F if C

can be implemented by F and the same instance C can be directly be used by other

arbitrary applications without any additional precautions. The formal de�nition of a

catalyst is given below.

De�nition I.4. Let π be a protocol realizing the functionalities F and C using C.

We say that C is used as a catalyst if π realizes C by just relaying all requests and

the respective answers directly to and from the functionality C.

Hofheinz et al. use government issued signature cards as a catalyst in designing

zero knowledge and commitments protocols in the universally composable framework.

In our work, we use Trusted Platform Modules as a catalyst in designing a universally

composable zero knowledge protocol.

1.3 Trusted/Tamper Proof Hardware

Unfortunately, fundamental limitations result in the impossibility of using the uni-

versally composable framework directly for most two-party protocols [7]. To counter

this problem researchers have suggested adding some initial capability to the universal

composable model (technically composed into the base model) which is called a �setup

assumption.� A variety of setup assumptions have been made to design two party

9

protocols in universally composed framework. Typical work in this area includes work

by Canneti [3], Canneti and Fischlin [5], Lindell et al. [6], and Dodis et al. [4], who

consider a setup where there exists one or more trusted parties that operate with

some pre-agreed rules for all participants of the protocol. In practice, relying on such

trusted parties is undesirable, making the design of realistic universally composable

two party protocols very di�cult. More recently, the design of two party protocols

in the universally composable framework has been considered using assumptions of

tamper-proof hardware, where each participant in the protocol will have access to its

own such hardware. For example, Katz [19] proposed a physical setup assumption,

speci�cally tamper-proof hardware tokens, which provides an interesting way to real-

ize two-party protocols in the universally composable framework. With the advent of

tamper evident hardware devices like TPMs and government issued signature cards,

the design of protocols in the universally composable framework can consider realistic

hardware assumptions. In this section, we present background information of Katz's

tamper proof hardware tokens, signature cards and TPMs.

Katz's Tamper Proof Hardware Tokens

As described above, Katz [19] was the �rst to consider tamper proof hardware

tokens in designing universally composable multiple party protocols. The assump-

tions made by Katz in designing hardware tokens are as follows: First, each party

participating in a protocol can construct its own tamper proof hardware token which

implements a desired functionality. Second, when a hardware token is sent to some

cheating party, it cannot deduce any information about the token's functionality ex-

cept what it can observe from input/output behavior. Finally, when an honest party

10

is given a token from a cheating party, it cannot deduce any information about the

functionality the token is implementing (it observes only outputs of the token). With

these primitives, Katz [19] designed a protocol for universally composable multi-party

commitments.

Subsequent work from Chandran et al. [8], Damgard et al. [9] improved on Katz's

physical assumptions in various ways like including a resettable feature. Moragan and

Segev [20] also improved Katz's solution by requiring only one of the participants of

the two-party protocols to create a secure token.

Signature Cards

Hofheinz et al. [18] considered the use of government issues signature cards, which

are tamper proof devices that function with globally accepted setup. Each card holds

a legitimate key pair (public key and private key) where the private key is embedded

into the card. The functionality of such cards includes generating digital signatures

for messages sent to the card. The private key of a signature card cannot be extracted

even by the legitimate owner of the card under any circumstances. Therefore, digital

signatures generated by these cards are unforgeable by anyone without access to the

card. Hofheinz et al. [18] use the cards as catalysts to design two party universally

composable zero knowledge proof and commitment protocols. As some European

governments are issuing such tamper evident signature cards, the design of realistic

universally composable protocols is feasible. Drawbacks of the use such cards includes

the fact that these signature cards are not widespread and the participants of the

protocol must completely trust the producer/issuer of these cards (which is a threat).

11

Trusted Platform Modules

The Trusted Computing Group, a consortium of more than 100 companies, has

de�ned a speci�cation for a security chip called a Trusted Platform Module (TPM),

which is designed to be attached to the motherboard of a computer. The functionality

of a TPM includes the secure generation of cryptographic keys, generating pseudo-

random numbers, remote attestation, sealed storage and common cryptographic op-

erations like RSA encryption, RSA digital signatures and generating hashes (SHA1).

A TPM is a tamper evident hardware device which is designed to software attacks.

Key management in TPMs is quite di�erent from the signature cards described

in the previous section. Users can create di�erent RSA keys for di�erent purposes.

These user generated keys include bind keys, signing keys, legacy keys, storage keys

and Attestation Identity Keys (AIKs). Creating and using a key in a TPM involves

several steps. We give a rough idea of how it works below:

(1) Every user-created key is created under a parent key (which must be a storage

key).

(2) When users request creation of a key, they must specify the parent key and a user

selected secret called the authorization secret. The TPM returns a wrapped key

blob which contains newly created key (both public key and encrypted private

key, which is encrypted with the parent key). Since the private key never exists

unencrypted outside a TPM, TPMs provide secure key management.

(3) In order to use a user generated key in the TPM, it has to be loaded into TPM

so that the private key can be decrypted and used for purposes like signing (if

12

the loaded key is a signing key) or decryption (if the key is a bind key). For

loading the key, the user has to provide the authorization secret for the parent

key, which should be loaded prior to this operation. If the TPM successfully

loads the key, it returns a key handle for that key which serves as a reference

to the user for future purposes, and when it is used the user must provide the

authorization secret to the TPM.

