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The abundance and distribution of wildlife communities can be influenced by 

many factors including resources, competitors, predators and parasites, and climate.  

Changes to managed forest understory composition and structure may affect ecologically 

important rodent communities.  Furthermore, diversity of rodent communities can 

correlate with vertebrate biodiversity across a diverse range of ecosystem variables.  To 

help meet demands for renewable sources of energy, biofuel feedstock production options 

include intercropping switchgrass (Panicum virgatum L.) within intensively managed 

loblolly pine (Pinus taeda) stands, and removal of residual woody debris.  The objective 

of my study was to experimentally examine rodent responses to these options.  I surveyed 

rodent populations using mark-recapture techniques to determine their responses to pine 

and switchgrass intercropping, and residual woody debris removal.  For 6 months in 

2009, and 5 months in 2010, we captured rodents on experimental plots within newly 

established pine plantations that were subjected to five different treatments that 

incorporate switchgrass and residual woody debris as biomass removal options.  Habitat 

measurements conducted in 2010 on percent cover and height of habitat variables 

reflected differences among the 5 treatments as indicated by a significant interaction of 

habitat variable (i.e. grass, pine, etc.) among treatments and across sampling dates from 

April to October.  This interaction indicates the preparation of the study plots created 

habitats that differed in structure.  Rodent community diversity metrics including species 
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richness, Shannon Diversity index, and Fisher‟s α index were not influenced by biomass 

removal options in either 2009 or 2010. In 2009, treatment did not influence the 

abundance of any species. However, there was a trend for house mice (Mus musculus) 

and hispid cotton rats (Sigmodon hispidus) adults to be more abundant in habitats with 

switchgrass.  In 2010, treatment significantly influenced the abundance of the number of 

unique individuals and total captures of white-footed mice (Peromyscus leucopus), M. 

musculus, and S. hispidus of. During the second year of study, P. leucopus adults showed 

highest abundance in non-switchgrass habitats, intermediate abundance in pine and 

switchgrass intercropped habitats, and lowest abundance in switchgrass only habitats.  

Additionally, P. leucopus juveniles showed a trend to be more abundant in habitats 

without switchgrass, suggesting differences were a result of P. leucopus reproduction in 

these habitats. M. musculus abundance was highest in switchgrass only habitats, 

intermediate in pine and switchgrass intercropped habitats, and lowest in habitats without 

switchgrass. Mus musculus juveniles showed a trend for higher abundance in habitats 

with switchgrass suggesting differences were a result of M. musculus reproduction.  

Abundance of S. hispidus tended to be higher in habitats with pine and switchgrass 

intercropped than habitats without switchgrass and habitats with only switchgrass.  

Juvenile abundance of S. hispidus did not differ among biomass removal options, 

suggesting all habitats in this study provided similar resources for S. hispidus 

reproduction.  My results suggest residual woody debris removal has no influence on 

rodent population abundance, incorporation of switchgrass intercropping has an 

intermediate influence on rodent population abundance, and planting only switchgrass 
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has a significant influence rodent population abundance.  Switchgrass habitats supported 

higher abundance of the invasive M. musculus, and lower abundance of the native P. 

leucopus than habitats without switchgrass.  Thus, forest managers may want to consider 

introducing switchgrass exclusively to interior forest stands that may be far from 

potential M. musculus source populations (e.g., agricultural fields and residential 

buildings.  This strategy could also benefit native species that avoid switchgrass, such as 

P. leucopus, by providing refuge areas devoid of switchgrass in exterior stands.  A better 

understanding of rodent responses to forest management will be beneficial in maintaining 

biodiversity and the sustained use of the services provided by forest habitats. 
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CHAPTER I 

INTRODUCTION 

 

 

Animal Abundance and Distribution 

 The abundance and distribution of terrestrial animals can be influenced by many 

biotic factors such as competition for resources (e.g., food and space), predation, 

parasites, and abiotic factors such as climate and availability of fresh water (Grant 1972a, 

Schoener 1974, Hansson 1987, Hawkins et al. 2003, Prasad and Snyder 2006). The 

abundance and distribution of terrestrial animals vary as a result of spatial and temporal 

changes in biotic and abiotic factors (Grant 1972a, Morris and Knight 1996, Culver et al. 

2000, Hawkins et al. 2003, Prasad and Snyder 2006). For example, different habitats may 

provide varying resources such as food and nesting sites and these resources changes as 

habitats age (Atkeson and Johnson 1979; Morris and Knight 1996; White 2008). 

 When available resources within a given habitat, including space (e.g., nesting 

sites, mating grounds, protective cover) and food (e.g., abundance, food types) are 

limited, competition for resources may constrain population size and presence of a 

species (MacArthur 1960, Fox 1982, Connell 1983, Yunger et al. 2002).  For example, 

experimental addition of food increases rodent abundance, survival, 
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and reproduction (Taitt 1981, Brown and Munger 1985, Vessey 1987). As a resource is 

consumed or modified by an individual, it is made unavailable to both conspecifics and 

heterospecifics (MacArthur 1960, MacArthur and Levins 1964).  Inter- and intra-specific 

competition for resources are important ecological interactions that limit population size 

(MacArthur and Levins 1964, Connell 1983). This type of control of population size is 

termed “bottom-up” or “resource based” (Yunger et al. 2002; MacArthur 1960; Connel 

1983). The competitive exclusion principle states if more than one species is limited by a 

common resource (e.g., seeds), then the species which competes for that resource more 

efficiently will ultimately survive causing the less efficient species to become extirpated 

(Gause and Witt 1935, Park and Lloyd 1955, Hardin 1960). 

 In addition to bottom-up control when resources limit a population, top-down 

control occurs when a population is limited by interactions with predators or parasites 

(Connell 1983, Hunter and Price 1992, Chapin et al. 1997, Stiling and Rossi 1997).  

Predator and parasite populations can limit the distribution and abundance of prey 

organisms by reducing the ability of individuals to survive and reproduce (i.e., reducing 

fitness) and by eliminating individuals from the population (Nelson et al. 1960, Stiling 

and Rossi 1997, Barko 2003, Prasad and Snyder 2006).  The magnitude of top-down 

interactions can vary with the number of prey and predator or parasite species, population 

abundance of predator, parasite, and prey species, and species-specific traits (Stiling and 

Rossi 1997, Prasad and Snyder 2006). 
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  The intensity of interspecific competition is subject to individual and population 

characteristics of the species involved, and changes over time with the population size of 

each species (Grant 1972a, Chapin et al. 1997, Yunger et al. 2002). The intensity of 

competition varies with population size because large populations contain more 

individuals that require and consume resources than small populations (Grant 1972a, 

Connell 1983, Hansson 1987). The size of natural populations change over time as a 

result of bottom-up and top-down controls occurring simultaneously, and seasonal 

changes in the magnitude of these controls  (e.g. food and water availability can change 

seasonally)(Naiman 1988, Hunter and Price 1992, Chapin et al. 1997, White 2008). 

 In addition to biotic controls of resource availability that can limit population 

growth and abundance, disturbances can also alter resource availability in a habitat 

including space (nesting sites, mating grounds, protective cover) and food (abundance, 

food types) (Atkeson and Johnson 1979, Wright 1990, White and Jentsch 2001). The 

intensity and frequency of disturbances are important factors that influence bottom-up 

and top-down factors and thus the relative abundances of species (White and Jentsch 

2001).  

 The intermediate disturbance hypothesis suggests that disturbances that occur at 

intermediate frequencies support the most diverse biological communities (Roxburgh et 

al. 2004).  At low frequency of disturbance, species diversity is low because competitivly 

superior species out-compete other species for resources and these other species go 

locally extinct (Roxburgh et al. 2004).  At high frequency of disturbance, the species with 
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lower reproduction rates are not able to enter and colonize an area (Roxburgh et al. 

2004).  At intermediate disturbance frequency, community diversity and biodiversity 

peaks as early colonizing species are still present, and are not excluded by superior 

competitors (Roxburgh et al. 2004). As a result, intermediate disturbance frequency can 

support communities with the highest diversity (Roxburgh et al. 2004; White and Jentsch 

2001; Yunger et al. 2002). 

Biodiversity Conservation 

 To maximize conservation efforts and develop management strategy, a basic 

understanding of how habitats contribute to biodiversity is needed (Barrows et al. 2005; 

Miller et al. 2009).  An understanding of the interactions between resources and 

population abundances, how they are influenced by interspecific competiton, 

disturbances, and top-down forces are necessary for the development and implementation 

of multiple-species habitat conservation plans (Barrows et al. 2005; Lindenmayer et al. 

2008).  Furthermore, the interactions among species and resources are needed to 

understand individual and population responses of species, changes in the biotic 

community, and how these responses vary with time and space (Barrows et al. 2005; 

Lindenmayer et al. 2008; Miller et al. 2009). 

Forest and Grassland Habitats  

 Forests and grasslands provide important habitats for a wide variety of biota 

(Atkeson and Johnson 1979, Tilman 1997, Caliman et al. 2010, Vance et al. 2010). 

Biodiversity conservation in forest and grassland ecosystems is important because these 
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ecosystems provide services that are important both vitally (clean air, fresh water, food) 

and economically (food, raw materials) (Conner et al. 2001, Corvalan et al. 2005, 

National Commission on Science for Sustainable Forestry 2005, U. S. Forest Service 

2010). Together, forest and grasslands cover approximately 70 percent of the United 

States and contribute economically important goods including timber products from 

forests and forage for livestock (Conner et al. 2001, U. S. Forest Service 2010). Forest 

and grassland habitats are crucial to a wide variety of fauna in diverse climates (Conner 

et al. 2001, U. S. Forest Service 2010). A better understanding of the resources forest and 

grassland ecosystems provide, and how wildlife uses these resources and responds to 

changes in resource availability is imperative to receiving ecosystems services (Corvalan 

et al. 2005).  

 Extracting forest products can dramatically change habitat structure and resource 

availability, such as in pine plantations in the southeastern United States. Loblolly pine 

(Pinus taeda) plantations may include site preparation and planting of pine seedlings in 

rows, pesticide and herbicide treatment, vegetation control, and thinning, followed by 

clear-cut harvest (Morris et al. 2010). Residual woody debris unsuitable for lumber 

production may be left to decay on site, piled, moved off site, or burned (Riffell, et al. 

2011). In the years following establishment of plantations, timberlands undergo 

secondary succession. During this time habitat structure changes as plants and animals 

invade and make use of available space and resources. As planted pine trees grow, the 

area of shade they create increases until years 7-15 when the canopy closes, and limited 
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light penetrates to the forest floor (Atkeson and Johnson 1979, Morris et al. 2010). 

Management practices can influence the ability of a forest to support biodiversity by 

altering conditions within (i.e., snags, stem density, species composition) or around forest 

stands (i.e., vegetation types, road density, hard edges) (Carey and Johnson 1995, 

Bowman et al. 2001, Loehle et al. 2005, Morris et al. 2010). Understanding resource 

requirements of animal species, population and community responses to habitat changes, 

and mechanisms that determine animal responses, can provide greater insight on animal 

communities and responses to varying resources in forest ecosystems (Miller and Conner 

2007). Furthermore, identifying these relationships will be imperative to the development 

and implementation of effective plans to conserve biodiversity (Barrows et al. 2005; 

Lindenmayer et al. 2008; Miller et al. 2009). 

 The way in which grasslands are used can influence vegetation and wildlife that 

grasslands support (Conner et al. 2001). For example, removal of aboveground vegetation 

by harvesting or grazing livestock changes the habitat structure and influences the 

abundance of rodents, arthropods, vegetation height, and soil properties (Johnson and 

Horn 2008, Davidson et al. 2010). An understanding of the interactions between 

resources and biota in grassland ecosystems will be essential for the continued use of the 

services provided by these systems (Davidson et al. 2010).  

Rodent Dynamics  

 Rodents are excellent model organisms for the examination of the relationships 

species abundance and resource availability within a habitat because rodents occur in a 
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wide variety of terrestrial habitats and population densities of rodent species have strong 

and rapid numerical responses to habitat changes (Stenseth and Lidicker 1992). 

Individual fitness may change with availability of required resources resulting in 

subsequent changes in population growth rate and abundance (Gaines and McClenaghan 

1980; Ostfeld 1985; Vessey 1987). Therefore, examination of the relative abundance of 

species in a community may reflect the abundance and distribution of available resources 

in the habitat, if populations are controlled by bottom-up factors (MacArthur and Levins 

1964, Andersen 1994).  

Rodents contribute to species and functional diversity of the animal community 

(Carey and Johnson 1995). Rodents can act as ecosystem engineers by creation, 

modification, and maintenance of habitat structures (such as burrows) that can influence 

nutrient cycling, soil aeration, and use by other animal species (Jones et al. 1994). 

Rodents directly influence the distribution and abundance of many species through their 

use of a variety of food sources (e.g. plants, lichen, fungi, and invertebrates) and as prey 

for a variety of vertebrate predators rely on rodent prey (Carey and Johnson 1995). 

 Habitat use by rodents has been well studied in forests (Stenseth and Lidicker 

1992, Tews et al. 2004). For rodents to successfully colonize an area, habitat conditions 

must allow for the establishment of home ranges of reproductive adults (Clarke and 

White 2008).  Furthermore, the presence of juveniles suggests successful recruitment. 

Measurement of overall abundance and juvenile abundance over time can estimate how a 

rodent population changes (Andersen 1994).  
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Rodent responses to various disturbances in southeastern forests ecosystems have 

been explained by changes in understory vegetation and coarse woody debris (Masters et 

al. 1998, Loeb 1999, Constantine et al. 2004). In managed pine (Pinus spp.) plantations 

on the Coastal Plain of South Carolina, capture rates of cotton mice (Peromyscus 

gossypinus), eastern harvest mice (R. humulis), and hispid cotton rats (S. hispidus) were 

greater in young forest stands with thick understory cover than old forest stands that 

typically lacked understory foliage (Constantine et al. 2004). In the Ouachita National 

Forest of Arkansas, increased rodent species richness and diversity was strongly related 

to mid-story removal and fire, which promoted herbaceous growth in the understory 

(Masters et al. 1998). The presence of large amounts of snags and downed logs following 

tornadoes in a managed pine forest in South Carolina increased overall rodent abundance 

and improved quality of forest stands as habitat for cotton mice (P. gossypinus) (Loeb 

1999).     

 The rodent communities of grassland habitats are usually related to the type and 

height of foliage (French et al. 1976, Grant and Birney 1979). Tall- and mid-grass 

habitats often support rodent communities dominated by herbivorous species, whereas 

short-grass rodent fauna is commonly dependent on invertebrates (French et al. 1976). 

Moreover, rodent community composition changes along a gradient from short to tall 

grass cover (Grant and Birney 1979). 

 Rodent responses to various disturbances in grassland ecosystems have been 

explained by decreases in foliage height, aboveground plant biomass, and cover, as well 



 

9 

 

as altered soil properties (Collins and Wallace 1990). Following a fire disturbance, 

species that use open habitats and feed on seeds and/or insects (e.g., Peromyscus sp., 

Chaetodipus sp.) typically increase in abundance. Conversely, species that consume 

foliage directly (e.g., Sigmodon sp., Microtus sp.), forage for invertebrates in the litter 

layer (e.g., Soricidae sp.), or use aboveground nests of plant debris (e.g., Microtus sp., 

Reithrodontomys sp.) often decrease in abundance in response to fire (Collins and 

Wallace 1990). In a northwestern Chihuahua Mexican grassland, limiting the disturbance 

of caused by grazing domestic cattle (Bos taurus) increased vegetation height and 

abundance of black-tailed prairie dogs (Cynomys ludovicianus) and banner-tailed 

kangaroo rats (Dipodomys spectabilis) (Davidson et al. 2010).  

