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Abstract: 

Recent urban development in Shanghai, the largest city in China, and its impact on the water environment are 

examined in this study. The area of built-up surface was obtained from the classification of the Landsat 7 ETM+ 

images of the year 2000 for Shanghai. The proportion of built-up surface and population density were extracted 

from buffer zones with radii ranging from 100 to 2000 m, and used in regression analysis against various water 

quality parameters at 44 water quality monitoring stations across metropolitan Shanghai. Results suggest that in 

most cases, the pattern of urban land use as represented by the built-up surface was a stronger predictor than 

population density in explaining spatial patterns of water quality parameters in Shanghai. The best models of 

most water quality parameters were found for buffer zones of 2000 m radius rather than for smaller buffers, 

indicating the regional nature of the factors that influence water quality in the study area. Evidence suggests that 

strong associations between land use, population density, and water quality result from the contribution of 

untreated domestic wastewater and non-point pollution sources to waterways in Shanghai. Such relationships 

should remain strong in the near future until measures to increase the capacity of wastewater treatment and 

control of non-point pollution sources are fully implemented. 
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Article: 

1. Introduction 

Shanghai is the largest city in China with a population of over 13 million in the year 2000 (Shanghai Statistical 

Bureau, 2002). The municipality occupies an area of approximately 6400 km
2
 on the Yangtze River Delta (Fig. 

1). Shanghai is a major industrial center of China, with many of its over 10,000 factories and industrial 

enterprises concentrated in the city’s urban core. The industries range from petrochemical, textiles and 

metallurgy to paper production and food processing. With approximately 1.2% of the total population in China, 

Shanghai generates approximately 4.9% of the nation’s industrial output and 4.2% of the national gross 

domestic product (GDP) (Shanghai Statistical Bureau, 2002). With Shanghai and other surrounding smaller 

cities, the Yangtze River Delta is becoming the largest mega-urban region in Asia (Douglass, 2000). 

 

Major waterways in Shanghai’s vicinity are overburdened with sewage demands. From the mid-1880s to 1949, 

a few wastewater treatment plants served only the then relatively new foreign concessions areas, leaving the rest 

of the city without any sewage collection and delivery system. Little discernable improvements occurred after 

1949 (Wu & Shi, 1999). Recent rapid urban development in and around Shanghai puts an even heavier burden 

on the environment. Industries in the Shanghai metropolitan area generate 70% of the 5.4 million tons of liquid 

effluents daily (Wu & Shi, 1999). Similar to the situation in many developing countries, economic development 

and industrialization often have a higher priority than environmental protection in China (Shen, Cheng, Gu, & 

Lu, 2002). First appearing in the late 1970s, the legal framework regarding environmental protection evolved 

gradually and matured during the next 25 years. However, even though now there are numerous regulations and 
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policies regarding pollution control, the political, financial and legal systems often do not offer sufficient 

support or provide enforcement mechanisms and incentives (Shen et al., 2002; Ward & Liang, 1995). In a 

recent survey (Shanghai EPB, Shanghai Water Affairs Bureau, & Shanghai Urban Planning & Management 

Bureau, 2001), over 55,000 point sources were identified throughout the metropolitan area, with the highest 

density in the central city districts. Among them, over 33,000 are pollution sources discharging directly into 

waterways. Although the municipal government claims that over 98% of total industrial wastewater discharge is 

treated (Shanghai Statistical Bureau, 2002), it is the cumulative effect of large amount of industrial effluents and 

the density of pollution sources along the waterways that pose great threats to Shanghai’s water environment. 

Another problem that is getting more attention now is non-point pollution, which is estimated to contribute up 

to 50–60% of water pollution in Shanghai (SAES, 1998). 

 
Untreated domestic wastewater, frequent flooding and street runoff all contribute to water quality deterioration 

for waterways around Shanghai, which also severely affects Shanghai’s drinking water sources. The major 

domestic water supply intake had to be relocated to further upstream of the Huangpu River for less polluted 

water (Yusuf & Wu, 2002). Another example of severe water quality problems faced by Shanghai is the Suzhou 

Creek, a tributary of the Huangpu River. Suzhou Creek is approximately 125 km long, with 24 km flowing 

through the highly urbanized part of Shanghai before it joins the Huangpu River. Since the 1920s, Suzhou 

Creek has been known for its black-colored water and foul odor because it receives a large quantity of untreated 

domestic and industrial wastewater. It became a major focus of environmental rehabilitation because the 

government used Suzhou Creek as a symbol of its determination to curb environmental pollution. A massive 

12-year rehabilitation program financed by the World Bank, the Asian Development Bank (ADB) and the 

Shanghai Municipal Government is near completion (ADB, 1999). Although water quality problems in 

Shanghai have been recognized for a long time, very few studies have addressed this issue in the past (e.g., 

Kung & Ying, 1991; Ward & Liang, 1995), partially because many environmental data are considered sensitive 

information and unavailable to general public and scholars. 