Each TPM is shipped with a unique Endorsement Key which is embedded in it

by the TPM vendor. The validity of EK re�ects the validity of TPM. Using the

TPM's EK, a TPM owner can create Attestation Identity Keys (AIKs), which can

be certi�ed by trusted certi�cate authorities (CAs). AIKs can certify information

coming from a TPM, including keys generated by the TPM. For detailed descriptions

of functionalities of a TPM, we refer the reader to the TCG's speci�cations [15].

An important advantage of TPMs over other secure hardware proposals is that it

is designed as an attachment to the motherboard of the local system, and TPMs are

currently being shipped with most business-class laptops and desktops. This makes

TPM a widespread device which can be helpful in designing realistic protocols in the

universally composable framework.

1.4 Prior Work

In Section 1.3, we have discussed a number of setup assumptions, including trust

assumptions and physical assumptions, for designing universally composable secure

multiple party protocols. In this section we discuss some existing solutions and other

related work.

Canneti and Fischlin [5] introduced the use of a Common Reference String (CRS)

13

model as a setup assumption in the universally composable framework. In this model,

the CRS is generated by a trusted party which functions in a pre-agreed manner set

by all parties participating in the protocol. For example, in some situations the re-

quirements of CRS are that it should be a uniformly distributed random string. In

practice, one must trust some party to honestly generate the CRS, which may not be

realistic. Public key registration services, considered in by Barak et al. [2] and Dodis

et al [4] also serve the purpose of designing multiparty protocols in universally com-

posable framework with certain setup assumptions. For example, the functionality of

Barak et al. [2] will not allow any cheating party to register its public key which is

not generated with pre-agreed rules. Clearly the drawback in this model, is that it is

di�cult in practice to guarantee such a public key with the given setup assumption.

Each of the mentioned works use some trusted assumption that is unrealistic. Katz

[19] introduces a new way to design protocols in the universally composable setting by

suggesting a hardware assumption of tamper proof hardware tokens created by each

party, which eliminates the necessity of trust in a third party. In 2005, Hofheinz et

al. [18] introduced a feasible way of designing realistic zero-knowledge protocol and

commitment protocols in the universal composable setting with assumptions of gov-

ernment issued signature cards. One drawback of this approach is that parties of the

protocol must have complete trust in the producer or issuer of these signature cards

(What if the producer/issuer is corrupted?). With the advent of TPMs, the scope

of designing realistic multiple party protocols in the universal composable framework

will be wider. Prior work using TPMs to design cryptographic protocols showed

that TPMs can enable previously impossible functionality. For example, Gunupudi

and Tate [16] created instantiation of a random oracle in multi-party settings where

14

each party has access to a TPM. Tate and Vishwanathan [23] used TPM capabilities

and designed alogrithms to replace cut and choose protocols in veri�able encryp-

tion schemes, making the protocol non-interactive and o�ering more computational

e�ciency.

1.5 Motivations and Results Overview

The goal of this work is to consider universally composable zero knowledge using

signature cards and TPMs. We give a complete security proof for Hofheinz et al.'s

proposed universally composable zero knowledge protocols using signature cards, and

we extend this protocol to propose a universally composable zero knowledge protocol

using Trusted Platform Modules. Some motivations for this work are given below.

(1) Hofheinz et al. [18] did not give a complete security proof for their UC zero

knowledge arguments using signature cards.

(2) The parties participating in Hofheinz et al. [18] must have complete trust in

the producer or issuer of the card.

(3) The government issued signature cards are not widespread, i.e., not accessible

to many users across the world.

The results of this work are as follows. First, we rede�ne the ideal functionality

used in Hofheinz et al. [18] by using the traditional zero-knowledge ideal functionality.

Secondly, we present a complete security proof for the universally composable zero

knowledge protocol using signature cards [18]. Extending this work to a more common

form of secure hardware, we de�ne the TPM-based catalyst's ideal functionality, and

15

propose a universally composable zero knowledge protocol using TPMs. We also

present a complete security proof for our protocol.

16

CHAPTER II

UC ZERO-KNOWLEDGE PROTOCOLS

In this chapter, we propose a complete security proof for the zero-knowledge proof

based on signature cards of Hofheinz et al. [18] and present a new zero-knowledge

protocol in the universal composable model using an idealized TPM as catalyst. This

chapter contains two sections. In Section 2.1, we introduce some of the de�nitions

used in this work. We present protocol SC-ZKR and also a complete security proof.

In Section 2.2, we introduce functionality FTT PM, propose a protocol implementing

functionality FR
ZK and present a complete security proof for the TPM-based protocol.

2.1 Zero knowledge protocols based on Signature Cards

In this section, we present proof for universally composable security of the zero-

knowledge protocol based on signature cards of Hofheinz et al. [18]. We list some

notations and de�nitions used in rest of this work are below.

(1) k is a security parameter which controls the length of various parameters. In

all cases in which lengths are a function of k, such a n(k), m(k), and s(k), the

function is polynomial in k.

(2) w : a witness w known to prover P where w ∈ {0, 1}n(k).

(3) N: A random nonce N generated by veri�er V where N ∈ {0, 1}k.

