
Stock cutting to minimize cutting length

J. Bhadury and R. Chandrasekaran

J. Bhadury and R. Chandrasekaran, (1996). "Stock Cutting to Minimize Cutting Length", European Journal of

Operational Research, Vol. 88, pp 69-87. doi:10.1016/0377-2217(94)00160-X

Made available courtesy of Elsevier: http://www.elsevier.com/

***Reprinted with permission. No further reproduction is authorized without written permission from

Elsevier. This version of the document is not the version of record. Figures and/or pictures may be

missing from this format of the document.***

Abstract:

In this paper we investigate the following problem: Given two convex Pin and Pout, where Pin is completely

contained in Pout, we wish to find a sequence of ‘guillotine cuts’ to cut out Pin, from Pout such that the total

length of the cutting sequence is minimized. This problem has applications in stock cutting where a particular

shape or design (in this case the polygon Pin) needs to be cut out of a given piece of parent material (the

polygon Pout) using only guillotine cuts and where it is desired to minimize the cutting sequence length to

improve the cutting time required per piece. We first prove some properties of the optimal solution to the

problem and then give an approximation scheme for the problem that, given an error range δ, produces a cutting

sequence whose total length is at most δ more than that of the optimal cutting sequence. Then it is shown that

this problem has optimal solutions that lie in the algebraic extension of the field that the input data belongs to —

hence due to this algebraic nature of the problem, an approximation scheme is the best that can be achieved.

Extensions of these results are also studied in the case where the polygons Pin and Pout are non-convex.

Keywords: Cutting stock; Production; Dynamic programming; Approximation scheme

1. Introduction

The general area of stock cutting, where a given shape or design is required to be cut out of parent material, has

been the source of many problems of both theoretical and practical interest and hence the focus of considerable

work done in both OR/OM and computer science communities. Most of the existing literature on stock cutting,

has emphasised minimizing the amount of parent material wasted when such cutting is done — for example

Gilmore and Gomory [7,8], Dori and Ben Assat [6], Aggarwal et al. [1], Christofides and Whitlock [5], and

Venkateswarlu and Martyn [12]. However, another parameter of interest in these problems is the total length of

the cutting sequence and cutting strategies that minimize this total length. The major implication of minimizing

the cutting sequence length is in minimizing the total cutting time required, since the cutting sequence length is

also a surrogate for the total time taken by the cutting tool to cut out the required shape or design. Furthermore,

the total length of a cutting sequence is a measure of the wear and tear of the cutting tool, when the cutting tool

is physical, and of the total cutting material used when the cutting tool is non-physical (as for example, a flame

torch or laser beam). Thus minimization of the cutting sequence length might lead to cutting strategies that

minimize tool wear in the first case and consumption in the second one. Potential benefits of minimizing cutting

sequence length may therefore include, improving speed and throughput of the cutting process, minimizing tool

wear and decreasing consumption. It is this problem of minimizing the cutting sequence length that we address

in this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149236844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/0377-2217%2894%2900160-X
http://www.elsevier.com/
http://libres.uncg.edu/ir/uncg/clist.aspx?id=873

This paper is divided into five sections. In the present section, we have presented the problem, its motivation and

applications, and discussed related literature. In the second section we state and prove some properties of the problem.

Section 3 describes the polynomial approximation scheme suggested for the general problem. In Section 4 we prove

some existence results and show the algebraic nature of the problem. We also show how to minimize the length of a

given cutting sequence in a special case. Section 5 discusses the extensions of these results to the case where Pin and Pout

are non-convex. The model of computation used in this paper is the usual random access machine (RAM) which can

allow simple arithmetic operations like +, −, /, *, find roots of a polynomial with a fixed degree, etc. to be

performed in unit time. We also assume that it can perform infinite precision arithmetic. These assumptions

about our model of computation then allow us to claim that the various parameters required by the algorithms in this paper,

namely the angles, slopes, trigonometric ratios, etc. can be computed with infinite precision and thus compared

meaningfully.

2. Definitions and basic results

In this section we first define some terms and then state and prove some results about the nature of the optimal

cutting sequence.

 It is assumed that Pin and Pout have n and m vertices respectively.

 It is assumed that the only cuts permitted are guillotine cuts. Two cuts are said to intersect each other

terminally if they intersect on the boundary of Pout

 A cutting sequence refers to a particular sequence of cuts that cut out Pin from Pout. C is used to denote

any given cutting sequence, and it is represented by C = {[1], [2],…, [N]} where [i] is the i-th cut in C.

The optimal cutting sequence is denoted by C
*
 — a proof of its existence for any given instance of this

problem is in Section 4 and all discussion until then will assume that C
*
 exists.

 S is used to denote any given set of cuts. It is obvious that any arbitrary instance of S may or may not

contain a cutting sequence C, but we will assume in this paper that whenever a set S of cuts is given, it

contains atleast one cutting sequence. S
*
 is used to denote the cutting sequence in S with the minimum

total length. Hence, if we are restricted to cut out Pin only using the cuts in S, the optimal cutting

sequence is S
*
.

We also frequently use the term 'left' and 'right' of a cut; these are defined assuming that Pin lies below this cut.

2.1. Properties of the optimal cutting sequence

Lemma 1. It can be assumed that all cuts in C
*
 touch Pin.