Managing Forests for Biomass Removal: Woody Debris and Switchgrass 

 Harvesting plant biomass from managed loblolly pine (P. taeda) forests of the 

southeastern U.S. is now a potential energy source.  Two ways of increasing biomass for 

fuels are: 1) intercropping fast growing grasses for annual harvest and 2) removing 

residual woody debris produced during clear-cut harvest of timber. Plant biomass from 

residual woody debris and above ground biofuel crops can be converted to liquid fuels 

such as ethanol or biodiesel via cellulosic biofuel processing, and remains can be used 

directly as solid fuels (e.g., dried and compressed into blocks or logs for stoves) (Weng et 

al. 2008, Oak Ridge National Laboratory 2009).  

 Residual woody debris is characterized as any portion of harvested timber 

products that are unsuitable for lumber production, and includes tree branches and 
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treetops produced during harvest. Silvicultural practices in managed pine forests typically 

include leaving residual woody debris in place between rows of newly planted pines to 

decay on site. Removal of residual woody debris changes habitat structure and thus, 

resources (e.g. nest site density, fungal distribution) available to rodents (Bowman et al. 

2000; Loeb 1999). Woody debris can provide important nesting and foraging habitat, 

refuge sites from predators, and habitat heterogeneity. The presence of woody debris 

improves quality of pine stands as habitat for cotton mice (P. gossypinus) (Loeb 1999).  

Furthermore, woody was related to rodent abundances in similarly aged forest stands 

(Carey and Johnson 1995). 

 Switchgrass (Panicum virgatum L.), a perennial C4 grass native to the Great 

Plains region of North America, can thrive in a variety of environmental conditions and 

climates and is a biofuel feedstock with great potential (Oak Ridge National Laboratory 

2009). Switchgrass can grow >2 meters tall in bunches, resulting in thick ground cover 

(Oak Ridge National Laboratory 2009). The root system is extensive, contains the 

majority of the plant‟s biomass, and can sequester nutrients and limit erosion (Oak Ridge 

National Laboratory 2009). Use of switchgrass as a biofuel crop requires low energy 

input for production, common farm equipment for planting and harvest, and cultivar plots 

can average up to 11,500 gallons of ethanol/acre/year for 10 consecutive years of harvest 

without yield decline (Fike et al. 2006, Oak Ridge National Laboratory 2009). 

Switchgrass can be grown as monoculture or in combination with other crops via 

intercropping. Intercropping with existing pine has been suggested in managed pine 
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stands where the space between rows of pine is typically unused. Introducing switchgrass 

into forests changes the availability and distribution of plants available to animals. 

Rodents use plants to meet daily (e.g., protection, cover, food) and reproductive needs 

(e.g., nest sites) (Carey and Johnson 1995). Planting switchgrass in pine forests is likely 

to increase understory plant cover, decrease plant community diversity, and decrease 

open space. Organisms that depend on understory plants for food, nest sites will be 

directly influenced if switchgrass replaces these understory plants. These organisms may 

continue inhabiting these areas if switchgrass provides the resources they need, and if 

not, emigrate or experience a decline in fitness.  

 To examine the influence of biomass removal options on ecological sustainability 

in a managed loblolly pine (P. taeda) forest, a long-term study was established in 2008-

2009 immediately following clear-cut harvest and replanting of new forest stands in 

coastal North Carolina. Treatments established to examine biomass removal options in 

this study include: 1) pine with residual woody debris in place, 2) pine with residual 

woody debris removed, 3) pine and switchgrass intercropped with residual woody debris 

in place, 4) pine and switchgrass intercropped with residual woody debris removed, and 

5) switchgrass only. 

Objectives, hypotheses, and predictions 

 The objective of this study is to examine rodent responses to experimental 

biomass removal options by 1) characterizing features of habitat structure and their 

change in percent cover and height over among biomass removal options and over time, 

and 2) examining responses of rodents at population- and community-levels.  



 

12 

 

 To characterize the habitat structure, I tested the assumption that biomass removal 

options will result in plots that differ in habitat structure.  I predicted height and percent 

cover of residual woody debris will be greater in plots with residual woody debris in 

place, height and percent cover of grasses would be greater in plots where switchgrass 

was planted, and height and percent cover of residual woody debris and grasses would 

change over time as residual woody debris settles and decays, and switchgrass becomes 

established and grows over time. 

Within these objectives, I test the following hypotheses. 

Community-Level Hypothesis 

Hypothesis 1) Rodent diversity will be influenced by biomass removal options. 

Predictions H1 

Rodent diversity will increase in biomass removal options with residual woody debris 

because it will provide habitat heterogeneity such as nest and refuge sites. Rodent 

diversity will increase in biomass removal options with intercropped switchgrass because 

these plots will have greater habitat heterogeneity.  Rodent diversity will be lower in 

monoculture biomass removal options (pine only, switchgrass only) because these plots 

provide a more homogenous distribution of food, nesting, or other resources.   

Population-level hypotheses 

Hypothesis 2) Population abundance (number of unique individuals and number of total 

captures) of rodent species will vary among biomass removal options and over time. 



 

13 

 

Predictions H2 

All rodent species will increase in abundance where woody debris was not removed 

because it will provide habitat heterogeneity such as nest and refuge sites.  Rodent 

responses to the presence of switchgrass will be species specific. Abundance of 

granivores (R. humulis, house mouse, Mus musculus) and herbivores (S. hispidus) will 

increase in the presence of switchgrass due to increased food resources. Abundance of 

species that prefer open spaces (white-footed mouse, Peromyscus leucopus) will decrease 

in the presence of switchgrass due to high cover of grass.  Seasonal and annual 

differences in available food resources, and rodent population cycles will result in 

abundance that changes over time for all rodent species. 

 Hypothesis 3) Abundance of juveniles in rodent populations will be influenced by 

biomass removal options. 

Predictions H3 

Abundance of juveniles of all species will increase in the presence of woody debris 

because it will provide nest and refuge sites for adults. Species-specific variations in 

juvenile abundance will occur in presence of switchgrass. Juvenile abundance of 

granivores (R. humulis, M. musculus) and herbivores (S. hispidus) will increase in the 

presence of switchgrass due to increased food resources. Juvenile abundance of species 

that prefer open spaces (P. leucopus) will decrease in the presence of switchgrass due to 

high cover of grass. 
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CHAPTER II 

METHODS 

 

 

Study Area  

 This study was conducted on Weyerhaeuser Company‟s Lenoir 1 Sustainability 

Study Site, a research area in Lenoir County on the eastern coastal plain, near Dover, 

North Carolina, USA. The region is sandy bottomland forest dominated by agriculture 

and intensively managed loblolly pine forests. The 109 ha study site was a loblolly pine 

plantation established in 1974 with a site index of 70 for loblolly pine at 25 years (by 25 

years of growth, mean loblolly pine trees can be expected to reach 70-feet (21.3m) in 

height due to site potential. Maintenance of water levels is via human-made linear ditches 

that run along forest edges and parallel each other through interiors of study site blocks 

(Figure 1). Within the Lenoir Tract, an approximate 72-ha research area was designated 

for study.  

 Weyerhaeuser Company‟s silviculture practices of managed loblolly pine forests 

include mechanical and chemical site preparation and planting of pine seedlings spaced 

1-2 m apart on raised beds. Raised beds are in rows spaced 6.1 m apart. Residual woody 

debris generally is between rows of pine beds and decays on site. Pesticide and herbicide 
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treatment, mechanical or chemical vegetation control, and commercial thinning occur as 

necessary. After 27-35 years pine forests are clear-cut harvested.  

Experimental Design 

The research area was composed of a 38.4 ha reference stand planted in 1974 and 

a 33.6 ha section divided into 30 experimental plots that were clear-cut harvested, and 

planted in 2008 – 2009 (Figure 1). The purpose of the reference stand was to qualitatively 

compare rodents in a 35 year old pine forest with experimental plots.  Study plot sizes 

ranged from 0.76 ha to 1.39 ha (x̄ = 1.11 ha). Plots were divided into four blocks 

consisting 5 plots each: Block 1 (Plots 2, 3, 13, 14, 22), Block 2 (Plots 5, 7, 9, 10, 11), 

Block 3 (Plots 16, 17, 18, 19, 20), and Block 4 (Plots 23, 25, 27, 29, 30; Figure 1). Within 

each block, experimental plots were randomly assigned a biomass removal option.   The 

following five biomass removal options were examined in this study (Figure 1). 

Biomass Removal Option Treatments  

1. Pine with residual woody debris in place, “Pine biomass +”; (Plot 2, 9, 17, 30):  Site 

preparation included V-shearing and construction of 1.5 m wide raised beds in rows with 

6.1 m spacing between rows. Loblolly pines planted in December 2008 were centered on 

raised beds and spaced 1-2 m apart. Residual woody debris was placed between pine 

rows. This biomass removal option represented the control because this represents typical 

forest management (Figure 1). 

2. Pine with residual woody debris removed, “Pine biomass –”; (Plot 5, 13, 20, 29): Site 

preparation included V-shearing and construction of 1.5 m wide raised beds in rows with 
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6.1 m spacing between rows. Loblolly pines planted in December 2008 were centered on 

raised beds and spaced 1-2 m apart. Residual woody debris was removed off the plot with 

an excavator to simulate a biomass harvest.  

3. Pine and switchgrass intercropped with residual woody debris in place, “Pine × 

switchgrass, biomass +”; (Plot 7, 14, 16, 23): Site preparation included V-shearing and 

construction of 1.5 m wide raised beds in rows with 6.1 m spacing between rows. 

Loblolly pines planted in December 2008 were centered on raised beds and spaced 1-2 m 

apart. Residual woody debris was placed near the rows of pine. Switchgrass was 

machine-planted in May - July 2009 between pine rows. 

4. Pine and switchgrass intercropped with residual woody debris removed, “Pine × 

switchgrass, biomass –”; (Plot 10, 19, 22, 27): Site preparation included V-shearing and 

construction of 1.5 m wide raised beds in rows with 6.1 m spacing between rows. 

Loblolly pines planted in December 2008 were centered on raised beds and spaced 1-2 m 

apart. Residual woody debris was removed off the plot with an excavator to simulate a 

biomass harvest. Switchgrass was machine-planted in May - July 2009 between pine 

rows.  

5. Switchgrass Only (Plot 3, 11, 18, 25): Site preparation included excavation to remove 

residual woody debris, V-shearing, and root raking. Switchgrass was machine-planted in 

May - July 2009 on the entire plot.  
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Habitat Measurements 

 To assess habitat structure associated with the biomass removal options I used 

two, 30 m transect lines in each study plot during April, June, August, and October 2010.  

Transect lines were placed 20 m on either side of plot center and aligned perpendicular to 

rows of pines. I stretched a 30 m measuring tape across the plot from trap line A to trap 

line D, and attached it to steel spikes. I used a wooden meter-stick to achieve a vertical 

projection of the tape. I measured habitat features that crossed transect lines and covered 

a minimum area of 10 cm along the line using point interception methods (Floyd and 

Anderson 1987, Braun 2005). I categorized habitat features into one of the following 

variables: ferns, forbs, fungus, grasses, moss, vines, woody pines, hardwoods, exposed 

soil, other debris, woody debris (all), logs > 10 cm in diameter, logs < 10 cm in diameter, 

and stumps. I measured all habitat variables from one side to the other ignoring any 

breaks in their canopy. I recorded the distance (cm) that each habitat variable intersected 

a transect line as distance along the line to the nearest 10 cm. I estimated mean height 

(cm) above ground of each habitat variable to the nearest 10 cm using a wooden meter 

stick. 

I estimated habitat structure as „percent cover‟ and „height‟ of each habitat 

variable. I calculated percent cover as the total linear distance each habitat variable 

covered divided by the total transect line distance, averaged across the two transect lines 

per plot. I estimated percent cover for time interval. I calculated height as the mean 
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height of each habitat variable on a transect line, averaged for the two transect lines on 

each study plot, and calculated separately during each time interval (month). 

Rodent Live Trapping 

 I conducted live trapping July 15- December 9, 2009, and July 19- November 14, 

2010 on all plots and the reference stand (Figure 1). I established live trapping grids (30 

m × 60m) approximately 20 m from the edge of each study plot and approximately 40m 

from the exterior edge of the reference stand (Figure 1). Each trapping grid consisted of 4 

parallel trap lines with 10 m spacing between traps. Each trap line had 6 Sherman (H.B. 

Sherman Traps Inc., Tallahassee, FL) and 1 Longworth (Rogers Manufacturing Co., 

Peachland, BC) live traps assigned randomly. Trap lines were parallel to rows of pine. 

I trapped each round for three consecutive nights, and all study plots in one block 

simultaneously. I set traps at sunset (1700-2030pm) and checked at sunrise (0600-

0830am). I baited traps with a mixture of sunflower seeds and rolled oats. I conducted 8 

trapping rounds between July 15- December 9, 2009, and 6 trapping rounds between July 

19- November 14, 2010. Upon first capture, I marked all rodents with a unique numbered 

ear-tag (Monel Numeric size 1005-1). Upon capture of each rodent, I recorded ear-tag 

number, species, sex, age-class, reproductive condition, and mass. I considered P. 

leucopus to be adults if they had completed their post-juvenile molt (Layne, 1968) and S. 

hispidus to be adults if they weighed >80g (Chipman, 1965). I based age classes of other 

species on a combination of body mass and pelage characteristics. I determined 

pregnancy by palpitation. I determined lactation for captured females by bare and 
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enlarged nipples. I determined males to be reproductive (scrotal) if testis were descended 

from the abdomen. 

I estimated community diversity as species richness, Shannon Diversity Index, 

and Fisher‟s α Diversity Index. Species richness was the number of species captured in 

each plot in a year. I calculated Shannon Diversity Index as H‟ for each study plot using 

the total number of unique individuals (identified using ear tags) of all species captured in 

a year as     ∑           
      where S = species richness, and pi = the proportion of 

individuals of a given species to the total number of individuals in the community 

(Shannon 1948). The Shannon Diversity Index includes a measure of evenness, a 

measure of the relative abundance, or proportion of individuals of a given species. 

Shannon Diversity Index was calculated using EcoSim7 software (Gotelli and 

Entsminger 2009). I calculated Fisher‟s α Diversity Index for each study plot using the 

total number of unique individuals of all species captured throughout a year as     

  (  
 

 
) where S = species richness, n = the number of unique individuals, and a = the 

Fisher‟s α, to obtain a non-bias measure of species diversity (Fisher et al. 1943). I 

calculated Fisher‟s α Diversity Index using Estimate S 8.2 software (Colwell 2009) with 

1000 runs, strong hash encryption, and randomized samples without replacement. I 

calculated population abundance for each rodent population as the number of unique 

individuals captured and the number of total captures. I calculated both the number of 

unique individuals captured and the number of total captures during each trapping round, 

and habitat variable by biomass removal option for rodent species captured during ≥3 
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trapping rounds a year. Population abundance of P. leucopus captured in the reference 

stand during 2010 is presented as mean number of unique individuals per trapping round 

per 1800 m
2
 for ease of comparison with abundance measures from study plots. Other 

population abundances from the reference stand are not presented as means because of 

small sample sizes, but instead as total number of individuals captured. I calculated 

juvenile abundance for each rodent population on each plot as the number of unique 

juveniles captured per year and. Juvenile abundance is presented as mean number of 

unique individuals per trapping round per 1800 m
2
. 

