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Abstract: 

This paper studies the following problem in stock cutting: when it is required to cut out complicated designs 

from parent material, it is cumbersome to cut out the exact design or shape, especially if the cutting process 

involves optimization. In such cases, it is desired that, as a first step, the machine cut out a relatively simpler 

approximation of the original design, in order to facilitate the optimization techniques that are then used to cut 

out the actua1 design. This paper studies this problem of approximating complicated designs or shapes. The 

problem is defined formally first and then it is shown that this problem is equivalent to the Minima1 Nested 

Polygon problem in geometry. Some properties of the problem are then shown and it is demonstrated that the 

problem is related to the Minimal Turns Path problem in geometry. With these results, an efficient approximate 

algorithm is obtained for the origina1 stock cutting problem. Numerica1 examples are provided to illustrate the 

working of the algorithm in different cases. 
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Article: 

1 INTRODUCTION 

Stock cutting refers to the operation of cutting out a given design or shape from parent material. Most of it is 

done by automated machines nowadays. Problems arising in stock cutting have been studied for some time but 

traditionally, most of the literature on stock cutting in the OR/OM community has focused on minimizing the 

amount of parent material wasted in cutting—for example Gilmore and Gomory
10,11

, Christofides and 

Whitlock', Dori and Ben-Assat
6
, Venkateswarlu and Martyn

15
. There are, however, other problems of 

theoretical and practical interest in this area. One such problem arises when it is required to cut out shapes or 

designs that are very complicated, and hence it is difficult, error prone (and therefore expensive) to cut out such 

shapes or designs. In additions, almost all cutting processes utilize some optimization techniques—for instance, 

these might be intended to minimize the trim losses encountered in the cutting process (as in Venkateswarlu and 

Martyn
15

) or the time required to cut out the design (as in Bhadury and Chandrasekaran
2
). As all of these 

optimization procedures involve extensive computations, the time taken by them depends, to a large extent, on 

the number of edges in Pin and Pout − thus the more complicated the design or the parent material, the more time 

consuming it is to apply optimization techniques. Therefore, when the designs and shapes that are to be cut out 

are very complicated it is desirable to approximate them first, by simpler designs or shapes. 

 

There are many ways to define "simpler" − however, one of the most popular ways to define it is to 

approximate the shape with another one that has the fewest number of edges. While the intuitive reasoning 

behind such an approximation is clear, there is also a practical reason for using it. Fewer edges mean fewer 

turns to be taken by the cutting machine and that is desirable because of the standard assumption in robotics, 

that it is more expensive for any automatic machine to stop and turn than it is for it to travel straight. 

 

It is this problem of design approximation in stock cutting of complicated designs, that will be studied in this 

paperr. A formal description of the problem is as follows: given a piece of material, (assume that it is a polygon 
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and therefore its boundary is made up of straight line edges) it is required to cut out a design that is drawn upon 

it (also assumed to be polygonal). Because of the complexity of the design, it is desired to approximate the 

design instead by the simplest design possible, i.e. by another design with the minimum number of sides. This 

can be seen equivalent to the following problem in geometry, known as the Minimal Nested Polygon problem: 

given two simple polygons Pin and Pout with Pin completely contained in Pout, it is required to find another 

polygon, P
*
, that is contained in the annular region between Pin and Pout, completely contains the polygon Pin 

and has the fewest number of sides. 

 

Once the approximation is completed, the design that is to be cut out is enclosed in the simplest possible shape. 

Then, in the second stage of the cutting process, the desired design is cut out from this approximation after 

applying the required optimization techniques. Thus by replacing the parent material Pout, by as simple a shape 

as possible, this approximation facilitates this optimization process. For the same reasons, this approximation is 

also helpful when the given design is not complicated, but the parent material, i.e. Pout is. 

 

Two other interesting applications of this problem are in facility layout and robotic path planning respectively. 

In facility layout problems, this problem arises when the annulus between Pin and Pout represents a geographical 

region and it is required to cover the entire region by locating the fewest number of facilities while ensuring that 

line-of-sight communication is maintained between adjacent facilities. In robotic path planning this problem has 

applications when the annulus between Pin and Pout, represents the space that has to be traversed by a robot, and 

it is required to design a path that makes the minimum number of turns. The Minimal Nested Polygon problem 

has therefore been extensively studied, especially in the computer science community-see Aggarwal et al.
1
, 

Ghosh and Maheshwari
9
, Chandru et al.

