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In this article, we study a class of Art Gallery problems that are
defined on a pair of convex nested polygons. Polynomial time
algorithms are presented for all these problems, by reducing
them to the Circle Covering problem, or by relating them to the
Minimal Nested Polygon problem. Then it is shown that these
problems can also be solved in polynomial time by formulating
them as Integer Programs with the Circular Ones property.
Finally the paper discusses how these algorithms can be effi-
ciently implemented in parallel.

At Gallery Problems refer to the general class of problems
in Computational Geometry where it is required to watch an
entire polygon by placing guards. One of the earliest refer-
ences to such problems was by Victor Klee (O'Rourke!®),
who in 1973 posed the problem of determining the mini-
mum number of guards that are necessary to watch the
interior of an n-sided polygon. Soon after, Chvatal®! showed
that |n / 3] guards are sometimes necessary and always
sufficient to watch the entire interior of a polygon with n
vertices—a result thus dubbed “Chvétal’s Art Gallery The-
orem”. Since then there has been a plethora of work done on
similar problems; for instance, if a polygon has  holes in it,
then Aggarwal™ (p. 110) and Shermer (O'Rourke® (p.
128)) showed independently with two counterexamples that
L(n + h) / 3] guards may be necessary, where n is the total
number of vertices of the polygon and the holes. Later it was
shown independently by Hoffman, Kaufmann, and Krie-
gell™ and Bjorling-Sachs and Souvaine!® that Lin + )/ 3]
guards are also sufficient. Two sources for the literature in
this area are O'Rourke!®®! and Shermer.”**!

However, although Ln / 3} or L(n + h) / 3] in case of
holes, may be sometimes necessary, in many cases fewer
guards will suffice. This gives rise to the following optimi-
zation problem: Given a simple polygon, what is the mini-
mum number of guards that are necessary to watch its
interior? This problem is also referred to as a Minimal Guard
Cover problem. Several variants of this problem are possi-
ble, depending on the type of the polygon, (whether it has
“holes” in its interior or not), the allowable guard positions
(whether they are permitted to be placed anywhere in the
interior, or only on vertices of the polygon), the type of
guards (point and stationary versus mobile guards), etc.

Subject classifications: Computer science.

Many such Minimal Guard Cover problems have been
shown to be NP Hard. For example, O'Rourke and Sup-
powit2®! have shown that when the polygon has holes and
the guards are allowed to be located anywhere in the interior
of the polygon, this problem is NP Hard. Lee and Lin"”!
showed that the problem remains NP Hard even when the
polygon does not have any holes; however, their result is for
vertex guards. Aggarwall’! extended his result to point
guards.

In this article, we consider a special class of Art Gallery
problems that are defined for nested polygons, i.e., polygons
with one hole, and show how these problems can be solved
in polynomial time. The basic problem considered here can
be described as follows: given a pair of convex nested poly-
gons, P, and P, with P, C P, what is the minimum
number of guards needed, and their respective positions, in
order to watch designated areas if the guards themselves are
restricted to be only in some other designated areas? The
inner polygon P, is assumed to be opaque, i.., it is not
possible to see through this polygon, and to avoid trivial
cases, is assumed to have a positive area. Three designated
areas will be considered here—the boundary of P, the
boundary of P, and the complete annulus between P;, and
P, (including these two boundaries). This gives rise to
nine different problems that will be referred to as shown in
Table 1.

Thus according to our nomenclature, Problem (Pyy./ Pin)
refers to the case where the guards will be required to watch
the entire boundary of P;,,, while restricted to be only on the
boundary of P_.. It is worthwhile to note that although Art
Gallery problems for convex nested polygons have not been
studied before in the literature, similar problems have. For
example, the sufficiency of L(n + k) / 3] guards was shown
for h = 1, by Shermer.?”! Further, the annulus between a
pair of nested convex polygons is closely related to the
interior of a spiral polygon, and there are numerous results
on the visibility properties of spiral polygons; see for exam-
ple, Everett and Corneil,'!! MacDonald and Shermer.*”!
Other Art Gallery-type results on spiral polygons include
Nilsson and Wood,?? Vishwanathan,*”! and Liaw, Huang,
and Lee."®!

Other key words: computational geometry; art gallery problems; convex polygons.
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Art Gallery Problems for Convex Nested Polygons

Table I. List of Problems

Areas Watched

Guard Positions Boundary of P,

Boundary of P, Annulus Between P, and P_,

Problem (P,,/P,,)
Problem (P out/ P m)
Problem (Ann/P,)

Boundary of P,
Boundary of P_,
Annulus Between P, and P,

Problem (P,,/P,,.)
Problem (P,,,./P,,.)
Problem (Ann/P,,,)

Problem (P,,/ Ann)
Problem (P,,./Ann)
Problem (Ann/Ann)

Figure 1. Convex Nested Polygons.

The remainder of the article is divided as follows. In
Section 1 we state the preliminaries and then Section 2
presents the algorithms for solving Problems (P, /P,
through (Ann/Ann). Section 3 shows how these problems
can also be solved by formulating them as Integer Linear
Programs and discusses efficient parallel implementation of
the algorithms in Section 2. Finally, Section 4 summarizes
the results of this paper.

1. Preliminaries

This section describes the notation and some construction
procedures that are used in this paper. In addition, some
basic results are also stated and proved. The model of com-
putation used is similar to the one in Aggarwal et al.”?’—the
usual random access machine that allows simple arithmetic
operations (like +, —, /, *, and taking square roots of real
numbers) to be performed in unit time.

It will always be assumed, unless otherwise mentioned,
that the two polygons P, and P, are convex and have n
and m vertices respectively. The boundaries of these two
polygons will be denoted by bd(P,,) and bd(P,,,) respec-
tively, and the entire annulus between P,,, and P,_,, includ-
ing bd(P,,) and bd(P,), by (P,,—P,.). Further, for any two
distinct points x, y on bd(P,,)) or bd(P, ), [x, y] will be used

to denote the segment of the boundary encountered in a
clockwise traversal from x to y. (x, y) will be used to denote
the corresponding open segment obtained from [x, y] by
excluding the two endpoints x and y.