Rodents in the Study Area 

 The white-footed mouse (P. leucopus) is a native cricetid rodent that commonly 

resides in a variety of habitats including deciduous and coniferous forests, croplands, 

grasslands, and semi-desert throughout the central and eastern United States (Anthony et 

al. 1981, Merriam et al. 1989, Merriam and Lanoue 1990, Krohne and Hoch 1999, Barko 

et al. 2003). White-footed mice are often the most abundant rodent in deciduous forests 

and areas bordering agricultural lands, and following a disturbance (Lackey et al. 1985, 

Merriam et al. 1989, Merriam and Lanoue 1990, Barko et al. 2003). White-footed mice 

are omnivorous, feeding on a variety of plants, fruits, seeds, and arthropods (Myton 1974, 

Lackey et al. 1985, Derting and Hornung 2003).  

 The eastern harvest mouse (R. humulis) is a native cricetid rodent that can be 

found nesting in grassy habitats (Stalling 1997). The diet of eastern harvest mice is 

composed of grass and weed seeds, green vegetation, and orthopterous insects (Stalling 
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1997). Eastern harvest mice have been observed in association with P. leucopus, S. 

hispidus, and M. musculus, and are not locally abundant (Stalling 1997). 

 The hispid cotton rat (S. hispidus) is a native cricetid rodent that is often abundant 

in habitats of thick grasses and brush (French et al. 1976, Cameron and Spencer 1981, 

Foster and Gaines 1991, Loeb 1999). Hispid cotton rats are generalist herbivores that 

feed on a variety of plant species (Cameron and Spencer 1981, Randolph et al. 1991). 

 The marsh rice rat (Oryzomys palustris) is a native cricetid rodent that inhabits 

wetlands and coastal marshes of the southeastern U.S. (Wolfe 1982). Marsh rice rats are 

omnivorous and feed on vegetation, seeds, arthropods, and can be carnivorous (Wolfe 

1982). Marsh rice rats are primarily nocturnal and often coexists with S. hispidus in 

southern habitats (Wolfe 1982).  

The southern flying squirrel (Glaucomys volans) is a native sciurid rodent found 

in pine and hardwood forests east of the Mississippi river and isolated populations exist 

in central America (Dolan and Carter 1977). Southern flying squirrels are omnivorous, 

and feeds on invertebrates, eggs, nestlings, carrion, and a variety of nuts, fruits, and plant 

matter (Dolan and Carter 1977). Southern flying squirrels are arboreal and nest 4.5 to 6 m 

above ground (Dolan and Carter 1977).  

 The house mouse (M. musculus) is a murid rodent introduced from Europe that is 

now common throughout most of North America (Baker 1971, French et al. 1976, 

Webster et al. 1981, Mills and Childs 1998, Ballenger 2009). House mice are often found 
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in a variety of grasslands as well as in close association with humans (Baker 1971, 

French et al. 1976, Ballenger 2009). House mice have a broad diet and can rapidly 

increase in abundance in the presence of required resources.  Consequently, M. musculus 

is a pest species (Ballenger 2009).  

Statistical Analyses 

This study included measures and analyses of 1) habitat structure, 2) rodent 

community diversity, and 3) rodent species abundances.  To quantify habitat structure, 

the dependent variables: percent cover and height were measured for the habitat variables 

(ferns, forbs, fungus, grass, moss, vines, pine, hardwood, exposed soil, other debris, 

woody debris) found in the study area.  The independent variables used to analyze habitat 

structure were habitat variable, biomass removal option, and sampling date (month).  To 

quantify rodent community diversity, the dependent variables species richness, Shannon 

Diversity Index, and Fisher‟s α Diversity Index were calculated.  The independent 

variables used to analyze rodent community diversity were the treatments.  To quantify 

rodent species abundances, the dependent variables were abundance (number of unique 

individuals and number of total captures), and number of unique juveniles. The 

independent variables used to analyze rodent abundance interactions were treatments, 

rodent species, and trapping round.  The independent variable biomass removal option 

was used to analyze the dependent variable number of unique juveniles. 

Community metrics and juvenile abundance are presented as mean ± 2 standard 

deviations. All other data are presented as mean ± 2 standard errors. All variables were 
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standardized to the area of the trapping grid (1 800m
2
). Variables were tested for 

normality using a Kolmogorov-Smirnov test and homogeneity of variance using a 

Levene‟s test. All variables that violated tests for normality or homogeneity of variance 

were transformed using log(+1), rank, squareroot, or squareroot-arcsin when appropriate. 

When transformations resulted in a more normal distribution or homogeneous variances 

as indicated by a higher p-value from a Kolmogorov-Smirnov test or Levene‟s test, 

transformed data were used for ANOVA tests.  When transformations did not result in a 

more normal distribution or homogeneity of variances was not achieved, rank 

transformed variables were analyzed using parametric approaches because rank 

transformations have properties of robustness and power in analysis of variance (Conover 

and Inman 1982).   

In the analysis of habitat structure, I examined the relationship of the dependent 

variables (percent cover and height) among the habitat variables within the different 

biomass removal options, and across sampling date (month). I used an ANOVA to test 

for interactions which address my main hypotheses even when parametric assumptions 

were violated.  Generally, ANOVA tests are robust against heteroscedasticity of variance 

(Glass et al. 1972). To confirm statistical differences identified using ANOVAs, non-

parametric Kruskal-Wallis tests were used to test the dependent variables percent cover 

and height for each habitat variable, and within each month, using the independent 

variable biomass removal option. When both ANOVA and Kruskal-Wallis tests 

identified significant differences, post-hoc analyses were conducted using multiple 
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pairwise comparisons among biomass removal options with Mann-Whitney U tests and a 

Bonferroni correction (Bonferroni 1936).  

In the analysis of the dependent variables for community structure and juvenile 

abundance, I examined the relationship between the dependent variables (i.e., richness, 

Shannon Diversity index, Fisher‟s α index, and juvenile abundance) and treatments.  I 

used an ANOVA to analyze dependent variables among treatments when parametric 

assumptions were met, or a Kruskal-Wallis test otherwise.  In addition, I used Morisita‟s 

index of similarity to evaluate the similarity among rodent communities in the biomass 

removal options because this index is independent of sample size and diversity (Morisita 

1959; Wolda 1981).   

For comparisons of rodent population abundance, I examined interactions among 

the dependent variables (i.e., the number of unique individuals, and the number of total 

captures) of each species among biomass removal options and trapping round. Rank 

transformations were performed because parametric tests were used and neither 

dependent variable met parametric assumptions (Conover and Inman 1982).  Many 

individuals were captured repeatedly across rounds in both 2009 and 2010, so trapping 

rounds could not be considered as independent events. Therefore, I used a repeated 

measures ANOVA with 2 grouping (between-subject) factors and one within-subject 

factor (time), to test for all interactions. The repeated measures ANOVA tests did not 

meet assumptions of sphericity.  Therefore, a Greenhouse-Geisser correction factor was 

used (Greenhouse and Geisser, 1959) because this correction factor has been shown to 



 

25 

 

provide an equally powerful alternative in repeated measures analysis of variance 

(Grieve, 1984). To confirm statistical differences identified using repeated measures 

ANOVA tests, Kruskal-Wallis tests were used to test for biomass removal options for 

either number of unique individuals or number of total captures of each species.  When 

both repeated measures ANOVA and Kruskal-Wallis tests identified significant 

differences, post-hoc analyses were conducted using multiple Mann-Whitney U tests with 

a Bonferroni correction (Bonferroni 1936). 

Animals captured in the reference stand were not included in analyses and are 

presented for a qualitative comparison between the rodent communities that can be found 

in the interior of loblolly pine stands ~35 years of age.  

A rejection criterion of p<0.05 was used for 1-factor ANOVA, 2-factor ANOVA, 

and Kruskal-Wallis tests. Mann-Whitney U tests with a Bonferroni correction were used 

for pairwise comparisons. All statistical analyses were conducted in SPSS 16.0 (SPSS 

2007, Chicago, Il, USA). 
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CHAPTER III 

RESULTS 

 

 

Habitat Structure 

 Transect line measurements were conducted on all study plots during April 17-19, 

June 24-27, August 27-30, and October 8-11 2010.  The variables percent cover and 

height differed among sampling dates, biomass removal options, and habitat variables.  

There was a significant interaction of biomass removal option × habitat variable × 

sampling date (month) for both percent cover (F76,1120=2.011; p<0.001, Table 1) and 

height (F64,980=1.667; p=0.001, Table 2).  Below I describe percent cover and height of 

habitat for the first (April) and last (October) vegetation sampling dates.  Results from 

June and August are intermediate to the first and last sampling dates. 

In April, grasses, exposed soil, and woody debris composed the predominant 

cover on all biomass removal options (Figure 2a). Biomass removal options differed with 

respect to percent cover of forbs, grasses, pines, woody debris, and exposed soil (Figure 

2a, Table C 1).  Percent cover of forbs was higher in the biomass removal option pine 

biomass + than switchgrass only (Figure 2a, Table C 2a).  Percent cover of grasses was 

higher in the biomass removal options pine × switchgrass biomass +, and pine × 

switchgrass biomass - than both pine biomass - and pine biomass + (Figure 2a, Table C 

2b).  Percent cover of pines was higher in the biomass removal options pine biomass -, 
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pine biomass +, and pine × switchgrass biomass + than switchgrass only (Figure 2a, 

Table C 3a).  Percent cover of woody debris was higher in the biomass removal option 

pine biomass + than pine biomass -, pine × switchgrass biomass -, and switchgrass only 

(Table C 3b).  Pairwise analysis failed to reveal a difference for percent cover of exposed 

soil between any two biomass removal options (Figure 2a, Table C 4).  Moreover, in 

April biomass removal options differed with respect to height of forbs, pines, and woody 

debris (Figure 3, Table C 5). Height of forbs was higher in the biomass removal the 

option pine biomass + than switchgrass only (Figure 3, Table C 6a). Height of pines was 

higher in the biomass removal options pine biomass -, pine biomass +, and pine × 

switchgrass biomass + than switchgrass only (Figure 3, Table C 6b). Height of woody 

debris was higher in the biomass removal options pine biomass + and pine × switchgrass 

biomass + than switchgrass only (Figure 3, Table C 7).   

In October percent cover of forbs, grasses, pines, and woody debris differed 

among biomass removal options (Figure 2b, Table C 1b).  In October, there was no 

difference in percent cover of exposed soil among biomass removal options (Figure 2b, 

Table C 1b). Percent cover of forbs was lowest in the biomass removal option 

switchgrass only (Figure 2b, Table C 8a). Percent cover of grasses was highest in the 

biomass removal option switchgrass only (Figure 2b, Table C 8b). Additionally, percent 

cover of grasses was higher in the biomass removal option pine × switchgrass biomass - 

than pine biomass + (Figure 2b, Table C 8b). Percent cover of pine was lowest in the 

biomass removal option switchgrass only (Figure 2b, Table C 9a). Percent cover of 
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woody debris was higher in the biomass removal option pine biomass + than pine 

biomass -, pine × switchgrass biomass -, and switchgrass only (Figure 2b, Table C 9b). 

Additionally, percent cover of woody debris was higher in the biomass removal options 

pine biomass - and pine × switchgrass biomass + than switchgrass only (Figure 2b, Table 

C9b). In October 2010 biomass removal options differed with respect to height of forbs, 

grasses, pines, and woody debris (Figure 3, Table C 5b).  Pairwise analysis failed to 

reveal a difference for height of forbs between any two biomass removal options (Figure 

3, Table C 10a). Height of grasses was higher in the biomass removal option switchgrass 

only than pine biomass - and pine biomass + (Figure 3, Table C 10b). Height of pines 

was lowest in the biomass removal option switchgrass only (Figure 3, Table C 11a). 

Height of woody debris was higher in the biomass removal options pine biomass -, pine 

biomass +, and pine × switchgrass biomass + than switchgrass only (Figure 3, Table 

11b). 

Rodent Results 

 Trapping occurred between July 15 and December 9 in 2009. I captured 648 

unique individual rodents (267 P. leucopus, 248 M. musculus, 122 S. hispidus, 11 R. 

humulis) 1806 times on the study plots.  Captures in 2009 occurred over 77 nights 

resulting in 15,366 trap nights. In 2010 trapping occurred between July 19 and November 

14. I captured 1,634 unique individual rodents (1,030 S. hispidus, 310 M. musculus, 297 

P. leucopus, 15 R. humulis, 6 O. palustris) 3,594 times on the study plots.  Captures in 

2010 occurred over 54 nights resulting in 11,044 trap nights. 
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Reference Stand 

 In 2009, the reference stand was trapped for 73 nights resulting in 2040 trap 

nights.  Two individuals (1 S. hispidus and 1 R. humulis) were captured.  In 2010, the 

reference stand was trapped for 33 nights resulting in 921 trap nights.  Forty unique 

individuals (37 P. leucopus, 1 G. volans, 1 M. musculus, and 1 S. hispidus) were 

captured. I captured 6.2 ± 3.4 P. leucopus individuals /1800m
2
 per round. 

Rodent Community Diversity 

 In 2009, biomass removal option did not affect the rodent community (species 

richness, χ
2
=3.167, df=3, p=0.530, Shannon Diversity Index, F=0.670, df=4,19, p=0.623, 

Fisher‟s α Diversity Index, F=0.109, df=4,19, p=0.977) (Table 3). In 2010, there was no 

biomass removal option effect on the rodent community (species richness, χ
2
=3.167, 

df=3, p=0.530, Shannon Diversity Index, F=0.292, df=4,19, p=0.879, or Fisher‟s α 

Diversity Index, F=0.412, df=4,19, p=0.797) (Table 4). In 2009 and 2010, the rodent 

community found in the biomass removal options pine biomass – and pine biomass + 

were most similar as indicated by the highest value of similarity (Table 5 & 6). In 2009, 

the rodent community found in pine × switchgrass biomass – was the least similar to 

options without switchgrass (Table 5).  In 2010, the rodent community found in 

switchgrass only was least similar to options without switchgrass (Table 6).   

Rodent Population Abundance 

 I report results of analyses on the dependent variable unique number of 

individuals below because there was a general concordance between results of unique 
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number of individuals and total number of captures. Unless otherwise specified, the 

results of analyses on the number of total captures agree. Tables and figures presented in 

this section show both unique number of individuals and total number of captures.  I 

included R. humulis in repeated measures 2-factor ANOVA tests, but excluded them 

post-hoc analyses due to small sample sizes in both 2009 and 2010. Significant 

differences are identified from repeated measures 2-factor ANOVA tests at p≤0.05, and 

biologically important trends are identified at 0.05≤p≤0.10 (Ramsey and Schafer 2002). 