Proof. The proof is by contradiction. Suppose that this is not the case and in the optimal cutting sequence C
*
,

there is a cut, which we denote by k, that does not touch Pin. Assume, without loss of generality, that Pin lies

below k. We now establish that the cut k can be moved parallel to itself either towards Pin or away from it to

produce another cutting sequence that is better that C
*
 − thus contradicting its optimality. This is proved by

considering several cases obtained by conditioning on the number of vertices of Pout that k intersects: Case (i):

the number of vertices is 0; (ii): the number of vertices is 1; and the number of vertices is 2.

Case (i): Consider cut k without any of the cuts that it may intersect terminally. Denote by f(ε), the function that

represents the change in the length of C
*
, when cut k is moved by a small amount ε parallel to itself. Then it can

be readily verified that in this case f(ε) is a linear function of ε. In this proof we will distinguish between the two

conditions when the slope of f(ε) is non-zero (we refer to f(ε) as non-degenerate if this is true) and when the

slope of f(ε) is zero (when we refer to f(ε) as degenerate).

We begin by considering first the case when f(ε) is non-degenerate. In this case, movement along one of the two

directions (towards Pin or away from it) will decrease the total length of C
*
 — thus producing another cutting

sequence that is strictly better than C
*
 and contradicting its optimality. If k intersects any cut terminally (say cut

j) then it can be seen that the presence of cut j can have either one of the following two effects − either its

presence adds to the savings obtained by moving cut k (for example, if cut j is below cut k and it saves to move

cut k towards Pin) or its presence does not affect the savings obtained by moving cut k (for example, when cut j

is below cut k and it saves to move cut k away from Pin). In either case, it saves to move cut k in the same

direction as it would have had cut j been absent. Therefore, when case (i) occurs and the slope of f(ε) is non-

zero, if the cut k does not touch Pin, then the given cutting sequence C
*
 can not be optimal — a contradiction.

If f(s) is degenerate, its slope is zero; for example, this may happen when the two edges of Pout that cut k

intersects are parallel; this is illustrated in Fig. 2 where AB and EF are the two parallel edges and the initial

position of k is shown by the dotted line. Consider moving k towards Pin until case (ii) happens (i.e., it

encounters a vertex of Pout on one of its ends) or case (iii) happens (i.e., it encounters two vertices of Pout − one

on each of its ends). Fig. 2 illustrates this situation when k is moved towards Pin from its initial position to its

final position, and case (ii) occurs with it encountering vertex B on the left. Since the slope of f(ε) is zero, this

produces another cutting sequence whose total length is no more than that of C
*
. Now if k is moved by a small

amount further towards Pin, its own length, and therefore the total length of C
*
, is guaranteed to decrease. This

is so because of the convexity of Pout, which guarantees that the internal angle at B is less than π. It is apparent

that this decrease in the length of k is even greater if cut k intersects other cuts − terminally or otherwise. Hence

with k moved slightly beyond its final position, we can get another cutting sequence whose total length is

strictly less than that of C
*
 − again a contradiction.

Case (ii): Without loss of generality, assume that k intersects one vertex of Pout on its left — as illustrated in

Fig. 2, where we now assume that the initial position of k is shown by the thick line where it encounters B on its

left. To motivate the proof, consider the situation where the edge BC of Pout is collinear with the edge AB, as

shown by the line BD in this figure — it is clear that then we have case (i). Define f(ε) as the change in the

length of C
*
 when k is moved parallel to itself by a small amount s, assuming that BC is collinear with AB. If

f(ε) is non-degenerate, then it saves to move k either towards Pin or away from it and thus produces a strictly

better cutting sequence than C *. If moving towards Pin saves when BC is collinear with AB, it will save even

more when BC is not collinear with AB; since, by convexity of Pout, the internal angle at B is less than π. If,

however, it saves to move away from Pin with BC collinear with AB, then the presence of BC does not affect

the savings and hence it would not matter even if BC were not collinear with AB. If k intersects any cut

terminally then an argument similar to that used in case (i) above will show that this result still holds as long as

the slope of f(ε) is non-zero. Thus, when case (ii) occurs and f(ε) is non-degenerate, by moving k slightly from

its initial position, it is possible to produce another cutting sequence whose total length is less than that of C
*
 −

a contradiction.

Now consider the case when f(ε) is degenerate — in this case, the same proof as that in case (i), that exploits the

convexity of Pout, will show that moving k slightly towards Pin is guaranteed to provide another cutting

sequence whose total length is less than that of C
*
 − another contradiction.

The proof for case (iii) can be made along the same lines as that of case (ii) by defining f(ε) similarly and

conditioning on whether it is degenerate or not. ∎

Lemma 2. It can be assumed that C
*
 has O(n) cuts.

Proof. This has been shown in Overmars and Welzl [10]. There it is shown that no more that 5n cuts are

necessary in any cutting sequence to cut out Pin from Pout, and hence it is true of C* too. ∎

The statement of Lemma 1 and a brief sketch of a proof also appears in Overmars and Welzl [10], but we have

chosen to prove it here in a different way for completeness (the proof there does not discuss terminal cuts and

cases (ii) and (iii)) and also because the proof here can be very easily modified to a corresponding result (which

is Lemma 7 in this paper) in the non-convex case. Based on Lemmas 1 and 2 we will assume, for the rest of the

paper that every cut in C
*
 touches Pin and that it has at most 5n cuts.

