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Abstract: 

In this paper, we study a budget constrained location problem in which we simultaneously consider opening 

some new facilities and closing some existing facilities. Motivations for this problem stem from applications 

where, due to a change in the distribution of customer demand, the existing facility system no longer provides 

adequate service. The objective is to minimize the total weighted travel distance for customers subject to a 

constraint on the budget for opening and/or closing facilities and a constraint on the total number of open 

facilities desired. For this problem, we develop a mathematical programming model and examine its theoretical 

properties. We then develop three heuristic algorithms (greedy interchange, tabu search and Lagrangian relax-

ation approximation) for this NP-hard problem. Computational testing of these algorithms includes an analysis 

of the sensitivity of the solution to the budget and the desired number of facilities. The intended application in 

this testing is that of locating/relocating bank branches in a large-size town such as in our data set from 

Amherst, New York. We also discuss the situation where operating costs are part of the objective function. 

 

Scope and purpose 

In many service industry applications, e.g., banking, changing customer demand renders the current set of 

facilities inefficient. Under a budget constraint, a company may wish to close some of its existing facilities and 

open some new facilities to better serve its customers. This paper studies such a situation, drawing upon the 

literature for related location models and their solution techniques. An example of the scenario of locating bank 

branches in a large township is presented. 

 

Keywords: Facility location; Greedy algorithm; Lagrangian relaxation; Tabu search 

 

1. Introduction 

Facility location problems commonly occur in the following form: a number of facilities are going to be located 

in a region to satisfy the demand of customers. It is required to select the optimal set of locations for the 

facilities among the potential location sites according to a certain objective function. 

 

Our work is related to the p-median literature, which is concerned with selecting sites for p new facilities so as 

to minimize the average travel distance of customers, assuming that customers use the closest facility. For this 

problem, Hakimi [1] proved the node optimality property which says that at least one optimal solution consists 

of locating p facilities on the network’s nodes. Levy [2] and Handler and Mirchandani [3] dealt with a concave 

cost function for this problem. Kariv and Hakimi [4] established that the p-median on a general network is NP-

hard. However, several solution procedures have been tested with varying degrees of success. Notable amongst 

these are: (i) a greedy approach by Cornuejols et al. [5], (ii) node partitioning by Maranzana [6], (iii) node 

substitution by Teitz and Bart [7], (iv) heuristic branch-and-bound by Jarvinen et al. [8], (v) a primal and dual 

heuristic by Captivo [9], and (vi) meta-heuristic techniques, such as a binomic approach by Maniezzo et al. [10] 

and a gamma heuristic (heuristic concentration) by Rosing et al. [11]. 
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Our work is also related to the uncapacitated facility location problem (UFLP)—see, Cornuejols et al. [12] for a 

survey. The UFLP considers opening new facilities to satisfy the demand of customers when there are currently 

no existing facilities. It accounts for both the fixed cost of opening the facilities as well as the travel cost for 

customers, who are assumed to use the closest facility. Many algorithms have been developed to solve this 

problem. Heuristics for the UFLP include: (i) the greedy and interchange heuristic by Kuehn and Hamburger 

[13] and Cornuejols et al. [5], and (ii) the dual descent heuristic by Erlenkotter [14] and Tcha et al. [15]. Based 

on the mixed-integer programming formulation for the UFLP developed by Balinski [16], many mathematical 

programming approaches for the UFLP have been proposed. A branch-and-bound scheme is widely used among 

the papers in this area. Recently, some researchers have also studied large-scale problems and problems with 

special structure (see, for example, Denshan and Rushton [17] and Jones et al. [18]). 

 

Among all the papers on the p-median and the UFLP, only a few considered the problem of opening new 

facilities or closing existing facilities when some facilities already exist. Berman and Simchi-Levi [19] and 

Drezner [20] considered the problem of adding some new facilities. Chhajed and Lowe [21] studied the problem 

of adding m new facilities on a tree, given that there are n pre-existing facilities. They found an O(mn) 

algorithm for this problem. Leorch et al. [22] considered the problem of closing some existing facilities. Dell 

[23] focused on the formulation of closing or realigning of US Army installations. Savage et al. (see Associated 

Press [24]) studied the relocation of ATMs for Wells Fargo Bank. 

 

The problem of relocating a facility can be viewed also a highly application specific situation. Once such study 

is that by Min and Melachrinoudis [25] in which they present a real-world case study for the relocation of a 

combined manufacturing and distribution (warehouse) facility. They include the six main criteria in a real 

business case—site characteristics, cost, traffic access, market opportunity, quality of living, and local 

incentives. A particular highlight of their work is the consideration given to the design of supply chain network 

in the relocation decision. In a later paper they built a math programming model for the same problem, see 

Melachrinoudis and Min [26]. Our work does not have such a specific application in mind. However, the 

intended application for our model is that of locating bank branches in an urban environment. For this reason, 

we have done our computational testing on a realistic network of a major town in New York State. We have 

also chosen our model parameters in accordance with this application setting. 

