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Abstract: 

This paper analyzes the problem of two firms competing in a common linear market with demand distributed 

continuously over the market. The firms wish to maximize their respectíve profits by appropriate choice of 

number of facilities and their locations. Equilibrium location strategies are derived for uniform and symmetric 

triangular demand distributions. It is shown that pioneering advantage may help a firm overcome its cost 

disadvantage with respect to a competitor. 
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1. INTRODUCTION 

Competitive location problems were introduced by Hotelling (1929), who studied the problem of two firms 

selling a common product on a common linear market. In this seminal work, Hotelling concluded that at 

equilibrium the two firms would locate close to each other at the center of the market — a result thus dubbed 

'the principle of minimum differentiation'. Hotelling's work spawned a plethora of similar works on competitive 

location models — for example, Lerner and Singer (1937), Rothschild (1979), Eaton and Lipsey (1975), 

Prescott and Visscher (1977), De Palma et al. (1985). D'Aspremont et al. (1979) showed that Hotelling's result 

does not hold if the price of the product is made a decision variable, as intense price competition, created by 

both competitors locating arbitrarily close to each other, results in lack of equilibrium. In De Palma et al. 

(1985), it was established that Hotelling's results hold when the consumers' tastes are sufficiently 

heterogeneous. Several models also considered oligopolistic situations — for example, Eaton and Lipsey (1975) 

and Lerner and Singer (1937), where it was shown that with three firms competing on a linear market, there 

may not be an equilibrium. However, in the same paper, Eaton and Lipsey derived conditions for equilibrium 

for any arbitrary number of competing firms, other than three. Other models were considered, with additional 

parameters; see, for example, Eiselt (1990). Comprehensive surveys of all such models in competitive locations 

can be found in Graitson (1982), Schmalensee and Thisse (1988) and Eiselt et al. (1993). 

 

Two observations can be made about most of the models that exist in the literature: they generally assume that 

each competing firm locates exactly one facility, and they investigate existence, or lack thereof, of Nash 

equilibrium. A notable exception to the first assumption is Bonanno (1987); however, the main results in the 

paper are only for a few fixed number of facilities. Two well known exceptions to the second observation are 

Prescott and Visscher (1977) and Rothschild (1979); both study Stackelberg equilibria in their models. In their 

paper, Prescott and Visscher describe firms seeking Stackelberg solutions as those with 'foresight' and consider 

two examples where several firms independently enter the market in a given sequence and derive conditions for 

Stackelberg equilibrium. 

 

In this paper, we study a competitive location problem with features that are common to Bonanno (1987) and 

Prescott and Visscher (1977). It can be described briefly as follows. There are two firms, designated by F1 and 
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F2, respectively, that are vying for a common market by opening new facilities. Both firms wish to maximize 

their respective profits. Assuming that one of the firms decides to locate all of its facilities first, and then the 

rival firm locates all of its facilities next, we investigate optimal location strategies for the two rival firms — 

where the term location strategy refers to the number of facilities located by the firm and their respective 

locations. We also seek solutions to a repeated version of this game, where each firm is given multiple turns to 

locate its facilities. 

 

As in Bonanno (1987), we also assume that the competing firms are not restricted to locate only one facility 

each and similar to Prescott and Visscher, we seek Stackelberg solutions in our model. In contrast to the model 

in Bonanno (1987), we allow the setup and marginal costs of the two firms to be different and do not limit the 

number of facilities located by any firm. In contrast to Prescott and Visscher (1977), firms are allowed to locate 

multiple facilities, and we also study the repeated version of the single turn Stackelberg game associated with 

the model. Thus the model investigated can be viewed as a different version of the Hotelling problem, one in 

which both firms are assumed to have infinite foresight and are allowed to decide both the number of facilities 

to locate and their specific locations. This allows an exploration of a wider range of strategic responses by the 

planning firm and derivation of some interesting results. Our model exhibits the phenomenon of entry 

deterrence that enables the firms to get more profit by locating multiple facilities. It is also shown that instances 

of market failure, such as the first entry paradox, demonstrated in Ghosh and Buchanan (1988), do not occur in 

this setting. 

 

We begin with a detailed description of the basic assumptions and parameters of the model. Some more 

assumptions and parameters that will be needed in special versions of the problem will be explained in the 

course of the paper. 

 

Assumptions. The following assumptions are made by the model. (i) The market is assumed to be one-

dimensional and bounded, and therefore, without loss of generality, the [0, 1] line segment, with the demand 

being inelastic and continuously distributed over the market. Two types of demand distributions will be 

considered in the paper: the uniform demand distribution and the triangular demand distribution that is 

symmetric about the center of the market (see Fig. 2). (ii) As in Eaton and Lipsey (1975), Rothschild (1979) and 

the basic models of De Palma et al. (1985), we also assume that both firms deal in a homogeneous commodity 

and charge the consumers a fixed mill price, which is the same for both firms. De Palma et al. (1985) suggest 

this assumption to reflect the hypothesis of homogeneity proposed by Hotelling and continued by his 

successors. Hence, assuming a fixed unit cost of transportation that is the same for all consumers, a consumer 

patronizes the firm with the cheapest delivered price, i.e. the closest facility. (iii) It is assumed that both firms 

cannot locate at the same point in the market at the same time. The analysis in the paper assumes that F1 is the 

first entrant into the market. The analysis for the other case where F2 is the first entrant is similar and is 

therefore not done separately. (iv) Each firm has perfect information on the fixed and marginal costs involved, 

both for itself and also for its competitor. Taken together with assumption (ii), this assumption therefore refers 

to a stationary, homogeneous product market with informed participants. Thus these characteristics presume a 

mature product market, where operational and transactional costs are commonly known to all firms. (v) In 

planning its location strategy, F1 assumes that F2 is unhampered by budgetary restrictions and hence, will 

locate as many facilities as are necessary to maximize its own profit. Given this, F 1 will locate its facilities only 

if its own optimal profit is nonnegative. 