4
-all of whom give algorithms for different cases of this problem. 

 

In this paper however, some different aspects of this problem have been explored. Some properties of the 

Minimal Nested Polygon problem are shown first, and then it is shown that the design approximation problem 

being considered in this paper is related to another well known problem in geometry, namely, the Minimal 

Turns Path problem. The Minimal Turns Path problem is stated as follows: given a simple polygon P and any 

two points x and v in it, find a path between x and y that is fully contained in P and makes the minimum number 

of turns (see Suri
14

, Reif and Storer" for algorithms for the problem). With the results obtained, an efficient 

algorithm is given which, given a pair of polygons Pin and Pout, outputs a polygon that is contained in the 

annulus between the two, contains Pin, and has at most two sides more than P*. 

 

The remainder of the paper is divided into four sections. The second section defines all the terms and notation 

used in the paper and reviews some existing results that are necessary for the analysis. Some results are then 

stated and proved in the third section—they help characterize the shape and relative position of the Minimal 

Nested Polygon P
*
 and also relate this problem to the Minimal Turns Path problem. With the aid of the results 

obtained, the fourth section gives an efficient approximate algorithm that gives an answer to the design 

approximation problem that is very close to the optimal answer. Finally, the fifth section summarizes the 

conclusions of the paper and discusses some open problems. 

 

2 DEFINITIONS AND EX1ST1NG ALGORITHMS 

This paper requires several definitions. All of the definitions required by the paper and the existing results in the 

literature that are used here are now defined below. 

 

 The polygons Pin and Pout are assumed to have p and q vertices respectively. Hence a linear time 

algorithm for this problem would take O(p + q) time. 

 A polygon is said to be simple if and only if no two of its edges intersect at any point other than a vertex 

of the polygon—see Figure 1, where the polygon S is a simple polygon. If two edges of a polygon 

intersect at a point other than a vertex, (obviously these edges would then have to be non-adjacent), the 

polygon is called a non-simple polygon- as shown by the polygon in Figure 2. 



 Two points in a polygon are said to be visible to each other if and only if the line joining these two 

points is completely inside the polygon, i.e. it never leaves the interior of the polygon. For example in 

Figure 1, points x and y are visible to each other but points x and z are not. 

 

 
 

 
 

 A polygon is said to be convex if and only if all of its interior points are visible to each other. One of the 

properties of a convex polygon is that all its internal angles are less than 180°. 

 The convex hull of a simple polygon S, denoted by CH(S), is the smallest convex polygon that contains S 

− see Figure 1 for the convex hull of the simple polygon S. As shown in the figure, "convexifying" a 

simple polygon by constructing its convex hull, identifies pockets and lids in the original simple 

polygon. It has been shown in Preparata and Shamos
12

 that given a simple polygon, its convex hull can 

be found by a linear time algorithm. 

 A polygon is said to be star shaped if there exists at least one point in it from which the entire polygon is 

visible. The set of all such points in a star shaped polygon, from where the entire polygon is visible is 

called the kernel of this star-shaped polygon—see Figure 3 for a star shaped polygon and its kernel. It is 

clear that a convex polygon is also star shaped and its entire interior is its kernel. 

 Given two polygons P and Q, where P is simple and Q is convex and Q is completely contained in P, 

the complete visibility polygon of Q in P is the set of all points in P such that from each of these points 

the entire polygon Q is visible, i.e. from each of these points, it is possible to draw both the anti-

clockwise and the clockwise tangent to Pin. For instance, if P is star shaped and Q is its kernel, then 

 

 
 



 P is the complete visibility polygon of Q in P. Given P and Q, the complete visibility polygon of Q in P 

can be found in linear time as shown in Ghosh
7
. 

 Given a polygon S and two points x and y in it, the algorithm in Suri
14

 computes the Minimum Turns 

Path between x and y in linear time. 