In 2009, there was a significant species effect on the number of unique 

individuals, indicating that some species were more abundant than others (F=59.876, 

df=3, p<0.001, Table 7a).  There were more P. leucopus unique individuals captured than 

M. musculus, and S. hispidus (Table 8a).  The number of total unique individuals did not 

differ among biomass removal options (F=1.241, df= 4, p=0.303, Table 7a). There was a 

trend for the relative number of unique individuals of each species to differ among 

biomass removal options (species × biomass removal option: F=1.736, df=12, p=0.081, 

Table 7a). This trend is illustrated in the number of unique M. musculus and S. hispidus 

individuals appearing higher in the biomass removal options with switchgrass and P. 

leucopus appearing lower in the biomass removal option pine × switchgrass biomass - 

(Figure 4a). However, the species by biomass removal option was not significant for total 

captures (species × biomass removal option: F=1.448, df=12, p=0.170, Table 7b).   There 

was a significant trapping round effect on the number of unique individuals, indicating 

that the number of all rodents changed over time (F=9.202, df=4.860, p<0.001, Table 7a).  
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The interaction of trapping round × biomass removal option on the number of unique 

individuals was not significant suggesting temporal changes in the number of unique 

individuals did not differ among biomass removal options (F=0.792, df=19.441, p=0.719, 

Table 7a).  The significant interaction of trapping round × species on the number of 

unique individuals indicates that temporal changes in the number of unique individuals 

differed among species (F=5.230, df=14.581, p<0.001, Table 7a, Figure 5a).  The number 

of unique M. musculus individuals differed among trapping rounds in 2009 (Table 9a), 

beginning low in July, increasing until mid-September, followed by a decline until late-

October and early November, after which abundance again increased in late November – 

mid December (Figure 5a). The number of unique S. hispidus individuals differed among 

trapping rounds (Table 9a), beginning low in July, increasing until mid-September, 

followed by a decline until late-October after which abundance again increased in late 

November- mid December (Figure 5a).  The number of unique P. leucopus individuals 

displayed a trend to differ among trapping rounds (Table 9a), and total P. leucopus 

captures differed among rounds (Figure 5b; Table 9b).  Total P. leucopus captures 

initially rose between July and late-August, decreased in mid-October, then increased in 

late October and remained high through December (Figure 5b). There was a trend 

suggesting an interaction of trapping round × biomass removal option × species for the 

number of unique individuals captured (F=1.361, df=58.324, p=0.053, Table 7a), but not 

for total captures (F=1.151, df=54.974, p=0.234, Table 7a).  This suggests the number of 

individual rodents of each species differed with the biomass removal options (Figure 4a) 

and across rounds (Figure 5a). 



 

32 

 

During 2010, there was a significant species effect on the number of unique 

individuals, indicating that some species were more abundant than others (F=74.915, 

df=4, p<0.001, Table 10a).  More S. hispidus individuals were captured than P. leucopus 

or M. musculus individuals (Table 11a). The number of unique individual rodents did not 

differ among biomass removal options (F=0.613, df=4, p=0.655, Table 10a). However, 

the number of unique individuals of the different species differed among biomass 

removal options (F=3.329, df=16, p<0.001, Table 10a). The number of unique P. 

leucopus, M. musculus, and S. hispidus individuals differed among biomass removal 

options (Table 12a). More individual P. leucopus were captured in the biomass removal 

options without switchgrass (Figure 6a, Table C 12a). In addition, more P. leucopus 

individuals were captured in the biomass options pine × switchgrass biomass - than 

switchgrass only (Figure 6a, Table C12a). More M. musculus individuals were captured 

in the biomass removal option switchgrass only (Figure 6a, Table C 13a). In addition, 

more M. musculus individuals were captured in the biomass removal options pine × 

switchgrass biomass - than pine biomass + (Figure 6a, Table C 13a). More individual S. 

hispidus were captured in the biomass removal option pine × switchgrass biomass - than 

switchgrass only (Figure 6a, Table C 14a). There was a significant trapping round effect 

on the number of unique individual rodents, indicating that the number of unique rodents 

captured changed over time (F=27.124, df=4.077, p<0.001, Table 10a). The interaction of 

trapping round × biomass removal option on the number of unique individuals was not 

significant, suggesting the number of unique individuals did not differ among biomass 

removal options with time (F=0.842, df=16.307, p=0.640, Table 10a). The interaction of 
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trapping round × species on the number of unique individuals was significant indicating 

temporal changes in the number of unique individuals differed among species (F=26.817, 

df=16.307, p<0.001, Table 10a, Figure 7a). The number of unique S. hispidus captured 

differed among trapping rounds (Table 13a). The number of unique S. hispidus 

individuals increased from mid-July until late-September, decreased in late-October, and 

again increased in mid-November (Figure 7a). There was a trend for the number of 

unique M. musculus individuals to differ among trapping rounds (Table 13a). The number 

of total M. musculus captures differed among trapping rounds (Table 13b). The number 

of total M. musculus captures increased between July and August, and steadily declined 

through mid-November (Figure 7b).  The number of unique P. leucopus individuals did 

not differ among trapping rounds in 2010 (Figure 7a; Table 13a).  The interaction of 

trapping round × biomass removal option × species on the number of unique individuals 

captured was not significant (F=0.919, df=65.228, p=0.652, Table 10a).  This suggests 

that temporal differences in the number of individual rodents of each species did not 

differ among biomass removal options.   

Rodent Juvenile Abundance 

In 2009, the number of unique juveniles did not differ among biomass removal 

options for the three most abundant species, P. leucopus (χ
2
=2.392, df=4, p=0.664), M. 

musculus (χ
2
=6.561, df=4, p=0.161), or S. hispidus (χ

2
=6.088, df=4, p=0.193) (Table 14). 

During year 2, the number of unique juveniles differed among biomass removal options 

for the species, P. leucopus (χ
2
=11.103, df=4, p=0.025), M. musculus (χ

2
=11.257, df=4, 



 

34 

 

p=0.024), but did not differ for S. hispidus (χ
2
=3.886, df=4, p=0.422) (Table 15). 

Multiple pairwise comparisons of the unique number of juveniles captured failed to 

reveal a difference between any two biomass removal options after a Bonferroni 

correction for the species P. leucopus or M. musculus (Table C 15).  However, 

examination of the post-hoc analyses reveals a trend for lower abundance of P. leucopus 

juveniles to be captured in biomass removal options with increasing cover of switchgrass.  

Moreover, M. musculus juveniles show a trend to have higher abundance in habitats with 

switchgrass than pine biomass - plots. 

Additional demographic information on adult sex ratio is included for information 

purposes only and presented as mean ± standard deviation (Table C 16 & C 17). 
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CHAPTER IV 

DISCUSSION 

 

 

Summary of Results 

 Habitat structure changed over time and differed among biomass removal options 

verifying that the biomass removal options affected structural characteristics important to 

southeastern rodents.  Despite differences in habitat structure associated with biomass 

removal options, there were no differences in species richness, Shannon Diversity index, 

or Fisher‟s α index among biomass removal options during either year. Moreover, overall 

rodent abundance did not differ among biomass removal options in either year. In the 

first year of study, more P. leucopus individuals were captured than any other species, 

and in the second year of study, more S. hispidus individuals were captured than any 

other species. Overall rodent abundance and species specific abundance changed over 

time in both years. In the first year of study, abundance of each rodent species showed a 

trend to differ among biomass removal options. This trend suggests abundance of M. 

musculus and S. hispidus individuals was greater in habitats with switchgrass. In the 

second year of study, abundance of P. leucopus, M. musculus, and S. hispidus differed 

among biomass removal options. Abundance of P. leucopus was higher in habitats 

without switchgrass, intermediate in habitats with pine and switchgrass intercropped and 

lowest in switchgrass only habitats. The opposite pattern was observed in the abundance 
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of M. musculus, which was highest in switchgrass only habitats, intermediate in habitats 

with pine and switchgrass intercropped and lowest in habitats without switchgrass. The 

abundance of S. hispidus individuals appeared to increase with coverage of grasses for 

each habitat that contained pine, but this pattern did not continue in switchgrass only 

habitats. In the first year of study, juvenile abundance of each species did not differ 

among biomass removal options. In the second year of study, the number of unique P. 

leucopus and M. musculus juveniles differed among biomass removal options and 

paralleled patterns of adult abundance. 

Influence of Biomass Removal Options on Habitat Structure 

Differences occurred in habitat structure over time within the biomass removal 

options during this study.  Grass coverage and height increased on the entire study site, 

but remained highest in plots with switchgrass.  Furthermore, pine and switchgrass 

became established and increased in height during the second year of study, and woody 

debris remained high in plots with residual woody debris left in place. This confirms the 

preparation of the study plots was successful because the habitat structure of the study 

area differed among biomass removal options and changed as plants colonized exposed 

soil over time.   

Influence of Biomass Removal Options on Rodents 

 Rodent Community 

 All rodent species captured in this study were expected to be found inhabiting 

pine forests in the southeast and have previously been observed in these habitats 
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(Atkeson and Johnson 1979, Loeb 1999, Mengak and Guynn 2003).  Peromyscus 

leucopus, S. hispidus, R. humulis, and M. musculus were the only species captured in 

study plots in the first year of study, and >99% of the unique individuals captured in the 

second year of study (6 O. palustris were captured during November 2010).  These same 

species (excluding O. palustris) were captured in young pine plantations (1-3 years post-

planting) in the Georgia Piedmont (Atkeson and Johnson 1979). 

 Rodent community diversity was not influenced by biomass removal options 

during either year as measured by species richness, Shannon Diversity index, or Fisher‟s 

 index, and did not support the hypothesis that rodent diversity was influenced by 

biomass removal options.  Species richness would not be expected to change unless 

species were locally extirpated, and source populations of unique species were not 

present in the surrounding pine forests or agricultural fields to supply immigrants to the 

study area.  Without changes in species richness, the species diversity indices used would 

not be expected to differ among biomass removal options unless there were differences in 

the abundance of the most common species.  Based on the similarities in community 

diversity metrics among biomass removal options, my results suggest the presence of 

residual woody debris had a small influence on community similarity, and the presence of 

switchgrass had a significant influence on community similarity.  In all cases, larger 

differences were observed between switchgrass only plots and all other biomass removal 

options during the second year of study suggesting switchgrass only habitats had much 

different structure, and offered different resources to rodents at this time. 
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 However, relative species abundance varied by year on all plots.  In 2009, P. 

leucopus was the most abundant species captured, whereas in 2010 S. hispidus was the 

most abundant species captured.  This shift in the most abundant species of the rodent 

community over years has been seen in other studies of young pine plantations in the 

southeastern U.S., and in secondary succession of both forest and grassland habitats 

(Atkeson and Johnson 1979; Clarke and White 2008; Masters 1993).  This shift in the 

most abundant species across years suggests the rodent community responded to changes 

that occurred in the habitat structure during this study.  

 Rodent Population Responses to Biomass Removal Options 

Overall rodent abundance did not differ with respect to biomass removal options. 

However, abundance of each species showed a trend to differ among biomass removal 

options in the first year, and significant differences in second year of the experiment. My 

results support the hypothesis that population abundance of rodent species vary among 

biomass removal options. This result was expected because resource requirements and 

the ability to respond to changes in resource abundance differ among rodent species 

(Bownam, et al. 2001; Fox 1987; MacArthur and Levines 1964). 

 The presence of residual woody debris did not appear to influence rodents within 

the first two years post-planting in this system because treatments with removal of woody 

debris did not differ with respect to rodent abundance from those without removals.  

Although residual woody debris provides important habitat structure for rodents, it is 

likely that the influence of other factors such as food sources, foliage cover, or soil 
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characteristics were the habitat components that exerted the greatest influence during 

early succession in this managed pine forest. In contrast, the presence of switchgrass 

changed the habitat structure and resources available to the rodent community in young 

managed pine stands during the first two years of growth.  The differences in habitat 

structure among biomass removal options with and without switchgrass were reflected in 

rodent populations within the first year of study, and a stronger influence on rodents 

during the second year of the study. Based on my results biomass removal options appear 

to affect habitat quality of the rodents.  

Peromyscus leucopus appears to be negatively affected by switchgrass in terms of 

abundance. During the second year of study, P. leucopus adults were found in high 

abundance in non-switchgrass habitats, intermediate abundance in pine and switchgrass 

intercropped habitats, and the lowest abundance in switchgrass only habitats.  

Furthermore, this is concordant with the observation that fewer P. leucopus juveniles 

were captured in habitats with switchgrass during the second year of study. The presence 

of juveniles in habitats without switchgrass provides evidence that differences in 

abundance were a result of P. leucopus reproduction in these habitats as opposed to only 

immigration.  Juvenile abundance in switchgrass habitats was low, suggesting 

switchgrass provides limited resources for adult reproduction of P. leucopus and 

emigration or exclusion may have had a stronger influence on P. leucopus in these 

habitats.  Peromyscus leucopus is typically an early successional species that is more 

abundant in open habitats than those with high understory foliage cover (Atkeson and 

Johnson 1979; Merriam and Lanoue 1990). Habitats with switchgrass contain dense 
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cover, and therefore would be expected to support few P. leucopus. The result of fewer P. 

leucopus found in habitats with switchgrass suggests switchgrass habitats may fail to 

provide sufficient resources to support P. leucopus, and P. leucopus may be unable to 

successfully compete for resources in switchgrass habitats.  

Mus musculus appeared to be positively affected by switchgrass in terms of 

abundance.  During the first year of study, there was a trend for higher abundances of M. 

musculus adults in habitats with switchgrass. In the second year of study there were 

nearly twice as many adults captured in switchgrass only habitats than any other biomass 

removal option. Mus musculus abundance was intermediate in pine and switchgrass 

intercropped habitats, and lowest in habitats without switchgrass.  An examination of the 

number of M. musculus juveniles on each biomass removal option suggests habitats with 

switchgrass provided the best habitat for M. musculus reproduction, and corresponds to 

the observed patterns in adult M. musculus abundance and provides evidence that 

abundance was a result of M. musculus reproduction in these habitats as opposed to only 

immigration. Juvenile abundance in habitats without switchgrass was low suggesting 

habitats without switchgrass provide limited resources for M. musculus reproduction, and 

immigration from other areas or competitive exclusion may have had a stronger influence 

on M. musculus in these habitats. M. musculus is a pest species due that can rapidly 

increase in abundance in the presence of required food resources (Stenseth, et al. 2003). 

These results suggest M. musculus may be able to out-compete other species for 

resources in switchgrass habitats. 
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Sigmodon hispidus appears to be positively influenced by switchgrass 

intercropping, but not switchgrass habitats without pine.  In the first year of study, the 

abundance of S. hispidus showed a trend to be higher in habitats with switchgrass.  In the 

second year, abundance of S. hispidus individuals appeared to increase with coverage of 

grasses in habitats containing pine. In switchgrass habitats without pine however, the 

abundance of S. hispidus was similar to in habitats without switchgrass.  Juvenile 

abundance of S. hispidus did not differ among biomass removal options in either year, 

suggesting all habitats examined in this study provided similar resources for S. hispidus 

reproduction.  Furthermore, the presence of juvenile S. hispidus in all biomass removal 

options suggests differences in abundance were not due to S. hispidus reproduction, but 

differential survival, immigration, or emigration among biomass options.  Sigmodon 

hispidus has been found to out-compete other rodent species for resources in habitats 

with high understory foliage cover (Raun and Wilks 1964, Grant 1972b, Grime 1973). 

These results are consistent with findings that S. hispidus may be a better competitor in 

habitats with high foliage cover, but also suggest that some habitat structure feature 

provided by the presence of pine may be important for this pattern to occur.  I speculate 

that the additional protection from avian predators provided by pine may have been one 

of these important features. Additionally, these results suggest S. hispidus individuals 

may be provided the best combination of available resources in habitats with pine and 

switchgrass intercropped, and may be able to out-compete other rodent species for 

resources in intercropped habitats. 
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The influence of biomass removal options on R. humulis could not be determined 

from this study. During both years of study, and other studies in southeastern pine forests, 

few R. humulis individuals were captured, suggesting this is a rare species in pine forest 

habitats (Atkeson and Johnson 1979). Moreover, R. humulis individuals were captured in 

all biomass removal options examined. 