 

The purpose of this study is to investigate the relationship between spatial patterns of urbanization processes 

and water quality in Shanghai using water quality data of 1995. Such understanding may help future planning 

and efforts to alleviate water quality problems in the region. The period of the late 1980s and early 1990s 

represents an important milestone of Shanghai’s recent history, as manifested by new areas opened for 

development, reform of the housing system, and significant changes in the city’s infrastructure and physical 

environment (Binns, 1991; He, 1993; Shi & Hamnett, 2002; Ward & Liang, 1995; Yusuf & Wu, 2002). Results 

from this study can serve as the baseline condition for future comparisons to identify the trend of improvement 

or deterioration of Shanghai’s water environment. The municipal government has set very ambitious goals for 

Shanghai (Shi & Hamnett, 2002). With rising living standards and increasing public awareness of the status of 

Shanghai’s water environment, there is now a great sense of urgency for dealing with the water quality issues in 



order for Shanghai to accomplish its aspiration as a “global city” (Leman, 2002; Shi & Hamnett, 2002; Yusuf & 

Wu, 2002). 

 

2. Methods and data 

The intensity of urbanization can be measured by different parameters, such as population density and industrial 

output. In this study, population density and the amount of land surface used for buildings and infrastructure are 

considered. For the purpose of this study, all types of non-vegetated artificial land surfaces are defined as built-

up surface. It has been found that the percentage of built-up surface or urban impervious surface is a key 

indicator of the effects of non-point pollution on water quality (Slonecker, Jennings, & Garofalo, 2001). 

Shanghai is located in a humid subtropical region suitable for intense farming activities. Unless the land is used 

for industrial/commercial or residential developments, it is usually cultivated for farming year around. 

Therefore, the intensity of urbanization can be represented by the proportion of built-up surface in a given area, 

which can then be related to water quality parameters. 

 

Remote sensing has become an effective tool in urban studies. One of the widely used sources of images is the 

Landsat TM imagery. Since its first deployment in 1982, with a ground resolution of 30 × 30 m (for visible, 

NIR and MIR bands) and seven spectral bands, it soon became an excellent tool in regional studies and has been 

used in many studies in China (e.g., Ji et al., 2001; Li & Yeh, 1998; Weng, 2001) as well as in other countries. 

Remote sensing technology is especially useful in areas where maps of high accuracy cannot keep up with 

rapidly changing surface conditions (Ward, Phinn, & Murray, 2000). A review of applications of remote 

sensing of built-up surfaces or urban impervious surfaces can be found in Slonecker et al. (2001). In this study, 

the Landsat 7 ETM+ images (launched in 1999) are used as the main source to estimate built-up surface spatial 

distribution in Shanghai. The images (Path 118/Rows 38 and 39), obtained from the US Geological Survey 

(USGS), were acquired on March 26, 2000 (Fig. 1). 

 

Supplementary imagery sources used in this study include the panchromatic 2000 Indian Remote Sensing (IRS) 

image, 1993 multispectral SPOT XS image, and the 2000 IKONOS image (covering the central city only). 

These higher spatial resolution images, such as IRS (5 m) and IKONOS (1 m), were mostly used in validation 

and accuracy assessment of image classifications. Because the two 2000 Landsat ETM+ images display 

significant spectral differences, separate classifications were conducted and then reconciliation was performed 

based on the overlapped area. In classification, masks were first used to remove most of the water body pixels 

from the two images to reduce spectral complexity of the images. Then unsupervised classification was 

conducted to arrive at 200 clusters. Each cluster was then examined and assigned one of the following land 

use/cover types: water, built-up surface, vegetation and farmland, coastal land, and mix of vegetation and water 

(wetlands and rice paddies). This approach is similar to the multiresolution land characterization (MRLC) 

program of the US EPA (USGS, 2002; Volgelman, Sohl, Howard, & Shaw, 1998). All image processing was 

conducted using ERDAS Imagine
TM

 (ERDAS, Atlanta, GA). 

 

Population density has been used as a measure of urbanization in many studies based on census data and 

geographic information systems (GIS) (e.g., Chen, Zeng, & Xie, 2000; Mesev, 1998; Zhou & Ma, 2000). It is 

calculated as the number of people per unit area in a given region, such as a census tract or a county. In this 

study, population density is calculated at the level of subdistricts (Jiedao and Xiang) based on population data 

from 1997, obtained from East China Normal University (Fig. 2). This is the census level with a higher spatial 

resolution than the county––district level. Population density, together with built-up surface, is then used to 

explain the spatial variation pattern of water quality parameters. 

