
Identifying Alternate Optimal Solutions to the Design Approximation Problem in Stock Cutting

By: J. Bhadury And R. Chandrasekaran B

Bhadury, J. and Chandrasekaran, R.(1999) 'Identifying Alternate Optimal Solutions to the Design

Approximation Problem in Stock Cutting', Engineering Optimization, 31: 3, 369 — 392 DOI:

10.1080/03052159908941378

Made available courtesy of Taylor and Francis: http://dx.doi.org/10.1080/03052159908941378

***Reprinted with permission. No further reproduction is authorized without written permission from

Taylor and Francis. This version of the document is not the version of record. Figures and/or pictures

may be missing from this format of the document.***

Abstract:

The design approximation problem is a well known problem in stock cutting, where, in order to facilitate the

optimization techniques used in the cutting process, it is required to approximate complex designs by simpler

ones. Although there are algorithms available to solve this problem, they all suffer from an undesirable feature

that they only produce one optimal solution to the problem, and do not identify the complete set of all optimal

solutions. The focus of this paper is to study this hitherto unexplored aspect of the problem: specifically, the

case is considered in which both the design and the parent material are convex shapes, and some essential

properties of all optimal solutions to the design approximation problem are ascertained. These properties are

then used to devise two efficient schemes to identify the set of all optimal solutions to the problem. Finally, the

recovery of a desired optimal approximation from the identified sets of optimal solutions, is discussed.

Keywords: Design approximation; stock cutting; minimal nested polygon problem

Article:

1. INTRODUCTION

Stock cutting problems refer to the broad class of problems in which it is desired to cut out a specific design

from a given parent material in as efficient a manner as possible. They have been studied in the engineering

community for some time now. Among the first such studies on the subject were those of Gilmore and Gomory

[9, 10]. Since then, there has been a plethora of work on that subject; see for example [4— 6, 12].

The broad class of stock cutting problems includes many subproblems that are of interest from both practical

and theoretical standpoints. One such sub-problem is that of Design Approximation— see [2]. The design

approximation problem occurs when the designs or shapes required to be cut are extremely complex, making it

difficult and error prone to cut them. In addition, the complexity of these shapes, particularly the number of

edges needed to describe them, make it time consuming to apply any optimization techniques utilized in the

cutting process. Therefore, as a first step, it is desired to approximate the complex designs by the simplest

possible shapes, i.e., by other designs that have the fewest possible edges; hence, the name.

The specific design approximation problem that is studied here can be stated as follows: given a piece of parent

material (assume that it is polygonal, i.e., its boundary is described by straight line edges), it is required to cut

out a given design from it. Because of the complexity of the design, it is required, as a first step, to approximate

it with another shape that has the fewest number of edges. This can be seen to be mathematically equivalent to

the following problem, which is known as the Minimal Nested Polygon Problem: given a larger polygon Pout,

(which, in this case, represents the parent material) and a smaller polygon Pin (the design to be cut out) that is

completely contained in Pout, find a nested polygon (one that is contained in the annulus between Pin and Pout

and contains the inner polygon Pin) P
*
, that has the fewest number of edges. Besides design approximation,

other applications of this problem include facility location (where the annulus between Pin and Pout represents a

geographical region and it is desired to locate the fewest number of facilities in this region such that line-of-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149236445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://libres.uncg.edu/ir/uncg/clist.aspx?id=873
http://dx.doi.org/10.1080/03052159908941378

sight communication is maintained between adjacent facilities) and robotics (where its is required to find a path

for a robot in the annulus with the minimum number of turns). Due to its wide applicability, the Minimal Nested

Polygon problem has received wide attention in the literature; see for example [1, 3, 8, 11]. However, all the

algorithms available in the literature to solve this problem have a common shortcoming: they are designed to

identify one, and only one, optimal solution.

This shortcoming renders these algorithms inexpedient in practice, where it is frequently desirable to search for

alternate optimal approximations, because one may be preferable to another due to secondary criteria. For

example, it is sometimes desired that a certain point or part of the annulus should be cut out by the optimal

approximation because it contains flaws, and hence it is required to know if there exists an optimal

approximation, i.e., a Minimal Nested Polygon, that will do this. Such a need for alternate optimal solutions

also arises in other applications of the Minimal Nested Polygon problem. For example, in location problems,

one set of locations might be preferable to another due to geographical factors. In the context of robotics

applications, it is frequently desired to investigate the existence of minimal turns paths in the annulus with all its

turns in the interior of the annulus, in order to avoid collisions. This need to characterize alternate optimal

solutions is made more acute by the fact that the optimal approximation, i.e., the Minimal Nested Polygon is

frequently non-unique — in fact there may be an infinite number of them. Consider for example the case where

Pout and Pin are described by a large and small triangle respectively. The optimal solution in this case is given by

any triangle in the annulus; and there are an infinite number of them. Thus the need arises to devise schemes to

identify all optimal solutions to the design approximation problem, rather than prescribing only one.

As a first step in addressing this issue, the special case that is considered is the one in which both the parent

material (Pont) and the design (Pin) are convex shapes and hence, so is the optimal approximation (r) - see

Bhadury and Chandrasekaran [2] for a proof of this assertion. Two indices are first defined for every point in

the annulus — the Polygon Index and the Turn Index respectively. The former refers to the number of edges in

a nested polygon that passes through a given point and has the minimum number of edges. The latter refers to a

similar value, when it is required that the nested polygon also have a vertex at the given point. Two efficient

algorithms are then given that identify all points in the annulus that can either be assumed to be the vertex of

some r or lying on some r, based on these two indices.