 The three most abundant species of rodents P. leucopus, M. musculus, and S. 

hispidus all responded along a gradient of increasing degree of change from pine habitats 

with residual woody debris in place.  Thus, as the habitat structure became more different 

from pine habitats with residual woody debris in place, the abundance of generally P. 

leucopus, M. musculus, and S. hispidus became increasingly different.  Removal of 

residual woody biomass did not result in changes of rodent abundance. My results 

suggest residual woody debris removal in this pine forest system has no influence on 

rodent abundances. Intercropped pine and switchgrass habitats showed intermediate 

responses of rodent abundance, and no differences were identified between intercropped 

habitats with or without residual woody debris. My results suggest incorporation of 

switchgrass intercropping in this pine forest system would have an intermediate influence 

on rodents. Habitats that contained only switchgrass resulted in significant changes in 

abundance of the P. leucopus and M. musculus populations, however S. hispidus was 

found in similar abundance to habitats without switchgrass. My results suggest that 

planting only switchgrass in this pine forest system will have a significant influence on 

rodent populations.   
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Temporal Changes of Rodent Populations 

 In both years, overall rodent abundance increased between July and late-

September, and remained high until trapping ended in mid-December (2009) or mid-

November (2010). Rodent abundance in the southeast U.S. typically increases in the end 

of summer and fall as a result of increased vegetative cover, food resources, and 

individual reproduction during this time of year (Atkeson and Johnson 1979; Myton 

1974). 

  Temporal changes that occurred in rodent abundance did not differ among 

biomass removal options.  The changes that occurred in resources that determined 

temporal trends in rodent abundance may have been due to seasonal changes as opposed 

to differences among habitats provided by the biomass removal options.  In addition, 

rodent populations grow over the breeding season (Myton 1974; Carey and Johnson 

1995).  Rodent abundances have been shown to fluctuate seasonally in a variety of 

habitats including forests and grasslands throughout North America (Odum 1955; Grant 

and Birney 1979; Seagle 1985; Briese and Smith 1974).  

In the first year of study, P. leucopus abundance fluctuated over time and 

displayed an overall increasing trend in abundance.  However, there was a decrease of P. 

leucopus captures in mid-October, likely due to rain events, before abundance increased 

in late October and remained high through December.  In the second year of study, P. 

leucopus abundance did vary over time.  This lack of increase may result from a high 

abundance of S. hispidus, and potential competition for resources in the study area may 

have limited P. leucopus abundance.  The diets of S. hispidus and P. leucopus overlap 
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substantially, and S. hispidus can out-compete other species in habitats with high 

understory cover (Raun and Wilks 1964, Grant 1972b, Grime 1973).  In Georgia, P. 

leucopus populations were the most abundant in recently planted stands, and were 

reduced in abundance in stands 3 or more years post-planting, corresponding to an 

increase in S. hispidus abundance (Atkeson and Johnson 1979).  Thus, P. leucopus 

individuals may out-compete other species for resources in open habitats, but are unable 

to do so in habitats with high ground cover (Atkeson and Johnson 1979; Merriam and 

Lanoue 1990).   

 In the first year of study, M. musculus abundance fluctuated with time and 

increased in abundance.  The appearance of M. musculus in late August occurred 

simultaneously with the harvest of corn (Zea mays) fields located adjacent to the study 

area. Once captured initially, the abundance of M. musculus adults increased, suggesting 

immigration occurred to the study site from adjacent agricultural fields.  Additionally, 

locations of the trap stations where M. musculus individuals were first captured support 

this possibility.  Mus musculus is an invasive omnivore that can increase in abundance 

rapidly when required resources become available (Stenseth, et al.  2003). Increased M. 

musculus abundance suggests resources did not limit abundance in the first year of study.  

In the second year of study, M. musculus abundance showed a decreasing trend in 

number of unique individuals captured and a significant decrease in total captures 

between July and November. This decline in abundance may have occurred because of 

the greater abundance of S. hispidus, a potential competitor, and competition for 

resources in the study area may have limited changes in population abundance.  Mus 
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musculus has been found to decline in abundance as habitat structure changed over time, 

and the old-field mouse (Peromyscus polionotus) was able to competitively exclude M. 

musculus individuals in 1 acre field enclosures (Grant 1972b).   

 In both years of study, S. hispidus abundance increased throughout the trapping 

period and corresponded to increasing foliage ground cover.  Managed pine stands 2-7 

years of age have high densities of understory foliage, and have been found to support 

higher abundances of S. hispidus compared to younger or older stands (Atkeson and 

Johnson 1979).  My results suggest S. hispidus individuals may be out-competing P. 

leucopus for resources such as food and nest sites in habitats with high foliage cover 

(Raun and Wilks 1964, Grant 1972b, Grime 1973).  

 During both years of study, R. humulis abundance remained low. This result was 

surprising because the R. humulis population was expected to increase in the presence of 

switchgrass due to increased availability of seeds during autumn. The lack of response of 

R. humulis abundance suggests this species does not respond to changes in resource 

abundance rapidly, R. humulis individuals are poor competitors for resources with S. 

hispidus, or they are rare pine forests (Constantine et al., 2005; Stalling 1997). 

Reference Stand 

During both years, I found smaller rodent populations in the 35-year old reference 

stand than in the 1-2 year old study plots with the exception of P. leucopus in the second 

year of study.  Thus, low densities of P. leucopus, M. musculus, S. hispidus, and R. 

humulis can be found in 35-year old pine forests in this system.  In the second year of 
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study, the population of P. leucopus that was found in the reference stand had a mean of 

6 ± 3.4 individuals/round/1800m
2
, suggesting a 35-year old pine forest can to provide 

sufficient resources to support high densities of this native species.  For comparison, 

during the first year of study P. leucopus was the most abundant species captured with a 

mean of 5 ± 2.4 individuals/round/1800m
2
.  Furthermore, in the second year of study a 

mean of 7 ± 1.1 individuals/round/1800m
2
 were captured in treatments that supported the 

highest P. leucopus abundances.  It was surprising to find this abundance of P. leucopus 

in the reference stand because previous studies have not found this species at densities 

this high in mature pine forests (Atkeson and Johnson 1979, Loeb 1999, Constantine et 

al. 2004, Miller et al. 2004).  The differences observed in P. leucopus population 

abundance between years may be a result of the natural fluctuations in population size 

characteristic of rodents, or an effect of the adjacent experimental study plots.  The 

reference stand was established ~100m from the study plots (Figure 1), and individuals 

displaced from study plots may have moved to the reference stand.  This finding 

indirectly supports the hypothesis that P. leucopus individuals may have been 

competitively excluded from the study plots.  In addition, the presence of single S. 

hispidus, R. humulis (the first year of study) and M. musculus, S. hispidus (the second 

year of study) that were captured only one time suggests these species can be expected to 

have small population abundances in 35-year old pine forest stands, as observed in other 

studies (Atkeson and Johnson 1979Atkeson and Johnson 1979, Loeb 1999, Constantine 

et al. 2004, Miller et al. 2004).  A single G. volans was captured one time during the 
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second year of study, providing further evidence that pine forest habitats >30 years in age 

support this species in the southeast (Loeb 1999).   

Potential Mechanisms 

The mechanisms underlying the observed patterns of rodent abundance would 

require further experimentation to be identified.  It is likely that the observed patterns of 

rodent population abundances are the result of differences in available resources as well 

as interspecific competition for these resources and effects of habitat structure. 

Differences in habitat structure among biomass removal options may also influence 

predator and parasite populations.  The degree to which rodent populations are influenced 

by resource availability, interspecific competition, or natural enemies cannot be inferred 

from the results of this experiment.   

The influence of food resource availability on these rodent populations could be 

examined experimentally by manipulating food densities in habitat enclosures that 

contain different relative abundances of species.  For example, to examine the influence 

of food resources on P. leucopus in switchgrass habitats, one set of switchgrass plots 

could be supplied with seeds and insects while in another set of switchgrass plots seeds 

and insects could be removed, and a third set of plots could serve as an unmanipulated 

control.  Differences in population abundance and changes in abundance over time could 

be observed, and compared to unmanipulated control plots.  

The influence of interspecific competition could be examined experimentally by 

manipulating rodent densities within enclosures containing combinations of 2 species.  
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For example, to examine the influence of interspecific competition between P. leucopus 

and M. musculus, removal experiments could be conducted.  To identify the influence of 

M. musculus individuals on P. leucopus abundance in pine only, and switchgrass only 

habitats, the abundance of P. leucopus individuals could be kept constant, across several 

replicated plots. Increasing densities of M. musculus could then be added to some plots at 

low density, others at medium density, and others at high densities.  The abundance of 

both populations could be examined over time to examine the changes in population 

abundances that occur over time and across a gradient of M. musculus densities.  The 

results from my study suggest P. leucopus to be the more competitive species in pine 

only habitats, and M. musculus to be the more competitive species in switchgrass only 

habitats. 

Management Implications 

 The objective of my study was to experimentally examine rodent responses to 

different biomass removal options.  The three most abundant rodent species responded 

via changes in abundance along a gradient to increasing intensity of change from pine 

habitats with residual woody debris in place to switchgrass only.  In this pine forest 

system my results suggest residual woody debris removal has no influence on rodent 

population abundances, incorporation of switchgrass intercropping has an intermediate 

influence on rodent population abundances, and planting switchgrass only has a 

significant influence rodent population abundances.   
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Switchgrass habitats supported higher abundances of the invasive M. musculus, 

and lower abundance of the native P. leucopus than habitats without switchgrass.  Thus, 

forest managers may want to consider maintaining a mosaic of habitats with introduction 

of switchgrass exclusively at interior forest stands.  This strategy could benefit native 

species that avoid switchgrass, such as P. leucopus, by providing refuge areas devoid of 

switchgrass in exterior stands. Moreover, if interior stands are further from source 

populations of M. musculus such as agricultural fields and buildings, the rapid increase in 

abundance of this invasive species may be delayed.  

 These conclusions arise from observations made on experimental plots during the 

first two years following planting of switchgrass.  Pine trees in this habitat are likely to 

require at least 7 years of growth before the canopy closes and shades the understory.  

During this time switchgrass could spread to cover more area in intercropped biomass 

removal options than was observed in this study.  Furthermore, the influence of 

switchgrass on the rodent community in subsequent years cannot be extrapolated from 

current data. 
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APPENDIX A: FIGURES 

Figure 1. Map of Weyerhaeuser Company’s Lenoir 1 Long-term Sustainability Study Site 

Study site located in Lenoir County, NC.  Plots in this study include the biomass removal options: Pine Biomass +; 

Pine Biomass -; Pine × Switchgrass Biomass +; Pine × Switchgrass Biomass -; Switchgrass only.  Each biomass 

removal option is replicated four times, with one replicate in each Block 1, 2, 3, & 4. 

5
7
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Figure 2. Mean Percent Cover of Habitat Variable by Biomass Removal Options 

from Transect Line Measurements during April and October 2010 

Mean percent cover of habitat variables are shown by biomass removal option during a. 

April 17-19, and b. October 8-11, 2010. Multiple pairwise Mann-Whitney U tests with a 

Bonferroni correction were used to identify significant differences among biomass 

removal options as indicated above each bar. Different letters indicate that pairwise 

comparisons within habitat variable were significant at p≤0.005. Although only April and 

October are shown (to underscore differences from first to last vegetation sampling dates) 

samples were taken from June 24-27 and August 27-30, 2010 and results are 

intermediate. All measurements occurred at Weyerhaeuser Company‟s Lenoir 1 long-

term sustainability study site. Details of post hoc comparisons can be found in Tables C1-

C4, C8, & C9. 
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Figure 3. Mean Height of Habitat Variable by Biomass option from Transect Line 

Measurements during 2010 

Mean height of habitat variables are shown by biomass removal options during 2010.  All 

measurements occurred at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability 

study site. Error bars are off-set for ease of viewing. Details of post hoc comparisons can 

be found in Tables C5- C7, C10, & C11. 
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Figure 4. 2009 Mean Number of Unique Individuals and Total Captures for M. 

musculus, P. leucopus, R. humulis, and S. hispidus Captured by Biomass Removal 

Option 

a. Mean number of unique individuals/round/1800m
2
, and b. mean number of total 

captures/round/1800m
2
, +/- 2 standard errors, displayed by biomass removal option. 

Rodents were captured and released at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 15- December 9, 2009. Post hoc analyses were not 

completed because species abundance did not differ among biomass removal options. 
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Figure 5. 2009 Mean Number of Unique Individuals and Total Captures by 

Trapping Round for M. musculus, P. leucopus, R. humulis, and S. hispidus 

a. Mean number of unique individuals/round/1800m
2
, and b. mean number of total 

captures/round/1800m
2
, +/- 2 standard errors, displayed by trapping round.  Each 

trapping round consisted of 3 consecutive nights on each plot (round 1= July 15-28; 

round 2= July 30-August 9; round 3= August 18-30; round 4= September 9-15; round 5= 

September 19-October 21; round 6= October 20-27; round 7= November 2-9; round 8= 

November 29-December 9). Rodents were captured and released at Weyerhaeuser 

Company‟s Lenoir 1 long-term sustainability study site July 15- December 9, 2009. 

Details of post hoc comparisons can be found in Table 7.  
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Figure 6. 2010 Mean Number of Unique Individuals and Total Captures for M. 

musculus, P. leucopus, R. humulis, and S. hispidus by Biomass Removal Option 

a. Mean number of unique individuals/round/1800m
2
, and b. mean total 

captures/round/1800m
2
, +/- 2 standard errors, displayed by biomass removal option. 

Multiple pairwise Mann-Whitney U tests were used to identify significant differences 

between biomass removal options as indicated above each habitat variable. Different 

letters indicate tests were significant at p≤0.005. Rodents were captured and released at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 19 - 

November 14, 2010. Details of post hoc comparisons can be found in Tables C12-C14. 

 



 

63 

Figure 7. 2010 Mean Number of Unique Individuals and Total Captures by 

Trapping Round for M. musculus, P. leucopus, R. humulis, and S. hispidus 

a. Mean number of unique individuals/round/1800m
2
, and b. mean total 

captures/round/1800m
2
, +/- 2 standard errors, displayed by trapping round.  Each 

trapping round consisted of 3 consecutive nights on each plot (round 1= July 19-30; 

round 2= July 31-August 11; round 3= September 3-12; round 4= September 16-25; 

round 5= October 8-17; round 6= November 5-14). Rodents were captured and released 

at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 19 - 

November 14, 2010. Details of post hoc comparisons can be found in Table 10. 
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APPENDIX B: TABLES 

 

Table 1. ANOVA Results of Percent Cover by Biomass Removal Option ×  Habitat 

Variable ×  Sampling Date 

3-factor ANOVA results of the dependent variable square-root transformed percent cover 

by biomass removal option × habitat variable × sampling date (month) are displayed. 

Measurements occurred during April (17-19), June (24-27), August (27-30), and October 

(8-11), 2010. Habitat variables identified with transect measurements include ferns, forbs, 

fungi, grasses, hardwoods, mosses, pines, vines, woody debris, and exposed soil. 

ANOVA tests are significant ( * ) at p≤0.050. All measurements occurred at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site. 