(4) r: An arbitrary string r generated by a party where r ∈ {0, 1}n(k).

(5) R: A relation R is de�ned as an NP relation where R ⊆ {0, 1}m(k)×{0, 1}n(k).

17

Recall that x ∈ {0, 1}m(k) is the common input to both parties, i.e., honest prover

P and honest veri�er V in zero-knowledge protocols. P knows a witness w such that

xRw. In developing their signature card assisted zero-knowledge protocols, Hofheinz

et al. used a non-standard de�nition of zero-knowledge functionality that required

transmitting an executable predicate to specify the relation to the ideal functionality

[18]. While this allows a single functionality to serve arbitrary relations, it su�ers

from complications due to treating a relation as a transmittable parameter. In this

thesis, we return to the traditional de�nitions of zero knowledge functionality in which

the functionality is parametrized by the relation. The following de�nition is based on

the original zero knowledge functionality de�ned by Goldwasser et al. [13]. The ideal

functionality FR
ZK with relation R is de�ned as follows

De�nition II.1. FR
ZK

Functionality FR
ZK

FR
ZK proceeds as follows, running with a prover P , veri�er V , and an adversary S.

Upon receipt of an input (prove,sid,x,w) with xRw from party P , send (prove, sid, x)

to S. As soon as S allows the delivery, send (proven, sid, x) to V where sid is the

�session id� that is commonly used in universally composable de�nitions to distin-

guish between multiple uses of the same functionality.

Hofheinz's signature card based catalyst functionality FGSigCard is given below.

18

Functionality FGSigCard (from [18])

For a signature scheme G, FGSigCard proceeds as follows, running with parties P1,...,Pn

and an adversary S.

Initialization: For each party Pi, generate a public/secret key (pki, ski) and set

possessori :=⊥.

Get public key: When receiving a message (getkey, sid, j) from some sub party

P , send the public key pkj to P . Before delivering the key, ask the adversary (non-

immediate delivery).

Signature Generation: Upon receiving a message (sign, sid,m) from some sub-

party P of Pi, if P = possessori, generate a signature σ using ski, store the tuple

(i,m, σ), and send (signature, sid,m, σ) to Pi.

Signature Veri�cation: Upon receiving a message (verify, sid, Pi,m, σ) from Pj

do: If a tuple (i,m, σ) is a stored set f = 1 else set f = 0. Then if the public

key of Pi was already delivered to Pj in some prior �Get public key� step, send

(verified, sid,m, f) to Pj.

Possession: Upon receiving a message (seize, sid) from subparty P (where P is

a subparty of Pi or P = S), if possessori :=⊥, set possessori := P and send

(seized, sid) to subparty P . Otherwise send (occupied, sid) to subparty P .

Dispossession:Upon receiving a message (release, sid) from subparty P (where P

is a subparty of Pi of P = S), if possessori := P , set possessori :=⊥.

The functionalities of the ideal functionality FGSigCard include generating signa-

tures. We list de�nitions of some signatures generated by FGSigCard and some related

19

notations which are used in rest of this work here.

De�nition II.2. Signatures by Signature Cards

(1) sN : Signature generated by FGSigCard functionality of veri�er V on a random

string N where sN ∈ {0, 1}s(k).

(2) sw: Signature generated by FGSigCard functionality of prover P on a witness w

where sw ∈ {0, 1}s(k).

(3) sR: An arbitrary string generated by a party with length same as the signature

generated by FGSigCard where sR ∈ {0, 1}s(k).

Protocol SC-ZKR

We present the protocol SC-ZKR of Hofheinz et al.[18], with modi�ed notations

which re�ect the use of the traditional zero knowledge functionality. Participants in

protocol SC-ZKR are prover P , veri�er V , real adversary A, ideal simulator S and

the environment Z. All communication is done through a secure channel that only

leaks the length of the messages. Z may access the functionality FGSigCard through

parties other than P and V . P knows (x,w) such that xRw.

(1) When receiving an input (prove, sid, x, w), where x is the common input for R

such that xRw, P sends x ∈ {0, 1}m(k) to V .

(2) V seizes its signature card. If it cannot seize the card, it terminates.

(3) V generates a random nonce N of k bits. This nonce is sent via a secure channel

to P .

20

(4) P requests the public keys pkV and pkP of V and P , respectively, from FGSigCard.

Then it seizes its signature card, signs w and releases its signature card. Next, it

proves to the V that it knows a triple (w, sw, sR) such that verifypkP
(1k, sw,w)∧

xRw∨ verifypkV
(1k, sR, N) using a witness indistinguishable argument of knowl-

edge (WIAOK).

(5) If V accepts the argument of knowledge, it terminates with output (proven, sid, x).

Additionally, it releases its signature card in any case.

Theorem II.3. If G is an existentially unforgeable signature scheme, then protocol

SC-ZKR using the functionality FGSigCard securely implements the functionalities FR
ZK

and FGSigCard with respect to static adversaries. Here FGSigCard is used as a catalyst.

Proof. In order to prove the security of SC-ZKR, we consider two scenarios of imple-

menting protocol SC-ZKR, one with V corrupted and the other with P corrupted.