This remainder of the paper is divided into four sections. The next section discusses the preliminary concepts

and notation needed for the paper. Section three gives a partitioning algorithm for the boundary of Pout, which

forms the basis for the two primary schemes that are prescribed for identifying all optimal approximations.

These two schemes are themselves described in the next section, which ends with a discussion on the recovery

procedures in order to use an alternate optimal solution. Finally, the fifth section summarizes the results of the

paper and discusses topics for future research. Proofs of all major lemmas are given in the Appendix.

2. PRELIMINARIES

The analysis in the paper requires several terms and notation, which are now defined. To begin with, a convex

polygon is one whose internal angles are all less than 1800; in other words, a convex polygon has the property

that for any two points inside the polygon, the straight line segment joining them is completely contained inside

the polygon itself.

As mentioned before, Pout, and Pin are assumed to be convex polygons, with Pin ⊂ Pout, and the Minimal Nested

Polygon for Pout and Pin is assumed to be P*. n is assumed to represent the total number of edges of Pk, and Pont

and ϕ, the total number of edges in P*. The entire annular region between P.m and Pin is referred to as the

annulus and designated by [Pout—Pin). The boundary of Pout (respectively, Pin) is referred to as bd(Pout)

(respectively, bd(Pin) and ITout
—

Pin) refers to all the points that are in the interior of the annulus — i.e., all

points in [Pout − Pin] except those on bd(Pout) and bd(Pin).

A line segment [x,y] is assumed to be a closed interval containing its endpoints whereas the segment (x, y)

(respectively, [x,y)) is assumed to contain all points on the line between x and y except x (respectively, y).

Furthermore, for two points x, y in [Pout— Pin], [x → y] is assumed to represent a ray from x in the direction of

y.

Let x and y be two points on bd(Pout), with the property that Pin is completely on one side of the line segment [x,

y] and let z be any point on bd(Pout) that is on the same side of [x, y] as P. Then, in a clockwise traversal of

bd(Pout) that begins at z, if x is encountered after y, then x is said to be clockwise of y. Further, x is said to be at

least clockwise of y if either x and y are coincident or if x is clockwise of y. For any point v in [Pout—Pin], P(v)

is defined as a nested polygon that passes through v and has the minimum number of edges and T(v) as a nested

polygon that has v as a vertex and has the minimum number of edges. Two associated indices are also 'defined

−|P(v)| (called the Polygon Index) and |T(v)| (the Turn Index) which are the number of edges in P(v) and T(v)

respectively. Obviously, for any point v, |T(v)| > |P(v)|. See Figure I where P
*
 has been drawn for a given pair of

polygons Pin and Pout, and for the two points v and x, the nested polygons T(v) (it will be proved later that the

polygon shown is T(v)) and P(x) are also shown. Hence in this case, ϕ = 3, |T(v)| = 5 and. |P(x)| = 3.

For any point v E [Pout — Pin] a clockwise greedy structure G(v) is defined, that is obtained as follows: (Fig. 2

shows G(a) for point a E bd(Pout)): from v the clockwise tangent to Pin is drawn — this tangent is assumed to

intersect bd(Pin) (or, in other words, is tangential to Pin) at a vertex denoted by Tgt(v) (in case it intersects two

vertices, Tgt(v) is defined as the more clockwise of these two vertices). The point of intersection of the ray [v

Tgt(v)] with bd(Pout) is defined as vi. From v1 this process is continued and successive points v2, v3 etc. (called

the vertices of G(v)) are defined on bd(Pout) similarly until the vertex of G(v) is reached where v becomes

visible for the first time — it will be assumed throughout the paper that for any point v, this occurs on the kth

vertex of G(v). Then another clockwise tangent is drawn from vk to Pin to obtain the next vertex of G(v) (i.e., the

point vk+1) in a manner similar to the other vertices. The line segments [v, v1], [v1, [vk, vk+ 1] constitute G(v) —

and these line segments are referred to as the edges of G(v). IG(v)I is used to denote the number of, edges in

G(v). If the sequence of anticlockwise tangents is taken from v, the resulting greedy structure is denoted by

Ga(v). The point of intersection of the line segment [v, vi] and [vk, vk+1] is denoted by Int(v). A point v ∈ bd(Pout)

is defined as a tight point if v = vϕ. For such a tight point, G(v) is a closed polygon and is referred to as a tight

greedy polygon for the tight point v.

For any point v ∈ [Pout − Pin], consider the anticlockwise tangent from v to Pin − the vertex of Pin that this

anticlockwise tangent from v intersects is denoted by Atgt(v) — if it intersects two vertices, the more clockwise

of these two is chosen as Atgt(v). Then the point of intersection of the ray [v → Atgt(v)] with bd(Pout) is denoted

as Anti(v) — and since Pin ⊂ Pout, if v ∈ bd(Pout), v and Anti(v) will occur on different edges of bd(Pout).

For any point v ∈ bd(Pout) with |G(v)| = ϕ, the slack cone of v is defined as the entire region of the annulus

bounded by the line segments [v, vϕ-1], Anti(v)] and the section of bd(Pout) between Anti(v) and vϕ-1 (including

these boundaries themselves). For example in Figure 2, if |G(a)| = ϕ (and hence ak = aϕ-1), then the slack cone

of a is the triangle [a, Anti(a),ak]. Note that slack cone for a point v is only defined if v ∈ bd(Pout) and |G(v)| =

ϕ.