 

Parameters. We denote any single point in the market by x or y where 0 ≤ x, y ≤ 1. Without loss of generality, 

we assume that the total demand of the market has been normalized to one unit. The firms are assumed to 

charge a mill price of p per unit of the product sold. Ci, where i = 1, 2, is assumed to denote the fixed cost of 

locating a facility by firm i and Vi, the corresponding marginal cost of production per unit of the firm. Hence the 

marginal profit of firm i on every unit sold is (p − V), and consequently the break-even sales of firm i, which 

we denote by Bi, are given by (Ci)/(p — Vi). Since the total demand is assumed to have been normalized, in the 

special case when the demand distribution is uniform, Bi also represents the length of the market that a facility 



of firm i needs to serve to break-even. To eliminate trivial instances of the problem, it will be assumed that 

marginal profit of each firm is positive and the break-even sales are less than the total demand of the market. 

 

Taken together, assumptions (i)—(v) characterize the market backdrop of this paper. Customers are located or 

dispersed continuously over a line segment and the distribution of these customers maps into the demand 

distribution. Customers are assumed to be identical in all respects other than their location, e.g. with regard to 

transportation costs, willingness to pay, etc. The two firms market identical, i.e. undifferentiated, products. The 

only variable they control is the number and location of their distribution outlets. These assumptions can also be 

interpreted as setting the market context for a product line selection problem as opposed to a location problem. 

In this perspective, consumers are viewed as being heterogeneous in their preference for a single attribute, e.g. 

quality, service etc. Their location on the line segment is a reflection of their ideal point for that attribute. The 

distribution of demand can then be interpreted as mapping the distribution of ideal points or preferences. Firms 

can then be viewed as choosing the optimal assortment of products to offer to this market. 

 

The remainder of the paper is organized into four sections as follows. In the second section, certain properties of 

the optimal location strategies are stated and proved. The single turn Stackelberg game is solved with F1 as the 

leader and F2 the follower, assuming a uniform distribution of demand. The third section deals with the 

repeated version of this Stackelberg game. The fourth section reconsiders the Stackelberg game of the second 

section, in the case where the demand distribution is symmetric triangular. The fifth section summarizes the 

conclusions of the paper. 

 

 
 

2. SINGLE TURN CASE — UNIFORM DISTRIBUTION 

This section deals with the most basic version of our model, namely the following problem: assume that F1 is 

given the option of entering the market and then, after F1 has taken its decision, F2 is given the option to locate 

its facilities. Given this, it is desired to find the optimal locations strategies for F1 and F2. In the terminology of 

game theory, this is the single turn Stackelberg game with F1 and F2 as leader and follower, respectively. 

 

We introduce some notation that will be used in this section. An interval is defined as a segment of the market 

between two adjacent facilities. When an interval contains either of the points 0 or 1, it is called a terminal 

interval, otherwise an interior interval. An interval is said to belong to firm i if all the customers in that interval 

patronize a facility of that firm. Assuming that there are m facilities and that they are numbered from the left to 

the right, the interval between the jth and (j + 1)th facility is referred to as the jth interval (note that the 

terminals 0 and 1 are referred to as the 0th and the (m + 1)th facility, respectively), as shown in Fig. 1. An entry-

deterring interval, or e.d.i., of F1 at a point x, where x ∈ [0, 1], is defined as an interval of maximum length 

between two adjacent facilities of Fl, the leftmost located at x, such that F2 does not have any incentive to locate 

in between. 

 

As with any Stackelberg game, the first issue to be resolved is the optimal location strategy of F2, given a fixed 

locational configuration of Fl. That is done in the following lemma. 

 

Lemma 1. Given any arbitrary demand distribution, F2 locates at most two facilities in any interval of F1. 

Moreover, when the demand distribution is uniform, F2 locates either 0 or 1 in a terminal interval and 0 or 2 

facilities in an interior one. 

 



Proof. Since the market is one-dimensional, F2 can take away any interval of F1 by locating two facilities, each 

of which is arbitrarily close to the two adjacent facilities of F1 that define the endpoints of this interval. Hence 

F2 does not need to locate any more than two facilities in any interval of Fl, and that proves the first statement. 