2.2. Rotation of one cut

As shown in Fig. 1, C * may have one or more cuts that are not along the sides of Pin. Hence we now study the

behaviour of cuts as they rotate around one of the (at most) two vertices of Pout they intersect. Refer to Fig. 3

where a cut k is assumed to be rotated clockwise about a vertex K from its initial position when it is flush with

the edge AK of Pin to the final position where it is flush with the edge KC. Denote by θ the angle of rotation of k

and let θ1, θ2, etc. be the angles at which k intersects the successive vertices of Pout. The section of k to the left

of K and its length as a function of rotation of k by θ is denoted by k1 and k1(θ) respectively; the corresponding

notation for the section of k to the right of K are kr and kr(θ) respectively.

Lemma 3. k(θ) is a piecewise convex function of θ and at the angles where a cut intersects a vertex of Pout,

the

right derivative of k(θ) is less than its left derivative.

Proof. It can be verified from trigonometry that the function k(θ), when 0 ≤ θ ≤ θ1, is

 , and the values of kl(0) and kr(0) are constants that can be calculated from the input in polynomial

time under the assumed model of computation. Because α1 + θ and β + θ are always less than π in our range of

interest, for a given value of α1 and β, cosec(α1 + θ) and cosec(β + θ) are convex functions of θ. Hence kl(θ) and

kr(θ) and therefore k(θ) are all convex functions of θ, proving the first property.

To prove the second property, consider kl at the angles θ1 and θ2 as shown in Fig. 3. It can be verified that for 0

≤ θ ≤ θ1,

 k1(θ) = k1(θ) /

and for θ1 ≤ θ ≤ θ2,

where the last expression is obtained by noting that k1(θ1) = [k1(0)]/ . To study the

derivatives of the function k1(θ), note that

−

−

 −

 − −

At θ = θ1, the values of the two derivatives are

 −

and

 −

 −

 is equal to

 −

Since α2 and α1 + θ1 are less than π in our range of interest, cotangent is a monotonically decreasing function in

this range. By convexity of Pout we have α2 ≤ α1 + θ1 which implies that for our range of interest ≥

 and all the other terms in (2) above are non-negative. This implies that (2) is non-negative. The

second property is then proved by noting that the same property is true for kr(θ) too. ∎

This behaviour of the derivatives at the critical angles can also be explained geometrically. Referring to Fig. 3,

we see that had vertex 2 been absent, the edge (1, 2) of Pout would have been extended as shown along the line.

But the existence of this vertex and the convexity of Pout ensures that the length of k1 immediately after θ1 will

be less than what it would have been had vertex 2 been absent. Note that k(θ) is a piece-wise convex function

when α1 and β are constants − it can be verified that it may not be convex in α1 or β or piecewise convex in all

three variables.

2.3. Rotation of multiple cuts

We will now study the change in the length of the cut k when it is rotated simultaneously with two other cuts

that it intersects, one on the left of K (denoted by cut i) and one on the right (denoted by cut j). Some more

notation needs to be defined as follows.

 Denote by I, J and K the vertices of Pin about which cuts i, j and k are rotated.

 Let α denote the distance of K from the intersection of cuts k and i and b, the distance of the point K from

the intersection of cuts k and j; similarly, let c denote the distance of I from the intersection of cuts k and i

and d, the distance of the point J from the intersection of cuts k and j.

 Let the cuts i, j and k be rotated by be rotated by θi, θj and θk, respectively, and let ∈i, ∈j and ∈k be the

respective maximum rotations possible (in a clockwise direction) before it encounters a vertex of Pout or

becomes flush with another edge of Pin.

The vertices I and J can each be either above or below K − which gives rise to four cases: Case I: I below K; case II: I

above K; case III: J below K, and case IV: J above K. Shown in Fig. 4 is an instance where Case I is applicable for k1 and

Case IV for kr. The change in the length of kl (respectively, kr) as a function of θi, θk (respectively, θp θk) in cases I and

II (respectively, cases III and IV) is denoted by kl(θi, θk) (respectively, kr(θj, θk)) and given in Table 1.

We will only show the derivation of Eq. (3) for kl(θi, θk) assuming case I is applicable, as shown in Fig. 4. Here the

length of kl after rotation by θk is shown in the figure to be equal to KM − MN. Note that ∠LMK = π − (α + θk) and

that ∠MNI = π − (θi + ∠LMK) = (α + θk − θi). Applying the law of sines to the triangle KLM we obtain

 ∠

 ∠

Applying the law of sines similarly to triangle MNI, we obtain

 −

From Eq. (1) applied to cut k, it can be seen that

Using the two we obtain that KM - MN is

−

 −

The expressions for cases II, III and IV can be derived similarly. It can then be verified that these equations are

not guaranteed to be convex/concave for all values of θi, θj and θk in our range of interest.

Letting θk = 0 in Eqs. (3)-(6) gives the expressions for the change in length of cut kl when cut i is rotated by θi

and the change in kr when cut j is rotated by θj. The expressions are given in Table 2.

It can be verified that the equations (8)-(11) in Table 2, for kl(θi) (respectively, kr(θj)) are not guaranteed to be

convex or concave functions of θi (respectively, θj) for all values of θi (respectively, θj) in our range of interest.