For a point v ∈ [Pout − Pin], the projector of v, denoted by Proj(v) is defined as the point of intersection of the

ray [v1 → v] with bd(Pout) − for example in Figure 2, the point a is the projector of the point Int(a). If v ∈

bd(Pout), then it is defined as its own projector, hence, for all v ∈ bd(Pout), Proj(v) = v.

Finally, the computational notations of the paper are defined. A set is said to have O(n) (respectively, O(nϕ))

elements when its cardinality is guaranteed to be less than a constant multiple of n (respectively, nϕ). Along the

same vein, an algorithm is said to take O(n) (respectively, O(n)) time if the total time taken by it is guaranteed

to be less than a constant multiple of n (respectively, O(nϕ)). Such algorithms where the total time taken is a

polynomial in the input parameters of the problem itself are considered efficient. As for the assumed model of

computation in the paper, it is similar to the ones used in the literature, such as in [l]; the usual random access

machine (RAM) that allows operations like +, −, /, *, and finding roots of a quadratic equation to be performed

in unit time and is capable of performing infinite precision arithmetic.

Based on the definitions and notations above, the following results are either known in the literature or are easy

to verify:

(i) It has been shown in [1], that for any point v ∈ bd(Pout), ϕ ≤ |G(v)| ≤ ϕ + 1.

(ii) If v is a tight point then |G(v)| = ϕ. Furthermore, since bd(Pin) does not intersect bd(Pout), then for a

tight point v, vk = vϕ-1 = Anti(v) and v = vk+1 = vϕ.

(iii) For any point v ∈ bd(P
o
ut), |G(v)| = ϕ + 1 iff Anti(v) (respectively, v) is clockwise of vϕ (respectively,

vϕ).

(iv) For any point v E [Pout − Pin], the edges [v, v1], [v1, v2], . , [vk, v] represents T(v). Hence |T(v)| = |G(v)|

− this also proves that in Figure 1, the polygon G(v) shown is also T(v).

With these preliminaries, the following results, are presented.

LEMMA 1 For any point v ∈ [Pout — Pin], ϕ ≤ |G(v)| ≤ ϕ + 2 (and hence, ϕ ≤ |T(v)| ≤ ϕ + 2).

LEMMA 2 For any point v ∈ [Pout — Pin], ϕ ≤ |P(v)| ≤ ϕ + 1.

LEMMA 3 For any point v ∈ [Pout — Pin], |P(v)| = ϕ iff v occurs in the slack cone of a point x ∈ bd(Pout).

3. PARTITIONING bd(Pout) INTO CRITICAL INTERVALS

Both the schemes that are presented in the paper to identify the complete set of optimal approximations depend

on one common procedure. This procedure, which is the focus of the present section, partitions bd(Pout) into

disjoint intervals such that for any two points inside an interval the Turn Index is the same, i.e., it is either ϕ or

ϕ + 1.

In order to understand the basic motivation of this procedure, consider a point v on bd(Pout) such that |G(v)| = ϕ

+ 1 (and hence v is clockwise of vϕ). As v is moved clockwise on bd(Pout), along the edge of Pout that it lies on,

all vertices and edges of G(v) move clockwise too — a direct consequence of the fact that bd(Pout) and bd(Pin)

are continuous, and Pin ⊂ Pout. During this movement of v, the following four events (hereinafter referred to as

events I through IV) that can occur will be of interest to us: (Event I): An edge of G(v) can encounter a new

vertex of Pin. (Event II): A vertex of G(v) can encounter a new vertex of Pout. (Event III): v can encounter the

next vertex of Pout and (Event IV): v can encounter a tight point on bd(Pout).

 Now suppose that v has been moved clockwise from its initial position by a distance d − where d is small

enough so that none of events I, II or III occur i.e., all of the vertices (respectively, edges) of G(v) intersect the

same edges (respectively, vertices) of Pout (respectively, Pin) and v itself remains on the same edge of Pout. Let

δvj(d) denote the associated movement of the vj along the edge of Pout that it lies on the vj(d) the vector that

represents its final position. Then it is shown in [1], that

δVj(d) = (cj,1 d + cj,2)/(cj,3 d + cj,4),1 ≤ j ≤ k + 1 (1)

where cj,1, cj,2, cj,3, cj,4 are fixed constants for vj. As mentioned before, since bd(Pout) and bd(Pin) are continuous

and Pin ⊂ Pout, vϕ(d) is a continuous function of v(d). Therefore if in this movement of v, |G(v)| changes to (and

hence v, becomes clockwise of v), there must be a point in between on bd(Pout) where v = vϕ, namely a tight

point — i.e., during this movement, event IV must have occurred. Note that in order to check for the existence

of a tight point, equating v(d) to vϕ(d) gives a quadratic in d, which has at most 2 distinct real roots.

Based on the above idea, an algorithm is now given to partition bd(Pout) into intervals that are "small" enough

such that if the point v is restricted to move inside an interval, none of events I through IV will occur.

Algorithm Partition − bd(Pout)

begin

Step 1 Every edge of Pin is extended to intersect with bd(Pout) and the two points of intersection are considered

critical points. Every vertex of Pout is also considered a critical point.

Step 2 For every, critical point v found in Step 1, find the greedy structures G(v) and Ga(v) and the vertices of

these two structures for this critical point are also included as critical points — for each critical point v store the

following: the value of k; the points Anti(v), Tgt(v) and Atgt(v); all the vertices of G(v) (including vk +1); the

points Tgt(v), Atgt(v) and functions δvj(d), for 1 ≤ j ≤ k + 1.