 

When the demand distribution is uniform, if F2 locates one facility inside an interior interval of Fl, say the jth 

interval of length L, it takes away an interval of length L/2 from F1. In order for F2 to do so, L/2 should be at 

least B2 which implies that L is at least 2B2. Hence it is optimal for F2 to locate two facilities in that interval, 

one to the right of the jth facility and close to it and one to the left of the (j + 1)th facility and close to it, thereby 

taking away the entire jth interval from Fl. A similar proof shows that if F2 were to locate in any of the terminal 

intervals of F1, it is optimal for F2 to locate exactly one facility that is arbitrarily close to the terminal facility of 

F1 and cut off F1 from the terminus of the market. This proves the last statement of the lemma.   ∎ 

 

There are two immediate consequences of Lemma 1 — the first is that when the demand distribution is uniform 

over the market, any terminal e.d.i. is of length B2 and any interior e.d.i. is of length 2B2. The second 

consequence is that if B2 < 
 

 
B2, regardless of the distribution of demand over the market, it is optimal for F1 to 

not locate any facility at all. This is so because, if this condition holds, and F1 locates any facilities, then F2 can 

locate two facilities for every facility of F1 − one to its left and the other to its right and both arbitrarily close, 

and get the entire market at a positive profit. Another general result about the optimal location strategy can be 

stated as follows. 

 

Lemma 2. Given any arbitrary demand distribution, if B1 ≤ B2, F1 will locate facilities in the optimal solution, 

i.e. the optimal profit of F1 is nonnegative in this case. 

 

Proof Consider a strategy of F1 where it locates one facility at a distance of x from 0, such that the area of the 

demand distribution in the interval [0, x] is B2 - this is a feasible location strategy of F1 that has a nonnegative 

profit. Therefore, the optimal strategy must give F1 nonnegative profit too.   ∎ 

 

It will now be shown in the next three lemmas, that when the demand distribution is uniform, the optimal 

location strategy has some more properties that considerably simplify the analysis. 

 

Lemma 3. Given a uniform demand distribution, if B1 ≤ B2, it can be assumed that F2 does not locate any 

facilities in an optimal solution. 

 

Proof. Suppose not. Then by Lemma 2, F1 has also located some facilities in this optimal solution. If F2 locates 

in the 0th interval, it can be concluded that the length of this interval is at least B1. Then an alternative location 

strategy by F1, where it makes the 0th interval entry deterring to F2, by locating a minimum number of 

additional facilities that are required to do so, gives F1 at least as much profit and satisfies the lemma. If, 

however, F2 locates in an interior interval, say the jth interval, then by Lemma 1, it can be asserted that the 

entire jth interval belongs to F2 and is therefore at least 2B2 in length. In that case, an alternative location 

strategy that locates an additional facility at a distance of 2B2 from the present jth facility, and all the other 

facilities at the same locations, gives F1 more profit than the present strategy.   ∎ 

 

Lemma 4. Given a uniform demand distribution, if F1 locates any facilities, it can be assumed that all of F l's 

interior intervals are contiguous. 

 

Proof. Suppose not. Because both F1 and F2 have located their facilities, it can be concluded that B2 < B1 ≤ 2B2. 

Hence in this optimal solution, there must exist an interior interval of F1, that F2 has captured by locating two 

facilities, as described in Lemma 1. Then an argument similar to the one in Lemma 3 will show that nil, is 

impossible.   ∎ 

 



Lemma 5. Given a uniform demand distribution, if both F1 and F2 locate facilities, then it can be assumed that 

both terminal intervals do not belong to the same firm. 

 

Proof Since both F1 and F2 have located their facilities, it can be assumed that B2 < B1 ≤ 2B2. Suppose that both 

terminal intervals belong to to F2. Referring to Fig. 1, the 0th and the mth intervals, i.e. the left and the right 

terminal intervals, are each of length at least B2. Then an alternative location strategy for F1 is to locate its first 

facility at a distance of B2 from 0 and the other facilities at the same interdistance as before, yielding a higher 

profit and thereby contradicting the optimality of the present solution. Finally, Lemma 4 guarantees that, if both 

F1 and F2 locate, F2 gets a terminal interval.             ∎ 
 

Lemmas 3-5 above lead to the following observation about the optimal location strategy of F1: if F1 locates any 

facilities at all in an optimal solution, all its intervals will be contiguous, and hence, without loss of generality, 

to the left of F2 's intervals. Together with the idea of e.d.i., this leads us to conclude that the optimal location 

strategy for Fl, that we will call S*, is as follows: F1 locates k facilities at B2, 2B2, 5B2 etc. from 0 until the 

length of the kth interval, i.e. the right terminal interval, is less than 2B2. It can be readily verified that k is equal 

to [(B2 + 1)/2B2]. If F1 now locates another facility in the kth interval at a distance of B2 from the kth facility, it 

can get the entire market with (k + 1) facilities. Whether or not F1 does that depends on the profitability of 

doing so; an analysis of this issue, based on the length of the kth interval in relation to B1, gives rise to the three 

different scenarios that we refer to as Conditions 1, 2 and 3, respectively, in Table 1. 

 

The only remaining question now is the condition under which F1 would find it profitable to locate any facility. 

For this purpose we need to study the relative values of B1 and B2. Four cases have to be considered. Case (A): 

B1 < 
 

 
B2; Case (B): 

 

 
B2 ≤ B1 ≤ B2; Case (C): B2 < B1 ≤ 2B2; Case (D): 2B2 B1. It is clear that in Case (A), F1 is 

very competitive relative to F2 and in Case (D) the opposite is true. For Cases (B) and (C) the two firms are 

close competitors. With the aid of these cases, the various solutions to the Stackelberg game can now be found 

— these are listed in Table 1. 