In both cases we consider two settings: one in which the real protocol runs with real

parties, and another with a simulator S interacting with ideal functionality FR
ZK . At

the �nish of either setting, the environment provides an output Z(ensemble), which

is a random variable (i.e., the output of Z on input ensemble).

Case 1 : Corrupted Veri�er

Two setting are described below.

Real adversary A

As the veri�er V is corrupted, the protocol SC-ZKR will be modi�ed. Adversary

A takes control of the corrupted veri�er V and stands in for V in SC-ZKR. Step 3

of the above protocol SC-ZKR will be modi�ed where A will generate nonce N of

k bits and send it to the P . And, step 5 also be modi�ed, as A will be responding

21

to the P 's WIAOK and delivering the output to the environment Z. After step 3 of

SC-ZKR, both parties will have same input I = 〈x, N〉 ∈ {0, 1}m(k) × {0, 1}k. The

witness triple for the WIAOK will beWA = (w, sw, sR), and as honest prover P knows

the witness w and its signature sw, it will generate WIAOK for verifypkp
(1k, sw,w) ∧

xRw∨ verifypkv
(1k, sR, N). The ensemble generated by A, on interaction with honest

P with witness WA on common input I is {〈P (WA),A〉(I)}I∈{0,1}m(k)×{0,1}k .

Ideal adversary S

As the veri�er is corrupted, simulator S simulates the static adversary A with

real parties, i.e., with honest prover P and corrupted veri�er V . When the FR
ZK

receives (prove,sid,x,w) from party P , and if xRw, then FR
ZK sends (prove,sid, x) to

S. Note that while P knows w, simulator S is unaware of w inorder to prove xRw.

As soon as S receives (prove,sid, x) it seizes V 's signature card and simulates real

adversary A with real corrupted veri�er V from step 3 of protocol SC-ZKR. After

the simulation of A produces nonce N , S sends N to V 's signature card and receives

sN from V 's signature card. Next, S sets up a WIAOK using the common input

I = 〈x, N〉 ∈ {0, 1}m(k)×{0, 1}k and witness triple WS = (r, sR, sN), and the WIAOK

will argue that verifypkp
(1k, sR, r)∧xRw∨verifypkv

(1k, sN , N). The ensemble generated

by S in this case will be {〈S(WS),S〉(I)}I:{0,1}m(k)×{0,1}k .

In the two settings, real and ideal, the behavior seen by the environment Z is iden-

tical through step 3 of SC-ZKR. The only di�erence is in the WIAOK in step 4 and

step 5, so in e�ect environment Z acts as a polynomial-time distinguisher for the real

and ideal settings. If Z can distinguish between the real world adversary A and ideal

adversary S with non negligible probability 1
p(k)

, then the above construction acts as

22

a distinguisher for the WIAOK witnessesWA andWS with non-negligible probability,

violating our assumption of secure WIAOK. Therefore, it follows for any polynomial

p(k) and all su�ciently large k it holds

Pr[Z(I, 〈P (WA),A〉(I)) = 1]− Pr[Z(I, 〈P (WS),S〉(I)) = 1] < 1
p(k)

.

Case 2: Corrupted Prover

We consider two settings, i.e., real adversary A interacting with SC-ZKR and ideal

adversary S interacting with FR
ZK. In both settings, an honest V will be participating.

The sequence of steps of V 's interaction with SC-ZKR plays a vital role in the proof.

V seizes its signature card (in step 2) and then generates a random nonce N . V

releases its signature only at the end of SC-ZKR (step 5). This prevents any other

party from seizing V 's signature card in the course of SC-ZKR (step 2 through step

5) to generate a fake signature sN for nonce N and generate the WIAOK.

Real Adversary A

As prover P is corrupted, adversary A takes control of prover P which leads to

the modi�cation of SC-ZKR. Step 1 of SC-ZKR will be modi�ed, where A sends

x ∈ {0, 1}m(k) on behalf of P . Step 4 of SC-ZKR will be modi�ed, where A will prove

to the veri�er that there exists a triple (w, sw, sR) such that verifypkP
(1k, sw,w) ∧

xRw ∨ verifypkV
(1k, sR, N) using a WIAOK. After step 3 of modi�ed protocol SC-

ZKR, both parties adversary A and honest veri�er V will have the same input I =

〈x, N〉 ∈ {0, 1}m(k) × {0, 1}k The witness triple in this case is WA = (w, sw, sR) and

WIAOK is verifypkp
(1k, sw,w) ∧ xRw ∨ verifypkv

(1k, sR, N). The ensemble generated

by honest V , on interaction with corrupted P with witness WA on common input I

23

is {〈A(WA), V 〉(I)}I∈{0,1}m(k)×{0,1}k

Ideal Adversary S

As prover P is corrupted, simulator S simulates the static adversary A with

real parties, i.e., corrupted prover P and honest veri�er V . As a part of simulation

of the real protocol SC-ZKR with static adversary A, step 1 of TPM-ZKR will be

modi�ed where A stands in for corrupted P . In step 1, A will send x ∈ {0, 1}m(k)

to honest veri�er V . Step 4 will be modi�ed where S seizes corrupted P 's signature

card and A sends w to S to get sw. Since the signature card is a catalyst, A may

send many other values to S (which seized P 's signature cards) for signatures of

those values. In order to capture w, S tests every value from A to see which value

w satis�es xRw and then stores both w and sw. After generating sw, S delivers

sw to A and releases P 's signature card. In the ideal world, S acts as corrupted P

and sends (prove, sid, x, w) to ideal functionality FR
ZK . Since xRw, then FR

ZK sends

(prove, sid, x) to S. Another modi�cation for step 4 is A will prove to the honest

veri�er V of FR
ZK that there exists a triple (w, sw, sR) such that verifypkp

(1k, sw,w) ∧

xRw ∨ verifypkv
(1k, sR, N) using a WIAOK. Depending on real honest veri�er V 's

output at step 5, the simulator S either allows or does not allow the ideal functionality