Consider any point g in the annulus, as shown in Figure 1.
Suppose that we wish to find the last point on bd(P,,) that is
visible to g, in a clockwise traversal of bd(P,,). This point is
found by drawing the clockwise tangent from g to P,,, and
choosing the vertex of P,,, that this tangent intersects (in case
the tangent intersects two vertices, the more clockwise of
these is chosen), as given by point s in the figure. Let ¢ be the
point of intersection of bd(P,,,) with a ray that originates
from g in the direction of s. Then t is the last point on
bd(P,,,) that is visible to g in a clockwise traversal of
bd(P,,,). Let the corresponding last points that are visible to
g in a counterclockwise traversal of bd(P,,) and bd(P,,,) be
represented by v and u respectively, as shown in the figure.
Then, in a clockwise traversal of bd(P,,) bd(P,,,)), the entire
segment that begins with the point v (x) and ends with s (t),
will be referred to as the Inner Visibility Segment (Outer
Visibility Segment) of 9. These two segments will be denoted
by In(q) and Out(q) respectively. Thus for any point g in the
annulus, the two segments In(g) and Out(g) represent por-
tions of the boundary of P, and P__, respectively, that are
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visible from g. As is evident from Figure 1, corresponding to
the vertex r of P, the segment In(r) is given by the two
edges [w, r] and [r, s]. Similarly, the segment Out(r) consists
of the segment [, t]. Since we have assumed that P, is not
a point, it can also be concluded that for any point g €
(PouPin), both In(g) and Out(g) have positive lengths, i.e.,
both segments have a relative interior.

Circle Covering Problem.

This problem is stated as follows: given a circle and a set
of arcs that collectively cover it, find the minimum number
of arcs that will cover the circle. The algorithm for solving it
is given in Lee and Lee.®" In addition, it is also known that
if the arcs are given in a sorted order, this problem can be
solved in time that is linear in the number of arcs; see
Chandru, Rajan, and Swaminathan'”! for the algorithm.

Minimal Nested Polygon Problem.

This problem is stated as follows: given a pair of nested
polygons P, and P, find a polygon that is contained in
(Pou—P;n) and has the minimum number of edges. Through-
out this paper, we will assume that for any given configu-
ration of P, and P_,,, the Minimal Nested Polygon is de-
noted by P* and that it has k vertices. For example if P;, and
P are as given in Figure 1, P* is given by the triangle x, y,
z and hence k = 3. The Minimal Nested Polygon P* is convex
if and only if the convex hull of P, does not properly
intersect with bd(P,,,), as is the case when P, and P_,, are
both convex polygons. It is possible to test for this condition
in O(n + m), i.e., linear time; see Preparata and Shamos!**!
for the algorithm. If this condition holds, then P* is guaran-
teed to be convex and the best available algorithm is given in
Aggarwal et al,/ the running time of their algorithm is
O((n + m)log k). Since we have assumed in this paper that
both P, and P, are convex, unless otherwise specified, P*
is always guaranteed to be convex.

Greedy Structure.

In this paper, we define a Greedy Structure for any point
x € (P, Pi,), that is denoted by G(x). Its construction is best
explained with an example; hence, consider the point x in
Figure 1. Draw the clockwise tangent from x to P, and let
y be the point where this tangent intersects bd(P_,,), as
shown in the figure. Then y and the line segment [x, y] are
considered the first vertex and the first edge respectively of
this greedy structure of x. The next vertices and edges are
obtained by repeating this procedure from the point y and
drawing successive clockwise tangents to P, until a point is
reached, where x becomes visible for the first time; this point
is given by z in the figure. Once this happens, the last edge
of the greedy structure of x is given by drawing one more
clockwise tangent from this point to P,, and the point of
intersection of this last clockwise tangent with bd(P,,,) is
regarded as the last vertex of this greedy structure. If the
procedure is repeated by taking counterclockwise tangents
from x, then the resulting structure is referred to as the

counterclockwise greedy structure of x and denoted by G,(x).
For some point ¥ € bd(P,,,), it may be possible that the last
(counterclockwise) clockwise tangent in (G,(x)) G(x) inter-
sects bd(P,,,,) at x itself; in such cases, x will be referred to as
a tight point. For example, the point x shown in Figure 1 is
a tight point and G(x) and G,(x) are given by the triangle x,
y, z. From this construction procedure, it should also be
evident that given a point x, both G,(x) and G(x) can be
constructed in O(n + m) time.

Circle Mapping Transformation.

This transformation will be frequently used in the article
to find the optimal placement of guards. Given any convex
polygon and a set of segments on its boundary, this trans-
formation maps this polygon onto a circle, and these seg-
ments onto corresponding arcs on the circumference of the
circle. To illustrate this transformation, assume that the
polygon to be transformed is given by P, in Figure 1, with
the edges [w, 7] and [r, 5] being two segments on its bound-
ary. The transformation first chooses a point inside the poly-
gon, as given by a in the figure. Then a circle is drawn, with
a as the center, and a radius that is large enough to ensure
that P, is a proper subset of this circle. This circle, which is
given by C in the figure, is assumed to be the mapping of the
polygon under this transformation. After this, every seg-
ment on the boundary of P is mapped onto the circle as
follows: the two endpoints of the segment are first chosen,
and two rays are drawn from 4 in the directions of these two
endpoints. The two points of intersection of these two rays
with the circle C are defined as the images of these two
endpoints under this transformation. Since these images
occur on a circle, they define an arc; this arc is considered the
mapping of this segment onto this circle under the transfor-
mation. For example in Figure 1, the segments [w, r] and
[r, s] get mapped onto arcs [w’, '] and [r', s'] on C respec-
tively. Finding the two points of intersection of the two rays
with the circle will require computing the square root of a
real number; however, under our assumed model of com-
putation this can be done in constant time. Therefore it can
be concluded that this transformation can be performed in
time that is linear in the number of vertices of the given
convex polygon, and the number of segments on its bound-
ary.