 

 
 

From Table 1 it can be concluded that the solution to the one turn game considered in this section depends on 

the relative values of the break-even sales of the two firms, which decides the value of k. Furthermore, if F1 

locates at all it gets either the entire market or almost all of it, by locating k or (k + 1) facilities as the case may 

be; F2 gets either nothing or, at best, the right terminal interval. If, however, F2 is very competitive, F1 will find 

it unprofitable to locate any facilities at all, and then F2 can get the entire market with just one facility. It is also 



worthwhile to note the similarity of S
*
 with the equilibrium locations in Example 2 of Prescott and Visscher 

(1977). There, multiple firms are assumed to enter the market in a given sequence and locate one facility each. 

In the optimal Stackelberg solution there, the first two firms locate at entry deterring lengths from the two 

terminals and then the other firms locate successively inward at entry deterring lengths from each other. 

 

Although it is not done here, a similar analysis would show that if F2 entered the market first and located any 

facilities, it would locate q or (q + 1) facilities, where q is equal to [(B1 + 1)/2B1]. 

 

3. MULTIPLE TURNS 

The results of the previous section will now be extended in the present one to another version of the problem — 

here each firm is assumed to be given multiple 'turns' to locate its facilities, with F1 being given the option to 

locate on every odd turn and F2 on every even one. In the terminology of game theory, this is the repeated 

version of the Stackelberg game with both players being given multiple turns. Then by considering the limiting 

case where the number of turns approaches infinity, we get the equilibrium location strategies that would be 

adopted by F1 and F2, given, as we have assumed, that they have infinite foresight. Although the results 

obtained in this section assume uniform demand distribution, the method of analysis used is independent of the 

demand distribution. It will also be assumed that both F1 and F2 locate all of their facilities on any one 

particular move; this assumption is necessary to simplify the cases that arise when multiple turns are allowed. 

As will be seen later, introduction of multiple moves allows the two firms to play strategic games where they 

can choose to postpone the locations of their facilities to a later move. 

 

In this section, Pi is used to denote the maximum profit to firm i, if it locates all its facilities optimally at the 

first move, assumed to be at time zero; in other words, this is the maximum profit that the firm can earn if it 

were the leader in the previous version of the problem where each firm was given only one turn. The following 

can be inferred about P1 and P2 from the results of the previous section: Case (A) implies that P1 is nonnegative 

and P2 is not. Case (D) implies the reverse. Case (B) implies that P1 is nonnegative and Case (C) implies that P2 

is nonnegative. 

 

It has already been shown that, due to the threat of entry by the follower, the leader may have to locate multiple 

facilities, thereby making it unprofitable for it to enter the market. This gives rise to the following question: is it 

possible that it is unprofitable for both F1 and F2 to locate their facilities first, that is, as leaders, thereby 

making it unprofitable for any of the competing firms to enter the market first? The answer is shown to be in the 

negative in the following lemma. 

 

Lemma 6. Given any arbitrary demand distribution, P1 and P2 cannot both be negative.  

 

Proof. Suppose that P1 is negative. Hence either Case (C) or Case (D) is applicable and so F1 will quit and F2 

enters the market as the leader. Then F2 will be in Case (A) or (B) relative to F1, which is now the follower. But 

is has been shown in Lemma 2 that the initial reward for the leader is always nonnegative when Cases (A) and 

(B) are true. Hence the lemma.   ∎ 

 

Therefore by Lemma 6, one of the firms will always make a nonnegative profit and there will not be a case in 

which both firms do not locate any facilities because of competition from the rival firm. This eliminates the 

possibility of market failure due to competitive pressures   as in the first entry paradox demonstrated in Ghosh 

and Buchanan (1988). 

 

Since the version of the problem has multiple turns that are assumed to occur at different points in time, some 

additional parameters are needed for the analysis. These are: (i) the total number of moves (whether finite or 

infinite) and if finite, whether the total number of moves is odd, i.e. F1 makes the last move, or even, i.e. F2 

makes the last move; and (ii) the presence or absence of a discounting factor on the profits earned at a future 

period in time. In addition to these two conditions, we will only consider the cases where the value of P1 and P2 



is either positive or negative. This leads to several cases and the solution to this problem in all the cases is given 

in Tables 2-5. 

 

 
 

Note that in Tables 2-5, whether the leader locates k or k + 1 (or q or q + 1) facilities is assumed to have been 

determined by doing an analysis similar to the one done for F1 in Section 2. The rationale behind most of the 

solutions in Tables 2-5 is provided therein. The solution that is the most conspicuously different from the single 

turn game is the one in Table 2 where F1 has the last move and P1 > 0 and P2 < 0. Taking advantage of this and 

the fact that there is no discounting, F1 can get the entire market by locating one facility on the last move. 

 

The solutions for Tables 4 and 5 are obtained from those of Tables 2 and 3 by taking into account that if the 

number of moves is infinite, there is no such thing as the last move implying that the firms would have no 

incentive to wait for the last move. The solutions shown in Tables 4 and 5 therefore represent equilibrium 

locational configurations of the game associated with this model. Thus, it can be seen that the equilibrium 

solution associated with this problem, as given by Tables 4 and 5, has a 'winner take all or almost all' flavor, 

with one of the firms adroitly locating its facilities so as to eliminate possibility of entry in any of its market 

intervals by its rival; which one does so depends on who locates first and the relative values of the break-even 

sales of the two firms. 