FR
ZK to send (proven,sid,x) to ideal party V . Since simulator S simulates the complete

modi�ed protocol SC-ZKR with static adversary A, the ensemble generated by the

real honest veri�er is {〈A(WA), V 〉(I)}I∈{0,1}m(k)×{0,1}k , where I is the common input.

Finally, the environment Z cannot distinguish with which adversary it is interacting,

because in both scenarios the honest veri�er produces indistinguishable ensembles.

Therefore, from both cases we have shown that protocol SC-ZKR using the func-

tionality FGSigCard securely implements the functionalities FR
ZK and FGSigCard with re-

24

spect to static adversaries.

2.2 Zero-knowledge protocols based on TPMs

In this section, we propose a zero-knowledge protocol in the universal composable

model of security, using a tamper proof device called a Trusted Platform Module as a

catalyst. As described earlier in this chapter, Hofheinz et al.[18] use signature cards

as catalysts in designing both zero-knowledge proofs and commitments in universal

composable settings. In this section we use Trusted Platform Modules (TPMs) as a

catalyst in designing a zero-knowledge protocol with universally composable security.

FTTPM

The catalyst functionality in this protocol is FTTPM , which we given below

Functionality FTTPM

Part I

For a signature scheme T , FTTPM proceeds as follows,running with parties

P1,...,Pn and an adversary S.

Initialization: For each party Pi, a TPMi with a legitimate Endorsement

Key (EK) is given.

Create AIK: When receiving a message (creataik, sid) from some sub party

P of Pi, creates an Attestation Identity Key AIKi, generates certi�cate

certAIKi
from Trusted CA using makeidentity functionality, stores a tuple

(sid, i, AIKi, certAIKi
) and returns (pubAIKi

, certAIKi
, sid) to Pi.

25

Functionality FTTPM

Part II

Create Key: When receiving a message (createkey, sid, secret) from some

sub party P of Pi, creates a signing key keyi. If there exists a stored tuple

(sid, i, AIKi, certAIKi
), then generate certi�cate certkeyi

for keyi using AIKi

with the certifykey functionality of TPM. Stores tuple (certkeyi
, keyi, secret)

and returns (pubkeyi
, certkeyi

, sid) to Pi.

Load Key: When receiving a message (loadkey, sid, keyi, secret) from some

sub party P of Pi, TPMi returns keyhandlei which refers to internally loaded

private key keyi into TPMi. Next, stores a tuple (keyhandlei, keyi, sid, i) and

returns (keyhandlei, sid) to Pi.

Get public key: When receiving a message (getkey, sid, certkeyj
, j) from

some sub party P . If there exists a stored tuples (sid, j, AIKj, certAIKj
) and

(certkeyj
, keyj) then it gets both keyj and certAIKj

and sends the public key

tuple (keyj, certAIKj
) to P. Before delivering the tuple with key, ask the ad-

versary (non-immediate delivery).

Signature Generation: Upon receiving a message (sign, sid,m, keyhandlei)

from some subparty P of Pi, if there exists a stored tuple

(keyhandlei, keyi, sid, i), then generate a signature σ using keyi, store

the tuple(i,m, σ, keyi) and send (signature, sid,m, σ) to Pi.

Signature Veri�cation: Upon receiving a message

(verify, sid, Pi,m, σ, keyi) from Pj do: If a tuple (i,m, σ, keyi) is stored

set f = 1 else set f = 0. Sends (verified, sid,m, f) to Pj.

26

Functionality FTTPM

Part III

Unload Key: Upon receiving a message (unload, sid, keyhandlei)

from subparty P (where P is a subparty of Pi or P = S), if

there exists tuple (keyhandlei, keyi, sid, i), then discard the stored tuple

(keyhandlei, keyi, sid, i).

As the functionalities of ideal functionality FTTPM include generating signatures,

we list de�nitions of some signatures generated by FTTPM and some related notations

which are used in the rest of this work below.

De�nition II.4. Signatures by Trusted Platform Modules

(1) tN : Signature generated by FTTPM functionality of veri�er V 's TPM using its

signing key keyV on a random string N where tN ∈ {0, 1}s(k).

(2) tw: Signature generated by FTTPM functionality of prover P 's TPM using its

signing key keyV on a witness w where tw ∈ {0, 1}s(k).

(3) tR: An arbitrary string generated by a party with length same as the signature

generated by FTTPM where tR ∈ {0, 1}s(k).