2.4. An algorithm for a special case of the problem and its extension

Consider a special case of the problem where we are given a set S, consisting of n guillotine cuts, each of which

is along an edge of Pin, and it is desired to find S
*
. This special case of the problem is considered in Overmars

and Welzl [10] and the algorithm we describe is due to them. It will become apparent that it is possible to

extend this algorithm in a simple way to solve the general problem. Assume that the cuts in S (or, equivalently,

the edges of Pin extended to intersect Pout) are numbered clockwise 1 through n. Suppose that the cuts i and j

(where i < j) are made at any two successive steps of the cutting sequence. This cuts Pin into two sub-polygons;

 and

. The former comprises of all edges from i to j and the latter of all edges from j to i. Similarly

these cuts also divide Pout into two sub-polygons, which we denote by

 and

 respectively. These sub-

polygons are shown in Fig. 5. This results in two independent subproblems of the original problem; namely,

cutting out

 from

 and cutting out

from

, respectively. Furthermore, these two problems are

defined completely by the cuts i and j. The length of the optimal cutting sequence for the original is equal to the

sum of the lengths of the optimal cutting sequences for cutting out

 and

 from

 and

,

respectively, plus the sum of the lengths of cuts i and j. Moreover, the optimal answer to these subproblems is

independent of the order of cuts made prior to i and j. This makes the problem amenable to dynamic

programming.

First we calculate the best way to cut out

 in from

 when j = i + 1, ∀1 ≤ i ≤ n, which is simple.

Assume, inductively, that we have calculated the best way to cut out

 from

 when j = i + p, ∀1 ≤ i ≤ n.

Then the optimal answer to a subproblem with j = i + p + 1 for any given i is found by deciding which of the

cuts between i and j should be made first and the optimal answer to the resulting subproblems would already

have been computed at the previous step and need not be computed again. This implies that O(n) work is

required at every stage of the algorithm. The number of stages is O(n
2
) since a stage (or equivalently, a polygon

pair) is completely defined by a pair of cuts. Therefore the overall complexity of the algorithm is O(n
3
). A

mathematical representation of the algorithm is provided in the Appendix.

Having described the dynamic programming algorithm due to Overmars and Welzl for the special case, it is

worthwhile to note that cutting only along edges of Pin can be very expensive. For example in Fig. 1, any

cutting sequence that cuts only along edges of Pin will have to make either one of the cuts DB, AC or OP first. If

Pout is ‘long and thin’, then the length of this cutting sequence will be much more than that of the cutting

sequence C2 in Section 1 (and hence much more than the length of C
*
). Hence there is a need to compute the

optimal cutting sequence C
*
.

It will now be shown that it is possible to generalise the dynamic programming algorithm discussed above to the

case where not all the cuts are along edges of Pin in a very simple way. The reason why the algorithm takes

O(n
3
) time is because after two cuts i and j are made the problem of cutting

 from

 and

 from

 are independent of each other and the order of the cuts made prior to i and j. Hence this algorithm will

work even if the prespecified set of cuts are not restricted to be along the sides of Pin but only required to touch

it as this property still holds. Hence, the next lemma:

Lemma 4. Given a set of S of p cuts containing at least one cutting sequence and such that all cuts in S touch

Pin, it is possible to find S
*
 by a dynamic programming algorithm in O(p

3
) time.

Proof. Obvious from the above discussion. ∎

Hence by Lemma 4, if one gives a prespecified set of cuts all of which touch Pin (even though some may not be

along edges of Pin) and the set contains at least one cutting sequence, it is possible to apply the same dynamic

programming algorithm to get the best cutting sequence from this set of cuts. This enables us to use this

algorithm for an approximation scheme for the general case of the problem.

3. An approximation scheme for the general case of the problem

In this section we describe a method in which, given any arbitrary error range δ > 0, we will give a cutting

sequence C(δ) (in which all cuts touch Pin which is guaranteed to have a length that is at most δ more than that

of C
*
. Furthermore the time taken by this approximation scheme is polynomial in δ and the encoding length of

the input data in unary. It has already been shown that given S, a set of cuts where all cuts touch Pin, the

dynamic programming algorithm of the previous section can be used to obtain S*. It is intuitively clear that as

more cuts are allowed in S at every vertex of Pin, the algorithm produces answers that are closer to the optimal

answer C
*
. The algorithm, Algorithm-Compute C(δ), is given in Table 3.

Step 1 of Algorithm-Compute C(δ) extends all edges of Pin to Pout; hence we have O(n) cuts after this step is

over. Step 2 then adds two cuts for every vertex of Pout, as shown in Fig. 6. Thus there are O(n + m) cuts at the

end of Steps 1 and 2. At the end of Step 2, if any cut is rotated clockwise about a vertex of Pin, from its initial

position to its final position (where it becomes flush with the next cut clockwise), it always intersects the same

pair of edges of Pout, in between — hence by these two steps one of the combinatorial features of this problem,

that arises due to cuts passing through different vertices of is removed.

Consider the set S of cuts obtained after Steps 1 and 2 are over. If C
*
 has any cut that is different from the cuts

in S, then it can be assumed that all such cuts in C
*
 are wedged between two successive cuts in S. Any cut in C

*

that is wedged between two such cuts can be assumed to have been obtained by clockwise rotation of one of the

cuts in S around a particular vertex of Pin. Hence, to determine θk for a cut k note that if a cutting sequence C(δ)

needs to be found, then the set S must have enough cuts to ensure that if any cutting sequence from S is

considered, then the total length of this cutting sequence under consideration should not decrease by more than

δ by rotation of the cuts in it. Given any triple of cuts (i, j, k) in S where cut k intersects cut i on the left and j on

the right, consider the maximum reduction in length of k possible by the rotation of i, j and k. If it can be

ensured that this change is less than δ(5n) for any triple (i, j, k), then S
*
 will be the cutting sequence C(δ). This

will form the basis of computing θk.