 

 

 



 

 

Two conclusions can be immediately drawn from the results of this section. The first is that if both firms can 

make positive profit by locating first, then the firm with the higher break-even sales, i.e. the weaker competitor, 

would generally be the first one to locate its facilities — i.e. the weaker competitor would be the first entrant 

into the market. This is so because the weaker competitor knows that if it lets the stronger firm enter the market 

first, then it (the weaker firm), will at most be able to get the right terminal interval of the market, and possibly 

no interval at all. Hence the weaker firm, by going first, can ensure that the stronger firm is either kept out of 

the market, or at worst, allowed a small share of the market. Thus the fact that a firm moves first can help it 

overcome a cost disadvantage. 

 

 
 

The second conclusion is that the 'winner take almost all' solution highlights the fact that it is not always 

optimal to try to squeeze a competitor completely out of the market. It may be better in certain situations for the 

leader to let a competitor coexist, albeit, in a marginal fashion. 

 

4. SYMMETRIC TRIANGULAR DEMAND DISTRIBUTION 

In this section we reconsider the Stackelberg game of Section 1 under the condition that the demand distribution 

is triangular and symmetric about the center of the market, as shown in Fig. 2. The corresponding repeated 

game where both players are given multiple turns, will not be discussed here, as an analysis similar to the one in 

Section 3 can be done to solve that game. 

 



When the demand distribution is symmetric triangular, three different types of e.d.i. need to be defined, 

depending on whether the points 0, 1 and 
 

 
 are included or not. An e.d.i. is defined to be left terminal if it 

includes the point 0, right terminal if it includes the point 1, central if it includes the point 
 

 
 and interior 

otherwise. The area of an interval [L1, L2], that we denote by A[L1, L2], will be used to refer to the area under the 

demand curve in this interval. With these definitions, we now explore some of the properties of the various 

e.d.i. 

 

Terminal e.d.i. In Fig. 2 the interval [0, a] is the left terminal e.d.i. Since F2 can capture this interval by locating 

one facility, a terminal e.d.i should have an area of B2 - hence its length is (B2/2)
1/2

. 

 

Interior e.d.i. In Fig. 2 [L, L + δ] is an interior e.d.i. To calculate the length of an interior e.d.i. and the area 

under it, note that if F2 locates a facility in the interior interval shown in Fig. 2, it will do so close to (L + δ) and 

to its left, and will thus get the area under the interval [L + δ/2, L + δ] Therefore, for F2 to locate two facilities 

in this interval, A[L, L + δ/2] should at least be B2 − and if this is true, F2 will locate the second facility close to 

the right of L and take the entire interval [L, L + δ] from F1. The above implies that for this interval [L, L + δ] to 

be e.d.i, A[L + δ/2, L + δ] should be B2. Hence the equation defining the length δ of the interior e.d.i [L, L + δ] 

is: 

 

(
 

 
) (δ/2) 4(L + δ/2 + L + δ) = B2, implying that δ = [−2L + (4L

2
 + 6B2)

1/2
]/3. (1) 

 

Based on (1), the following two properties of an interior e.d.i. can now be stated. 

 

Proposition 7. The area of any interior e.d.i. is always greater than 3B2/2 and less than 2B2. Furthermore, the 

area of an interior e.d.i. increases as it gets closer to the center of the market. 

 

Proof. It can be verified that the following three properties hold for any interior e.d.i: (i) A[L + δ/2, L + δ] = 

A[L, L + δ/2] + δ
2
; (ii) A[L, L + δ/2] ≥ B2/2 and (iii) (B2/2)

1/2
 ≤ L ≤ 1 − (B2/2)

1/2
; and they prove the first 

statement of the proposition. Moreover, from equation (1), it is clear that as L increases, δ decreases − which 

implies that A[L, L + δ/2] increases as L increases. Hence the area of the interval [L, L + δ], which is equal to 

A[L, L + δ/2] + A[L + δ/2, L + δ], increases as L increases.   ∎ 

 

Proposition 8. Consider the location of two adjacent facilities of F1, say at x and y, where (B2/2)
1/2

 ≤ x < y ≤ 
 

 
 − 

i.e. [x, y] is an interior interval. Let L1 and L2 be the lengths of the two successive interior e.d.i. that 

begin at x. If y ≥ L1 + L2, then F2 will locate two facilities in the interval [x, y]. 

 

Proof. F2 will locate two facilities in [x, y] if A[x, x + (y − x)/2] is at least B2. From Proposition 7, the minimum 

value of A[x, x + (y − x)/2] is obtained when x = (B2/2)
1/2

. By calculating L1 and L2 with x = (B2/2)
1/2

, it can be 

verified that A[x, x + (y − x)/2] is greater than 3B2/2 if L1 + L2 ≤ y.   ∎ 

 

Since the demand distribution is assumed to be symmetric about the center of the market, Proposition 8 also 

holds when 
 

 
 ≤ x < y ≤ 1 − (B2/2)

1/2
. 

 

Central e.d.i. As mentioned previously, an e.d.i. that contains the midpoint is called a central e.d.i. — for 

example, the interval [(
 

 
 − δ1), + δ2)] in Fig. 2 is a central e.d.i. A central e.d.i. that is symmetric about the 

center of the market will be referred to as the symmetric central e.d.i. Similarly, a central e.d.i., one of whose 

endpoints is the center of the market, will be referred to as an extreme central e.d.i. 