We begin by showing that there is a close relationship
between the Minimal Nested Polygon Problem and Problem
(Poue/ Poye)s and this relationship holds even when the two
polygons are not convex.

Lemma 1. Given a pair of nested polygons P, and P, that are
not necessarily convex, it can be assumed that any optimal solu-
tion fo Problem (P, /P.) for this pair of polygons has at least
[k 1 21 guards.

Proof. Suppose that the optimal solution to Problem
(Poue/ Pows) for this pair of nested polygons has p guards,
where p <[ k / 21. Then we can construct a nested polygon
that is completely contained in the annulus (P,P,,), and

has less than k vertices, which contradicts the optimality
of P*.
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Figure 2. Constructing the Optimal Nested Polygon.

The polygon is constructed in the following manner.
From the optimal solution, choose any guard position, say q,
as shown in Figure 2. In a clockwise traversal of bd(P,,,) that
begins at g, let 7 be the last point on bd(P,,) that is visible to
g. Then if we continue this clockwise traversal beyond r,
there must be a contiguous set of points on bd(P,,,,) encoun-
tered in the immediate neighborhood of r, that cannot be
watched by g and hence, must be watched by some other
guard, say ¢. Condition now on two separate cases:

Case (i). t € [g, 7), as shown in Figure 2. In a clockwise
traversal of bd(P,,,,) that begins at ¢, let v be the last point on
bd(P,,,) that is visible to t. Then we can claim that since ¢
watches the contiguous set of points mentioned above, v €
(7, g] in this case.

Case (ii). t € [r, g]; this situation is obtained by inter-
changing ¢ and v in Figure 2. In this case define v as the last
point on bd(P,,,) that is visible to f, in a counterclockwise
traversal of bd(P,,,,) that begins at ¢. Taking into account the
two facts that ¢ is responsible for watching the points men-
tioned above which are in the immediate neighborhood of r,
and the set of all points visible to ¢ forms a closed set, we can
conclude that v € [g, r].

Taken together, these two cases imply that there is a
guard t, with one of the following two properties:

(a)
(b)

t€fqr) and veE (r,q]

telrg]l and ve[gr]

By the definition of the points r and v, the two line
segments [g, r] and [t, v] are guaranteed to be completely
contained in the annulus. Further, both (a) and (b) guarantee
that these two line segments intersect at some point inside
the annulus (P,.~P,.); assume that this point is given by z,
as shown in the figure. Then the line segments [9,z]and [z, ]
form two consecutive edges that are also completely con-
tained in the annulus; they will be regarded as the first two
edges on this nested polygon. Proceeding further clockwise,
to find the next guard after ¢, with the same property as
above, we can continue the construction of this nested poly-
gon, edge by edge. The maximum number of edges in nested
polygon thus constructed will therefore be twice the number
of guards in this solution, i.e., 2p. Since p < [k /2] 2p will
be less than k. Hence we would have obtained a nested
polygon with fewer than k edges, which contradicts the
optimality of P*. m

Lemma 1 also implies that:

Corollary 2. Given a pair of nested polygons P, and P, that
are not necessarily convex, if the optimal solution to Problem
(Pout/Poy) has p guards, then k < 2p; i.e., P* has at most 2p edges.

Assume now that both P,, and P, are convex, as shown
in Figure 1, and consider a solution that locates a guard on
every odd vertex of P*; thus assuming that x is the first
vertex of P* in the figure, this solution would place guards at
x and z. We claim that this solution is feasible for Problem
(Pout/ Poye) and therefore can collectively watch entire
bd(P,,). To prove this statement, suppose that it is not true
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and hence, there is some point ¢ € bd(P,,), as shown in
Figure 1, that is unwatched in this solution. This implies that
this solution does not locate any guard in Out(t), which is
given by the two consecutive segments [i, f] and [t j] of
bd(P,,) in this case. However, Lemma 2 of Aggarwal et al.*!
dictates that each of the segments [4, t] and [¢, j] of bd(P,,,)
contains a vertex of P*. If this implies that P* has a vertex at
t then our claim is true, since locating a guard at every odd
vertex of P* ensures that every vertex of P* is watched. If
however, P* does not have a vertex at ¢, then there is one
vertex of P* in each of the segments [j, t] and [¢, j] of bd(P,,).
By locating a guard at every odd vertex, our solution en-
sures that there is a guard on one of these vertices, thereby
implying once again that ¢ is watched in this solution. This
enables us to state that:

Corollary 3. Given a pair of convex nested polygons P, and
P, ... placing a guard at every odd vertex of P* gives a solution to
Problem (P, /P..) for this pair of polygons that is feasible.
Further, since this solution has exactly& / 21guards, it is optimal
too.

2. Algorithms For Problems (P,,/P,.}-{Ann/Ann)

In this section we will discuss all the problems listed in Table
1 individually, and give algorithms for solving them. As
mentioned in the introduction, it will be assumed through-
out that both P, and P, are convex polygons. Although
there are nine different problems listed in the table, we show
that it suffices to consider only a few of them.

2.1. Problems (P,/P,,) and (P, /Ann)

In Problem (P, /P;,), the guards are required to watch only
bd(P,,). In Problem (P,,,/ Ann) however, they are required to
watch the entire annulus. Nevertheless, as will now be
shown, the two are equivalent.

Lemma 4. Given a pair of convex nested polygons P,,, and P,
the optimal solutions to Problems (P /P,,) and (Py/Ann) are
identical.