Step 3 The critical points obtained above in Steps 1 and 2 partition bd(Pout) into disjoint intervals — for each

interval do the following: check if there exists any tight point within this interval by checking if there is a

solution to the quadratic v(d) = vϕ(d) in this interval (there can be atmost 2 tight points per interval). If a tight

point exists, then for this point v, draw the tight greedy polygon and this tight point and the vertices of its

associated tight greedy polygon are also included as critical points. For each such tight point v, store all the

parameters mentioned in Step 2 above.

end

At the end Step 1 of the' above algorithm, there are O(n) critical points — since there is (respectively, are) one

(respectively, two) for every vertex of Pout (respectively, edge of Pin). In Step 2, for each of the critical points

found in Step 1, the greedy and anticlockwise greedy structures are found and all vertices of both the greedy

structures are considered as critical points too — since there are atmost O(ϕ) vertices of any greedy structure, at

the end of Step 2, there will be O(nϕ) critical points. These O(nϕ) critical points that are obtained after the

completion of Step 2, divide bd(Pout) into intervals with the following property — if a point v in one of these

intervals is moved clockwise within that interval itself, all edges (respectively, vertices) of G(v) will intersect

the same vertex of Pin (respectively, edges of Pont) — i.e., none of events I through III will occur. To prove this

claim, consider two adjacent critical points E and F, after Step 2 is complete. Suppose that a point v is moved

clockwise to another v', where v and v' ∈ (E, F) and event H occurs at v' (i.e., a vertex of G(v') encounters a new

vertex of Pont) — assume that this new vertex of Pout is x. However, the vertex x is critical point after Step 1 and

hence the anticlockwise greedy structure at x, namely Ga(x), will therefore have a vertex at v' which would

make v' is a critical point at the end of Step 2 — but this contradicts the original assumption that E and F are

adjacent critical points after Step 2 is complete. A similar argument will show that event I cannot occur at v'

either. Finally, Step 1 guarantees that event III cannot occur at v', thus proving the original claim.

After the completion of Steps 2-3 considers each of the O(nϕ) intervals from Step 2, and checks if there exists a

tight point in the interval — if so, this point and all the vertices of its tight greedy polygon are considered as

critical points too. It is now shown that this step adds O(nϕ) new critical points.

LEMMA 4 Given that both Pin and Pout are convex, there are no more than O(nϕ) tight polygons. Thus Step 3

of Algorithm Partition − bd(Pout) can introduce atmost O(nϕ) new critical points.

Therefore, once the entire algorithm is over, there will be O(nϕ) critical points that will partition bd(Pout) into as

many intervals (heretofore referred to as critical intervals) with the property that if a point v is moved within a

critical interval, none of changes I through III will occur (because of Steps 1 and 2) and nor will event IV occur

(because of Step 3).

To calculate the time complexity of, i.e., the total time taken by, Algorithm Partition — bd(Pout), it is clear that

Steps I and 2 can be performed in O(nϕ) time, since they are essentially equivalent to the algorithm given in

Aggarwal et al. [1], which is also known to take as much time. At the end of Step 2, there are O(nϕ) intervals

— because the functions δvϕ(d) are known for each interval, the existence of a tight point can be checked in

constant time and if one exists, all the vertices of the associated tight greedy polygon can be found in O(ϕ)

time. Since, by Lemma 4, there are atmost O(n) distinct tight polygons, Step 3 will take O(nϕ) time — thus

leading to an overall time complexity of O(nϕ) for the above algorithm. The above discussion thus leads to the

following observation and together, they also serve as a proof of the correctness of this algorithm.

LEMMA 5 After O(nϕ) critical intervals have been identified by Algorithm Partition − bd(Pout) in O(nϕ) time,

for any two points on bd(Pout) that lie in the interior of a critical interval, the Turn Indices are same.

Since a tight point v Ebd(Pout) represents a 'crossing over' of the two points v and vϕ, if there exist two points x,

y ∈ bd(Pout) such that |G(x)| and |G(y)| are not equal, then there must exist at least one tight point on the section

of bd(Pout) between x and y. This leads to the following two observations, that will be used later.

COROLLARY 6 After O(nϕ) critical intervals have been identified by algorithm Partition − bd(Pout), the

following two statements are true for every critical interval [E, F].

(i) If E is not a tight point then Turn Index in (E, F), i.e., Turn Index inside the interval [E, F], is equal to

|G(E)|.

(ii) If Turn Index in the interval (E, F) is (1) then it is guaranteed that |G(E)| = |G(F)| =ϕ

If at a tight point v, the slope of the function δvϕ(d) is less than unity, then as v is moved clockwise, it will

become more clockwise of the point vϕ, and |G(v)| will become ϕ + 1 (the reverse is true if the slope is more

than unity). It can be verified that there can be at most two distinct values of d for which this slope equals unity.

This ensures that at a tight point v, by studying the first two derivatives of the function δϕ(d), it can be

determined whether |G(v)| is ϕ or ϕ + 1 when v is moved clockwise − this will be used in the two algorithms

given for partitioning the annulus.

4. SCHEMES FOR IDENTIFICATION AND RECOVERY OF ALL OPTIMAL APPROXIMATIONS

In this section, two schemes are given that will help identify all points in the annulus [Pout – Pin] that belong to

the set of optimal approximations. This is followed by a discussion of how to recover a desired optimal solution,

i.e., construct a desired optimal approximate polygon, that passes through a given point.