Protocol TPM-ZKR

Besides using a TPM as a catalyst, we use witness indistinguishable arguments

(WIAOK) in a way similar to the protocol of introduced in Hofheinz et al.[18] for the

protocol TPM-ZKR. The participants of TPM-ZKR are prover P , veri�er V , real

27

adversary A, simulator S and environment Z. TPM-ZKR implements functionality

FR
ZK using FTTPM as catalyst, where all communication is done through a secure

channel that only leaks the length of the messages, and the environment may access

the functionality FTTPM through parties other than P and V . At the beginning of the

protocol TPM-ZKR, P knows (x,w) such that xRw.

(1) When receiving an input (prove, sid, x, w), where x is the common input for R

such that xRw, the prover P sends x to V .

(2) V creates a signing key keyV by sending (creataik, sid, secret) to FTTPM and

loads keyV by sending (loadkey, sid, keyi, secret) to FTTPM functionality. If it

cannot load the keyV , it terminates.

(3) V generates a random nonce N of k bits and sends tuple (N, certkeyV
) to P via

a secure channel.

(4) P gets the public key tuple of V using get key functionality of FTTPM functional-

ity. Then, P creates a signing key keyP and loads keyP into its TPMP using cre-

ate key and load key fuctionalities of FR
TPM functionality respectively. If it can-

not load the keyP , it terminates. P signs w by sending (sign, sid,m, keyhandlei)

to FTTPM , and unloads its key keyP using the unload key functionality of FTTPM .

Then it proves to the veri�er that there exists a triple (w, tw, tN), such that

verifykeyP
(1k, tw, w)∨xRw∨verifykeyV

(1k, tN , N) using a witness indistinguish-

able argument of knowledge (WIAOK). Along with WIAOK, P sends certkeyP

to V .

(5) If the veri�er accepts the arguments of knowledge, it terminates with output

28

(proven, sid, x). Additionally, it unloads its key in any case.

Theorem II.5. If T is an existentially unforgeable signature scheme, then protocol

TPM-ZKR using the functionality FTTPM securely implements the functionalities FR
ZK

and FTTPM with respect to static adversaries. Here FTTPM is used as a catalyst.

Proof. The participants of protocol TPM-ZKR are environment Z, prover P , veri�er

V , real adversaries A and ideal adversary S. In order to prove the security, we

consider two scenarios of protocol TPM-ZKR, where prover P is corrupted in one

scenario and veri�er V is corrupted in other. In each scenario, we consider two

settings: one in which the real protocol is run with real parties, and another with a

simulator S interacting with ideal functionality FR
ZK . At the �nish of either setting of

each scenario, the environment provides an output Z(ensemble), which is a random

variable (i.e., the output of Z on input ensemble).

Case 1: Corrupted Veri�er

Two settings are as follows

Real Adversary A

The protocol TPM-ZKR will be modi�ed, where A stands in for V in TPM-

ZKR. In step 3, A will generate nonce N of k bits and send it to P . At step 4,

adversary A will be responding to the prover P 's WIAOK and delivers the output

to the environment Z. After step 3 of TPM-ZKR, both parties will have same input

I = 〈x, N〉 ∈ {0, 1}m(k) × {0, 1}k. The witness triple known to P will be WA =

(w, tw, tR), and the honest prover P will generate a WIAOK for verifykeyP
(1k, tw,w)∧

29

xRw∨verifykeyV
(1k, tR, N). The ensemble generated by A, on interaction with honest

P with witness WA on common input I is {〈P (WA),A〉(I)}I∈{0,1}m(k)×{0,1}k .

Ideal adversary S

S simulates the static adversary A with real parties, i.e., with honest prover P and

corrupted veri�er V . When FR
ZK receives (prove,sid,x,w) from party P , and if xRw,

then FR
ZK sends (prove,sid, x) to S. As soon as S receives (prove, sid, x) it initializes

V 's FTTPM functionality, uses FTTPM to generate a key keyj and simulates protocol

TPM-ZKR with adversary A. The real protocol TPM-ZKR will be modi�ed from

step 3 where A stands in for corrupted V . A produces nonce N and sends to S. S

sendsN to V 's FTTPM and receives tN from V 's FTTPM . Next, S sets up a WIAOK using

common input is I = 〈x, N〉 ∈ {0, 1}m(k)×{0, 1}k and witness triple WS = (r, tR, tN),

and the WIAOK will argue that verifykeyP
(1k, tR, r)∧xRw∨verifykeyV

(1k, tN , N). The

ensemble generated by S in this case will be {〈S(WS),S〉(I)}I∈{0,1}m(k)×{0,1}k

In two settings, real and ideal, the behavior seen by the environment Z is identical

through step 3 of TPM-ZKR. The only di�erence is in the WIAOK in steps 4 and

step 5, so in e�ect the environment Z acts as a polynomial-time distinguisher for the

real and ideal settings. If Z can distinguish between the real world adversary A and

ideal adversary S with non negligible probability 1
p(k)

, then the above construction

acts as a distinguisher for the WIAOK witnesses WA and WS with non-negligible

probability, violating our assumption of secure WIAOK. Therefore, it follows for any

polynomial p(k) and all su�ciently large k and it holds

Pr[Z(I, 〈P (WA),A〉(I)) = 1]− Pr[Z(I, 〈P (WS),S〉(I)) = 1] < 1
p(k)