Proof. Since bd(P,,,) is a subset of the annulus (PouPin)
every feasible solution of Problem (P,,,/ Ann) is also feasible
for Problem (P,,/P,..). To prove the converse, assume that it
is not true. Hence, in some feasible solution to Problem
(P../P,), there is a point g in the annulus, that is not
watched. Since g is not watched in this solution, there cannot
be any guard placed In(g). That implies that the relative
interior of In(q) is also unwatched in this solution, which
makes it infeasible for Problem (P,,/P;,), too. Thus every
feasible solution to Problem (P, /P,) is also feasible for
Problem (P,,,/ Ann) and vice versa, and hence their optimal
solutions will also be the same. ®

Since the optimal solution to Problems (P,,/ P,,) and (P;./
Ann) can be assumed to be the same, we will only discuss
Problem (P,/P,.). It is easy to see the following: if the
optimal solution to this problem locates a guard in the
interior of an edge, say inside (w, r) in Figure 1, then this
guard can be replaced by one at either of the vertices w or r
without disturbing the optimality of the solution. This en-

ables us to conclude that in the optimal solution of Problem
(P.n/ Py), all guards are located on vertices of Py, Since P;,
is opaque, a guard located at a vertex, say 7, can only watch
the two adjacent edges [w, r] and [r, s], implying that at least
[n / 2] guards are needed in any feasible solution. Consider
the solution where a guard is placed at every odd vertex of
P, this is a feasible solution to Problem (P;,/P,,), and
furthermore, it has exactly [# / 2] guards. Hence, it is also
optimal.

2.2. Problem (P,/Po.)

In this problem, the guards are required to watch bd(P,.)
while restricted to be only on bd(P,,,). Consider any optimal
solution to Problem (P,./P,,.), and assume that there is a
guard in this solution, that has been placed at a point x on
bd(P,). If x is not a vertex of P, it must lie on an edge;
assume that this edge is [y, z]. Then it is evident that this
guard placement at x can be replaced by one at either y or z,
without disturbing the optimality of the solution. This is
because the set of points on bd(P,,,,,) that are visible to x is a
proper subset of the set of points on bd(P,,,,) that are visible
to either one of y or z. That allows us to claim:

Lemma 5. Given a pair of convex nested polygons P, and P,
the optimal solution to Problem (P, /P,.) locates the guards only
on vertices of P,..

Thus by Lemma 5, all guards in Problem (P,./ P,,,;) can be
assumed to be located on vertices of P,.. For any vertex v of
P,,, consider Out(v), which represents all points on bd(Po)
that are visible to it. Due to the convexity of P,,, and P, this
entire segment is continuous; hence, by using the Circle
Mapping Transformation to map P, onto a circle, this
segment can be mapped onto an arc on this circle.

Thus one way to solve Problem (P,,,/ P,,,) is to reduce it to
the Circle Covering Problem in the following manner. First
find the segments Out(v) for each vertex v of P,,. Then by
using the Circle Mapping Transformation to map P, onto
a circle, all these Outer Visibility Segments can be mapped
onto arcs on this circle. Now, by solving the Circle Covering
Problem for this circle, we can easily find the optimal place-
ment of the guards from the arcs chosen in the minimal
cover of this circle. That is the idea behind the following
algorithm.

Algorithm—Problem (P,,/P,.)

begin
{
1. Number all vertices of P, from 1 to n clockwise.
2. for(v=1...,n)do
{
Choose vertex v of P,,.
Find the segment Out(v) on bd(P,)-
Label Out(v) as the segment corresponding to vertex v.
v=v+ L
}
. Apply Circle Mapping Transformation to map Py,

Copyright © 2001 All Rights Reserved
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onto a circle, and all segments on bd(P,,,) found in
Step 2 above, to arcs on this circle.

4. Solve the Circle Covering Problem with the circle and
arcs as given by Step 3.

5. The optimal placement of guards is then given by
noting the arcs in the optimal solution found in Step 4
above, and locating guards only on those vertices of P, ,
that labeled the segments corresponding to these arcs.

}

end m

Steps 1 and 2 in Algorithm—Problem (P,,,/ P_.) can be
performed in O( + m) time to determine all the segments in
a sorted order. Then the Circle Mapping Transformation of
Step 3 can be done in O(n + m) time to find all the arcs. As
all arcs are given in a sorted order, the Circle Covering
Problem in Step 4 can also be performed in O(n + m) time,
by using the algorithm in Chandry, Rajan, and Swami-
nathan.!”! Thus the entire algorithm takes O(n + m) time.

It is worthwhile to note that it is also possible, albeit not
as efficient, to solve Problem (P,,/P,.), and therefore Prob-
lem (P,,/ Ann), by reducing it to the Circle Covering Prob-
lem. It has already been argued that the optimal solution to
these problems will locate the guards only at the vertices of
P,,. Thus we can first find the segments In(v) for each vertex
v of P,,. Having done that, the Circle Mapping Transforma-
tion can then be used to map P,,, onto a circle, and all these
Inner Visibility Segments onto arcs on this circle. The solu-
tion to the Circle Covering Problem for this circle, will then
give us the optimal solution to Problem (P, /P,.).

2.3. Problem (P,/P,) and (P,,/Ann)

In both these problems, the guards are restricted to be on
bd(P,). However, in Problem (P,,/P,,) they are required
to watch bd(P,,), whereas in Problem (P,,,/Ann), they are
required to watch the entire annulus. It will now be shown
that despite this difference, the two problems are essentially
equivalent.

Lemma 6. Given a pair of convex nested polygons P, and Py
the optimal solutions to Problems (P, /P,.) (Pou/Ann) are iden-
tical.