 



To evaluate the area under a central e.d.i., note that if F2 locates one facility in a central e.d.i, as shown in Fig. 

2, it will capture some area from the interval [(
 

 
 − δ1),  

 

 
] and some from the interval [

 

 
, (

 

 
+ δ2)]. For F2 to 

locate a facility, the sum total of these areas should be at least B2. Therefore, let the area that F2 captures from 

the intervals [(
 

 
 − δ1),  

 

 
] and [

 

 
, (

 

 
 + δ2)] be xB2 and (1 − x)B2, respectively. From Proposition 7 above, it is 

known that A[(
 

 
 − δ1), = 2A[(

 

 
 − δ1/2), 

 

 
], − (δ1)

2
. This, together with the fact that A[(

 

 
 − δ1/2), 

 

 
] is equal to 

xB2, gives the following: 

 

δ1 = 1 − (1 − 2xB2)
1/2

, implying that, (δ1)
2
 = 2[1 − xB2 − (1 − 2xB2)

1/2
]  (2) 

 

Using (2), it can then be shown that 

 

A[(
 

 
 − δ1), = 2A[

 

 
 − δ1/2), 

 

 
 − (δ1)

2
  (3) 

= 2xB2 − 2 + 2xB2 + 2(1 − 2xB2)
1/2

 

= 4xB2 + 2(1 − 2xB2)
1/2

 − 2. 

 

An analysis similar to (3) will show that 

 

A[
 

 
, (

 

 
 + δ2)] = 4(1 − x)B2 + 2[1 − 2(1 − x)B2]

1/2
 − 2.  (4) 

 

Summing (3) and (4) gives the total area under the central e.d.i.[(
 

 
 − δ1), (

 

 
 + δ2)] as a function of x: 

 

f(x) = A[(
 

 
 − δ1), 

 

 
] + A[

 

 
, (

 

 
 + δ2)] 

= 2[(1 — 2xB2)
1/2

 + (1 − 2(1 − x)B2)
1/2

] − 4 + 4B2. (5) 

 

Equation (5) can now be used to verify that f(x) is concave ∀x. By checking the appropriate first and second 

order conditions it can then be seen that f(x) achieves its maximum at x = 
 

 
. This enables us to state the 

following. 

 

Proposition 9. Of all central e.d.i., the symmetric central e.d.i. has the maximum area, and the extreme central 

e.d.i., the minimum. 

 

Taken together, the discussion above leads to the following conclusion: of all e.d.i. the symmetric central e.d.i. 

has the maximum area, followed by the extreme central e.d.i., any interior e.d.i. and a terminal e.d.i., in that 

order. 

 

We will now proceed to prove some properties of the optimal location strategy for FL But first, Lemma 3 will 

have to be reproved, since the area under the nonterminal e.d.i. is not constant in this case. 

 

Lemma 10. Given a symmetric triangular demand distribution, if B1 ≤ B2, it can be assumed that F2 does not 

locate any facilities in any optimal solution. 

 

Proof Consider the optimal locational configuration: since Lemma 2 is still true it can be assumed that F1 has 

located facilities in this optimal solution. Suppose that F2 locates in any interval of F1. A proof analogous to the 

one in Lemma 3 will show that this interval cannot be a terminal interval. By proposition 7, it can also be shown 

that if F2 locates two facilities in the interval, the area of this interval is at least 2B2, which contradicts the 

optimality of the given solution. Thus the only remaining possibility is the case where F2 locates one facility in 

this interval of Fl. If that happens, by noting that the area under any nonterminal e.d.i. is at least 3B2/2, it can be 



shown that if F1 makes this entire interval entry deterring to F2, by locating the minimum number of additional 

facilities that are necessary to do so, its profits will increase.   ∎ 

 

In Lemma 4 it was shown that when the demand distribution is uniform, all interior intervals belong to F1 in the 

optimal solution. The corresponding result for the symmetric triangular demand distribution is Lemma 11. 

 

Lemma 11. Given symmetric triangular demand distribution, if F1 locates at least two facilities in either [0, 
 

 
 

[or] 
 

 
, 1], then it can be assumed that its facilities are located such that they form contiguous interior e.d.i. in [0, 

 

 
 [ or ] 

 

 
, 1].  

 

Proof. Suppose not. Assume that F1 has located m facilities in [0, 
 

 
 [ that are numbered 1 through m from the 

left terminus of the market, i.e. 0. Because we assume the lemma not to hold, F2 has located in at least one of 

the interior intervals of F1 in [0, 
 

 
 [ − and let the first such interval be the nth interval. Consider an alternative 

strategy of F1, one in which F1 locates facilities (n + 1) through m at the same locations, the nth facility at an 

entry deterring length away from the (n + 1)th facility and all its facilities 1 through n at entry deterring lengths 

from each other. This alternative strategy gives F1 a higher profit − as the maximum loss of F1 by adopting it is 

B2, which happens if it loses the left terminal to F2; but that is also the minimum gain ensured by adopting it. 

 ∎ 

 

Although Lemma 11 above establishes the contiguity of F1's interior intervals, the issue of which firm gets the 

central interval is yet unresolved — that is now done in the following result. 

 

Lemma 12. Given a symmetric triangular demand distribution, if F1 locates at least three facilities in the optimal 

solution, with none at the center of the market it can be assumed that F1 gets the central interval.  