 

 

Source 

Type III 

Sum of Squares 

 

df 

Mean 

Square 

 

F 

 

P 

Corrected Model 82.682 159 0.520 51.627 <0.001 *  

Intercept 46.903 1 46.903 4656.529 <0.001 *  

Removal Option 0.878 4 0.220 21.794 <0.001 *  

Habitat Variable 62.844 9 6.983 693.245 <0.001 *  

Date 0.211 3 0.070 6.977 <0.001 *  

Removal Option × Habitat Variable 8.074 36 0.224 22.267 <0.001 *  

Removal Option × Date 0.140 12 0.012 1.160 0.307 

Habitat Variable × Date 7.949 19 0.418 41.538 <0.001 *  

Removal option × Habitat Variable × Date 1.540 76 0.020 2.011 <0.001 *  

Error 11.281 1120 0.010   

Total 160.662 1280    

Overall Model Sum of Squares 93.963 1279    
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Table 2. ANOVA Results of Habitat Height by Biomass Removal Option ×  Habitat 

Variable ×  Sampling Date 

3-factor ANOVA results of the dependent variable height by biomass removal option × 

habitat variable × sampling date (month) are displayed. Measurements occurred during 

April (17-19), June (24-27), August (27-30), and October (8-11), 2010. Height (cm) was 

measured of each habitat variable: ferns, forbs, fungi, grasses, hardwoods, mosses, pines, 

vines, and woody debris to the nearest 10 cm. ANOVA tests are significant ( * ) at 

p≤0.050. All measurements occurred at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site. 

 

Source 
Type III Sum of 

Squares 
df 

 

 

Mean 

Square 

F P 

Corrected Model 2845764.123 139 20473.123 18.835 <0.001 * 

Intercept 1222917.978 1 122917.978 1125.087 <0.001 * 

Removal Option 112632.454 4 28158.114 25.906 <0.001 * 

Habitat Variable 1649428.522 8 206178.565 189.685 <0.001 * 

Date 268491.106 3 89497.035 82.337 <0.001 * 

Removal Option × Habitat Variable 501481.721 32 15671.304 14.418 <0.001 * 

Removal Option × Date 27881.291 12 2323.441 2.138   0.013 * 

Habitat Variable × Date 204930.566 16 12808.160 11.784 <0.001 * 

Removal option × Habitat Variable × Date 115993.702 64 1812.402 1.667 <0.001 * 

Error 1065215.259 980 0.010   

Total 5832568.294 1120  
  

Overall Model Sum of Squares 3910979.382 1119  
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Table 3. 2009 Mean Rodent Community Species Richness, Shannon Diversity Index, 

and Fisher’s α Diversity Index 

Means ± standard deviation of rodent species richness, Shannon Diversity, and Fisher‟s α 

Diversity values listed by biomass removal option variable for total number of rodents in 

2009 (n = 729 individuals).  All rodents were captured and released on site at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 15 -December 

9, 2009. 

  

Biomass option Species Richness 

Shannon Diversity 

Index Fisher's α Index 

Pine Biomass + 3.25 ± 0.50 0.88 ± 0.12 0.90 ± 0.18 

Pine Biomass - 3.25 ± 0.50 0.78 ± 0.44 0.86 ± 0.34 

Pine Switchgrass Biomass + 3.25 ± 0.50 1.04 ± 0.04 0.81 ± 0.28 

Pine Switchgrass Biomass - 3.50 ± 0.58 1.02 ± 0.23 0.82 ± 0.27 

Switchgrass only 3.75 ± 0.50 0.92 ± 0.26 0.90 ± 0.26 
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Table 4. 2010 Mean Rodent Community Species Richness, Shannon Diversity Index, 

and Fisher’s α Diversity Index 

Means ± standard deviation of rodent species richness, Shannon Diversity, and Fisher‟s α 

Diversity values listed by biomass removal option variable for total number of rodents in 

2010 (n = 1,634 individuals).  All rodents were captured and released on site at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 19 - 

November 14, 2010. 

 

Biomass option 

Species 

Richness 

Shannon Diversity 

Index Fisher's α Index 

Pine Biomass + 3.00 ± 0.00 0.79 ± 0.17 0.57 ± 0.03 

Pine Biomass - 3.50 ± 0.58 0.89 ± 0.13 0.68 ± 0.18 

Pine Switchgrass Biomass + 3.5 ± 0.58 0.86 ± 0.28 0.67 ± 0.16 

Pine Switchgrass Biomass - 3.5 ± 0.58 0.76 ± 0.31 0.65 ± 0.17 

Switchgrass only 3.5 ± 0.58 0.88 ± 0.16 0.69 ± 0.15 
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Table 5.  2009 Morisita’s Index of Similarity of Rodent Community Among Biomass 

Options 

2009 Morisita‟s Index of Similarity results of rodent community among biomass options 

calculated using unique number of individuals of each species captured. Index values 

represent degree of similarity among rodent communities (1.0 = identical; 0.0 = 

completely different). (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × 

Switchgrass Biomass +, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). All 

rodents were captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-

term sustainability study site July 15- December 9, 2009. 

 

 

PB+ PB- PSB+ PSB- S 

PB+ 0 0.500 0.470 0.395 0.454 

PB- - 0 0.477 0.408 0.466 

PSB+ - - 0 0.478 0.497 

PSB- - - - 0 0.484 

S - - - - 0 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

69 

Table 6. 2010 Morisita’s Index of Similarity of Rodent Community Among Biomass 

Options 

2010 Morisita‟s Index of Similarity results of rodent community among biomass options 

calculated using unique number of individuals of each species captured. Index values 

represent degree of similarity among rodent communities (1.0 = identical; 0.0 = 

completely different). (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × 

Switchgrass Biomass +, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). All 

rodents were captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-

term sustainability study site July 19 - November 14, 2010. 

 

  PB+ PB- PSB+ PSB- S  

PB+ 0 0.500 0.473 0.451 0.367 

PB- - 0 0.481 0.461 0.384 

PSB+ - - 0 0.496 0.439 

PSB- - - - 0 0.436 

S  - - - - 0 
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Table 7.  2009 Repeated Measures ANOVA Results of Rank-tranformed Rodent 

Abundance by Trapping Round × Biomass Removal Option × Species 

2-factor repeated measures ANOVA results of dependent variables a. rank-transformed 

unique individuals, and b. rank-transformed total number of captures by date × biomass 

removal option × species after Greenhouse-Geisser adjustment. [Adjusted d.f. are not 

whole numbers] Tests are significant ( * ) at p≤0.050. All rodents were captured and 

released on site at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site 

July 15- December 9, 2009. Results from 3-factor repeated measures ANOVA of non-

transformed data can be found in Table C 18. 

a.  

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 1.332 1.241 .303 

 
Species 3 64.293 59.876 <.001 * 

 
Biomass option × Species 12 1.864 1.736 .081 

 
Error 60 1.074 

  

      
Within Trapping Rounds Round 4.860 37.736 9.202 <.001 * 

 
Round × Biomass option 19.441 3.248 .792 .719 

 
Round × Species 14.581 21.448 5.230 <.001 * 

 
Round × Biomass option × Species 58.324 5.581 1.361 .053 

 
Error 291.622 4.101 

  
 

b. 

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 3.217 1.317 .274 

 
Species 3 205.154 83.980 <.001* 

 
Biomass option × Species 12 3.536 1.448 .170 

 
Error 60 2.443 

  

      
Within Trapping Rounds Round 4.581 65.235 5.588 <.001* 

 
Round × Biomass option 18.325 8.444 .723 .789 

 
Round × Species 13.743 49.256 4.219 <.001* 

 
Round × Biomass option × Species 54.974 13.433 1.151 .234 

 
Error 274.868 11.673 
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Table 8. 2009 Mann-Whitney U Test Results of Pairwise Comparisons on Unique 

Individuals and Total Captures Between Rodent Species 

Mann-Whitney U test results of pairwise comparisons on the dependent variables a. 

unique number of individuals, and b. total captures between rodent species. Tests are 

significant ( * ) at Bonferroni corrected values of p≤0.017. All rodents were captured and 

released on site at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site 

July 15- December 9, 2009. 

a. 

Species Comparisons Mann-Whitney U Wilcoxon W Z p (2-tailed) 

P. leucopus vs. M. musculus 6120.500 19000.500 -8.175 <0.001* 

P. leucopus vs. S. hispidus 3465.500 16345.500 -11.493 <0.001* 

M. musculus vs. S. hispidus 10733.000 23613.000 -2.698 0.007* 

 

b. 

Species Comparisons Mann-Whitney U Wilcoxon W Z p (2-tailed) 

P. leucopus vs. M. musculus 4848.000 17728.000 -9.708 <0.001* 

P. leucopus vs. S. hispidus 2623.500 15503.500 -12.503 <0.001* 

M. musculus vs. S. hispidus 10606.500 23486.500 -2.864 0.004* 
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Table 9. 2009 Kruskal-Wallis Test Results of Rodent Abundance by Trapping 

Round 

Kruskal-Wallis test results of number of a. unique individuals/round/1800m
2
 in 2009 (n = 

648), b. total captures/round/1800m
2
 in 2009 (n=1,806) by trapping round.  Kruskal-

Wallis tests are significant ( * ) at p≤0.050. All rodents were captured and released on site 

at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 15- 

December 9, 2009.  

a. 

Species χ
2
 df p (2-sided) 

P. leucopus 14.017 7 0.051 

M. musculus 65.629 7 <0.001* 

S. hispidus 16.998 7   0.017* 

 

b. 

Species χ
2
 df p (2-sided) 

P. leucopus 16.148 7   0.024* 

M. musculus 65.961 7 <0.001* 

S. hispidus 19.649 7   0.006* 
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Table 10. 2010 Repeated Measures ANOVA Results of Rank-tranformed Rodent 

Abundance by Trapping Round × Biomass Removal Option × Species 

2-factor repeated measures ANOVA results of a. rank-transformed unique individuals, 

and b. rank-transformed total captures by date × biomass removal option × species after 

Greenhouse-Geisser adjustment. [Adjusted d.f. are not whole numbers] Tests are 

significant ( * ) at p≤0.050. All rodents were captured and released on site at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 19 - 

November 14, 2010. Results from 3-factor repeated measures ANOVA of non-

transformed data can be found in Table C 19. 

a. 

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 4.694 0.613 0.655 

 
Species 4 573.831 74.915 <.001* 

 
Biomass option × Species 16 25.500 3.329 <.001* 

 
Error 75 7.660 

  

      
Within Trapping Rounds Round 4.077 161.531 27.124 <.001* 

 
Round × Biomass option 16.307 5.012 0.842 0.640 

 
Round × Species 16.307 159.705 26.817 <.001* 

 
Round × Biomass option × Species 65.228 5.474 0.919 0.652 

 
Error 305.758 5.955 

  
 

b. 

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 5.304 0.366 0.832 

 
Species 4 919.502 63.468 <.001* 

 
Biomass option × Species 16 53.980 3.726 <.001* 

 
Error 75 14.488 

  

      
Within Trapping Rounds Round 4.007 207.020 16.700 <.001* 

 
Round × Biomass option 16.027 14.290 1.153 0.306 

 
Round × Species 16.027 276.453 22.302 <.001* 

 
Round × Biomass option × Species 64.108 10.801 .871 0.744 

 
Error 300.504 12.396 
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Table 11. 2010 Mann-Whitney U Test Results of Pairwise Comparisons on Unique 

Individuals and Total Captures Between Rodent Species 

Mann-Whitney U test results of pairwise comparisons on the dependent variables a. 

unique number of individuals, and b. total captures between rodent species. Tests are 

significant ( * ) at Bonferroni corrected values of p≤0.017. All rodents were captured and 

released on site at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site 

July 19 - November 14, 2010. 

a.  

Species Comparisons Mann-Whitney U Wilcoxon W Z p (2-tailed) 

P. leucopus vs. M. musculus 5934.500 13194.500 -2.368  0.018 

P. leucopus vs. S. hispidus 2597.500 9857.500 -8.574 <0.001* 

M. musculus vs. S. hispidus 2131.500 9391.500 -9.450 <0.001* 

 

b. 

Species Comparisons Mann-Whitney U Wilcoxon W Z p (2-tailed) 

P. leucopus vs. M. musculus 5436.500 12696.500 -3.293   0.001* 

P. leucopus vs. S. hispidus 3355.500 10615.500 -7.156 <0.001* 

M. musculus vs. S. hispidus 2393.000 9653.000 -8.956 <0.001* 
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Table 12. 2010 Kruskal-Wallis Test Results of the Unique Number of Individuals, 

and Total Captures by Biomass Removal Option 

 

a. 2010 Kruskal-Wallis test results of unique number of individuals by biomass removal 

option, and b. 2010 Kruskal-Wallis test results of total captures by biomass removal 

option for P. leucopus, M. musculus, S. hispidus, and R. humulis. Kruskal-Wallis tests are 

significant ( * ) at p≤0.050. All rodents were captured and released on site at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 15- December 

9, 2009. 

a.  

Species χ
2
 df p (2-sided) 

P. leucopus 65.757 4 <0.001* 

M. musculus 51.070 4 <0.001* 

S. hispidus 12.719 4   0.013* 

 

b.  

Species χ
2
 df p (2-sided) 

P. leucopus 59.311 4 <0.001* 

M. musculus 48.773 4 <0.001* 

S. hispidus 13.047 4   0.011* 
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Table 13. 2010 Kruskal-Wallis Test Results of Rodent Abundance by Trapping 

Round 

Kruskal-Wallis test results of number of a. unique individuals/round/1800m
2
 in 2010 (n = 

1,634), and b. total captures/round/1800m
2
 in 2010 (n=3,594) by trapping round.  

Kruskal-Wallis tests are significant ( * ) at p≤0.050. All rodents were captured and 

released on site at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site 

July 19 - November 14, 2010.  

a. 

Species χ
2
 df p (2-sided) 

P. leucopus 7.581 5  0.181 

M. musculus 10.252 5  0.068 

S. hispidus 42.569 5 <0.001* 

 

b. 

Species χ
2
 df p (2-sided) 

P. leucopus 6.324 5 0.276 

M. musculus 11.874 5   0.037* 

S. hispidus 41.366 5 <0.001* 
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Table 14. 2009 P. leucopus, M. musculus, and S. hispidus Mean Number of Unique 

Juveniles 

Mean values/round/1800m
2
 plus and minus standard deviation for 2009 number of 

unique juveniles of P. leucopus, M. musculus, and S. hispidus listed by biomass removal 

option.  All rodents were captured and released on site at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site July 15- December 9, 2009. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Biomass option Unique Juveniles 

 Pine Biomass + 0.34 ± 0.31 

P. leucopus 

Pine Biomass - 0.25 ± 0.18 

Pine Switchgrass Biomass + 0.34 ± 0.12 

Pine Switchgrass Biomass - 0.38 ± 0.44 

Switchgrass only 0.16 ± 0.16 

 Pine Biomass + 0.09 ± 0.12 

M. musculus 

Pine Biomass - 0.16 ± 0.12 

Pine Switchgrass Biomass + 0.09 ± 0.06 

Pine Switchgrass Biomass - 0.50 ± 0.40 

Switchgrass only 0.31 ± 0.16 

 Pine Biomass + 0.09 ± 0.12 

S. hispidus 

Pine Biomass - 0.03 ± 0.06 

Pine Switchgrass Biomass + 0.25 ± 0.23 

Pine Switchgrass Biomass - 0.00 ± 0.00 

Switchgrass only 0.09 ± 0.12 
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Table 15. 2010 P. leucopus, M. musculus, and S. hispidus Mean Number of Unique 

Juveniles 

Mean values/round/1800m
2
 plus and minus standard deviation for 2010 number of 

unique juveniles of P. leucopus, M. musculus, and S. hispidus listed by biomass removal 

option.  No significant differences were identified among biomass removal options.  All 

rodents were captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-

term sustainability study site July 19 - November 14, 2010. 