Proof. Since bd(P,,) is a subset of the annulus (Powi=P.),
every feasible solution of Problem (P,,,,/ Ann) is also feasible
for Problem (P,,,,,/ P,,). To prove the converse, assume that it
is not true. Hence, in some feasible solution to Problem
(Pout/ Py, there is a point g in the annulus, that is not
watched. Since g is not watched in this solution, there cannot
be any guard placed anywhere in Out(q). But that implies
that the relative interior of the segment In(g) is also un-
watched in this solution, and hence, this solution is infeasi-
ble for Problem (P,,,/P,,) too. Thus every feasible solution
to Problem (P, /P,,) is also feasible for Problem (Poui/
Ann), and vice versa, and hence their optimal solutions will
also be the same. =

Since the optimal solution to Problems (P,./P,,) and
(Poue/ Ann) can be assumed to be the same, we will only
discuss Problem (P, /P,.). In Problem (Poue/ P), it is re-

out

6 5

Figure 3. Critical points.

quired to watch entire bd(P,,), while restricting the guards
to be only on bd(P,,,). Although these guards can be placed
anywhere on bd(P,,), it will now be shown that only some
points on bd(P,,,) need to be considered for possible guard
locations; these will be referred to as critical points. These
critical points are the points of intersection obtained when
each edge of P, is extended to intersect with bd(P,,,,). For
example, in Figure 3, the critical points produced in this
manner are given by 1 through 8. With each edge of P,
producing two such critical points, there will be a total of 2n
of them.

Lemma 7. Given a pair of convex nested polygons P, and Py
in the optimal solution to Problem (P, /P,.), all guards are
located only on the critical points that have been found as above, by

extending each edge of P, to intersect with bd(P,,,)-

Proof. Suppose not, and assume that in the optimal solu-
tion to Problem (P, /P,,) there is a guard placed at a point
x onbd(P,,,), where x is not a critical point as defined above.
Then x must lie between two adjacent critical points; let
these be y and z respectively. It is evident that the set of
points on bd(P,,) that are visible to x, is a proper subset of
the set of points of bd(P,,,) that are visible to either one of y
or z. Therefore, replacing this guard at x with another that is
located at either one of the points y or z still keeps this
solution optimal. m

Thus by Lemma 7, all guards in Problem (Pyyt/ P,y) can be
assumed to be located only on the critical points. For any
such critical point v, consider In(v), which represents all
points on bd(P,,) that are visible to it. Due to the convexity
of P,, and P, this entire segment is continuous; hence, by
using the Circle Mapping Transformation to map P, onto a
circle, this segment can be mapped onto an arc on this circle.
Thus one way to solve Problem (Pout/ P,y,) is by reducing it
to the Circle Covering Problem, along similar lines as Prob-
lem (P, /P,,). In this case however, the polygon P, is
mapped onto a circle and the arcs on the circle are obtained
from corresponding Inner Visibility Segments of the critical
points. This is the basis for the algorithm given below for
Problem (P, ,/P.,).
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Algorithm—Problem (P, ,/P;,)

begin

{

1. Extend all edges of P, to intersect with bd(P,,,) to get
the critical points.

2. Number the critical points obtained in Step 1 from 1 to
2n clockwise.

3. for(v=1,...,2n)do
{

Choose the vth. critical point.

Find the segment In(v) on bd(P,,).

Label In(v) as the segment corresponding to the critical
point v.

v=v+ 1L

}

4. Apply Circle Mapping Transformation to map P,,, onto
a circle, and all segments on bd(P,,) found in Step 3
above, to arcs on this circle.

5. Solve the Circle Covering Problem with the circle and
arcs as given by Step 4.

6. The optimal placement of guards is then given by
noting the arcs in the optimal solution found in Step 5
above, and locating guards only on those critical points
that labeled the segments corresponding to these arcs.

}

end =

Steps 1 and 2 of Algorithm—Problem (P,,/P;,) can be
performed in O(n + m) time, to get all the critical points in
a sorted order. Since there are O(n) critical points, and they
all are given in a sorted order, Step 3 can be performed in
O(n + m) time to get the Inner Visibility Segments corre-
sponding to these critical points. The remaining steps are
similar to Algorithm—Problem (P,,/P,,,) above and will
also take O(n + m) time. Thus it can be claimed that the
entire algorithm takes O(n + m) time.

2.4. Problem (P, /P,.)
In this problem, it is required to watch entire bd(P,,,,) while
restricting the guards to be only on bd(P,,,,). By Corollary 3,
if we find the Minimal Nested Polygon P*, and then place a
guard at every odd vertex of P*, this placement will also be
optimal for Problem (P,,/P,.). As mentioned before, due
to the convexity of both P, and P, it is guaranteed that P*
will always be convex in this case. Hence the algorithm from
Aggarwal et al.””! can be used to obtain the P*, and thereby
the solution to Problem (P,./ P, in O((m + n)log k) time.
It is also possible, albeit not as efficient, to solve it by
reducing it to the Circle Covering Problem. Recall that the
key step in the reduction is the identification of a polynomial
number of discrete points as the only possible guard loca-
tions. It will be shown now that even for Problem (P,,,/
P_..), there exists such a set of points.

Lemma 8. There are O((m + n)k) points on bd(P,,,) with the
property that the optimal solution to Problem (P, /P..,) places
guards only at these points.

Proof. Tt is known from Corollary 3, that the optimal
solution to Problem (P,../P,,.) is obtained by finding a
Minimal Nested Polygon P* and placing a guard at every
alternate vertex of it. Bhadury and Chandrasekaran®™ have
shown that there is a set of O((m + n)k) points on bd(P,,)
with the property that there exists at least one Minimal
Nested Polygon P*, all of whose vertices can be assumed to
belong to this set. These points are given as follows: i) All
vertices of P, and P, and all the critical points found in
Lemma 7; ii) All vertices of both clockwise and counterclock-
wise greedy structures obtained from every point in (i) and
finally; iii) all the tight points on bd(P,).