 

Proof. Because F1 has located more than two facilities and none at the midpoint 
 

 
, it has located at least two 

facilities in one of the two intervals [0, 
 

 
[and] 

 

 
, 1] assume that it has done so in ] 

 

 
, 1]. By lemma 11, all of F1's  

interior intervals in 1] form contiguous interior e.d.i. Let the two facilities of F1 in ] 
 

 
, 1], that are closest to 

 

 
, 

be the mth and (m + 1)th facilities, that are located at (
 

 
 + r1) and (

 

 
 + r2), respectively; and let the facility of F1 

in [0, 4 that is closest to 
 

 
, i.e., its (m − 1)th facility, be located at (

 

 
 − L1). Then, if Lemma 12 is not true, it can 

be concluded that F2 has located in the central interval [(
 

 
 — L1), (

 

 
 + r1)]. If F2 locates two facilities in this 

central interval, then the market area given up by F1 is at least 2B2  which would make the present location 

strategy of F1 sub-optimal, thus eliminating this possibility. 

 

Therefore assume that F2 has located one facility in this interval, and has thus taken away a market share of at 

least B2 from F1 in this solution. Consider an alternative location strategy of F1 in which F1 locates facilities 1 

through (m − 1) at the same locations, the mth facility at an entry deterring length away from its (m − 1)th 

facility and all the facilities to the right of the mth facility at entry deterring lengths from each other. If in the 

alternative strategy, the mth facility is located to the right of (
 

 
 − r2), and therefore the (m + 1)th facility is 

located to the right of (
 

 
 – r1), the alternative strategy will give F1 at least as much profit as the present one. If, 

however, the mth facility is to the left of (
 

 
 − r2) in the alternative strategy, then A[(

 

 
 – L1), 

 

 
] is at least equal to 

the area of two consecutive interior e.d.i. That would imply, from Proposition 8, that F2 has located two 

facilities [(
 

 
 − L1), (

 

 
 + r1)].   ∎ 

 



Analogous to the number k in Section 2, we now define a number k
*
 as the maximum number of entry deterring 

intervals that cover the interval [0, 
 

 
]   this is shown in Fig. 3. It is not clear how a closed form expression for 

the value of k
*
 may be obtained directly since the direct approach involves solving quadratic equation (1) 

iteratively. To eliminate the simple cases and also to satisfy the assumptions of Lemmas 11 and 12, it will be 

assumed that k
*
 > 2. Based on the definition of k

*
, consider the following five location strategies of Fl. 

 

 
 

Strategy 1. Here F 1 locates 2k
*
 facilities as shown in Fig. 3 and the resulting central interval is entry deterring 

for F2. Therefore, F1 gets the entire market by locating 2k
*
 facilities. 

 

Strategy 2. Same as strategy 1 except that here the resulting central interval, after having located 2k
*
 facilities, is 

not entry deterring. Therefore, F1 locates another facility at 1/2 and gets the entire market with (2k
*
 + 1) 

facilities. 

 

Strategy 3. Here F1 locates (2k
*
 − 2) facilities in the following manner: two facilities are located symmetrically 

about the center to form a symmetric central e.d.i. Then (k
*
 − 2) facilities are located successively on each side 

such that they form contiguous interior e.d.i. 

 

Strategy 4. Here F1 locates (2k
*
 − 1) facilities in the following manner: one facility is located at the center and 

two facilities are located one either side of it such that they define two extreme central e.d.i. Then (k
*
 − 1) 

facilities are located in both intervals [0, 
 

 
 [ and ] 

 

 
, 1] such that they define contiguous interior e.d.i. 

 

Strategy 5. Here F1 locates 2k
*
 or [(2k

*
 − 1) facilities in the following manner: one facility is located at a 

distance of (B2/2) 
 

 
 from 0 to its right such that it forms a left terminal e.d.i. The remaining (2k

*
 − 1) or (2k

*
 − 

2) facilities are located successively such that they define contiguous e.d.i. all of which are interior e.d.i. and 

one is a central e.d.i. 

 

Lemmas 11 and 12 give two important properties of the optimal location strategy of F1, namely, concerning the 

continuity of F1’s interior intervals and when F1 captures the central interval. The remaining issue is that of 

profitability of locating facilities by Fl. To examine this issue consider again the relative values of B1 and B2. 

Then the different optimal location strategies can be stated as follows. 

 

Case (D). As before in the case of uniform demand, F1 will quit and F2 will locate one facility anywhere in the 

[0, 1] interval and get the entire market. 

 



Cases (A) and (B). Here B1 ≤ B2 and therefore from Lemma 10, it can be concluded that F2 will not locate any 

facilities. Therefore, F1 will adopt either Strategy 1 or 2, depending on which one is applicable and gives larger 

profit. As before, Lemma 2 guarantees that F 1 's total profit is nonnegative. 
 

Case (C). As with the uniform demand distribution, this case is the most involved. In Lemma 13 that follows, it 

is shown that in this case, F 1 will consider Strategies 1 through 5 and choose the one with the highest total 

profit. If this otimal profit, which is equal to P1 in this case, is negative, it will quit and F2 will take away the 

entire market by locating one facility. 

 

Lemma 13. Given a symmetric triangular demand distribution, if Case (C) occurs, then it can be assumed that 

one of Strategies 1 through 5 is optimal for F1. 