30

Case 2: Corrupted Prover

In both settings, honest V will be participating in TPM-ZKR. The two settings

are:

Real Adversary A

As P is corrupted, A stands in for corrupted P which leads to the modi�cation of

TPM-ZKR. Step 1 of TPM-ZKR will be modi�ed, where A sends x ∈ {0, 1}m(k) to

honest V . In step 4, A will prove to the veri�er that there exists a triple (w, tw, tR)

such that verifykeyP
(1k, tw,w) ∧ xRw ∨ verifykeyV

(1k, tR, N) using a WIAOK. After

step 3 of modi�ed protocol TPM-ZKR, both parties A and honest V will have the

same input I = 〈x, N〉 ∈ {0, 1}m(k) × {0, 1}k. The witness triple in this case is

WA = (w, tw, tR) and WIAOK is verifykeyP
(1k, tw,w) ∧ xRw ∨ verifykeyV

(1k, tR, N).

The ensemble generated by honest V , on interaction with corrupted P with witness

WA on common input I is {〈A(WA), V 〉(I)}I∈{0,1}m(k)×{0,1}k .

Ideal Adversary S

As prover P is corrupted, simulator S simulates TPM-ZKR with static adversary

A and real parties, i.e., corrupted prover P and honest veri�er V . As a part of

simulation of the real protocol TPM-ZKR with static adversary A, step 1 of TPM-

ZKR will be modi�ed because A stands in for corrupted P . In step 1, A will send

x ∈ {0, 1}m(k) to honest veri�er V . In step 4, S initialize corrupted P 's FTTPM and A

sends w to S to get tw. Since TPM is a catalyst, A may send many other values to

S (which controls the P 's TPM) for signatures of those values. In order to capture

w, S tests every value from A to �nd one which satis�es xRw, and then stores

31

both w and sw. After generating tw, S delivers tw to A and unload keyP from

P 's TPM. In the ideal world, S acts as corrupted P and sends (prove, sid, x, w)

to ideal functionality FR
ZK . If xRw, then FR

ZK sends (prove, sid, x) to S. Another

modi�cation for step 4 is A will prove to the honest veri�er V of FR
ZK that there

exists a triple (w, tw, tR) such that verifypkp
(1k, sw,w)∧xRw∨verifypkv

(1k, sR, N) using

a WIAOK. Depending on real honest veri�er V 's output at step 5, the simulator S

either allows or does not allow the ideal functionality FR
ZK to send (proven,sid,x) to

ideal party V . Since simulator S simulates the complete modi�ed protocol TPM-

ZKR with static adversary A, the ensemble generated by the real honest veri�er

is verifykeyP
(1k, tw,w) ∧ xRw ∨ verifykeyV

(1k, tR, N), where I is the common input.

Finally, the environment Z cannot distinguish with which adversary it is interacting

because in both scenarios the honest veri�er produces indistinguishable ensembles.

Therefore, from both cases we have shown that protocol TPM-ZKR using the func-

tionality FTTPM securely implements the functionalities FR
ZK and FTTPM with respect

to static adversaries.

32

CHAPTER III

CONCLUSION AND FUTURE DIRECTIONS

The idea of using actual secure hardware in designing universally composable cryp-

tographic protocols, pursued by Hofheinz et al. [18], is an important breakthrough in

designing realistic two party protocols in universal composable framework. Hofheinz

et al. use government issued signature cards as catalysts to support universally com-

posable zero knowledge and commitments protocols. The ideal functionality which

is securely realized by zero-knowledge protocol of Hofheinz et al. is not the stan-

dard de�nition. Therefore, in this thesis we returned to the traditional de�nition of

the ideal functionality using a generic witness relation, which re�ects the Canneti's

ideal functionality [3]. While providing a brief sketch, Hofheinz et al. did not give

a complete security proof for the universally composable zero-knowledge proofs from

signature cards. As one contribution of this thesis, we present a complete security

proof for this universally composable zero-knowledge protocol, using signature cards

and based on a generic witness relation.

Some of the drawbacks of relying on these government issued signature cards of

Hofheinz et al. [18] are:

(1) Although, signature cards are tamper evident, they are not widespread.

(2) The parties in the protocol must completely trust the producer or issuer of the

signature cards. If the issuer is corrupted, then whole setting will be meaning-

less.

33

(3) Since the signature cards are government issued, in a scenario in which parties

from di�erent countries participate in a protocol, the system using signature

cards may become more complex or impractical.

These drawbacks can be mitigated or completely eliminated by using Trusted Plat-

form Modules (TPMs), tamper-evident chips designed to be embedded in computer

systems. Trusted Platform Modules are widely spread and are attached to the moth-

erboard of almost every business laptops or desktops currently produced. Since they

are widespread, it gives us �exibility to design realistic universally composable multi-

party protocols using Trusted Platform Modules. In this thesis, we give a detailed

de�nition of ideal functionality of a TPM-based catalyst, and present a universally

composable zero knowledge protocol using Trusted Platform Modules (TPMs). We

also provide a complete security proof for our universally composable zero knowledge

protocol using a TPM-based catalyst.