It is shown therein that the total number of these points is
O((m + n)k) and that these can be found in O((m + n)k) time.
Thus by the definition of these points it can also be assumed
that the optimal solution to Problem (P,,./P,.) places
guards only at points that belong to this set of O((m + n)k)
points. =

2.5. Problems (An/P,), (Ann/P,,,) and (Ann/Ann)

These are the last three problems to be considered. We will
now show that it is not necessary to devise separate solution
procedures for them, because their optimal solutions are
similar to those of Problems (P_,./P..), (Pout/Pou), and
(Poye/ Ann) respectively.

Lemma 9. Given a pair of convex nested polygons P, and P,,,,
the optimal solutions to Problems (P,./Pi.), (Pou/Poue), and
(Pou/Ann) are also optimal for Problems (Ann/P,), (Ann/P_,),

and (Ann/Ann) respectively.

Proof. Assume that in an optimal solution to either Prob-
lem (Ann/P,,), (Ann/P,,,), or (Ann/Ann), a guard has been
placed at a point g inside the annulus (P,,,,~P;.,). If 7 is not on
bd(P,,), then choose a point r P,,, and let s be the point
where a ray from 7, in the direction of g, intersects with
bd(P,,,). Then it is evident that the set of all points on
bd(P,,), bd(P,,), and (PP, that are visible to g is a
proper subset of all points on bd(P,,,), bd(P,,,), and (P~
P,,,) respectively, that are visible to s. Therefore, the guard
placed at g can be replaced by one at s without disturbing the
optimality of the solution. Thus, it can be assumed, without
loss of generality, that in the optimal solutions to Problems
(Ann/P.), (Ann/P,,), and (Ann/Ann), all guards are
placed only on bd(P,,,). This makes the optimal solution to
Problems (Pg/ Pin), (Poue/ Pout), and (P,,./ Ann) optimal for
Problems (Ann/P.), (Ann/P_,), and (Ann/Ann), respec-
tively. m

3. Extensions

In this section we extend the results of the previous sections.
First we show that the Art Gallery problems of this article
are related to some well known concepts in Integer Pro-
gramming. Then, we discuss how efficient parallel algo-
rithms can be devised for them.

3.1. Art Gallery Problems and Integer Programming
All of Problems (P,,/P;,) through (Ann/Ann) are either
solved by reduction to the Circle Covering Problem, or can
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be solved by this reduction. It is evident that the reason why
this reduction works is because of the property that for any
point in the annulus, both the Inner and Outer Visibility
Segments are continuous. This enables us to map these
segments onto arcs on a circle and thereby reduce these
problems to an equivalent Circle Covering problem. This
property is a direct result of the convexity of the two poly-
gons P and P,

However, this property also makes it possible to formu-
late all of these problems as Integer Programs (IP). These IPs
have an elegant property well known in the Integer Pro-
gramming literature as the Circular Ones property, making it
possible to solve all of the Problems in Table 1 using this IP
formulation. This thus exposes the underlying mathematical
structure of these problems and makes it possible to solve
some extensions of these basic problems, which cannot be
reduced directly to the Circle Covering Problem. Further,
this also enables us to make an interesting conjecture about
Art Gallery problems on spiral polygons.

Consider the general 0/1 IP:

Min e™X (1)

subjectto {AX =e; X: 0/1}

where X is a (n X 1) vector, A is a (m X n) matrix all of whose
entries are either 0 or 1, and e is the vector of all 1s whose
dimensions are defined by context. It is well known (see, for
example, Nemhauser and Wolsey!®) that Eq. 1 is NP Hard.
However, if the matrix A has some special properties then
there are polynomial time algorithms available in the liter-
ature. One such property is that of Circular Ones.

Definition 10. A 0/1 matrix is said to have the Circular
Ones property if in every row of this matrix, the 1s occur in
consecutive columns, with the first and the last column
being considered consecutive.

From Bartholdi, Orlin, and Ratliff,[ it is known that if A
has Circular Ones property, then Eq. 1 can be solved in
polynomial time. The solution is obtained either by solving
it by a linear programming-based algorithm or parametri-
cally as a bounded series of Minimum Cost Network Flow
Problems. By adopting the latter approach (which is also
more efficient), and using the well known algorithm of
Orlin!? to solve the Minimum Cost Network Flow Problem,
the above IP can be solved in O(n log m log n(n + m log m))
time. In addition, if the constraint matrix A has this prop-
erty, then more general versions of Eq. 1, where the objective
function coefficients and right hand sides values are num-
bers other than 1, can also be solved in polynomial time.
Furthermore, given a 0/1 matrix that does not have the
Circular Ones property, Tucker®! gives an O(m?n) time
algorithm to check if the columns of this matrix can be
permuted so that the permuted matrix does have the Circu-
lar Ones property. If this is possible, the algorithm also gives
this permutation.

In order to show how all the Problems (P,,/P;,) through
(Ann/Ann) can be posed as Integer Programs of the form of
Eq. 1, with constraint matrices that have the Circular Ones

Figure 4. Example for IP formulations.

property, it will be helpful to explain the general idea behind
these formulations. As a first step, we will identify a poly-
nomial number of points with the property that the optimal
solution can be assumed to place guards only at these points.
A Boolean variable, i.e.,, a 0/1 variable, x, will then be
associated with each such point i, which will be defined as
follows:

_ [1 if a guard is placed at point i
=10 otherwise

The next step will be to consider each point i individually,
and determine the entire area visible to a guard placed at i.
Once this is done for all points, the entire area that is
required to be watched would have been partitioned into
regions, such that each region is visible from some of these
points and (possibly) not from others. Then a visibility matrix
A will be constructed, for which each entry 4, will be deter-
mined as follows:

1 if a guard placed at point
a,= can watch the entire region j
0 otherwise

This visibility matrix will serve as the constraint matrix of
the IP. There will be one constraint for each partition/
region, that will ensure that in any feasible solution to the IP,
the entire area corresponding to this partition is watched.
The objective function of the IP will seek to minimize the
number of guards necessary to satisfy all the constraints.
Assuming that the polygons P;, and P, are as given in
Figure 4, we will now illustrate this formulation for Problem
(Pin/ Poye)- The formulation for the other problems can be
done similarly.