Computing θk for cut k: For this cut k, consider two cuts i and j where cut k intersects cut i (respectively, j) on

the left (respectively, right) of the vertex of Pin about which k can be rotated clockwise. Eqs. (3)—(6) give the

expressions for the change in length of kl and kr when all three cuts are rotated clockwise around their respective

vertices. We will only show how to calculate θk assuming case I is applicable for kl (as shown in Fig. 4) — the

other cases are similar. In case I, the function denoting the change in length of kl is given by kl(θ1, θk) in Eq. (3).

Let U[kl/ θk(U[kl/ θi]) be numbers such that

 ∀ ∈ ∈ ∈

 (12)

Define U[kr/ θk] (U[kr/ θj]) similarly. Also let

and

U(k) = max[U(kl), U(kr)].

To find U[kl/ θk] it can be shown that

[kl(θi, θk)/ θi] = cosec
2
(α + θk – θi)[c sin(α + θk) − α sin θk] (13)

and

[kl(θi, θk)/ θk] = α sin θi cos θk cosec(α + θk) cosec(α + θk − θi)

− a cos(α + θk) cosec
2
(α + θk) [sin α + sin θi sin θk cosec(α + θk − θi)

− sin θi cos(α + θk − cosec
2
(α + θk − θi)[c + α sin θk cosec(α + θk)].

(14)

The angles θk, θi, α + θk and a + θk − θi are all non-negative and less than π in our range of interest. U[kl/ θk],

U[kl/ θi] can be computed by finding an upper bound for the r.h.s. of Eqs. (13) and (14). An upper bound for

the value of cosec(α + θk − θi) can be obtained by computing the value of this function at the four extreme

points θk = θi = 0, θk(θi) = ∈k(∈i), θi(θk) = 0, and θi = ∈i, θk ∈k, taking the maximum of these, and denoting it as

cosec
*
 (α + θk

 − θi). cosec
*
 (a + θk) is similarly defined for cosec(α + θk). Unity can be used as an upper bound

for cosine and sine functions. Doing so it can be see that one choice for these upper bounds is the following:

U[kl/ θi] = (c + a) [cosec
*
 (α + θk − θi)]

2
 (15)

and

U[kl/ θk] = a cosec
*
 (α + θk) cosec

*
 (α + θk − θi)

+ a[cosec
*
 (α + θk)]

2
 [1+ cosec

*
 (α + θk − θi)]

+ [cosec
*
 (α + θk − θk)]2

 [c + a cosec
*
 (α + θk)]. (16)

From (15) and (16) U(kl) can be found. By doing a similar calculation for kr, U(kr) and hence U(k) can be

determined. Repeating this procedure to find U(k) for each such pair of cuts i and j (where i intersects k on left

and j on the right), and by taking their maximum, we can find the upper bound on the rate of change of the

length of cut k; denote it as U(k
*
). Then, choosing θk = δ/[5nU(k

*
)] will suffice. That completes the procedure

for calculating θk for this cut k. Note that for every cut k, U(k) will always be finite (and hence θk will be non-

zero) because for U(k) to be infinite, two adjacent edges of Pout would have to be parallel, which is impossible.

This guarantees that the approximation scheme will always work.

To show how θk is calculated for a given cut k, consider the case shown in Fig. 6, where we will assume that the

x and y coordinates of the vertices 1, 6 and 11 of Pout are given by (9, 18), (16, 9) and (2, 9) respectively. The

corresponding coordinates for the vertices 16, 17 and 18 of Pin are given by (11, 13), (9, 11) and (7, 13)

respectively. Assume that all distances are in centimeters and angles in degrees. Consider the cut (5, 11) as

shown in Fig. 6, which is rotated clockwise about vertex 17 of Pin. With the figure rotated so that Pin, is below

the cut (5, 11), it can be verified that the other cuts that (5, 11) intersects are (1, 7), (6, 15) on the left and (2,

11), (1, 10) and (8, 14) on the right; it is obvious that cuts (3, 9) and (6, 12) need not be considered as their

vertex of rotation is also 17. Consider the pair of cuts (5, 11) and (1, 7) with (5, 11) as cut k, rotated clockwise

about vertex 17 and (1, 7) as cut i rotated about vertex 16. Then the point of intersection of these two cuts is the

point 19 in the figure. It can be verified that a (given by line segment [17, 19]) is equal to 2.6 and c (given by

[16, 19]) is 1.4. Furthermore a is given by the angle ∠7, 19, 11 and is equal to 96.1°. When (5, 11) is rotated

clockwise, the next clockwise cut that it becomes flush with is (6, 12) — and it can be verified that the angle

between them, i.e. ∈k, is equal to 31°. Similarly, when (1, 7) is rotated clockwise the next cut it becomes flush

with is (3, 9) and thus ∈i is equal to 66.25°. From these it can be verified that cosec
*
 (α + θk) is 1.2538 and cosec

* (α + θk − θi) is 2.0091; hence, by Eqs. (15) and (16), U(kl/ θi) is 0.2818 and U(kl/ θk) is 0.6572. Thus U(kl)

is equal to 0.6572. By a similar analysis, it can be seen that the upper bounds (i.e., U(kl) or U(kr), as the case

may be) obtained for intersections with the cuts (6, 15), (8, 14), (2, 11) and (1, 10) are 3.3856, 0.1954, 12.317

and 1.4409 respectively; thus U(k
*
) for the cut (5, 11) is the maximum of these, i.e., 12.317. Hence with δ equal

to 10, we obtain θk equal to 0.054°. Table 4 contains details of these calculations and shows similar results for

another cut, namely (1, 10).