4.1. Partitioning of the Annulus Based on the Turn Index |T(v)|

The first partitioning scheme is a polynomial time algorithm based on Lemma 1, to partition the annulus

according to |T(v)|. The algorithm is based on the following observation made in Lemma 1: consider any point v

∈ (Pout −

Pin) and its projector Proj(v) (assume that it is denoted by x). Then, if v lies on the segment [x, Int(x)],

|T(v)| = |T(x)|, else if v lies on (Int(x), Tgt(x)], then |T(v)| = |T(x)| + l. Therefore the main idea in this algorithm

is to move a point v clockwise on bd(Pout) and trace the locus of the point Int(v).

Algorithm Partltlon — |T(v)|

begin

Step 1 Find a P
*
 and F for Pin, and Pout using the algorithm in [1].

Step 2 Partition bd(Pout) into critical intervals using Partition − bd(Pout).

Step 3 For each critical interval [E, F] (assume that F is clockwise of E) do

{

Step 3.1 Retrieve G(E) and G(F) and identify Int(E) and Int(F), Tgt(E) and Tgt(F).

Step 3.2 Retrieve the functions δEj(d), j = 1, k, k + 1. Using them, obtain the locus of Int(v) within this interval

[E, F] as point v is moved from E to F.

Step 3.3 Partition the area of the annulus [Pout−Pin] in between the line segments [E, Tgt(E)], [F, Tgt(E)] and

the intervale [E, F] into two sets — the 'outer' set that is bounded by the critical interval [E, F], the line

segments [E,Int(E)] and [F,Int(F)], and the locus of Int(v) from Int(E) to Int(F). The 'inner' set is bounded by

[Int(E), Tgt(E)] and [Int(F),Tgt(E)], and the locus of Int(v) from Int(E) to Int(F). If E Int(E), the two sets are

defined similarly, see Figure 3.

Step 3.4 If Eϕ = E then

{

Step 3.4.1 The following points are labelled with Turn Index = |G(E)|: all points in the interior of the outer

set, all points on bd(Pout) in the interval [E, F], all points on the locus of Int(v) (except Int(F)), and all

points on the line segment [E, Int(E)].

Step 3.4.2 The following points are labelled with Turn Index = |G(E)| + 1: all points in the interior of the

inner set and all points on the line segment [Int(E), Tgt(E)].

} end if
Step 3.5 If Els = E (i.e., E is a tight point) then

{

Step 3.5.1 Retrieve the function δEϕ(d). By examining its first two derivatives at d = 0, determine whether,

for a point inside the interval, the Turn Index is ϕ or ϕ + 1.

Step 3.5.2 The following points receive a label of Turn Index = Turn Index in (E, F): all points on bd(Pout)

in the interval (E, F); all points on the locus of Int(v) (except Int(F)) and all points in interior of the outer

set.

Step 3.5.3 The following points are labelled with Turn Index = Turn Index in (E, F) + 1: all points on the

line segment (E, Tgt(E)); and all points in the interior of the inner set.

Step 3.5.4 The point E is labelled with a Turn Index equal to F.

}end if

}end for

end

The first two Steps of the above algorithm partition bd(Pout) into critical intervals that guarantee that within a

critical interval the Turn Index of any point will remain the same. Then in Step 3.2, for each critical interval [E,

F], the algorithm traces the locus of Int(v) as a point v on bd(Pout) is moved from E to F. This enables the identi-

fication of (at most) seven distinct region in Step 3.3: the two line segments [E, Int(E)] and [Int(E), Tgt(E)], the

points in the interior of the outer set, the points in the interior of the inner set, all points on the locus of Int(v) (except

Int(F)), the interval [E, F] on bd(Pout) and the point E itself (in Step 3.5.4 when E is a tight point). In Steps 3.4 and

3.5, each of these regions then receives a Turn Index value depending on the Turn Index in (E, F) — when E is not a

tight point (Step 3.4) the algorithm uses |G(E)| instead of the Turn Index in (E, F) since, by Corollary 6, the two are

equal. Since there are O(nϕ) critical intervals produced by Partition — bd(Pout), there will be no more than O(nϕ)

disjoint regions produced by Partition − |IT(v)|.

To see the time complexity of this algorithm, it is clear that Step 2 takes O(nϕ) time and produces O(nϕ)

intervals for consideration by Step 3. Finding the locus of Int(v) in the critical interval [E, F] in Step 3.2,

reduces to the problem of finding the solution to a pair of simultaneous linear equations (namely those of line

segments [v(d), v1(d)] and [vk(d), vk+1(d)]) and expressing it as a function of d. Given all the information, it is

evident that this can be accomplished in constant time. Steps 3.3-3.5 can also be done in constant time (since all

the information required is available from Step 2 and there are at most seven regions to label) and thus each

iteration of Step 3 can be completed in constant time. Therefore, Step 3 takes O(nϕ) time, leading to O(nϕ)

time complexity for the overall algorithm Partition − |T(v)|.