 

Consider any point x in the annulus between Pin and Pout such that CH(Pin) is completely visible from it, i.e. it is 

possible to draw both the clockwise and the anti-clockwise tangents from this point to Pin. Let the two vertices 

of Pin that these two tangents meet be denoted by zc(x) for the clockwise tangent and za(x) for the anti-clockwise 

one respectively (in case any one (or both) of these tangents intersects Pin at two vertices choose any vertex 

arbitrarily to call zc(x) or za(x)). The point where the directed line segments [                       ] and [                       ] leave the 

interior of Pout for the first time is denoted by xc and xa respectively. See, for example, Figure 3 where the points 

x, zc(x), za(x), xc and xa are shown. 

 

3 MINIMAL NESTED POLYGONS AND MINIMAL TURNS PATHS 

This section contains the lemmas that prove some properties of the Minimal Nested Polygon problem and 

establish its relationship with the Minimal Turns Path problem. Given the shapes and the relative positions of 

Pin and Pout, the shape and the position of P
*
 is characterized in Lemmas 1 and 2 and Corollaries 1 and 2. The 

final results from these lemmas and corollaries are listed in Table 1. The question to be investigated in these 

lemmas is the following: under what conditions will P
*
 be convex, and if so, what will be its relative position? 

The first part of the question is answered by Lemma 1 and Corollary 1 and the second part by Lemma 2 and 

Corollary 2 respectively. 

 

Lemma 1: For a given pair of polygons Pin and Pout the Minimal Nested Polygon P
*
 is convex if and only if CH 

(Pin) is fully contained inside Pout. 

 

Proof. In the appendix. 

 

It is interesting to note that a similar property of a nested polygon, but not the Minimal Nested Polygon P
*
, has 

been shown in Ghosh
7
. 

 

Corollary 1: If Pin is convex, P
*
 is convex too. 

 

Proof. If Pin is convex, its convex hull is Pin itself, which is known to be contained in Pout. Hence the conditions 

of lemma 1 are automatically satisfied and P
*
 is convex. ∎ 

 

 

 

Lemma 2: (from Ghosh
7
 and Ghosh et al.

8
) For a given pair of polygons Pin and Pout if P

*
 is convex then P

*
 is 

fully contained in the complete visibility polygon of Pin in Pout. 

 

For a proof of Lemma 2, the reader is referred to the above papers. However based on the previous lemmas and 

corollary it can be claimed that: 

 

Corollary 2: If Pin is non-convex but CH (Pin) is contained inside Pout, then P
*
 lies in the annulus between 

CH(Pin,) and the complete visibility polygon of CH(Pin) in Pout. 



Proof. Because CH(Pin) is contained inside Pout, it is known from Lemma 1 that P
*
 is convex. Thus, it can be 

claimed that P
*
 does not have any vertex inside a pocket of Pin that is formed by constructing CH(Pin), because 

if it did then P
*
 would not be convex. Therefore, by Lemma 2 above, P

*
 is inside the complete visibility 

polygon of CH(Pin) in Pout. ∎ 
 

Hence, by Lemma 2, it can be concluded that if CH(Pin) is contained in Pout, then Pin can be replaced by CH 

(Pin) without changing the problem. The various properties of P
*
, depending on the shapes of Pin and Pout are 

given in Table 1. 

 

Having characterized the shape and relative position of P
*
, it now remains to be shown how the Minimal Nested 

Polygon problem is related to the Minimal Nested Turns path problem, and how the latter can be used to give an 

approximate answer to the former. That is now done in Lemmas 3 and 4. These two lemmas will then form the 

basis for the approximate algorithm to be given in the next section. However the following definition is needed 

first. 

 

Definition 1 Choose any point x in the annulus that is outside CH(Pin) from which it is possible to draw both 

the clockwise and the anti clockwise tangent to CH (Pin). Consider all paths from point x to itself that 

circumscribe Pin − of these, the one that makes the minimum number of turns to come back to the point x is 

called the Minimum Turns Path of x − this path also forms a polygon that is nested in the annulus between Pin 

and Pout and passes through x − this is referred to as the Minimal Turns Polygon of x and denoted by MT (x). 