To compute the time taken by Algorithm-Compute C(δ), it can be seen that Steps 1 and 2 can be performed in

O(n + m) time. In Step 3, for any cut k, θk can be found in polynomial time and its encoding length is also

polynomial in the range of the input data and δ. This in turn guarantees that for every cut k, the number of

additional cuts introduced at Step 3 is also polynomial in the same parameters. Since the dynamic programming

algorithm that is performed in Step 4 takes time that is polynomial in the number of cuts allowed, the overall

algorithm Algorithm-Compute C(δ) is polynomial in δ and the encoding length of the input data in unary

encoding.

4. Existence and algebraic nature of C
*
 and minimizing a given cutting sequence

All results in the previous sections have assumed the existence of the optimal solution C
*
; a proof of that will

now be given in the next lemma. In this section we also show the algebraic nature of this problem and state and

prove some more existence results. Finally, we give a polynomial procedure to minimize the length of a given

cutting sequence by rotating one, or multiple but non-intersecting cuts.

4.1. Existence results

Lemma 5. For any given configuration of Pin and Pout it can be assumed that C * exists. Furthermore, there

exists an optimal solution to this problem that is algebraic.

Proof. For a given pair of polygons Pin and Pout, consider the set S of all cuts after Step 1 of Algorithm-

Compute C(δ) is done. As discussed above, it can be assumed that if C * exists then it can be obtained by

rotating clockwise one or more cuts of S around the respective vertices of Pin; i.e., by choosing a given cutting

sequence in S and minimizing its length by rotating the cuts in this cutting sequence. S contains an exponential,

but finite number of cutting sequences — let C = {[1],[2],…,[N]} be one such cutting sequence in S. To

minimize the length of C, we need to rotate (assume, without loss of generality, clockwise) the cuts in C. For

cut [i] let θ[i] denote the amount of rotation and ∈[i] the maximum rotation of cut [i] before it becomes flush with

the next clockwise cut in S. If C(θ[1], θ[2],...,θ[N]) represents the length of C. Then the problem of minimizing the

length of C can be posed as the following constrained optimization problem:

Min C(θ[1],θ[2],..., θ[N])

s.t. 0 ≤ θ[i] ∈[i]. (17)

C(θ[1],

θ[2],…, θ[N]) is the algebraic sum of individual functions like (1) and (3) through (6) — this is because the

length of a cut [i] in C behaves according to (1) if it does not intersect any of the cuts [1], [2], [i−1] and

according to the sum of two of the other four functions if it intersects at most two of these. As each of these

functions is continuous, so is C(θ[1], θ[2],…, θ[N]) (however, C(θ[1], θ[2], , θ[N]) is not guaranteed to be a

convex/concave function since Eq. (1) is convex but the same is not true of (3)—(6)). The constraint set of this

optimization problem is bounded and closed; i.e., compact. Hence, as we are minimizing a continuous function

over a compact set, the optimal solution exists. The existence of C *, as claimed in the first statement, is then

guaranteed by the fact that there are only finite number of such cutting sequences in S.

In the constrained optimization problem (17), if we remove the trigonometric functions by substitution, it

becomes apparent that we are minimizing an algebraic function over a compact set. Hence, from Tarski [6] it is

clear that there exists an optimal solution to this problem which lies in the algebraic extension of the field that

the input data belongs to. This proves the second statement. ∎

Therefore by Lemma 5 above, due to the algebraic nature of the problem, only approximate answers to this

problem can be found and the best that can be done is give an approximation scheme (similar to Algorithm-

Compute C(δ) for the problem. This verifies the conjecture made in Overmars and Welzl [10] that obtaining the

optimal solution to this problem is intrinsically difficult. There are similar problems in the literature; for

example as shown in Chadrasekaran and Tamir [3,4], Quadratic Fractional Programs, Ratio Games and the

Fermat—Weber Location problem are all problems of similar type where it is not possible to give the exact

optimal solution and the authors pose the solution in the form of a polynomial and an interval such that the only

solution to this polynomial in this interval is the optimal solution to the problem.

Lemma 6. There exists a finite, non-zero error range δ
*
 such that when this is prescribed as the error range to

Algorithm-Compute C(δ), the cutting sequence produced is combinatorially the same as C
*
 − i.e. it has the

same cuts in the same order.