To see why the above algorithm works correctly, consider any point v ∈ [Pout−Pin]. It is clear that for any point

in the annulus, the projector is unique − assume that x, the projector of the point v, lies in the critical interval

[E, F). Since bd(Pin) and bd(Pout) are continuous and Pin ⊂ Pout, it is assured that the points Int(E) and Int(F) are

distinct. This leaves only two cases: either Case (i): Eϕ ≠ E(i.e., Int(E) ≠ E) or Case (ii): Eϕ = E(i.e., Int(E) =

E). Assume, without loss of generality, that case (i) holds, i.e., Eϕ = E. Then if v is in the interior of the inner set

produced by this interval, or if it lies in the interval (Int(E), Tgt(E)] (in which case E = x), then it follows that v

∈ (Int(x), Tgt(x)] and hence, by Lemma l, the Turn Index for v should be equal to |T(x)| + 1 − which is the value

given to |T(v)| by the algorithm. If, however, v is in the interior of the outer set or any of the boundaries of the

outer set (except the line segment [F, Int(F)]), then it can be claimed that v ∈ [x, Int(x)] and hence Turn Index of

v should be equal to |T(x)|, as given by the algorithm. It should be evident that the argument is identical for case

(ii) where Eϕ = E, since their distinctness is not used anywhere in the proof. This, along with the fact that the

algorithm takes polynomial time and produces polynomial number of disjoint regions, serves as a proof for the

correctness of the algorithm.

In closing, it can therefore be claimed that after algorithm Partition — |T(v)| is over, for any point v ∈ [Pout –

Pin], there exists a P
*
 passing through v with v as its vertex iff its Turn Index has been labelled as being equal to

ϕ by the algorithm. Hence this partitioning catalogs all points in the annulus that can be assumed to be the

vertex of some Minimal Nested Polygon for Pout and Pin, thus identifying the set of all optimal approximations.

4.2. Identifying Points in the Annulus with |P(v)| = ϕ
In the previous sub-section, all points we reidentified in the annulus with the property that there was at least one

Minimal Nested Polygon with a vertex there. Now the requirement of having a vertex at that point is dropped

the following general question is addressed: given any point x in the annulus, does there exist a Minimal Nested

Polygon passing through x, with or without a vertex at x; and if so, produce it. In this section a scheme is

developed that answers this question. This scheme, which is based on Lemma 3, accomplishes this by finding

all points in the annulus for which |P(v)| = ϕ.

After partitioning bd(Pout) using Partition − bd(Pout), for every critical interval [E, F] with Turn Index equal to

ϕ, a point v is moved for E to F and the entire region swept out by the slack cone of the point v is found (see

Fig. 4) — and because v remains within a critical interval, vϕ-l remains at least clockwise of Anti(v) and the

slack cone exists for each point in the interval. The region swept out is bounded by the following — the interval

[E, F], the section of bd(Pout) between Anti(E) and Fϕ-1 and the two envelopes formed by the line segments [v,

Anti(v)] and [v, vϕ-1] as v moves from E to F — called the "inner" and the "outer" envelopes respectively. The

inner envelope is given by the pair of straight lines [Anti(E), Atgt(E)], [Atgt(E), F] . The outer envelope can be

found on a case by case basis. Because E and F are adjacent critical points, they will lie on the same edge of Pout

and the same is therefore true of the pair of points Eϕ-1 and Fϕ-1 − however these two pairs of points may or

may not all be collinear and this gives rise to the following two cases:

Case (A) When Eϕ-1 and Fϕ-1 are not on the same edge as E and F — this is shown in Figure 4. Here the upper

envelope is the pointwise maximum of the line segment [v, vϕ-1] as v is moved from E to F. Given E, F,

Atgt(E), Eϕ-1 Anti(E), Fϕ-1 and Anti(F), it can be verified that this outer envelope can be found

algebraically in constant time, since all equations and inequalities involved are of a fixed degree.

Case (B) When the points Eϕ-1, E and F are collinear. Here the upper envelope is the section of bd(Pout) between

Anti(E) and F.

Given E, F, G(E) and G(F), checking for the collinearity of the two pairs of points, namely Eϕ-1, Fϕ-1 and E, F,

can be done in constant time. It can therefore be assumed that given a critical interval [E, F] and the associated

greedy structures, the two envelopes and therefore the entire region that is swept by the slack cone can be found

in constant time. Based on this the algorithm is given below.

Algorithm Partition − |P(v)|

begin

Step 1 Find a P
*
 and ϕ for Pin and Pout using the algorithm in [1].

Step 2 Partition bd(Pout) into critical intervals using Algorithm Partition — bd(Pout).

Step 3 For each critical interval [E, F] (assume that F is clockwise of E) do begin

{

Step 3.1 Retrieve G(E), G(F), Anti(E), Anti(F) and identify Int(E) and Atgt(E).

Step 3.2 If (Eϕ ≠ E) AND (|G(E)| = F) then

{

Step 3.2.1 All points on bd(Pout) in the intervals [E, F] and [Anti(E), FF-1] are labelled with a

Polygon Index = ϕ.

Step 3.2.2 Determine whether Cases A or B is applicable and compute the outer and the inner

envelopes of the region swept out by slack cone. All points in this region, including the ones on

the envelopes are labelled with a Polygon Index = ϕ.

} end if

Step 3.3 If (Eϕ = E), (i.e., E is a tight point) then

{

Step 3.3.1 Retrieve the function δEϕ(d). By examining its first two derivatives at d = 0, determine

whether, for a point inside the interval, the Turn Index is ϕ or ϕ + I.

Step 3.3.2 If (Turn Index in (E, F) is ϕ + I) then

{

All points in the line segment [Anti(E), E] are labelled with a Polygon Index equal to ϕ.

} end if

Step 3.33 If the Turn Index in the interval (E, F) is ϕ then

{

All points on bd(Pout) in intervals [E, F] and [Anti(E), Fϕ-i] are labelled with a Polygon Index

= ϕ.

Determine whether Case A or B is applicable and Compute the outer and the inner envelopes

of the region swept out by slack cone. All points in this region, including the ones on the

envelopes are labelled with a Polygon Index = ϕ.