 

From a modelling perspective, the primary point of departure in this paper is the tenet that is frequently 

followed in real-life applications: under certain circumstances it is unrealistic to consider the issue of opening 

new facilities or closing existing ones in isolation. We submit that in contrast, many real applications have to 

consider both issues simultaneously. Consider the example of a bank that already has several branches spread 

over a town. Due to the change of population distribution, some customers may complain that there are no 

branches nearby while only a few customers visit some of the existing branches. Therefore, the management of 

the bank decides to invest a certain amount of their financial budget to relocate some of the branches so that 

they can improve their service by decreasing the customers’ total travel cost (distance). The budget is enough to 

open a number of new branches, but the management does not want their total number of branches, including 

both new and old, to exceed a certain number due to an upper limit on the annual operating costs. Hence, the 

problem that the management faces is to decide where to open new branches and which existing branches 

should be closed so that the total travel distance for customers is minimized, subject to the constraints on the 

budget and the maximum number of facilities. 

 

The significance of our work is as follows: It is first to consider and analyze a model specifically designed for 

simultaneously opening and closing of facilities. Second, it successfully adapts solution techniques from the 

literature for the p-median problem and the UFLP problems, to analyze the issues of fixed costs of 

opening/closing of facilities and travel costs for serving customers, who are assumed to be assigned to their 

closest facility. As a final point, our methods can also be tailored to handle operating costs for facilities. 

 



The rest of the paper is organized as follows. The next section contains a mathematical formulation of the 

problem. Some model properties and insights are presented in Section 3. Section 4 develops three heuristics for 

the problem. Section 5 presents our computational results and sensitivity analysis on budget and maximum 

number of facilities. Extensions to the situation where operating cost is part of the objective function are 

discussed in Section 6. Finally, Section 7 contains a summary, our conclusions and some ideas for future 

research. 

 

2. Formulation 

Consider a system which can be represented by a network G(M, N1, N2, D), where 

 

M = {1,…,m}: the set of nodes where customers reside, 

N = {1,…,n} = N1 ⋃ N2: the set of all facility nodes, where 

N1 = {j1,…,jq}: the set of nodes where existing facilities are located, 

N2 = {jq+1,…,jn}: the set of nodes where new facilities can be located, 

D: the distance matrix between customer nodes and facility nodes, 

dij: the distance between customer node i ∈ M and facility node j ∈ N,  

wi: the demand (weight) of customer node i ∈ M, 

p: the total number of open facilities desired by the management, 

q = |N1|: the number of existing facilities, 

n = |N|: the total number of existing and potential facility sites, 

cj: the cost to close an existing facility at node j ∈ N1 or open a new facility at node j ∈ N2,  

b: the total budget available. 

 

Note that the customer nodes M and facility nodes N are not necessarily disjoint, i.e., they may share common 

nodes. 

 

The facility relocation problem is to find the sites of the existing facilities to close and the sites for new facilities 

to open so that the total weighted travel distance is minimized, subject to the constraints on the budget and the 

total number of open facilities desired. 

 

Similar to the UFLP, the problem described above has two parts: (1) selecting nodes in N which will have a 

facility (if a node in N1 is not selected, then the existing facility at the node should be closed; if a node in N2 is 

selected, then a new facility should be opened at the node), and (2) assigning nodes in M to the closest open 

facility. 

 

Define 
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and 
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If yj = 0 for j ∈ N1, then the existing facility j ∈ N1 is going to be closed, incurring a cost of cj(1 — yj); if yj = 1 

for j ∈ N2, then a new facility is going to be opened at potential facility site j, incurring a cost of cjyj. Since the 

total budget available is b, we have 
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Since p facilities are desired,     ∈  = p. Since a customer can only be assigned to an open facility site, we 

have xij ≤ yj, ∀i ∈ M, j ∈ N. Every customer is assigned to exactly one location (ties are broken arbitrarily), so 

we must have      ∈  = 1; ∀i ∈ M. Therefore, the problem can be formulated as follows: 
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subject to the constraints : 
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xij ≤ yj ∀i ∈ M, j ∈ N,        (4) 

 

yj ∈ {0,1} ∀j ∈ N,        (5) 

   

xij ≥ 0 ∀i ∈ M, j ∈ N.         (6) 

 

We note that yj being binary will force xij to be binary. Hence, in constraint (6) we let xij be a continuous 

variable. 

 

3. Model properties and insights 

We now establish some basic properties for problem (P) for insights into the model.  

 

3.1. Relation to the vertex covering problem 

The p-median problem is a special case of problem (P) when N1 = 0/  and b = +∞. Since the p-median problem is 

NP-hard (Kariv and Hakimi [4]), it follows that (P) is NP-hard. 