 

One problem encountered in computing MT(x) is that the annulus between Pin and Pout is not a polygon—

however this problem can be rectified in a simple way. Given Pin, Pout and x, MT(x) can be found by introducing 

an additional edge through x that cuts the annulus between Pin and Pout and converts it to a simple polygon and 

then giving this converted polygon as an input to the algorithm in Suri
14

. For example in Figure 4, the edge 

(7,F) is introduced and that converts the annulus to the polygon whose vertices are, (in order): F,7,1,2,...6, 7, F, 

E, D,C..., A, F. By the choice of the point x, it can be guaranteed that such an additional edge can always be 

constructed. Hence given Pin, Pout and a point x in the annulus with the required property, MT(x) can be found in 

linear, i.e. O(p + q) time. 

 

However, in the special case where Pin is convex and Pout is its complete visibility polygon for any point x in the 

annulus, MT(x) can be constructed by an easy procedure, without resorting to the algorithm in Suri
14

. The 

procedure is as follows: from x, draw the clockwise tangent from x to Pin and denote the intersection point of 

this tangent with the boundary of Pout as y. From y, repeat this process of drawing successive clockwise tangents 

to Pin until x becomes visible to the last found point on the boundary on Pout. This has been shown in Figure 4 

whereand Pout are both convex and hence the Minimal Turns Path polygon of the point x in the figure is given 

by the polygon whose vertices, in order, are x, x1, x2, x3 and have been found by drawing clockwise tangents 

from x successively. It is easy to verify that this procedure to obtain the Minimal Turns Polygon of a point also 

takes linear time. 

 

 



 

Lemma 3: If is convex, consider any point .x that is in the complete visibility polygon of Pin in Pout. It is 

always true that MT(x) can have at most two more edges than P
*
. 

 

Proof. In the appendix. 

 

Lemma 4: If Pin is non-convex and CH(Pin)is contained in Pout, for any point x that is in the annulus between 

CH(Pin) and the complete visibility polygon of CH(Pin) in Pout, MT(x) has at most two more edges than P
*
. If 

CH (Pin) is not contained in Pout, then there always exists a point x on the boundary of CH(Pin) for which the 

above is true. 

 

Proof. In the appendix. 

 

Lemma 5: For a given pair of polygons Pin and Pout if P
*
 is convex and if x is a point in the annulus outside 

CH(Pin) such that it is possible to draw both clockwise and anticlockwise tangents from x to CH(Pin), then 

MT(x) is also convex. 

 

Proof. In the appendix. 

 

Hence by lemmas 3, 4 and 5, if one can choose a point x that is outside CH(Pin) and from which it is possible to 

draw both the clockwise and the anti-clockwise tangents to CH (Pin), then the Minimal Turns Polygon of x can 

be used as an approximation of P
*
 as it will have the same property of convexity as P

*
 and have at most two 

more edges. This will form the basis of the algorithm given in the next section. 

 

4 AN EFFICIENT ALGORITHM FOR FINDING P
*
 

Based on the lemmas and corollaries of the previous section, the following algorithm is proposed to give an 

approximation of P
*
 Given Pin and Pout, the algorithm first determines whether P

*
 is convex. Then it chooses a 

point x with the property that for this point x, MT(x) is an approximation of P
*
. 

 

Algorithm Approximate P* 

Input: Two polygons Pm and Poor 

Output: A Nested Polygon that has the same convexity properties as P* and at most 2 more sides. 

1. Check if Pin is convex. 

2. If Pin is convex then 

{ 

2.1 Because Pin is convex, by Corollary 1 the Minimal Nested Polygon, P
*
 is convex. It is also known that 

P
*
 is contained in the complete visibility polygon of Pin in Pout, Hence replace Pout by the complete 

visibility polygon of Pin in Pout. Then choose any point x in the annulus between Pout and Pin. 

} end if 

3. If Pin is non-convex then 

{ 

3.1 Construct CH(Pin). Check if CH(Pin) is contained in Poo,.  

3.2 If CH(Pin) is contained in Pout then 

{ 

3.2.1 It is known from Corollary 2 that P* is convex and lies between CH(Pin) and the complete 

visibility polygon of CH(Pin) in Pout. Hence do the following: 

3.2.2 Replace Pin by CH(Pin) 

3.2.3 Construct the complete visibility polygon of Pin in Pout and replace Pout with this complete 

visibility polygon. 