Proof. Consider the set S of cuts obtained after completing Step 1 of the Algorithm-Compute C(δ): it has an

exponential but finite number of cutting sequences. Minimize each such sequence by solving the constrained

optimization problem (17). By Lemma 5, each of these minima exists and if any two are not equal, they differ

by a finite value. Choosing the minimum of these differences as δ
*
 suffices. ∎

4.2. Minimizing the length of a cutting sequence by rotating one cut

Now we give a polynomial time procedure for minimizing the length of a given cutting sequence C with N cuts,

when only one cut in it (assume cut i) is allowed to be rotated by θ (arbitrarily assume clockwise) about one of

the vertices of Pin, that it intersects. We wish to find the optimal value of θ such that the total length of C is

minimized. It will become apparent that the same scheme can also be applied to minimize the length of C by

rotating multiple cuts, provided the cuts chosen for rotation do not intersect each other (but we do not discuss

that). This procedure can be used in applications where it is not desired to produce the cutting sequence C(δ)

either because it is cumbersome or because a high degree of approximation is not needed. In such cases one can

perform Steps 1 and 2 of Algorithm-Compute C(δ), skip Step 3 and apply the algorithm in Step 4 to get the best

possible cutting sequence. Thereafter, one cut (or multiple cuts, provided they do not intersect) in this sequence

can be chosen for rotation and this sequence can be minimized by rotating this cut(s).

When cut i rotates by θ, the following quantities change: the length of cut i changes, in accordance with (1), and

the length of all the cuts in C that occur after i and intersect cut i in accordance with (8)—(11). Therefore, the

total length of C as a function of θ, denoted by C(θ), is given by sums of expressions similar to (1) and (8)—

(11) and the problem reduces to a constrained optimization problem similar to

 θ

 ∈

where ai, αi, i = 1, 2, ... , N, are input parameters (or can be calculated from it in polynomial time under the

assumed model of computation) and ∈ is the maximum rotation possible by cut i. Differentiating C(θ) w.r.t. θ

and equating equal to 0, to get the extreme points, we get

−

 −

Putting Sin θ = y to get an algebraic expression, we can reduce it to the following polynomial:

− − −

 −

 −

The l.h.s. of Eq. (19) is a polynomial of degree no more than 2N. By Lemma 2, N ≤ 5n; hence, (19) can have at

most 10n distinct real roots. Assuming that the roots of a polynomial of any fixed degree can be found in

constant time (and this is permissible under our assumed model of computation), all roots of (19) can be found

(and hence (18) can also be solved) in polynomial time. If the cuts chosen for rotation from C intersect then it

can be verified that the resulting polynomial have degrees that are exponential in n.

5. The non-convex case

In this section we study the extensions of the above results to the case where the two polygons Pin and Pout are

non-convex. It is clear that using guillotine cuts it is not possible to cut out Pin, if it is non-convex — therefore it

will be assumed that Pin is convex (and if not, then its convex hull will be considered as Pin). A guillotine cut

also needs to be defined more clearly here since a cut can intersect Pout several times. Here we define a

'guillotine' cut as follows: if a cut intersects the boundary of Pout at several points, then the disjoint intervals of

this cut that are fully contained in the interior of Pout (considering Pout as a closed set) are regarded as separate

individual cuts. In practice this assumes a cutting tool that can get into every 'nook and cranny' of Pout. See for

example Fig. 7 where the cut GD is replaced by GC and the cut IL by cuts IJ and KL. This definition is required

because the existence proof of C
*
 in Lemma 5 requires continuity and as shown in Fig. 7, as a 'guillotine' cut

moves downward, from AB parallel to GCD, its length is a discontinuous function of its movement at GCD

unless we modify the definition as we have done. With our definition of a guillotine cut Pout can be replaced by

the set of all points in it from which it is possible to draw at least one tangent to Pin. For example, in Fig. 8 the

ordered set of vertices of Pout are [1, 2, 3,…, 14] and this set is represented by the polygon whose ordered set of

vertices is [1, 2, 3', 4, 5', 5", 7, 8, 9, 10, 11, 12, 12', 14]. Given Pin and Pout, this set can be calculated in

polynomial time and we will assume that Pout has been preprocessed and replaced with this set. All the lemmas

of Sections 2 and 3 hold here except Lemma 1 and Lemma 2. Lemma 1 needs to be modified to the following in

the non-convex case because here it is possible that C
*
 contains a cut that does not touch Pin.

Lemma

7. If Pout is non-convex it can be assumed that for every cut in C

*
 at least one of the following is true: (i)

the cut touches Pin; (ii) the cut intersects a reflex vertex of Pout at one of its ends.

Proof. If there is any cut in C
*
 that does not touch Pin then from Lemma 1 it can be assumed that for this cut

neither of the following can be true: (i) the cut does not intersect any vertex of Pout and (ii) the cut intersects two

non-reflex vertices of Pout on its two ends. Therefore this cut must intersect at least one reflex vertex of Pout. ∎

The first statement of Lemma 3 is still true; however the second statement about the relationship between the

two derivatives of k(θ) is not true since it assumed convexity of Pout. Lemmas 5 and 6 did not require any

assumption of convexity and hold for this case, too. Therefore one can modify Algorithm-Compute C(δ) for

this case by only changing Step 1 (which is used to remove one part of the combinatorial nature of the

problem). The modified algorithm is given in Table 5.

As before, Step 1 of the algorithm in Table 5 adds O(n) cuts. In Step 2.1, there are atmost two tangents added

for each vertex of Pout and hence this step adds O(m) more cuts. Step 2.2 then adds cuts between each reflex

vertex and all other vertices visible to it — thus introducing another O(m
2
) cuts. Therefore the total number of

cuts after Steps 1 and 2 are over is O(n + m
2
). In this case the Dynamic Programming algorithm in Step 4 takes

exponential time because of the cuts that do not touch Pin, since there is an exponential number of subproblems

that need to be considered. Hence the time taken by the approximation algorithm is exponential in the input data

and δ.