 

Another interesting feature is that the vertex covering problem, which is NP-complete, can be transformed into 

the problem (P). To see this, consider the formal statement of vertex covering problem: Given a graph G = (V, 

E), where V is the set of vertices and E is the set of edges, and an integer K ≤ |V|, the vertex cover problem is to 

find a subset V' ⊂ V such that |V'| ≤ K and, for each edge (u, v) ∈ E, at least one of u and v belongs to V'. We 

now transform this problem into an instance of (P) by setting: M = E, N1 = 0/ , N = N2 = V, b= |V|, q= |N1| =0, 

p=K, wi=1, ∀i ∈ M, cj=1, ∀j ∈ N,  

 

         
                                      
                                                   

  

 

This instance of (P) tries to find a cover of all edges with p vertices in V. We observe that since the budget is 

sufficient to open K facilities, this instance of (P) is always feasible. The vertex cover problem is feasible if and 

only if the optimal solution of this instance of (P) has an objective function value of |E|. In other words, if the 

vertex cover problem is infeasible, then the optimal objective function value of the (P) is greater than |E|, and 

vice versa. Therefore, an optimal solution of this instance of (P) with an objective function value of |E| provides 

a feasible solution of the corresponding vertex cover problem. We note that this transformation is polynomial in 



the size of graph G. The benefit of this property is that the heuristic algorithms developed and tested for (P) can 

also be used to solve the vertex cover problem. 

 

3.2. Budgetary range 

To determine the largest value of the budget parameter b, we drop constraint (1) and find the solution of the 

resultant problem relaxation. This is a p-median problem in which N constitutes the set of facility nodes. Let 

bmax be the resulting sum of the opening and closing costs. This is an upper bound on the budget required to 

solve this relocation problem. 

 

Finding the minimum budget value, bmin, is even easier. If q = p, then bmin = 0, since we can keep the current set 

of facilities. If q > p, then bmin is the summation of the smallest q — p closing costs in the facility set N1. That is, 

if there are currently more open facilities than desired, the least expensive thing to do is to close those q — p 

facilities with the smallest closing costs. Finally, if q < p, then bmin is the summation of the smallest p — q 

opening costs in the facility set N2. That is, if there are currently fewer open facilities than desired, the least 

expensive thing to do is to open those p — q facilities with the smallest opening costs. 

 

When bmax — bmin is large in comparison to bmax, intermediate values of b (those in the middle of the range) 

would allow for a combinatorially large number of combinations of facilities to close/open. The problem is 

therefore more difficult for these values of b. It is also these values of b that make the problem formulation 

more relevant since the closing of existing facilities and the opening of new ones occur simultaneously.  

 

3.3. Relaxation on the number of desired facilities 

We now relax constraint (3) as 

 

      

 ∈ 

 

 

and denote the relaxed problem as (Prelax). The following propositions provide sufficient conditions under which 

an optimal solution to the relaxed problem (Prelax) also optimally solves problem (P). In other words, under 

these conditions, the lower bound for problem (P) obtained by solving the relaxation (Prelax) will be tight. 

 

Proposition 3.1. If q ≥ p, then there exists an optimal solution to (Prelax) that has p open facilities. 

 

Proof. Suppose there exists an optimal solution S to (Prelax) that has less than p open facilities. The following 

procedure shows that we can generate a solution from S that has p open facilities. Since q > p, in order to reach 

S, at least q — p + 1 facilities should be closed. Reopening any one of the closed facilities, say facility j, cannot 

degrade the objective value, i.e., the objective value of S
1
 = S U j would be no worse than the one of S. It is easy 

to see that S
1
 is a feasible solution to (Prelax) since the budget S

1
 used is less than that of S (one less facility is 

closed), and the number of open facilities is less than or equal to p. Therefore, it is also an optimal solution. If 

|S
1
| = |S| + 1 = p, then we have obtained an optimal solution with p open facilities. Otherwise, we can continue 

this procedure to generate an optimal solution that has exactly p open facilities. ∎ 
 

Proposition 3.2. If q < p, then let    denote the summation of the largest p — q opening costs cj. If b ≥   , then 

there exists an optimal solution to (Prelax) that has p open facilities. 

 

Proof. Suppose there exists an optimal solution S to (Prelax) that has less than p open facilities. Two cases may 

occur: (i) N1 ⊂ S, which means that no existing facilities are closed in order to get S or (ii) some existing 

facilities are closed in order to get S. The following shows that in both cases we can generate a solution from S 

that has p open facilities. 

 



Case (i): Since no budget has been used to close any existing facilities in S and b ≥   , we still have budget to 

open any potential facility j ∈ N \ S. The objective value of S
1
 = S ⋃ j would not be worse than the one of S. It is 

easy to see that S
1
 is a feasible solution to (Prelax) since the budget S

1
 used is less than    ≤  b, and the number of 

open facilities is less than or equal to p. Therefore, it is also an optimal solution. 

 

Case (ii): Reopening any one of the closed facilities, say facility j, cannot degrade the objective value, i.e., the 

objective value of S
1
 = S ⋃ j would be no worse than the one of S. It is easy to see that S

1
 is a feasible solution to 

(Prelax) since the budget S
1
 used is less than that of S (one less facility is closed), and the number of open 

facilities is less than or equal to p. Therefore, it is also an optimal solution. 

 

If |S
1
| = |S| + 1 < p, then we have obtained an optimal solution with p open facilities. Otherwise, S

1
 must lie 

either in case (i) or case (ii). We can continue this procedure to generate an optimal solution that has exactly p 

open facilities. 