3.2.4 choose any point x in the annulus between Pout and Pin. 

} end if 

3.3 If CH(Pin) is not contained in Pout, then 



3.3.1 Choose any point x on the boundary of CH(Pin) that is inside Pout—in particular, one can choose 

any vertex of Pin that defines a lid in CH(Pin). Lemma 4 guarantees that with such a choice of x the 

algorithm will produce a correct approximation of P
*
. 

} end if 

} end if 

4. For the point x chosen construct MT(x). 

 

Step 1 can be done in O(p + q), i.e. linear time, by checking all the internal angles of Pin, and verifying if all are 

less than 180
°
. Step 2 requires the construction of the complete visibility polygon of Pin in Pout by using the 

algorithm given in Ghosh
7
; this can be done in the O(p + q) time. Step 3.1 finds the convex hull of Pin, which 

can also be done in linear time using the algorithm in Preparata and Shamos
12

. In step 3.1, checking if CH(Pin) 

is fully contained in Pout can also be done in linear time using the algorithm given in Preparata and Shamos
12

. In 

step 4, MT(x) can be found in O(p + q) time by edge through x, and then using the algorithm given in Suri
14

. 

Therefore the entire algorithm takes linear, i.e. O(p + q) time. It has already been shown why MT(x) is 

guaranteed to have the same properties of convexity and at most two edges more than P
*
. By the linearity of this 

approximate algorithm, it can be claimed that this is an approximate algorithm that takes optimal time. 

 

To better explain the working of this algorithm, three examples are given—they are shown in Figures 4, 5 and 6 

respectively. Table 2 lists gives a description of each these examples and the working of the algorithm in each 

case. 

 

5 CONCLUSIONS AND FUTURE WORK 

This paper has considered the problem of approximating complicated designs for stock cutting and has shown 

the equivalence of this problem and the well known Minimal Nested Polygon problem. The conclusions form 

this study can be summarized as. 

 

1.  The shape of the Minimal Nested Polygon P* is decided by the shapes and relative positions of Pin and 

Pou„ as shown in Table L 

 

 
 

 



 
 

2. This problem is related to the Minimal Turn Path problem by defining the Minimal Turns Polygon of a 

point x, denoted by MT(x). 

3. Regardless of the shape of Pin and Pout, there exists a point x in the annulus between the two polygons for 

which MT(x) can be used as an approximation for P* as it has the same property of convexity as P* and 

has at most two more edges. 

4. An algorithm has been presented that uses the property in 3 above to find such a point x and give an 

approximate P* in time that is linear in the input. 

 

There are a lot of open problems in this area. For instance, an interesting open problem is to consider the 

generalization of Lemmas 4 and 3 to any point that is in the annulus between Pin and Pout, when Pin and Pout 

have arbitrary shapes. It may be possible to relate the number of edges in P
*
 to the number of edges in the 

Minimal Turns Polygon of any point in the annulus. Another interesting open problem is to partition the annulus 

between Pin and Pout into disjoint regions such that all points within the same region have the same number of 

edges in their Minimal Turns Polygons. This problem has been considered in Bhadury and Chandrasekaran3 in 

the special case when Pm and Pout are both convex. However no result exists about the general case when these 

two polygons are only required to be simple. 



 

Acknowledqement 

The first author was supported by NSERC Grant #OGP 0I2 I689 and UNB Grant #26-7. The second author was 

supported, in part, by The Morris Hite Center at The University of Texas at Dallas. This support is gratefuIly 

acknowledged. 

 

References 

1. Aggarwal, A., Booth, H., O'Rourke, J., Suri, S. and Yap, C. K. (1989) Finding minimal convex nested 

polygons. Information and Computation, 83, (1), 98-110. 

2. Bhadury, J. and Chandrasekaran, R. (1994) Stock cutting to minimize cutting 1ength. European Journal 

of Operational Research (to appear). 