Problem (P, /P,..)-

By Lemma 5, the only guard positions that we need to
consider are the vertices of P;,, which in this case are given
by the points 10, 11, and 12 in Figure 4. Let the variables
corresponding to these points be x,5, ¥;;, and x;,, respec-
tively. The area to be watched is bd(P,,,). By finding the
Outer Visible Segment for each of the points 10, 11, and 12,
it can be verified that these segments partition the entire
boundary into the following intervals: [2, 3], [3, 5], [5, 6],

Copyright © 2001 All Rights Reserved



108

Bhadury et al.

[6, 8], [8, 9], [9, 2]. By checking which one of the vertices can
watch each of these intervals, it is easy to verify that for this
problem, the visibility matrix A is given by the following 0/1
matrix.

10 11 12
(1 1 0] (for segment [2, 3])
111 (for segment [3, 5])
01 1 (for segment [5, 6])
A= 1 1 1 (for segment {6, 8]) (2)
1 0 1 (for segment [8, 9])
1 1 1] (for segment [9, 2])

To see how this visibility matrix above is obtained, con-
sider, for example, the entire interval [2, 3]. This interval is
visible from vertices 10 and 11, but not from 12; hence, the
first row in the matrix A aboveis (1 1 0). The other entries
are obtained similarly. Then, on basis of the visibility matrix

A in (2), the Integer Program to solve Problem (P,,,/P,,) is
given as:
Min x40 + x1; + x12
subject to
X10 +x;; =1 (forsegment[2, 3])
X190+ X3 +x;, =1 (for segment [3, 5]) 3)
X3 +x;; =1 (for segment [5, 6])
X0+ X131+ x;2 =1 (for segment [6, 8])
X10 +x;, =1 (forsegment[8, 9])
X0+ X1+ x5, =1 (for segment [9, 2])

X100 X11, X120 0/1

Since there is one variable for each vertex of P,,,, there will
be n variables in Eq. 3. Consequently there will be O(n)
Outer Visibility Segments and, therefore, as many con-
straints in Eq. 3. Furthermore, since these Outer Visibility
Segments can all be found in polynomial time, it is guaran-
teed that Eq. 3 can be formulated in time that is polynomial
in n and m, and that its size will also be polynomial in 7.

To verify the correctness of the formulation, note that
every feasible solution to Eq. 3 corresponds to a feasible
placement of guards in Problem (P,,,/ P,,,,), as it ensures that
the entire bd(P,,,,) is watched. The converse is also true since
any placement of guards at vertices 10, 11, and 12 which
ensures that entire bd(P,,,) is watched, is also a feasible
solution to Eq. 3. This ensures the correctness of the formu-
lation in Eq. 3.

It is evident from Eq. 3 that the constraint matrix A, which
is basically the visibility matrix for this problem, always has
the Circular Ones property, if the vertices of P,,, are given in
the same order as they appear in the polygon. This is a direct
result of the convexity of P, and P__,, as it ensures that all
those vertices of P, that are visible to any one particular
segment of bd(P,,,,) occur consecutively. Along with the fact
that the size of Eq. 3 is polynomial in n, this enables this
entire formulation to be completed and solved in time that is
polynomial in n and m.

By reducing them to a corresponding Circle Covering

Problem, it can be verified that all of the other problems can
be solved similarly by formulating as IPs. This leads to:

Lemma 11. All the Art Gallery problems stated in Table 1 can be
formulated as 0/ 1 Integer Programs. Both the size of these IPs and
the time taken to formulate them is polynomial in n and m.
Furthermore, given that both P and P, are convex, the con-
straint matrix in all of these formulations is guaranteed to have the
Circular Ones property. These make it possible to be solve these IPs
in polynomial time.

The IP formulations above expose the underlying mathe-
matical structure of these nine problems: the elegant prop-
erty of Circular Ones in all of their Visibility Matrices. This
exposition enables us to make the following conjecture
about Art Gallery problems on spiral polygons. Everett and
Corneil™! have shown that the vertex visibility graph of
spiral polygons is an interval graph, and MacDonald and
Shermer"®! have strengthened this result by showing that
the continuous graph of visibility of points of a spiral poly-
gon is an (uncountably infinite) interval graph, and further,
spiral polygons are the only ones with this property. One
graph that is closely related to the interval graph is a circular
arc graph, which in turn, is related to matrices with the
Circular Ones property. On the basis of this, we conjecture
that visibility matrices of Art Gallery problems on spiral
polygons will have a property similar to the Circular Ones
property, namely, the Consecutive Ones property (see Fulk-
erson and Gross!'2)). If this is true, then by formulating them
as IPs along similar lines as done in this article, these prob-
lems could also be solved in polynomial time (Nemhauser
and Wolsey®).

Aside from the conjecture above, the exposition of this
basic property also enables us to solve some extensions of
these basic nine problems. Consider, for example, the fol-
lowing extension, which is similar to the Prison Yard Prob-
lem that was posed independently by D. Wood and J.
Malkelvitch in [25], p. 146, and solved by Fiiredi and Kleit-
mann.™3!

Problem (P, /P;,, P,.) (Prison Yard Problem for Convex
Nested Polygons).

Assume that in addition to P, and P,,,, we are also given
a convex polygon P, with I vertices, which is nested, i.e,,
completely contained in the annulus (P,,,—P,,). Further, un-
like P, the polygon P, is not opaque, i.e., a guard on the
boundary of P, can watch bd(P,,). What is the minimum
number of guards required to watch both bd(P,) and
bd(P,,,) simultaneously if the guards are restricted to be
only on the boundary of P,,.