 

From the above propositions, we can conclude that the heuristics developed for (P) in this paper can also be 

applied to most instances of (Prelax). 

 

4. Heuristic algorithms 

In this section, three heuristic approaches are developed for our problem. The first one is a greedy-interchange 

(GI) heuristic, the second one uses a tabu search (TS) technique, and the third one is based upon Lagrangian 

relaxation (LR). 

 

4.1. Greedy-interchange (GI) heuristic 

This algorithm consists of two phases. In phase one we either open or close facilities to make the total number 

of open facilities equal to p. Let Q be the set of facility nodes which are open, C(Q) be the total of opening and 

closing costs to achieve open facilities only on the set Q and δi = min{dil: l ∈ Q} be the travel distance to set Q 

for the customers at i ∈ M. 

 

If q < p, we need more facilities. If the summation of the smallest (p−q) opening costs is greater than b, which 

means that the budget is not enough to open (p − q) new facilities, then the problem is infeasible. Otherwise, the 

problem is feasible. To find a feasible solution, we sequentially add new facilities until there are p open 

facilities. If a new facility is added, the total weighted travel distance will either remain the same or decrease. 

The amount of decrease after adding a facility at node j ∈ N2 can be evaluated by calculating 

 

                   

 ∈ 

 

 

The criterion for selecting a facility to open at each step is to select the one with the largest benefit-to-cost ratio 

ϕj/cj from those nodes satisfying C(Q ∪ {j}) < b. If there is no such node available, then we deselect the facility 

with largest opening cost among the newly selected facilities to open, and instead select to open the facility with 

the smallest opening cost among those not yet selected. The procedure is continued until p facilities are opened. 

 

If q > p, we need to close some facilities. Similar to the case of opening facilities, if the summation of the 

smallest (q − p) closing costs is greater than b, which means that the budget is not enough to close (q − p) 

existing facilities, then the problem is infeasible. Otherwise, the problem is feasible. To find a feasible solution, 

we sequentially close existing facilities until p are left. If an existing facility is closed, the total weighted travel 

distance will either be unchanged or increase. The amount of increase after closing a facility at site j is obtained 

by the expression 

 

                   ∈          

 ∈ 

 



The criterion for selecting an existing facility to close is to choose the one with the smallest value of ϕj = cj 

from those nodes satisfying C(Q \ {j}) < b. If there is no such node available, then we deselect the facility with 

the largest closing cost among the newly selected facilities to close, and instead select the one with the smallest 

closing cost among those not yet selected. The procedure is continued until p facilities remain. 

 

Phase two is an interchange procedure that performs a swap between a pair of facility nodes. The pair should 

consist of a node j ∈ N with an open facility and a node k ∈ N without an open facility. If there exist feasible 

swaps that improve the objective function value, the one with the best objective function value is selected. 

(Here feasible means that the cost after opening a facility at k and closing a facility at j is within budget.) The 

interchange procedure continues until either there are no feasible swaps or no feasible swaps improve the 

objective function value. A detailed presentation of this GI algorithm is provided in Wang [27]. 

 

Example 1. Consider a network with m = 8 customer nodes and n = 5 facility nodes, with weighted distance 

matrix 

 

 

 

opening/closing costs c = (25, 23, 7, 5, 22) and a budget b = 55. Suppose further that facilities 3 and 4 are 

currently open (N1 = {3;4}; q = |N1| = 2), and a total of p = 3 open facilities are desired. 

 

Iteration 1: Initially, let the existing facility set be the open facility set, Q
1
 = N1 = {3;4}. At this time, the 

weighted travel distance from each customer to his closest facility is u
1
 = (18, 9, 9, 7, 9, 17, 18, 15), the total 

weighted travel distance is f(Q
1
) = 102, and the cost for closing/opening is C = 0. 

 

Adding a facility at node 1, 2 or 5 will decrease the objective function value by ϕ1 = 9; ϕ2 = 12 and ϕ5 = 11, 

respectively. Since 
  

  
 has the maximal value of ϕj/cj, node 2 is selected, and the new set of facilities is given by 

Q
2
 = {2, 3, 4}. After this, the travel distance from each customer to his/her closest facility is recalculated to be 

u
2
 = (18, 9, 9, 7, 5, 17, 10, 15), the total weighted travel distance is f(Q

2
) = f(Q

1
) − ϕ2 = 90 and the cost incurred 

for closing/opening is C = 23. Since we now have the desired three open facilities, we perform swaps between 

the open and non-open sites. 

 

Iteration 2: Among the possible swaps, the one between facilities 1 and 3 produces the best objective function 

value, and we therefore obtain Q
3
 = {1, 2, 4}, f(Q

3
) = 85, C = 55. Since no further swap can improve the 

objective function, we stop. We conclude that the best solution is to open new facilities at nodes 1 and 2 and to 

close the existing facility at node 3. 

 

4.2. Tabu search (TS) approach 

In the interchange phase of the GI heuristic, the algorithm stops when no swaps improve the objective function 

value. This means that it stops at the first local optimum that it reaches. In order to have an opportunity to 

investigate the other local optima after reaching the first one, we modify the interchange phase by applying a TS 

technique; see Glover and Laguna [28] for a general description of the TS technique. 