There are several possible future directions to extend this work. First, our pro-

posed TPM-assisted universally composable zero knowledge protocol creates a new

signing key for every instance of its execution. Since a TPM is a relatively slow

device, creating a key is a costly operation. Improvements should be made in the

design of protocol to address this issue e�ectively. Additionally, in the current work

we require every party have a TPM, but the TPMs of the two parties play di�erent

roles. Therefore, another direction is to consider whether a secure protocol can be

designed with a TPM required by only one party of the protocol.

34

REFERENCES

[1] Backes, M., Hofheinz, D., Muller-Quade, J., and Unruh, D. On fair-
ness in simulatability-based cryptographic systems. In Proceedings of the 3rd
ACM Workshop on Formal Methods in Security Engineering (FMSE) (2005),
pp. 13�22.

[2] Barak, B., Canetti, R., Lindell, Y., Pass, R., and Rabin, T. Secure
computation without authentication. In CRYPTO'05 (2005), pp. 361�377.

[3] Canetti, R. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proceedings of the 42nd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS) (2001), pp. 136�145.

[4] Canetti, R., Dodis, Y., Pass, R., and Walfish, S. Universal compos-
able security with global setup. In Proceedings of 4th Theory of Cryptography
Conference (TCC'07) (2007), pp. 61�85.

[5] Canetti, R., and Fischlin, M. Universally composable commitments. In
CRYPTO'01 (2001), pp. 19�40.

[6] Canetti, R., Kushilevitz, E., and Lindell, Y. On the limitations of
universally composable two-party computation without set-up assumptions. In
CRYPTO'03 (2003), pp. 135�167.

[7] Canneti, R., Kushilevitz, E., and Lindell, Y. On the limitations of
universally composable two-party computation without set-up assumptions. In
EUROCRYPT'03 (2003), pp. 68�86.

[8] Chandran, N., Goyal, V., and Sahai, A. New Constructions for UC Se-
cure Computation using Tamper Proof Hardware. In EUROCRYPT'08 (2008),
pp. 545�562.

[9] Damgard, I., Nielsen, J. B., and Wichs, D. Isolated proofs of knowledge
and isolated zero knowledge. In EUROCRYPT'08 (2008), pp. 509�526.

[10] Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans-
actions on Information Theory (1977), 644�654.

[11] Feige, U., and Shamir, A. Witness indistinguishable and witness hid-
ing protocols. In Proceedings of 22nd ACM Symposium Theory of Computing
(STOC'90) (1990), pp. 416�426.

35

[12] GoldReich, O. Foundations of Cryptography : Basic Tools. Cambridge Uni-
versity Press, 2001.

[13] Goldwasser, S., Micali, S., and Rackoff, C. The knowledge complexity
of interactive proof-systems. Society for Industrial and Applied Mathematics
(SIAM) Journal on Computing (1989), 186�208.

[14] Goldwasser, S., and Sipser, M. Private coins versus public coins in inter-
active proof systems. In Proceedings of ACM Symposium Theory of Computing
(STOC'86) (1986), pp. 58�68.

[15] Group, T. C. Trusted platform module speci�cations � parts 1�3. Available at
https://www.trustedcomputinggroup.org/specs/TPM/.

[16] Gunupudi, V., and Tate, S. Random oracle instantiation in distributed pro-
tocols using trusted platform modules. In 21st International Confernece on Ad-
vanced Information Networking Applications (2007), pp. 463�469.

[17] Hofheinz, D., and Muller-Quade, J. Universally composable commitments
using random oracles. In Proceedings of Theory of Cryptography Conference
(TCC) (2004), pp. 58�76.

[18] Hofheinz, D., Muller-Quade, J., and Unruh, D. Universally Compos-
able Zero-knowledge Arguments and Commitments from Signature Cards. In
Proceedings of the 5th Central European Conference on Cryptology MoraviaCrypt
(2005).

[19] Katz, J. Universally composable multi-party computation using tamper-proof
hardware. In Advances in Cryptology - EUROCRYPT 2007 (2007), pp. 115�128.

[20] Moran, T., and Segev, G. David and Goliath Commitments: UC Computa-
tion for Asymmetric Parties using Tamper-proof Hardware. In EUROCRYPT'08
(2008), pp. 527�544.

[21] Rivest, Shamir, and Adleman. A method for obtaining digital signatures
and public-key cryptosystems. In Communications of the ACM 21 (1978),
pp. 120�126.

[22] Soanes, C., and Stevenson, A. Oxford dictionary of English. Oxford Uni-
versity Press, 2005.

[23] Tate, S., and Vishwanathan, R. Improving cut-and-choose in veri�able
encryption and fair exchange protocols using trusted computing technology. In
Data and Applications Security (DBSec'09) (2009), pp. 252�267.

[24] Tuchman, W. A brief history of the data encryption standard. ACM
Press/Addison-Wesley Publishing, 1997.

36

	I Introduction
	1.1 Zero-Knowledge Proofs
	1.2 Universal Composable Framework
	1.3 Trusted/Tamper Proof Hardware
	1.4 Prior Work
	1.5 Motivations and Results Overview

	II UC zero-knowledge protocols
	2.1 Zero knowledge protocols based on Signature Cards
	2.2 Zero-knowledge protocols based on TPMs

	III Conclusion and Future directions
	References