Thus, Problem (P, /P, Pow) is @ combination of Prob-
lem (P,./P.) and (P /P;.). For example, in Figure 5 the
two guards at x and y on the boundary of P, can watch
both bd(P,,)) and bd(P,,,). By using arguments similar to the
ones in Lemma 5 for Problem (P, /P,,) and Lemma 7 for
Problem (P,,./P,,), it can be seen that for Problem (P,../
P, Po.), we need to consider only the following points for
the placement of guards: the vertices of P, ., and the points
of intersection obtained when the edges of P, are extended
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Figure 5. Prison Yard Problem for Convex Nested
Polygons.

to meet with the boundary of P, (as done in Algorithm—
Problem (P,,./P,.))- Thus there will be O(n + 1) such possi-
ble guard locations. Then, by determining the segments of
bd(P;,) and bd(P,,,) that are visible to each of these possible
guard locations, it is possible to formulate this as an IP of the
form of Eq. 3. In this IP, there will be two sets of constraints:
one corresponding to the segments on bd(P,,,), to ensure that
entire bd(P;,) is watched and another for segments on
bd(P,,,), to ensure the same for entire bd(P,,,). As with Eq.
3, the size of this IP will be polynomial in 7, m, and [, and the
convexity of P, P, and P, will guarantee that its con-
straint matrix will have the Circular Ones property. Thus
this IP can be solved in polynomial time, to obtain the
solution to Problem (P, ../ P;,, Pou)- On the other hand, an
attempt to solve this problem by directly reducing it to the
Circle Covering Problem, as was done for Problems (P,,/
P.) through (Ann/Ann), will fail, since there will be two
circles to cover simultaneously: one for P, and another for
P

Similar to Problem (P,.../ P, P..) there are also other
extensions of Problems (P,,/P,,) through (Ann/Ann) that
can be solved easily by formulating as IPs, where the objec-
tive function or the right hand side coefficients are numbers
other than one. For example, if there are different costs for
locating guards at different points on the boundary of the
two polygons, we will have a weighted version of these Art
Gallery problems, where it may be required to find the
“cheapest” placement of guards. That problem can be easily
solved by formulating it as an IP of the form of Eq. 3, with
the different costs being represented in the coefficients in the
objective function. Since the constraint matrix is not affected
by this, the resulting IP still has the Circular Ones property
that makes it solvable in polynomial time.

3.2. Parallel Algorithms for Problems (P,,/P,,)—(Ann/Ann)

We will now show that all of Problems (P,,/P;,) through
(Ann/Ann) have efficient parallel algorithms. We design
our parallel algorithms with respect to the well known Par-
allel Random Access Machines (PRAM). This is a synchro-

nous model of computation, where each processor has ac-
cess to the shared memory and all communications are
performed through the shared memory. In this article, we
allow several processors to read from the same memory
location, but common write is disallowed. This model is
known as the CREW-PRAM (Concurrent Read Exclusive
Write PRAM). For details on the PRAM model of computa-
tion, see Karp and Ramachandran.!’® There is a vast body of
literature on PRAM algorithms for problems in graph the-
ory, computational geometry, numerical computation, etc.
For example, we can sort # numbers in O(log #) time using
O(n) processors (Cole®®). Similarly, the convex hull of n
planar points can be computed in O(log 1) time using O(n)
processors (Atallah and Goodrich!®).

Rather than providing solutions for each of Problems
(P,./P,,) through (Ann/Ann), we extract the main compu-
tations and provide an efficient parallel implementation for
each of them. The main computations are: i) Computing a
mapping from the Art Gallery problem to the Circle Cover
problem; ii) Computing an optimal circle cover; and iii)
Computing a Minimum Nested Polygon for a given pair of
nested convex polygons.

(i) can be performed as follows. Consider Problem (P, /
P_..—for each vertex v € P, Out(v) is an arc on the circle
corresponding to P, (assuming that we have a clockwise
orientation of the circle). To find the endpoints of the arcs,
we need to know where the rays from vertex v intersect the
boundary of P, ie., bd(P,) By performing a binary
search based on polar coordinates, for each ray, we can find
the points of intersection with bd(P,,,) in O(log m) time.
Hence in O(log m) time, using O(n) CREW-PRAM proces-
sors, we can find all the arcs. Using the ideas from merging
two sorted sequences of length #n and m in O(log n + log m)
time using O((n + m)/(log n + log m)) CREW-PRAM pro-
cessors (see Chandru et al'®), we can compute all arcs opti-
mally in parallel.

(ii) can be performed by adapting the parallel prefix to
compute the optimal circle cover. Parallel prefix of n num-
bers can be performed in O(log n) time using O(n/log n)
CREW-PRAM processors; see Karp and Ramachandran!*®!
and Jaja.l'!

(iii) can be performed in O(log # log log n) time using O(n)
CREW-PRAM processors by the algorithm of Chandru et
all8l

Thus it can be concluded that we have an efficient paral-
lelization for all the problems in Table 1.

4. Conclusions and Future Work

In this article we have studied a group of Art Gallery prob-
lems that are defined for a pair of convex nested polygons.
We have shown that all of these can be solved in polynomial
time, by either reducing them to the Circle Covering Prob-
lem, or by exploiting the properties of the Minimal Nested
Polygon for these polygons. We also show that these prob-
lems can be solved in polynomial time by formulating them
as Integer Programs. In all of these formulations, the con-
straint matrices have the desirable Circular Ones property.
Finally, it is also demonstrated how efficient parallel algo-
rithms may be devised to solve these Art Gallery Problems.

Copyright © 2001 All Rights Reserved



110

Bhadury et al.

There are many different problems in this area that are
open. Future research may examine the possibility of devel-
oping a geometric characterization of all polygons for which
these Art Gallery problems can be solved by reduction to the
Circle Covering Problem. Besides the Circular Ones prop-
erty, there are also other properties of the constraint matrices
for which Integer Programs can be solved in polynomial
time. Another strand of future research may be to investi-
gate if there are other types of polygons for which these Art
Gallery problems can be formulated as Integer Programs
with some of these other properties.
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