3. Bhadury, J. and Chandrasekaran, R. (1993) Finding the set of all minimal nested convex polygons. 

Working Paper, University of New Brunswick, Fredericton, Canada. 

4. Chandru, V., Ghosh, S. K., Maheshwari, A., Rajan, V. T. and Saluja, S. (1991) NC-algorithms for 

minimum link path and related problems. Technical Report No. CC-91-4, Institute for Interdisciplinary 

Engineering Studies, Purdue University. 

5. Christofides, N. and Whitlock, C. (1977) An algorithm for two dimensional cutting problems. 

Operations Research, 25, 30--44. 

6. Dori, B. and Ben-Assat, M. (1983) Circumscribing a convex polygon by a polygon of fewer sides with 

minimum area addition. Computer Vision, Graphics and Image Processing, 24, 131-159. 

7. Ghosh, S. K. (1991) Computing the visibility polygon from a convex set and related problems. Journal 

of Algorithms, 12, 75-95. 

8. Ghosh, S. K., Maheshwari, A., Pal, S. P., Saluja, S. and Vent Madhavan, C. E. (1993) Characterizing 

weak visibility polygons and related problems. Computational Geometry: Theory and Applications, 3 

(4), 213-233. 

9. Ghosh, S. K. and Maheshwari, A. (1990) Optimal algorithm for computing minima1 nested non-convex 

polygons. Information Processing Letters, 36, 277-280. 

10. Gilmore, P. C. and Gomory, R. E. (1961) A linear programming approach to the cutting stock problem. 

Operations Research, 9, (6), 849 859. 

11. Gilmore, P. C. and Gomory, R. E. (1963) A 1inear programming approach to the cutting stock Problem-

Part II. Operations Research,11, (6), 863-888. 

12. Preparata, F. P. and Shamos, M. I. (1985) Computational Geometry: An Introduction. Springer-Verlag. 

13. Reif, J. H. and Storer, J. A. (1987) Minimizing turns for discrete movement in the interior of a polygon. 

IEEE Journal on Robotics and Automation, RA-3, 182-193. 

14. Suri, S. (1986) A 1inear time algorithm for minimum link paths inside a simple polygon. Computer 

Vision, Graphics and Image Processing, 35, 99
,
-110. 

15. Venkateswarlu, P. and Martyn, C. W. (1992) The trim-loss problem in a wooden drum industry. OR-92: 

Proceedings of the Convention of Operational Research Society of India. 

 

APPENDIX 

This appendix contains the proofs of some of the lemmas in the paper. 

 

Proof of lemma 1: By definition every vertex of Pin is inside P
*
. But CH(Pin) is the smallest convex set that 

contains Pin. Therefore when P
*
 is convex, CH(Pin) is also inside P

*
 and therefore, inside Pout. To prove the 

converse, it needs to be shown that if CH(Pin) is contained in Pout, P
*
 is convex. 

 

Suppose not. Then CH(Pin) is contained in Pout but P
*
 is non-convex. Then choose a reflex vertex (one whose 

internal angle is more than 180°) of P
*
, say p. Identify the vertex of CH(Pin) that is closest to p and call it x. 

Condition on two possible cases: Case (1): p is outside CH(Pin) and Case (2): p is inside CH(Pin). 

 

Case (1): This is shown in Figure 7. Note that from x it is possible to draw both the anti clockwise and the 

clockwise tangents to CH (Pin) (in fact these tangents in this case will be edges of CH(Pin)) and so all the points 



x, zc(x), za(x), xc, xa exist as shown in the figure. Define p − 1 and p + 1 as the previous and successive vertices 

of p and P*. It is clear that P
*
 intersects both [x, xc] and [x, xa] and let these points be denoted by x' and x" 

respectively. Proceeding in a clockwise direction on the boundary of P
*
 let p, be the first vertex of P

*
 that 

occurs prior to the intersection of P* with [x, xa] and let pr be the first vertex of P
*
 that occurs after its 

intersection with [x,xc]. Because p is reflex and lies outside CH (Pin), at least one of pi and pr is distinct from p 

— 1 and p + 1 respectively. By replacing the section of P
*
 between x' and x" with two edges [x', x] and [x, x"], a 

new polygon is obtained, call this the new P
*
. 