 

Species Biomass option Unique Juveniles 

 Pine Biomass + 1.25 ± 1.90 

P. leucopus 

Pine Biomass - 4.75 ± 3.50 

Pine Switchgrass Biomass + 0.25 ± 0.50 

Pine Switchgrass Biomass - 0.00 ± 0.00 

Switchgrass only 0.25 ± 0.50 

 Pine Biomass + 0.00 ± 0.00 

M. musculus 

Pine Biomass - 1.00 ± 0.82 

Pine Switchgrass Biomass + 2.25 ± 3.30 

Pine Switchgrass Biomass - 1.25 ± 0.50 

Switchgrass only 4.25 ± 1.26 

 Pine Biomass + 9.75 ± 7.89 

S. hispidus 

Pine Biomass - 13.75 ± 8.42 

Pine Switchgrass Biomass + 9.25 ± 3.69 

Pine Switchgrass Biomass - 16.75 ± 8.26 

Switchgrass only 8.00 ± 3.16 
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APPENDIX C: SUPPLEMENTARY STATISTICAL TABLES 

 

Table C  1. April 2010, and October 2010 Kruskal-Wallis Test Results of Habitat 

Variable Percent Cover by Biomass Removal Option 

 

a. April 2010, and b. October 2010 Kruskal-Wallis statistics of percent cover of habitat 

variables (forbs, grasses, pines, woody debris, and exposed soil) by biomass removal 

option. Kruskal-Wallis tests are significant ( * ) at p≤0.050.   

 

a. 

Habitat variable χ
2
 d.f. p (2-sided) 

Forbs 12.375 4.000   0.015* 

Grasses 16.508 4.000   0.002* 

Pines 17.254 4.000   0.002* 

Woody Debris 4.000 4.000 <0.001* 

Exposed Soil 11.810 4.000   0.019* 

 

b. 

Habitat variable χ
2
 d.f. p (2-sided) 

Forbs 17.044 4.000   0.002* 

Grasses 26.792 4.000 <0.001* 

Pines 10.058 4.000   0.001* 

Woody Debris 28.462 4.000 <0.001* 

Exposed Soil 5.265 4.000  0.261 
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Table C  2. April 2010 Pairwise Mann-Whitney U Test Results of Forbs and Grasses 

Percent Cover by Biomass Removal Option 

 

a. Forbs and b. Grasses percent cover Mann-Whitney U pairwise comparison test results. 

(PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +,   

PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site April 17-19, 2010. 

a.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 26.500 62.500 -0.579 0.563 

PB- vs. PSB+ 24.500 60.500 -0.795 0.427 

PB- vs. PSB- 16.500 52.500 -1.646 0.100 

PB- vs. S 8.000 44.000 -2.558 0.011 

PB+ vs. PSB+ 22.000 58.000 -1.057 0.290 

PB+ vs. PSB- 7.000 43.000 -2.641 0.008 

PB+ vs. S 4.000 40.001 -2.967 0.003* 

PSB+ vs. PSB- 26.000 62.000 -0.642 0.574 

PSB+ vs. S 20.001 56.000 -1.316 0.188 

PSB- vs. S 17.000 53.000 -1.624 0.104 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 26.500 62.500 -0.579 0.563 

PB- vs. PSB+ 5.000 41.000 -2.838 0.005* 

PB- vs. PSB- 4.000 40.001 -2.943 0.003* 

PB- vs. S 18.000 54.000 -1.471 0.141 

PB+ vs. PSB+ 4.000 40.001 -2.943 0.003* 

PB+ vs. PSB- 5.000 41.000 -2.838 0.005* 

PB+ vs. S 14.000 50.001 -1.892 0.059 

PSB+ vs. PSB- 26.000 62.000 -0.630 0.529 

PSB+ vs. S 26.000 62.000 -0.631 0.528 

PSB- vs. S 27.000 63.000 -0.525 0.600 
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Table C  3. April 2010 Pairwise Mann-Whitney U Test Results of Pines and Woody 

Debris Percent Cover by Biomass Removal Option 

 

a. Pines and b. Woody Debris percent cover Mann-Whitney U pairwise comparison test 

results. (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass 

+, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site April 17-19, 2010. 

a. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 20.500 56.500 -1.213 0.225 

PB- vs. PSB+ 22.500 58.500 -1.004 0.316 

PB- vs. PSB- 25.500 61.500 -0.696 0.487 

PB- vs. S 8.000 44.000 -2.899 0.004* 

PB+ vs. PSB+ 31.000 67.000 -0.105 0.916 

PB+ vs. PSB- 15.000 51.000 -1.800 0.072 

PB+ vs. S 4.000 40.001 -3.240 0.001* 

PSB+ vs. PSB- 14.500 50.500 -1.852 0.064 

PSB+ vs. S 0.001 36.000 -3.596 <0.001* 

PSB- vs. S 12.000 48.000 -2.554 0.011 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 3.500 39.500 -3.000 0.003* 

PB- vs. PSB+ 25.500 61.500 -0.684 0.494 

PB- vs. PSB- 14.000 50.001 -1.892 0.059 

PB- vs. S 6.500 42.500 -2.684 0.007 

PB+ vs. PSB+ 8.000 44.000 -2.522 0.012 

PB+ vs. PSB- 1.000 37.000 -3.258 0.001* 

PB+ vs. S 0.500 36.500 -3.315 0.001* 

PSB+ vs. PSB- 17.500 53.500 -1.524 0.128 

PSB+ vs. S 8.000 44.000 -2.522 0.012 

PSB- vs. S 13.500 49.500 -1.946 0.050 
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Table C  4. April 2010 Pairwise Mann-Whitney U Test Results of Exposed Soil 

Percent Cover by Biomass Removal Option 

 

Exposed soil percent cover Mann-Whitney U pairwise comparison test results. 

(PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +, PSB-

=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site April 17-19, 2010. 

 

 

Comparison 

Mann-Whitney 

U 

Wilcoxon 

W Z p (2-tailed) 

PB- vs. PB+ 14.000 50.001 -1.893 0.058 

PB- vs. PSB+ 6.000 42.000 -2.731 0.006 

PB- vs. PSB- 25.500 61.500 -0.683 0.495 

PB- vs. S 31.000 67.000 -0.105 0.916 

PB+ vs. PSB+ 11.000 47.000 -2.209 0.027 

PB+ vs. PSB- 16.500 52.500 -1.631 0.103 

PB+ vs. S 20.001 56.000 -1.263 0.207 

PSB+ vs. PSB- 7.000 43.000 -2.626 0.009 

PSB+ vs. S 15.500 51.500 -1.735 0.083 

PSB- vs. S 28.000 64.000 -0.420 0.674 
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Table C  5. April 2010, and October 2010 Kruskal-Wallis Test Results of Habitat 

Variable Height by Biomass Removal Option 

a. April 2010, and b. October 2010 Kruskal-Wallis statistics of height of habitat variables 

(forbs, grasses, pines, and woody debris) by biomass removal option. Kruskal-Wallis 

tests are significant ( * ) at p≤0.050.   

 

a. 

Habitat 

variable χ
2
 d.f. p (2-sided) 

Forbs 11.753 4.000   0.019*  

Grasses 7.688 4.000   0.104 

Pines  18.803 4.000   0.001*  

Woody Debris 24.062 4.000 <0.001* 

 

b. 

Habitat 

variable χ
2
 d.f. p (2-sided) 

Forbs 9.800 4.000   0.044*  

Grasses 18.528 4.000   0.001*  

Pines  20.207 4.000 <0.001* 

Woody Debris 21.330 4.000 <0.001* 
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Table C  6. April 2010 Pairwise Mann-Whitney U Test Results of Forbs and Pines 

Height by Biomass Removal Option 

 

a. Forbs and b. Pines height Mann-Whitney U pairwise comparison test results. 

(PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +, PSB-

=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site April 17-19, 2010.  

a.  

Comparison 

Mann-Whitney 

U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 22.000 58.000 -1.052 0.293 

PB- vs. PSB+ 26.500 62.500 -0.582 0.561 

PB- vs. PSB- 22.500 58.500 -1.001 0.317 

PB- vs. S 9.000 45.000 -2.452 0.014 

PB+ vs. PSB+ 16.000 52.000 -1.685 0.092 

PB+ vs. PSB- 14.000 50.001 -1.892 0.059 

PB+ vs. S 2.000 38.000 -3.174 0.002*  

PSB+ vs. PSB- 32.000 68.000 0.001 1.000 

PSB+ vs. S 20.001 56.000 -1.316 0.188 

PSB- vs. S 19.000 55.000 -1.404 0.160 

 

b. 

Comparison 

Mann-Whitney 

U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 18.500 54.500 -1.423 0.155 

PB- vs. PSB+ 11.000 47.000 -2.207 0.027 

PB- vs. PSB- 30.001 66.000 -0.213 0.831 

PB- vs. S 8.000 44.000 -2.896 0.004*  

PB+ vs. PSB+ 27.000 63.000 -0.525 0.600 

PB+ vs. PSB- 19.500 55.500 -1.323 0.186 

PB+ vs. S 4.000 40.001 -3.140 0.001* 

PSB+ vs. PSB- 11.500 47.500 -2.161 0.031 

PSB+ vs. S 0.001 36.000 -3.590 <0.001* 

PSB- vs. S 12.000 48.000 -2.554 0.011 
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Table C  7. April 2010 Pairwise Mann-Whitney U Test Results of Woody Debris 

Height by Biomass Removal Option 

 

Woody debris height Mann-Whitney U pairwise comparison test results. (PB+=Pine 

Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +, PSB-=Pine × 

Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are significant ( * ) 

at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site April 17-19, 2010. 

 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 8.000 44.000 -2.521 0.012 

PB- vs. PSB+ 9.000 45.000 -2.415 0.016 

PB- vs. PS 31.000 67.000 -0.105 0.916 

PB- vs. S 7.000 43.000 -2.633 0.008 

PB+ vs. PSB+ 31.000 67.000 -0.105 0.916 

PB+ vs. PS 9.000 45.000 -2.417 0.016 

PB+ vs. S 0.001 36.000 -3.363 0.001* 

PSB+ vs. PS 9.000 45.000 -2.417 0.016 

PSB+ vs. S 0.001 36.000 -3.363 0.001* 

PSB- vs. S 7.000 43.000 -2.645 0.008 
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Table C  8. October 2010 Pairwise Mann-Whitney U Test Results of Forbs and 

Grass Percent Cover by Biomass Removal Option 

 

a. Forbs and b. Grass percent cover Mann-Whitney U pairwise comparison test results. 

(PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +, PSB-

=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site October 8-11, 2010.  

a.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 22.000 58.000 1.050 0.294 

PB- vs. PSB+ 29.000 65.000 -0.316 0.752 

PB- vs. PSB- 25.500 61.500 -0.684 0.494 

PB- vs. S 5.500 41.500 -2.973 0.003*  

PB+ vs. PSB+ 21.000 57.000 -1.156 0.248 

PB+ vs. PSB- 16.500 52.500 -1.629 0.103 

PB+ vs. S 1.000 37.000 -3.399 0.001*  

PSB+ vs. PSB- 27.500 63.500 -0.473 0.636 

PSB+ vs. S 2.000 38.000 -3.292 0.001*  

PSB- vs. S 6.500 42.500 -2.861 0.004* 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 12.500 48.500 -2.049 0.040 

PB- vs. PSB+ 31.500 67.500 -0.053 0.958 

PB- vs. PSB- 17.000 53.000 -1.575 0.115 

PB- vs. S 0.001 36.000 -3.371 0.001*  

PB+ vs. PSB+ 11.000 47.000 -2.205 0.027 

PB+ vs. PSB- 0.001 36.000 -3.361 0.001*  

PB+ vs. S 0.001 36.000 -3.371 0.001*  

PSB+ vs. PSB- 18.500 54.500 -1.419 0.156 

PSB+ vs. S 0.001 36.000 -3.371 0.001*  

PSB- vs. S 1.000 37.000 -3.265 0.001*  

 

 

 



 

87 

Table C  9. October 2010 Pairwise Mann-Whitney U Test Results of Pines and 

Woody Debris Percent Cover by Biomass Removal Option 

 

a. Pines and b. Woody Debris percent cover Mann-Whitney U pairwise comparison test 

results. (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass 

+, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site October 8-11, 2010.  

a. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 21.500 57.500 -1.105 0.269 

PB- vs. PSB+ 23.000 59.000 -0.947 0.344 

PB- vs. PSB- 25.500 61.500 -0.684 0.494 

PB- vs. S 4.000 40.001 -3.240 0.001*  

PB+ vs. PSB+ 31.500 67.500 -0.053 0.958 

PB+ vs. PSB- 15.000 51.000 -1.789 0.074 

PB+ vs. S 4.000 40.001 -3.246 0.001*  

PSB+ vs. PSB- 15.000 51.000 -1.787 0.074 

PSB+ vs. S 4.000 40.001 -3.240 0.001*  

PSB- vs. S 0.001 36.000 -3.593 <0.001* 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 2.500 38.500 -3.103 0.002*  

PB- vs. PSB+ 8.000 44.000 -2.522 0.012 

PB- vs. PSB- 23.000 59.000 -0.961 0.337 

PB- vs. S 8.000 44.000 -2.896 0.004*  

PB+ vs. PSB+ 24.500 60.500 -0.788 0.431 

PB+ vs. PSB- 0.001 36.000 -3.371 0.001*  

PB+ vs. S 0.001 36.000 -3.590 <0.001* 

PSB+ vs. PSB- 6.000 42.000 -2.739 0.006 

PSB+ vs. S 0.001 36.000 -3.590 <0.001* 

PSB- vs. S 12.000 48.000 -2.554 0.011 
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Table C  10. October 2010 Pairwise Mann-Whitney U Test Results of Forbs and 

Grasses Height by Biomass Removal Option 

 

a. Forbs and b. Grasses height Mann-Whitney U pairwise comparison test results. 

(PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +, PSB-

=Pine × Switchgrass Biomass-, S=Switchgrass only). Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site October 8-11, 2010.  

a. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 25.000 61.000 -0.738 0.461 

PB- vs. PSB+ 29.000 65.000 -0.317 0.751 

PB- vs. PSB- 30.500 66.500 -0.159 0.873 

PB- vs. S 11.500 47.500 -2.304 0.021 

PB+ vs. PSB+ 29.500 65.500 -0.263 0.793 

PB+ vs. PSB- 25.500 61.500 -0.684 0.494 

PB+ vs. S 7.000 43.000 -2.741 0.006 

PSB+ vs. PSB- 24.500 60.500 -0.791 0.429 

PSB+ vs. S 8.000 44.000 -2.631 0.009 

PSB- vs. S 11.500 47.500 -2.302 0.021 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 29.000 65.000 -0.315 0.753 

PB- vs. PSB+ 11.000 47.000 -2.205 0.027 

PB- vs. PSB- 26.000 62.000 -0.630 0.529 

PB- vs. S 4.000 40.001 -2.945 0.003*  

PB+ vs. PSB+ 11.000 47.000 -2.205 0.027 

PB+ vs. PSB- 16.000 52.000 -1.680 0.093 

PB+ vs. S 0.001 36.000 -3.361 0.001* 

PSB+ vs. PSB- 23.000 59.000 -0.945 0.345 

PSB+ vs. S 12.000 48.000 -2.100 0.036 

PSB- vs. S 6.000 42.000 -2.731 0.006 
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Table C  11. October 2010 Pairwise Mann-Whitney U Test Results of Pines and 

Woody Debris Height by Biomass Removal Option 

 

a. Pines and b. Woody Debris height Mann-Whitney U pairwise comparison test results. 

(PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass Biomass +, PSB-

=Pine × Switchgrass Biomass-, S=Switchgrass only) Mann-Whitney U tests are 

significant ( * ) at p≤0.005. Measurements were taken at Weyerhaeuser Company‟s 

Lenoir 1 long-term sustainability study site October 8-11, 2010.  

a. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 12.500 48.500 -2.051 0.040 

PB- vs. PSB+ 27.500 63.500 -0.474 0.635 

PB- vs. PSB- 8.500 44.500 -2.479 0.013 

PB- vs. S 4.000 40.001 -3.243 0.001*  

PB+ vs. PSB+ 23.000 59.000 -0.947 0.344 

PB+ vs. PSB- 27.500 63.500 -0.473 0.636 

PB+ vs. S 4.000 40.001 -3.240 0.001*  

PSB+ vs. PSB- 20.500 56.500 -1.210 0.226 

PSB+ vs. S 4.000 40.001 -3.240 0.001* 

PSB- vs. S 0.001 36.000 -3.593 <0.001* 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 15.500 51.500 -1.735 0.083 

PB- vs. PSB+ 8.000 44.000 -2.530 0.011 

PB- vs. PSB- 29.000 65.000 -0.322 0.747 

PB- vs. S 8.000 44.000 -2.896 0.004*  

PB+ vs. PSB+ 14.000 50.001 -1.892 0.059 

PB+ vs. PSB- 25.500 61.500 -0.690 0.490 

PB+ vs. S 0.001 36.000 -3.590 <0.001* 

PSB+ vs. PSB- 11.000 47.000 -2.225 0.026 

PSB+ vs. S 0.001 36.000 -3.590 <0.001* 

PSB- vs. S 12.000 48.000 -2.565 0.010 
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Table C  12. 2010 Pairwise Mann-Whitney U Test Results of P. leucopus Unique 

Individuals and Total Captures by Biomass Removal Option 

 

Mann-Whitney U test results of pairwise comparisons for P. leucopus a. unique 

individuals, and b. total captures during 2010. Mann-Whitney U tests are significant ( * ) 

at p≤0.005.  (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass 

Biomass +, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only) All rodents were 

captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 19- November 14, 2010.  

a.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 286.0 586.0 -0.042 0.967 

PB- vs. PSB+ 122.0 422.0 -3.444 0.001*  

PB- vs. PSB- 57.0 357.0 -4.794 <0.001* 

PB- vs. S 11.5 311.5 -5.762 <0.001* 

PB+ vs. PSB+ 129.5 429.5 -3.286 0.001*  

PB+ vs. PSB- 68.5 368.5 -4.554 <0.001* 

PB+ vs. S 20.5 320.5 -5.577 <0.001* 

PSB+ vs. PSB- 202.5 502.5 -1.789 0.074 

PSB+ vs. S 60.0 369.0 -4.589 <0.001* 

PSB- vs. S 105.5 405.5 -3.845 <0.001* 

 

b.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 278.5 578.5 -0.196 0.844 

PB- vs. PSB+ 139.5 439.5 -3.071 0.002*  

PB- vs. PSB- 65.0 365.0 -4.612 <0.001* 

PB- vs. S 25.0 325.0 -5.472 <0.001* 

PB+ vs. PSB+ 159.0 459.0 -2.669 0.008 

PB+ vs. PSB- 86.5 386.5 -4.168 <0.001* 

PB+ vs. S 32.5 332.5 -5.313 <0.001* 

PSB+ vs. PSB- 167.5 467.5 -2.496 0.013 

PSB+ vs. S 66.5 366.5 -4.616 <0.001* 

PSB- vs. S 124.5 424.5 -3.422 0.001*  
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Table C  13. 2010 Pairwise Mann-Whitney U Test Results of M. musculus Unique 

Individuals and Total Captures by Biomass Removal Option 

 

Mann-Whitney U test results of pairwise comparisons for M. musculus a. unique 

individuals, and b. total captures during 2010. Mann-Whitney U tests are significant ( * ) 

at p≤0.005. (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass 

Biomass +, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only) All rodents were 

captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 19- November 14, 2010.  

a.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 238.0 538.0 -1.086 0.277 

PB- vs. PSB+ 179.5 479.5 -2.28 0.023 

PB- vs. PSB- 160.5 460.5 -2.674 0.007 

PB- vs. S 32.0 332.0 -5.315 <0.001* 

PB+ vs. PSB+ 131.5 431.5 -3.316 0.001*  

PB+ vs. PSB- 123.5 423.5 -3.474 0.001*  

PB+ vs. S 15.0 315.0 -5.696 <0.001* 

PSB+ vs. PSB- 260.0 560.0 -0.582 0.561 

PSB+ vs. S 94.0 394.0 -4.019 <0.001* 

PSB- vs. S 106.0 406.0 -3.769 <0.001* 

 

b.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 222.5 522.5 -1.401 0.161 

PB- vs. PSB+ 188.5 488.5 -2.088 0.037 

PB- vs. PSB- 176.0 476.0 -2.337 0.019 

PB- vs. S 32.5 332.5 -5.296 <0.001* 

PB+ vs. PSB+ 139.0 439.0 -3.138 0.002*  

PB+ vs. PSB- 133.0 433.0 -3.260 0.001*  

PB+ vs. S 14.5 314.5 -5.682 <0.001* 

PSB+ vs. PSB- 268.5 568.5 -0.405 0.686 

PSB+ vs. S 96.0 396.0 -3.972 <0.001* 

PSB- vs. S 112.5 412.5 -3.628 < 0.001*  
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Table C  14. 2010 Pairwise Mann-Whitney U Test Results of S. hispidus Unique 

Individuals and Total Captures by Biomass Removal Option 

 

Mann-Whitney U test results of pairwise comparisons for S. hispidus a. unique 

individuals, and b. total captures during 2010. Mann-Whitney U tests are significant ( * ) 

at p≤0.005. (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass 

Biomass +, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). All rodents were 

captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 19- November 14, 2010.  

a.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 245.5 556.5 -0.650 0.515 

PB- vs. PSB+ 237.5 537.5 -1.043 0.297 

PB- vs. PSB- 191.5 481.5 -1.992 0.046 

PB- vs. S 234.5 534.5 -1.105 0.269 

PB+ vs. PSB+ 201.5 501.5 -1.786 0.074 

PB+ vs. PSB- 165.0 465.0 -2.539 0.011 

PB+ vs. S 275.5 575.5 -0.258 0.796 

PSB+ vs. PSB- 229.0 529.0 -1.218 0.223 

PSB+ vs. S 186.0 486.0 -2.106 0.035 

PSB- vs. S 141.0 441.0 -3.035 0.002*  

 

b.  

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 256.5 556.5 -0.650 0.515 

PB- vs. PSB+ 234.5 534.5 -1.105 0.269 

PB- vs. PSB- 180.5 480.5 -2.219 0.026 

PB- vs. S 238.0 538.0 -1.032 0.302 

PB+ vs. PSB+ 205.0 505.0 -1.713 0.087 

PB+ vs. PSB- 160.5 460.5 -2.631 0.009 

PB+ vs. S 274.5 574.5 -0.279 0.780 

PSB+ vs. PSB- 215.5 515.5 -1.497 0.134 

PSB+ vs. S 189.0 489.0 -2.044 0.041 

PSB- vs. S 147.0 447.0 -2.911 0.004*  
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Table C  15. 2010 Pairwise Mann-Whitney U tests results of P. leucopus and M. 

musculus Number of Unique Juveniles by Treatment  

Mann-Whitney U test results of pairwise comparisons of number of unique individuals 

for a. P. leucopus b. M. musculus during 2010. Mann-Whitney U tests are significant ( * ) 

at p≤0.005. (PB+=Pine Biomass+, PB-=Pine Biomass -, PSB+=Pine × Switchgrass 

Biomass +, PSB-=Pine × Switchgrass Biomass-, S=Switchgrass only). All rodents were 

captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 19- November 14, 2010.  

a. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 2.0 12.0 -2.000 0.046 

PB- vs. PSB+ 7.5 17.5 -0.150 0.881 

PB- vs. PSB- 6.5 16.5 -0.500 0.617 

PB- vs. S 0.0 10.0 -2.337 0.019 

PB+ vs. PSB+ 4.0 14.0 -1.512 0.131 

PB+ vs. PSB- 0.0 10.0 -2.530 0.011 

PB+ vs. S 0.0 10.0 -2.477 0.013 

PSB+ vs. PSB- 7.5 17.5 -0.150 0.881 

PSB+ vs. S 4.0 14.0 -1.169 0.243 

PSB- vs. S 0.0 10.0 -2.381 0.017 

 

b. 

Comparison Mann-Whitney U Wilcoxon W Z p (2-tailed) 

PB- vs. PB+ 2.5 12.5 -1.607 0.108 

PB- vs. PSB+ 0.5 10.5 -2.233 0.026 

PB- vs. PSB- 0.0 10.0 -2.460 0.014 

PB- vs. S 0.5 10.5 -2.233 0.026 

PB+ vs. PSB+ 5.5 15.5 -0.833 0.405 

PB+ vs. PSB- 4.0 14.0 -1.512 0.131 

PB+ vs. S 5.5 15.5 -0.833 0.405 

PSB+ vs. PSB- 6.0 16.0 -1.000 0.317 

PSB+ vs. S 8.0 18.0 0.000 1.000 

PSB- vs. S 6.0 16.0 -1.000 0.317 
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Table C  16. 2009 P. leucopus, M. musculus, and S. hispidus   Mean Adult Sex Ratio 

Mean values/round/1800m
2
 ± standard deviation for 2009 adult sex ratio of P. leucopus, 

M. musculus, and S. hispidus listed by biomass removal option.  All rodents were 

captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 15- December 9, 2009. 

 

Species Biomass option Adult Sex Ratio 

 Pine Biomass + 0.62 ± 0.16 

P. leucopus 

Pine Biomass - 0.76 ± 0.08 

Pine Switchgrass Biomass + 0.61 ± 0.08 

Pine Switchgrass Biomass - 0.70 ± 0.09 

Switchgrass only 0.66 ± 0.03 

 Pine Biomass + 0.70 ± 0.14 

M. musculus 

Pine Biomass - 0.68 ± 0.16 

Pine Switchgrass Biomass + 0.56 ± 0.08 

Pine Switchgrass Biomass - 0.53 ± 0.12 

Switchgrass only 0.65 ± 0.14 

 Pine Biomass + 0.49 ± 0.28 

S. hispidus 

Pine Biomass - 0.68 ± 0.32 

Pine Switchgrass Biomass + 0.47 ± 0.03 

Pine Switchgrass Biomass - 0.70 ± 0.32 

Switchgrass only 0.72 ± 0.24 

 

 

 

 

 

 

 

 

 



 

95 

Table C  17. 2010 P. leucopus, M. musculus, and S. hispidus   Mean Adult Sex Ratio 

Mean values/round/1800m
2
 ± standard deviation for 2010 adult sex ratio of P. leucopus, 

M. musculus, and S. hispidus listed by biomass removal option.  All rodents were 

captured and released on site at Weyerhaeuser Company‟s Lenoir 1 long-term 

sustainability study site July 19 - November 14, 2010. 

 

Species Biomass option Adult Sex Ratio 

 Pine Biomass + 0.62 ± 0.08 

P. leucopus 

Pine Biomass - 0.57 ± 0.12 

Pine Switchgrass Biomass + 0.72 ± 0.12 

Pine Switchgrass Biomass - 0.65 ± 0.26 

Switchgrass only 0.68 ± 0.28 

 Pine Biomass + 0.52 ± 0.04 

M. musculus 

Pine Biomass - 0.78 ± 0.10 

Pine Switchgrass Biomass + 0.74 ± 0.18 

Pine Switchgrass Biomass - 0.68 ± 0.15 

Switchgrass only 0.66 ± 0.10 

 Pine Biomass + 0.61 ± 0.10 

S. hispidus 

Pine Biomass - 0.53 ± 0.08 

Pine Switchgrass Biomass + 0.49 ± 0.08 

Pine Switchgrass Biomass - 0.45 ± 0.07 

Switchgrass only 0.61 ± 0.09 
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Table C  18. 2009 Repeated Measures ANOVA Results of Non-transformed Rodent 

Abundance by Trapping Round × Biomass Removal Option × Species 

2-factor repeated measures ANOVA results of dependent variables a. non-transformed 

unique individuals, and b. non-transformed total number of captures by date × biomass 

removal option × species after Greenhouse-Geisser adjustment. [Adjusted d.f. are not 

whole numbers] Tests are significant ( * ) at p≤0.050. All rodents were captured and 

released on site at Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site 

July 15- December 9, 2009. 

a.  

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 1.350 1.243 0.303 

 
Species 3 64.496 59.378 <.001* 

 
Biomass option × Species 12 1.864 1.716 0.086 

 
Error 60 1.086 

  

      
Within Trapping Rounds Round 4.860 37.679 9.110 <.001* 

 
Round × Biomass option 19.441 3.264 0.789 0.723 

 
Round × Species 14.581 21.492 5.196 <.001* 

 
Round × Biomass option × Species 58.322 5.597 1.353 0.057 

 
Error 291.611 4.136 

  
 

b. 

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 3.305 1.325 0.271 

 
Species 3 206.301 82.723 <.001* 

 
Biomass option × Species 12 3.551 1.424 0.181 

 
Error 60 2.494 

  

      
Within Trapping Rounds Round 4.504 67.112 5.565 <.001* 

 
Round × Biomass option 18.018 8.587 0.712 0.798 

 
Round × Species 13.513 50.120 4.156 <.001* 

 
Round × Biomass option × Species 54.053 13.797 1.144 0.244 

 
Error 270.264 12.060 
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Table C  19. 2010 ANOVA Results of Non-transformed Rodent Abundance by 

Trapping Round × Biomass Removal Option × Species 

2-factor repeated measures ANOVA results of a. non-transformed unique individuals, 

and b. non-transformed total captures by date × biomass removal option × species after 

Greenhouse-Geisser adjustment. [Adjusted d.f. are not whole numbers] Tests are 

significant ( * ) at p≤0.050. All rodents were captured and released on site at 

Weyerhaeuser Company‟s Lenoir 1 long-term sustainability study site July 19 - 

November 14, 2010. 

a. 

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 5.598 0.675 0.612 

 
Species 4 589.529 71.055 <.001* 

 
Biomass option × Species 16 26.858 3.237 <.001* 

 
Error 75 8.297 

  

      
Within Trapping Rounds Round 3.993 174.540 27.197 <.001* 

 
Round × Biomass option 15.972 5.629 0.877 0.596 

 
Round × Species 15.972 172.762 26.920 <.001* 

 
Round × Biomass option × Species 63.888 6.056 0.944 0.600 

 
Error 299.474 6.418 

  
 

b. 

 
Source df 

Mean 

Square 
F P 

Between Trapping Rounds Biomass option 4 7.856 0.469 0.758 

 
Species 4 979.518 58.483 <.001* 

 
Biomass option × Species 16 58.900 3.517 <.001* 

 
Error 75 16.749 

  

      
Within Trapping Rounds Round 4.043 230.945 17.025 <.001* 

 
Round × Biomass option 16.172 15.633 1.152 .306 

 
Round × Species 16.172 305.047 22.488 <.001* 

 
Round × Biomass option × Species 64.688 12.555 0.926 0.638 

 
Error 303.225 13.565 

  
 