 

Pairwise swaps are still defined as the neighborhood of the tabu search. At each iteration, instead of terminating 

when no swap improves the objective function value, the best feasible swap is implemented, even if this results 

in a larger objective value. The algorithm continues until K successive swaps show no local improvement on the 

objective function. Furthermore, a tabu list of size L is generated. The tabu list contains a list of the L most 

recent swaps that did not locally improve the objective value. This prevents the search from repeating swaps 

tried in the recent past. A detailed presentation of this TS algorithm is provided in Wang [27]. 

 

Since the TS approach keeps searching other local optima after reaching the first local optimum, while the GI 

heuristic stops when it reaches the first local optimum (the GI heuristic is a sub-procedure in the TS approach), 

the TS approach will always take more time than the GI heuristic, and it will always provide no worse a 

solution than the GI heuristic. 

 

The TS approach does not typically yield an improvement for small problems (like our example). It does, 

however, improve solutions for some large-scale problems as reported in Section 5.4. 

 

4.3. Lagrangian relaxation (LR) approximation 

Both the GI heuristic and the TS approach cannot guarantee the quality of the solution that they generate. Some 

researchers have developed solution procedures for the p-median problem and the facility location problem 

based on Lagrangian relaxation, see Narula et al. [29] and Cornuejols et al. [5]. In this subsection, we introduce 

a heuristic method based on LR that will generate an ε-optimal solution. A more detailed description of 

Lagrangian relaxation can be found in Beasley [30]. 

 

Our definition of ε-optimal is given by the following. 

 

Definition. If z is the objective function value of a solution x and z
*
 is the optimal objective function 

value, x is said to be an ε-optimal solution if (z – z
*
)/z

*
 ≤ ε. 

 

First, we consider a Lagrangian relaxation of problem (P). The LR L(u; v) of problem (P) with respect to 

constraints (1) and (2) for a given (u; v) is 

 

 

 

subject to constraints (3)–(6): 

 

The objective function in the relaxation L(u; v) can be rewritten as 

 

 

 

Define (widij − ui)
-
 = min{0,widij − ui}, and let 

 

 



Denote the smallest p such as pj’s by    ,    ,…,    . Since the last three terms in (7) are constant, it follows by 

inspection that the optimal solution to the LR for a given u and v is 
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We note here that in relaxing constraint (2) it is possible that      ∈  ≥ 1, which means that a customer i ∈ M 

may be assigned to more than one facility. 

 

The Lagrangian dual of (P) with respect to constraints (1) and (2) is Minimize L(u, v), subject to v ≥ 0. This 

dual can be solved via the following subgradient algorithm. 

 

Subgradient algorithm 

First, let Q be the incumbent solution set, i.e., the best set of locations for open facilities found so far, γ be the 

objective value of Q (i.e., γ is the best upper bound obtained so far for the primal problem (P)), and β be the best 

objective value found for the Lagrangian dual. 

 

Step 1. Initialize by setting β = −∞, k = 1; v
1
 = 0 and   

  = min{dij: j ∈ Q}; i ∈ M. 

 

Step 2. Find an optimal solution   
 ,    

 , ∀i ∈ M, j ∈ N of the Lagrangian relaxation L(u
k
, v

k
) by using Eqs. (8) 

and (9). Let 

 

          ∀ ∈   

 ∈ 

 

 

and 

 

 

If θi = 0; ∀i ∈ M, η ≥ 0 and v
k
 = 0, stop;   

 ,   
  solves (P). 

 

Step 3. Update the value β if   
 ,    

  provides a better objective function value for the dual. 

 

Step 4. Define a step size λk = (γ − β)/(||θ||t
k
), where t

k
 is a factor related to iteration k. Update the Lagrangian 

multipliers by   
    ←   

  + θiλk, ∀i ∈ M and v
k+1

 ← max{0,v
k
 + ηλk}. Set k ← k + 1. If k is greater than the 

number of iterations permitted, stop; otherwise, go to step 2. 

 

The following LR approximation scheme uses this subgradient algorithm to obtain an ε-optimal solution to 

problem (P): 

 

LR approximation algorithm 

Step 1. Solve the problem with the GI heuristic to obtain an initial feasible solution and an upper bound. 

 

Step 2. Solve the problem via a branch-and-bound technique. The lower bound is obtained by solving the 

Lagrangian dual via the subgradient algorithm presented previously. Branch on the yj with the most customers 



assigned to it. A node with lower bound no less than γ/(1 + ε) will be pruned from the branch-and-bound tree, 

where γ is the best objective function value of (P) found so far. 

 

The reason for branching on the facility with the most customers is because this facility stands a good chance to 

be in the optimal solution (in which case its y value will be set to 1). With this in mind, we hope to reduce the 

size of branch-and-bound tree by fixing such variables at an early stage. 

 

Obviously the CPU time of the LR approximation will be larger than the CPU time of the GI heuristic since the 

GI procedure is a part of the LR approximation. However, the benefit of the LR approximation is that it always 

provides a solution that is no worse than the one provided by the GI heuristic and it guarantees that the solution 

is within 8% of the optimum. 