 

When pi, pr, p − 1, p + 1 are all distinct, the number of edges between pl and pr in P
*
 is at least four and the new 

P
*
 has as many edges between them. Now assume that two of these are coincident, without loss, pi and p – 1 as 

shown in Figure 8. Then it is clear that p + 1 and pr are distinct—as shown in the figure. In this case P* has at 

least three edges between p, and pr and the new P* has at most as many. Therefore, this new P
*
 has at least as 

many edges between pl and pr as the given P
*
 and furthermore, this new P

*
 has one less reflex vertex. 

 

 
 

A similar proof holds when p lies on the boundary of CH(Pin). Thus the only remaining possibility in Case (2), 

i.e. the case where p is inside CH (Pin). 

 

Case (2): Suppose p is inside CH (Pin). Then CH (Pin) has pockets and lids and clearly p is inside a pocket of 

CH (Pin) as shown in Figure 9. Let A and B denote the two vertices of Pin that define this pocket—i.e. let the line 

segment [A, Bc] be the lid of this pocket. Because A is on CH(Pin), it is possible to draw the two tangents from A 

to Pin (in fact here za(A) = A and zc(A) = B, as shown in the figure) and hence, define Ac and An similarly. As 

before, it is evident that P
*
 intersects both line segments [A, Aa] and [B, Ac] and let the points of intersection be 

denoted by A' and A" respectively. Define pl, pr, p − 1 and p + 1 as before. In this case, the section of P
*
 

between A' and A" will be replaced by the line segments [A', A] and [A, A"], to get the new P
*
. Because p is 

inside CH(Pin) all of the points pi, p − 1, p + 1 and pr are distinct. Hence P
*
 has at least four edges between pl 

and pr, and the new P* has at most as many. ∎ 

 

 



 
 

 

 

Proof of Lemma 3: The proof is by construction. As Pin is convex and x is in the complete visibility polygon of 

Pin in Pout, it is possible to draw the two clockwise and anti-clockwise tangents from x to Pin. Consider the line 

segments [xa, x] and [x, xc] as shown in Figure 10. It is clear that the Minimal Nested Polygon P
*
, will intersect 

the line segments [xa, x] and [x, xc] and let these points of intersection be denoted by x' and x" respectively. Let 

the edges of P
*
 that intersect [xa, x] and [x, xc] be [va+1,va-1] and [vc+1,vc-1] respectively. Consider the polygon 

that is obtained by retaining all the edges of P
*
 between va-1 and vc-1 and adding to it the edges (va-1, x'), (x', x), 

(x, x") and (x", vc-1) in that order. This new polygon thus obtained is certainly a candidate for being a path from 

x to itself that goes around Pin. Furthermore, this new polygon has at most two more edges than P
*
 because P

*
 

has at least two edges between va-1 and vc-1 and this new polygon has four. Since MT(x) has at most as many 

edges as this new polygon, the lemma follows. ∎ 

 

Proof of Lemma 4: If CH (Pin) is contained in Pout, then by Corollary 2, Pin can be rep]aced by CH(Pin), 

without changing the optimal solution to the problem. Doing that, one obtains a Pin that is convex and therefore, 

Lemma 3 becomes applicable. That proves the first statement of this lemma.  

 

To prove the second statement—consider the case where CH(Pin) is not inside Pout However it is clear that 

since Pin is contained inside Pout, there must exist some point on the boundary of CH (Pin) that is inside (for 

example all the vertices of Pin that define the lids of CH (Pin) will be on CH (Pin) and inside Pout). Choose some 

such point as x and repeat the arguments of Lemma 3 above, a similar proof by construction will show that for 

this point x, MT(x) can have at most two more edges than P
*
. ∎ 

 

Proof of Lemma 5: Since P
*
 is convex, it can be assumed that CH(Pin) is completely contained in Pout. 

Then, assuming that x is a point with the above mentioned properties and MT(x) is non-convex (and so has 

at least one reflex vertex), a proof similar to the one used in Lemma 1 can show that the reflex vertices of 

MT(x) can be replaced with non-reflex vertices without increasing the number of sides in MT(x). ∎ 