6. Conclusions and future directions

In this paper we have considered the problem of cutting out a given shape/design from another given piece of

parent material using a cutting tool that can make only 'guillotine cuts' where it is required to minimize the tool

wear caused by the cutting. It has been shown that cutting non-optimally can be very expensive. The problem is

formally posed in terms of a pair of nested polygons Pin and Pout and then the following conclusions can be

drawn about the problem:

1. It is shown that an optimal cutting sequence to cut out Pin always exists (although in case Pout is non-convex,

a guillotine cut needs to be defined more rigorously for this purpose).

2. The problem is inherently algebraic in nature because the optimal cutting sequence may lie in the algebraic

extension of the field that the input data belongs to; hence, the best that can be done is to provide

approximately optimal solutions.

3. We give an approximation scheme to solve this problem. This scheme, which is based on Dynamic

Programming, takes time that is polynomial in the encoding length of the input data in unary, when Pout is

convex, and exponential time, if not.

There are many different open problems in this area. For example it has been conjectured that when Pout and Pin

are convex 'most' cuts in any optimal cutting sequence will be along the edges of Pin; i.e., no more than a few

non-edge cuts may be required by any optimal cutting sequence. It will be interesting to prove or disprove this

conjecture. One can also consider problems where different types of cuts are allowed (for example half rays).

The problem where Pout contains 'obstacles' that the cutting tool cannot traverse is also unknown. No results are

known for higher-dimensional versions of this problem where, we might, for example, be interested in

minimizing the total area of the cutting sequence.

Appendix

A mathematical representation of the dynamic programming algorithm

Here we give a mathematical representation of the dynamic programming algorithm in the special case where

all cuts are along edges of Pin. To do so the following notations are introduced: Let C
*
(i, j) be the optimal

cutting sequence (from the given set of cuts) to cut out

 from

. Denote by ||k
(i,j)

|| the length of cut k if it

is the first cut after cuts i and j have been made and let ||k|| denotes the length of the same cut before any cuts

are made.

Let ek denote the length of the k-th edge of Pin. The functional equations of the dynamic programing are as

follows. At the first and the second stages, respectively,

C
*
(i, j) = 0 ∀i, j, 1 ≤ i ≤ j = (i+ 1) mod n

and

C
*
(i, j) = e(i+1) mod n ∀i, j, 1 ≤ i ≤ n, (i+ 2) mod n.

Inductively, at the p-th stage (p ≥ 3) we would have

C
*
(i, j) ∀i, 1 ≤ i ≤ n and j = (i + p) mod n.

and at the (p + 1)st stage we compute

Finally we obtain

 −

Once C
*
 (i, i) has been found the algorithm finds the optimal cutting sequence from this set of allowable cuts by

computing

Acknowledgments

The work of the first author was supported by NSERC Grant #OGP 012 1689 and University of New

Brunswick Grant UNB 23-80. This support is gratefully acknowledged.

The work of the second author was supported, in part, by The Morris Hite Center at The University of Texas at

Dallas. This support is gratefully acknowledged.

References:

[1] Aggarwa], A., Chang, J.S., and Yap, C.K., "Minimum area circumscribing polygons", Visual

Computer 1 (1985) 112-117.

[2] A]bano, A., and Orsini, R., "A heuristic solution of the rectangular cutting stock problem", The

Computer Journal 23 (1979) 338-343.

[3] Chandrasekaran, R., and Tamir, A., "Optimization problems with algebraic solutions: Quadratic

fractiona] programs and ratio games", Mathematical Programming 30 (1984) 326-339.

[4] Chandrasekaran, R., and Tamir, A., "Algebraic optimization: The Fermat—Weber Location Problem",

Mathematical Programming 46 (1990) 219-224.

[5] Christofides, N., and Whitlock, C., "An algorithm for two dimensional cutting problems", Operations

Research 25 (1977) 30-44.

[6] Dori, B., and Ben-Assat, M., "Circumscribing a convex polygon by a polygon of fewer sides with

minimum area addition", Computer Vision, Graphics and Image Processing 24 (1983) 131-159.

[7] Gi]more, P.C., and Gomory, R.E., "A Linear Programming approach to the Cutting Stock Problem",

Operations Research 9/6 (1961) 849-859.

[8] Gilmore, P.C., and Gomory, R.E., "A Linear Programming approach to the Cutting Stock Problem —

Part II", Operations Research 11/6 (1963) 863-888.

[9] Gi]more, P.C., and Gomory, R.E., "Multistage Cutting Stock Problems of two and more dimensions",

Operations Research 13/1 (1965) 94-120.

[10] Overmars, M.H., and Welzl, E., "The complexity of cutting paper" Extended Abstract, in: Proceedings

of the ACM Annual Symposium on Computational Geometry, 1985.

[11] Tarski, A., A Decision Method for Elementary Algebra and Geometry, 2nd revised ed.: University of

California Press, Berkeley, CA, 1951.

[12] Venkateswarlu, P., and Martyn, C.W., "The trim-loss problem in a wooden drum industry", in: OR-92:

Proceedings of the Convention of Operational Research Society of India, December 1992.