 

5. Computational experiment 

In this section, we test the performance of the heuristic algorithms. This testing is based upon the application 

domain of locating bank branches in a large-size township. We chose Amherst, New York, which has a 

population of about 100,000 people (it is the largest suburb of the city of Buffalo, New York) as the region of 

interest. By looking at the major banks in this town we found that the number of branches varied between 5 and 

10. Also, by talking with officials in the town office it was determined that only commercially zoned land at 

major street intersections would be considered for location of a bank branch due to consideration of parking, 

accessibility, etc. In the description we highlighted the choice of the problem parameters with respect to these 

application domain. 

 

All the three heuristics were compared to the exact solution for 270 problems. Test data are based on a network 

derived from the Town of Amherst, New York. It consists of 459 customer nodes and 84 potential facility sites. 

Since link information plays no role in all the three heuristics, the distance information between each (customer, 

facility) pair is enough. Heuristic algorithms were programmed in Microsoft Visual C++ 6.0. The optimal 

solutions were generated via CPLEX 6.0. All the programs were run on a Dell OptoPlex GX1MTDS450 PC 

with 128MB RAM and a 450 MHz CPU. Computation times are reported in seconds. 

 

5.1. Parameters 

The following is a list of the parameters considered in the numerical experiment: 

 

 Customer nodes and weights 

We obtained the customer nodes and their weights from census block data from the 1991 US Census. 

Essentially, the weight of a node was the portion of the population of the town that resided in the area 

represented by that node in the 1991 census. 

 Distance matrices 

Ten weighted distance-matrices were generated by perturbing the Euclidean distance between the 

customer nodes and the potential facility nodes. Let eij be the Euclidean distance between customer node 

i and potential facility node j. Then dij = αeij, where the perturbation α was randomly generated from a 

uniform distribution over (1.1, 1.4) for each link. The range for perturbation stems from the fact that 

road distances between two randomly selected points in the Town of Amherst tend to be mainly within 

10–40% of the Euclidean distance between the points (based on some experimentation we did). 

 Opening/closing costs 

The opening cost was randomly generated from a uniform distribution over (200, 300). The closing cost 

was randomly generated from a uniform distribution over (50, 100). 

The closing cost is smaller than the opening cost because opening a new facility is typically more costly 

than closing an existing facility. We note that the scale of these costs is not relevant. However, the 

relative magnitude of opening and closing costs are of importance and were obtained by consulting with 

a local real-estate agent with reference to business properties. 

 Number of existing facilities 



The parameter q has three levels: {5,7,10}. The set of the existing facility sites was randomly picked 

from the 84 potential facility sites. The number of potential facility sites were chosen with a bank 

example in mind. Specifically, we identified commercially zoned land/properties at major street 

intersections in the town of Amherst. The values of q reflect the number of branches associated with the 

three largest banks in the Town of Amherst. 

 Number of open facilities 

The parameter p has three levels {5,10,15}. The values of p reflects the fact that a bank may wish to 

expand its services from its current level. 

 Budget 

The budget b is determined by q, p and a constant c. The constant c also has three levels { 1.5,1.8,2}. 

The value of b is given by 

 

   

                
                         

                

   

 

Since we have chosen opening costs to be higher than closing costs we allow for a larger budget when 

we are permitting a net increase in the number of facilities (p > q). For the case p = q, we permit a 

budget which allows for closing/opening of a reasonable number of facilities. The three values of c 

allow for a change in the overall budget while retaining its variation across p and q. 

 Parameters for the TS approach 

The length of the tabu list is L = 3. The maximal number of non-improvement swaps allowed is K = 5. 

The values of L = 3 and K = 5 were chosen after initial experimentation with the TS method. 

 Parameters for the LR approximation 

The parameter ε = 0:02. We chose this value since most decision makers would be satisfied with a 

solution that is within 2% of optimality. 

The number of iterations permitted in the subgradient algorithm is 300. This value was chosen after 

initial experimentation with the TS method. 

The step size λ
k
 is defined by λ

k
 = (γ − β)/(||θ||t

k
), where γ is the best objective function value of (P) 

found so far, ||θ|| = (   
 

 )
1/2

 is the norm of θ, and 

 

  

 
 
 

 
 
                       
                
              
             
                     

  

 

As is standard practice in applying LR as a solution technique Beasley [30], the step length should be 

decreased significantly as the iterations progress. The values of t chosen reflect this desire. 

 

Since for each distance matrix there are three parameters q, p and c, and each parameter has three levels, the 

number of combinations of the levels of these three parameters is 3 × 3 × 3 = 27. For each combination of these 

parameters, we ran 10 problems corresponding to the 10 distance matrices. Hence, there were 270 problems in 

total. All three heuristics were used to solve these 270 problems. 

 

We have also tried to revise the greedy phase of the GI heuristic by using a simulated annealing technique. For 

most of the 270 problems we tested, the revised algorithm generated worse solutions. Therefore, its results are 

not reported. 