 

Proof. We begin with the following three observations about the optimal location strategy of F1, that are direct 

consequences of Proposition 7, the relative values of B1 and B2 in Case (C) and the general properties of the 

model. (i) In any optimal location strategy, Fl never lets F2 capture a market share that is greater than or equal 

to B1 and hence, 2B2. This implies, by Proposition 7, that F1 will not locate any fewer than k
*
 − 1 facilities in 

either [0, 
 

 
[ or ] 

 

 
, 1]. (ii) By the definition of k

*
, F1 does not need to locate more than k

*
 facilities in either one 

of the intervals [0, 
 

 
[ and ] 

 

 
, 1]. Hence the maximum number of facilities that F1 will need to locate in any 

location strategy is 2k
*
 + 1, since, with as many facilities, F1 can get the entire market. (iii) By the symmetry of 

the demand distribution, if F 1 locates a facility at the center of the market, it can be assumed that its location 

strategies in [0, 
 

 
[ and ] 

 

 
, 1] are identical. 

 

First, we argue that it is sub-optimal for F1 to locate fewer than 2k
*
 − 2 facilities. This is proved by considering 

each of the different locational configurations possible, after applying condition (ii) above. It can then be seen 

that in each of these, F1 gives up a market share of at least 2B2, and hence B1 − which violates condition (i). 

Since by (ii), F1 does not need to locate any more than 2k
*
 + 1 facilities, this only leaves us with a few cases 

that we now consider individually. 

 

If F1 locates 2k
*
 + 1 facilities in any optimal solution, then it can be assumed that it will adopt Strategy 2, as it 

guarantees the entire market. If, however, F1 locates 2k
*
 facilities, it will adopt either Strategy 1 or Strategy 5, 

depending on which one is applicable and gives more profit. While Strategy 1 guarantees the entire market to 

F1, Strategy 5 does not. By adopting it, F1 may lose the right terminal interval to F2; however, condition (i) 

guarantees that this lost market share is less than B1. 

 

Now for the case where F1 locates 2k
*
 − 1 facilities. With 2k

*
 − 1 facilities, if F1 locates a facility at the center, 

then by condition (iii) above and Lemma 11, it can be assumed that Strategy 4 is optimal for Fl. If, however, F1 

locates 2k
*
 − 1 facilities and none at the center, then by condition (ii) it can be assumed without loss of 

generality, that it has located k
*
 facilities in [0, 1[ and k

*
 − 1 in ] 

 

 
, 1]. Application of Lemmas 11 and 12 then 

readily shows that Strategy 5 is optimal for F1 with this locational configuration. 

 

Thus the last choice to be considered is one where F1 locates 2k
*
 − 2 facilities. Condition (iii) above 

immediately implies that in this case F1 does not locate any facility at the center. Hence, by condition (ii), it can 

be assumed without loss of generality, that F1 locates k
*
 − 1 facilities in each of the intervals [0, 

 

 
 [ and ] 

 

 
, 1]. 

By Lemmas 11 and 12, it can be seen that with this locational configuration, it is optimal for F1 to adopt 

Strategy 3; if not, the given solution can be perturbed, until it is similar to Strategy 3, and by the symmetry of 

the demand distribution, this perturbation does not reduce the total market share of Fl.   ∎ 

 

 

 



5. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we have studied a variant of Hotelling's duopoly model where the number of facilities located by 

each of the firms is also a decision variable. The main results of the study are as follows. 

 

(1) The firm that locates first can increase its profits by taking advantage of the phenomenon of entry 

deterrence – this result reflects the standard intuition for pioneering advantage or order of entry advantage; see 

Schmalensee (1982), Carpenter and Nakamoto (1989), Kalyanraman and Urban (1993). However, this paper 

makes a much more interesting observation about pioneering advantage — namely, that the weaker firm, i.e. the 

firm with the higher break-even sales requirement, can very effectively preempt the stronger firm by going first, 

and ensure that the stronger firm is either kept out of the market or, at worst, allowed a small share of the 

market. Thus, the fact that a firm moves first can help it overcome a cost disadvantage. To the best of our 

knowledge, this is a new motivation for the pioneering advantage. 

 

(2) In this problem, the equilibrium has a 'winner take all' or 'winner take almost all' flavor   with the 

leader firm ensuring that all its intervals are entry deterring for the follower firm. The 'winner take almost all' 

solution highlights the fact that it is not always optimal to try to squeeze a competitor completely out of the 

market. It may be better in certain situations for the leader to let a competitor coexist, albeit, in a marginal 

fashion. 

 

(3) Under the fairly loose assumption that the break-even sales of the two firms are less than the total demand 

of the market, this model does not exhibit instances of market failure, such as the phenomenon of first entry 

paradox, regardless of the demand distribution. 

 

There are a number of possible extensions and variations of this model. One is to study an oligopolistic version 

of this model, assuming, as in Prescott and Visscher (1977), that the firms enter the market in a given sequence. 

Another possibility is to investigate this model under the assumption that customers do not patronize the firm 

with the cheapest delivered price, but use other deterministic utility functions, such as proportional models. Yet 

another strand of future research may be to incorporate imperfect information into the model, by studying it 

under the assumption that the two firms have imperfect information about each others' fixed and marginal costs. 
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