} end if

} end if

} end for

end

The first two Steps of the algorithm use Partition — bd(Pout) to partition bd(Pout) into critical intervals such that

the Turn Index within an interval remains unchanged. Then in Steps 3.2 and 3.3.3, the algorithm does the

following for each critical interval [E, F] for which the Turn Index inside the interval is equal to ϕ: it

algebraically determines the entire region swept out by the slack cone of a point v as it is moved clockwise from

E to F. All points in this region swept out (including the ones on the boundaries of this region) are labelled with

a Polygon Index equal to ϕ. The reason why even the boundaries are included is because, by Corollary 6, if the

Turn Index in (E, F) is ϕ, then it is guaranteed that |G(E)| = |G(F)| = ϕ, and all points on these boundaries are in

the slack cone of some point in the interval [E, F]. Thus the only remaining case is where E is a tight point but

Turn Index in (E, F) is ϕ + 1 − Step 3.3.2 takes care of this case by assigning all points in the segment

[Anti(E), E] a Polygon Index of ϕ.

After Algorithm − |P(v)| is over, all points in the annulus that do not have a label of |P(v)| = ϕ are the ones that

have their Polygon Index equal to ϕ + l. Although it has not been done above for simplicity, every time that a

critical interval [E, F] with Turn Index equal to ϕ identifies a region swept out by the slack cone, this region

can be marked with a secondary label to indicate that it was generated by the interval [E, F]. This will be useful

in the recovery of optimal solutions after the algorithm is over. As there are O(nϕ) critical intervals produced by

Partition — bd(Pout), this algorithm produces as many regions. Note that in this case however, these regions

may not be disjoint, as it is possible that the same point may be within the slack cone of several points on

bd(Pout). An argument similar to the one used for Partition — |T(v)| will show that even in the above algorithm

Steps 2 and 3 take O(nϕ) time each, leading to an overall time complexity of O(nϕ) for Algorithm — |P(v)|.

To see why the algorithm is correct, consider any point, say w, in the annulus for which the Polygon Index is ϕ

— then by Lemma 3, w occurs in the slack cone 'of at least one other point on bd(Pout), for which the Turn

Index is ϕ. Assume that this point occurs in the critical interval [E, F], where F is clockwise of E. As the Turn

Index in the interval [E, F] is ϕ, it is guaranteed that as a point v is moved clockwise from E to F, vϕ-1 remains

at least clockwise of Anti(v) and the slack cone is defined for every point on bd(Pout) within this interval. As the

algorithm finds the inner and outer envelopes of all the slack cones in this interval, w is guaranteed to be within

these envelopes and hence receive a label of Polygon Index equal to ϕ. This, along with the fact that the

algorithm takes polynomial time and produces a polynomial number of regions, completes a proof for the

correctness of the algorithm. Hence it can be claimed that for any point v ∈ [Pout − Pin], there exists a Minimal

Nested Polygon passing through v iff |P(v)| = ϕ and hence this scheme identifies all points in the annulus that

can be assumed to lie on some Minimal Nested Polygon for Pout and Pin.

4.3. Recovery of Any Optimal Approximation

The previous two sub-sections described two different schemes, which together enable the identification of the

set of all optimal approximations of Pin, i.e., all the Minimal Nested Polygons. Now it remains to be

demonstrated how to recover a desired optimal approximation after the two schemes are over.

The key issue in recovering an optimal solution, is to be able to answer the following question: once the two

algorithms are over, if any point x in the annulus is given, how do we determine if there exists an optimal

approximation, i.e., a Minimal Nested Polygon that passes through x? If one does exist a procedure to construct

it, is needed.

In order to accomplish this, first check if x lies in any of the different regions produced by Algorithm Partition

— |T(v)| whose label is ϕ. Since each such region is specified by a fixed number of inequalities, this checking

can be performed in constant time for one region and hence, O(nϕ) time for the entire annulus. If x does belong

to one such region, then, by drawing G(x), the required P
*
 can be found. If not, then it can be concluded that

there is no P
*
 with a vertex at x however, there may be one with an edge passing through x. To verify that, now

check if x belongs to any one of the O(nϕ) regions produced by Algorithm — |P(v)|. Suppose it is found that x

belongs to the region swept out by the slack cone in the interval [E, F], as shown in Figure 4. Then choose any

point in [E, F] that is visible to x − say y as shown in the figure. By drawing the G(y) a P
*
 that passes through x

can be found. If x does not belong to the any of the O(nϕ) different regions produced by Algorithm — |P(v)|,

then it can be claimed that there is no P
*
 passing through x. An argument similar to the one above will show that

the checking based on |P(v)| can also be accomplished in O(nϕ) time for the entire annulus, thus leading to an

overall time complexity of O(nϕ) for the entire recovery procedure.

5. CONCLUSIONS AND FUTURE WORK

This paper, has tried to address a gap in the current literature on the design approximation problem in stock

cutting. Presently, all known algorithms for this problem are only capable of generating one optimal solution,

rendering them inexpedient in practice, where alternate optimal solutions are frequently desired. This issue has

been addressed by considering the case where both the parent material and the design are convex shapes and

two schemes have been presented that help identify the complete set of optimal solutions to the design approxi-

mation problem. In addition, a recovery procedure was discussed to construct a desired optimal solution form

the identified sets. All the schemes were shown to be efficient in terms of the time taken for their respective

executions.