 

 

 



5.2. Computational results 

For all the algorithms, the CPU time and objective function value are collected for each problem. The error 

percentage of the heuristics is computed as 

  

        
                                                    

                       
       

 

where the optimal objective value was determined using the commercial optimization software CPlex 6.0.  

 

 
 

The average error percentage and maximal error percentage for each group is listed in Table 1. The first three 

columns display the average (over the group of 10 problems with specified values of parameters q, p and c) of 

the error between the objective function value obtained by the three heuristics and the optimal objective value. 

The last three columns of the table are the maximum (over the 10 problems) of the error between the objective 

value obtained by the three heuristics and the optimal value. 

 

Based on these results, we can conclude that the performance of all three heuristics is very good. The average 

error of the GI heuristic across all parameter combinations is only 0.46%. (Only one problem among the 270 

had an error larger than 10%.) The average error of the TS approach is just 0.25%. (Only one problem among 

the 270 had an error larger than 3%.) Similarly, the average error of the LR approximation is 0.27%. 



 

It is important to note that the GI heuristic and TS approach provide optimal solutions in most of the problems 

when p ≤ q. This shows that the algorithms are well suited for the situation when a business is consolidating 

rather than expanding its locations. 

 

However, the GI heuristic and the TS approach make no guarantees on the quality of the solution obtained, 

whereas the LR approximation solutions are guaranteed to be within 2% of the optimal value. Among the 270 

problems, the solutions of 12 problems generated by the GI heuristic and the solutions of five problems 

generated by the TS approach were beyond 2% of the optimal values. 

 

The results in Table 2 are the average time spent by the three heuristics as compared to the time spent by 

CPLEX 6.0 for a group with specified values of parameters q, p and c. On average (i) the TS approach takes 

60% more time than the GI heuristic; (ii) the LR approximation takes 373% more time than the TS approach; 

and (iii) the time spent on CPLEX 6.0 is almost 28 times of that by LR approximation. 

 

For the GI heuristic and the TS approach, the CPU time generally 

 increases in the overall budget c; this is because when the budget is large, the interchange phase is less 

restricted; 

 increases in p; the reason for this is that when p is large, the number of possible swaps in each iteration 

of the interchange phase is large; 

 decreases in the value of p − q. 



The above three results do not apply to the LR approximation and CPLEX. The reason may be due to the fact 

that both of these methods use a branch-and-bound scheme, whose convergence depends on the lower bounds it 

finds. Apparently parameters p; q and c do not have a strong influence on the quality of the lower bounds 

obtained. 

 

5.3. CPLEX approximation 

We also used CPLEX as an approximation method by terminating it when the solution at hand was within 2% 

(or 3%) of optimality. As one might expect, this CPLEX approximation methods generates solutions that are 

sometimes better and sometimes worse than the GI heuristic and the LR approximation. (The TS approach is 

similar to the GI heuristic.) However, it always takes much more time than the other heuristics. Since it 

generally takes more time to obtain a better solution, we omitted those cases where CPLEX provided a better 

solution than the heuristics. This was done in order to make a fair comparison to the CPLEX approximation. If 

this were not done, then the CPLEX ―heuristic‖ would be unfairly penalized by instances of excessively large 

computation time — a price that was paid solely because the other heuristics were unable to come within 2% 

(or 3%) of optimality. 

 

Tables 3 and 4 compare the CPU times for those problems that the CPLEX approximation provided worse 

solutions than the heuristics. From these tables, we can readily see that the time that CPLEX approximation 

method takes is about 183 times that of the GI heuristic and 25 times that of the LR approximation. In these 

instances, the GI heuristic and the LR approximation generate better solutions with much less time than the 

CPLEX approximation, and therefore are capable of handling larger problems. Hence, the development of these 

heuristics appears to be worthwhile. 

 

5.4. Large-scale problems 

We ran the three heuristics on the same PC to solve four randomly generated large-scale problems. These 

problems could not be solved via CPLEX 6.0 on this PC due to the lack of memory. The description of the 

problems is in Table 5. 

 

The computational results for both solution time and objective value are presented in Table 6. The first two 

rows of the table show the performance of the GI heuristic and the TS approach, respectively. The remainder of 

the table shows the performance of the LR approximation for decreasing values of error tolerance 8. 

 

Based on these results, we can conclude that the heuristics are still efficient for large-scale problems. The GI 

heuristic generated good approximating solutions and provides good upper bounds for the LR approximation. 

On the four problems, the solutions achieved by the GI heuristic were within 0.4%, 0.1%, 1% and 3% of 

optimality, respectively. Although slightly slower, the TS approach provided better solutions than the GI 

heuristic for three of the four problems. On the four problems, the solutions achieved by the TS approach were 

guaranteed to be within 0.4%, 0.1%, 0.1% and 0.6% of optimality, respectively. 

 

In fact, on problem four the TS approach achieved the best solution found by the time-limited LR 

approximation. Hence, the 0.6% guarantee is a conservative one. The computation times for the LR 

approximation as a function of 8 are plotted in Fig. 1. The CPU time increases dramatically when 8 goes to 0 

with no significant change in the objective function value. 

 



 

6. Operating costs 

In this section, we extend our model to the situation where operating costs are also considered over a fixed time 

horizon. Generally, the operating cost of an open facility site j is given by fj + gjxj, 



 

 

where 

 

fj is the fixed operating cost for facility j over the time horizon;  

gj is the operating cost at facility j per unit customer demand;  

xj is the customer demand at facility j. 



 
 

 
 

Let h be the customer cost per unit distance travelled, and suppose that the customer demands wi’s represent 

demand over the planning time horizon. Then the objective function of Problem (P) becomes 

 

                                  

 ∈  ∈  ∈ 

 

 

In the case that the gj are different for each facility j, the problem becomes non-linear. A solution approach to 

this problem would be to adopt a branch-and-bound method in which we branch on the variable yj. For a fixed 

set of yj’s we can solve the problem quite easily. When the set of yj’s is partially fixed we could solve a linear 

relaxation of the problem using a non-linear solver and then branch on either yj = 0 or 1 for a specified value of 

j. The development of such a solution strategy is beyond the scope of the current paper and is suggested as a 

future research topic. 

 



We now consider the easier case, where gj is the same for each facility, i.e., gj = g, ∀j, the total variable cost 

would be      ∈ , which is a constant no matter where the facilities locate. Thus, these costs can be ignored 

so that we just need to consider the fixed operating costs. Since the objective now considers operating costs for 

the service provider in addition to the travelling costs of the customers, the number of facilities should now be a 

decision variable. Hence, we drop constraint (3) on the number of facilities to open. In what follows, we discuss 

the extension of the GI heuristic and the LR approximation methods to this problem (the TS approach remains 

the same). 

 

6.1. GI heuristic 

This algorithm consists of two phases: greedy adding/dropping and swapping. In the greedy adding/dropping 

phase, we either open or close facilities until the objective value cannot be further improved by only opening or 

closing one facility. Refer to Section 4.1 for notation. 

 

If a new facility is added, the total weighted travel distance will either remain the same or decrease, but the 

operating cost will increase. The total change of the objective function after adding a facility at node j can be 

evaluated by calculating the quantity 
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If an open facility is closed, the total weighted travel distance will either be unchanged or increase, but the 

operating cost will decrease. The total change of the objective function after closing a facility at node j is 

obtained by the expression 

 

       

 ∈ 

               ∈           

 

The criterion for selecting the facility to open/close at each step is to select the one with the smallest value of 

ϕj/cj from those nodes satisfying ϕj < 0 and C(Q ∪ { j}) < b if adding a facility (C(Q \ { j}) < b if closing a 

facility). 

 

Phase two is an interchange phase that performs a swap between a pair of facility nodes. The pair should consist 

of a node j ∈ N with an open facility and a node k ∈ N without an open facility. If there exist feasible swaps that 

improve the objective function value, the one with the best objective function value is selected. Then we apply 

the greedy adding/dropping procedure to the new facility set. The interchange procedure continues until there 

are no feasible swaps or no feasible swaps improve the objective function value. 

 

6.2. LR approximation 

The branch-and-bound scheme described in Section 4.3 can still be applied to the new problem. Everything is 

the same, except the Lagrangian relaxation solution. Consider the LR for the new problem with respect to 

constraints (1) and (2) for a given (u, v): 

 

 

 

 



The objective function in the relaxation L'(u, v) can be rewritten as 

 

 
 

Let 

 

 

 

Since the last three terms in (10) are constant, it follows by inspection that the optimal solution to the LR for a 

given u and v is 

 

    
                 

                
   

 

     
                    

                            
  

 

7. Summary, conclusions and future research 

In this paper we have introduced and studied a budget constrained facility relocation problem where the 

facilities may be opened and closed simultaneously. Following the formulation and a note of its NP-hardness, 

three heuristics are developed to solve this problem. Numerical experiments have been run to examine the 

quality of the heuristics, and the results are reported. The model has also been extended to the situation where 

operating costs are considered. 

 

Based on the results of numerical experiments we conclude that the performance of the three heuristics is very 

good. We also show the tradeoff between time and solution quality. The GI algorithm is the fastest, followed by 

the TS approach and then the LR approximation. However, the solutions generated by the TS approach are 

better than the GI heuristic. Further, the LR approximation can guarantee the precision of solution while the 

other two heuristics cannot. The heuristics also perform well for large problems, which demonstrates the 

superiority of these specialized solution algorithms over a generic IP solver such as CPLEX. 

 

In terms of future research, we note that we have assumed that each facility has an unlimited capacity to service 

demands, which is clearly not suitable for the situation where capacity plays an important role. Hence, future 

research should examine versions of this problem and develop some efficient algorithms for them. A related 

avenue of future research would be to examine probabilistic versions of this problem when queue capacity is of 

concern. Another topic of interest might be studying the situation where closing costs are negative; this may be 

relevant under certain situations since the savings due to closing of a facility are accrued annually. A final topic 

of future research is the case of operating costs when each facility would have a different cost per unit customer 

demand. As noted in Section 6, a branch-and-bound approach may be viable for this situation. 
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