This paper opens up a whole avenue of interesting unexplored problems. Among the most immediate extensions

of the present work would be to explore the possibility of extending the algorithms to arbitrary, non-convex

shapes of the parent material and/or design. Another strand of future research may be to investigate the

possibility of using advanced data structures to improve the time and space complexity of the two algorithms

and the recovery procedures.

Acknowledgements

The first author was supported by Grant # OGP 012 1689 from the Natural Sciences and Engineering Research

Council of Canada. The second author was supported by the Morris Hite Center at the University of Texas at

Dallas. Both supports are gratefully acknowledged. An extended abstract of this paper appeared in the

proceedings of the Canadian Conference on Computation Geometry held at Carleton University, Ottawa, in

August 1996.

References:

[1] Aggarwal, A., Booth, H., O'Rourke, J., Suri, S. and Yap, C. K. (1989). Finding Minimal Convex Nested

Polygons. Information and Computation, 83(1), 98-110.

[2] Bhadury, J. and Chandrasekaran, R. (1995). Stock cutting of complicated designs by computing Minimal

Nested Polygons. Engineering Optimization, 25, 165-178.

[3] Chandra, V., Ghosh, S. K., Maheshwari, A., Rajan, V. T. and Saluja, S. (1995). NC-algorithms for

minimum link path and related problems. Journal of Algorithms, 19(2), 173-205.

[4] Chauny, F. and Loulou, R. (1994). LP-based method for the muti-sheet cutting stock problem. INFOR,

32(4), 253-264.

[5] Christofides, N. and Whitlock, C. (1977). An algorithm for two dimensional cutting problems. Operations

Research, 25, 30-44.

[6] De Carvalho, J. M. V. and Rodrigues, A. J. G. (1994). A computer based interactive approach to a two-

stage cutting stock problem. INFOR, 32(4), 243-252.

[7] Dori, B. and Ben-Assat, M. (1983). Circumscribing a convex polygon by a polygon of fewer sides with

minimum area addition. Computer Vision, Graphics and Image Processing, 24, 131-159.

[8] Ghosh, S. K. and Maheshwari, A. (1990). Optimal algorithm for computing Minimal Nested Non-convex

Polygon. Information Processing Letters, 36, 277-280.

[9] Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting stock problem.

Operations Research, 9(6), 849-859.

[10] Gílmore, P. C. and Gomory, R. E. (1963). A linear programming approach to the cutting stock problem —

Part [I. Operations Research, 11(6), 863-888.

[11] Sufi, S. and O'Rourke, J. (1985). Finding Minimal Nested Polygons. Tech. Report, The Johns Hopkins

University.

[12] Venkateswarlu, P. and Martyn, C. W. (1992). The trim-loss problem in a wooden .drum industry. OR-92:

Proceedings of the Convention of Operational Research Society of India.

Appendix

The appendix contains proofs of the various lemmas in the paper.

Proof of Lemma 1 The lower bound on |G(v)| is obvious by the minimality of P
*
. To show the upper bound,

consider any point v ∈ (Pout−Pin), and let x be the projector of v. By the choice of v and x, it is assured that all

vertices of G(v) and G(x) are coincident. Consider the two disjoint line intervals [x, Int(x)] and (Int(x), Tgt(v)]. It

is obvious that if v ∈ [x, Int(x)] then |G(v)| = |G(x)|; else if v ∈ (Int(x), Tgt(v)], then |G(v)| |G(x)| + l. Since |G(x)|

≤ ϕ + 1, the lemma follows. ■

Proof of Lemma 2 Let x be the projector of a point v ∈ [Pout − Pin] Consider the greedy structure G(x) − the line

segments [x, v1], [v1, v2] ,…,[vk, x] form a nested polygon that passes through v. Further, because x ∈ bd(Pout),

ϕ ≤ |G(x)| ≤ ϕ + 1, ensuring that this nested polygon has ϕ + 1 or fewer edges. ■

Proof of Lemma 3 This begins by showing that if a point occurs in the slack cone of another point on bd(Pout),

then its Polygon index is ϕ). To see this assume that in Figure 2, |G(a)| = ϕ and hence the point y occurs in the

slack cone of a. Let x be the point of intersection of the ray [a → y] with bd(Pout), as shown. Then it can be

verified that the line segments [a, a1], [al,a2],…,[aϕ-2,x], [x, a] form a nested polygon with edges that passes

through y.

To prove the converse, consider all nested polygons through v with 4 edges - i.e.; the set of all P(v). Choose one

such polygon P(v) and an edge of P(v) that v lies on. Extend this edge to intersect bd(Pout) at the points x and y,

where x is clockwise of y. The it is clear that v occurs in the slack cone of x. ■

Proof of Lemma 4 After Steps 1 and 2 of Algorithm Partition − bd(Pout) are over, O(nϕ) critical points are

identified on bd(Pout), which partition it into as many intervals. Consider one such interval, say Interval i — this

interval i may have at most two tight points, which may contribute exactly 2ϕ new critical points. However,

once these two tight points in interval i have been identified, and the resulting new critical points have been

added, intervals need not be examined again — these are those intervals that contain the vertices of the two tight

greedy polygons that were identified in interval i. This guarantees that every time an interval adds or 2ϕ new

critical points in any particular iteration of Step 3, it also enables the removal of exactly 4) intervals from

further consideration in future iterations. Since there are only O(nϕ) critical intervals to start with at the

beginning of Step 3, this process can be repeated at most O(n) times. Thus at most O(n) distinct tight greedy

polygons can be identified in Step 3, and since each has ϕ vertices, this step can add at most O(nϕ) new critical

points. ■