 

Water quality data for 1995 at 44 stations are available for this study (Fig. 1), provided by the Shanghai 

Academy of Environmental Science (SAES). These stations are a subset of the monitoring system managed by 

the Shanghai Environmental Monitoring Center. Since domestic wastewater and non-point sources contribute a 

significant proportion of water pollution, this study examines water quality parameters that represent domestic 

(organic) pollutants as well as industrial pollutants, including dissolved oxygen (DO), chemical oxygen demand 

(COD Index as the permanganate index, KMnO4), 5-day biological oxygen demand (BOD5), nitrogen as 



ammonia or NH3 (NH3-N), oil, phenol, total phosphorous (TP), total nitrogen (TN), and total mercury (THG). 

Table 1 contains descriptive statistics of the water quality parameters examined. At each monitoring station, at 

least two samples were taken under different hydrological conditions during the year (normally 4–6 times), e.g., 

high water, medium water, and low water conditions (Cao, 2002). The annual average values are used in this 

study. While it is true that the water quality data used in this study are not concurrent with the time of image 

acquisition and therefore, the relationships obtained this way may not represent the current condition, we 

believe that the urban land use pattern in Shanghai had maintained its general characteristics in the late 1990s 

and that we can still capture the general nature of such relationships at the regional scale. 

 
Shanghai is located on the delta of the Yangtze River, characterized by thick unconsolidated fluvial sediments 

and a dense network of various types of waterways of natural streams and artificial canals, over 21,000 km in 

total length (Fig. 3) (Shanghai EPB et al., 2001). Flow velocity and flow direction of many waterways are 

affected by tidal fluctuation and controlled by sills and gates for flood management purposes. For most 

waterways, especially small ones, water flow is sluggish and bidirectional due to low channel gradient, tidal 

action and the interference of the gates. These factors significantly hamper the flushing of pollutants out of their 

source reaches. Obviously hydrological condition has a great impact on water quality. However, no stream flow 

data are available for those monitored cross-sections. Instead, a ranking system is used in this study as a proxy 

of long-term flow condition (Table 2). The ranking data are part of the attributes of the stream GIS coverage 

obtained from the SAES. Each monitoring station is assigned the rank of the waterway (river rank). When a 

station is located at the intersection of two waterways with different ranks, the higher rank is used. In general, 

larger waterways (lower ranks) have faster flows and stronger mixing mechanisms as compared to smaller 

waterways (higher ranks). 

 



 
To simplify the analysis, it is assumed that the interaction between nearby streams/waterways through surface 

and subsurface water exchange facilitates the dispersion and mixing of pollutants. Therefore, each water quality 

monitoring station not only represents the reaches immediately above and below its location, but also the nearby 

waterways. The water quality parameters measured at a given station should then also be related to the urban 

land use intensity and the distribution of pollution sources in the surrounding area. Due to the aforementioned 

hydrological characteristics of the waterway network in Shanghai, it is all but impossible to determine the 

drainage area for each monitored cross-section. Therefore, the conventional approach of relating water quality 

monitored at the pour point of a drainage basin to land use conditions within the basin is not applicable. To 

investigate how strongly the land use pattern within a given area is related to water quality, for each of the 44 

stations, buffers with radii from 100 to 2000 m are developed (Fig. 4). The buffer zones are then overlaid on the 

classified images and the land use/cover pattern (built-up surface proportion) is extracted for the buffer zones. 

Similarly, the population density at the subdistrict level is first converted to a grid of 30 m × 30 m resolution, 

and then the mean population density is extracted for the same set of buffer zones. 

 
 

Spatial analyses were conducted using ArcView, a GIS software package from ESRI (Redlands, CA). In 

searching for the relationship between urbanization and water quality, built-up surface proportion, population 

density, and river rank are used in correlation and regression analyses against water quality parameters. Step-

wise regression is used to find the best models for the water quality parameters, in which only independent 

variables with statistical significance of 0.05 are included. Two types of relationships are considered in analysis: 

linear and exponential. All statistical analyses were performed using SAS (SAS Institute, Carey, NC). 



 
 

3. Results and analysis 

3.1. Land use/cover classification 

In unsupervised classification, the ETM+ images were first classified into 200 clusters using the routine of 

ISODATA of ERDAS Imagine. Even with such fine divisions, it was found that some clusters still represented 

pixels of multiple land use/ cover types, mostly found in the southern image (Path 118/Row 39). To solve this 

problem, these pixels of mixed classes were extracted and then further classified into 60 clusters. Then each 

cluster was examined against the original false color composite image and the high-resolution images (IRS and 

IKONOS) to determine its land use/cover type. A printed image atlas at a scale of 1:8000 and a declassified 

general use map published by CIA were also used in this process (CIA, 1982; Shanghai Academy of Surveying 

& Mapping, 2001). A more detailed account of the imagery classification process is presented in a separate 

article (Walcott et al., forthcoming). 

 

To ensure that classifications on the northern and southern images are consistent, the overlapped area between 

the two images was compared quantitatively. Table 3 shows the result of comparison of the pixels in the 

overlapped area. The differences between the two images are minor for the major classes (built-up surface and 

vegetation/farmland). The impact on the following analysis should be insignificant since the area represented by 

the southern image is small (Fig. 1). After the classification, accuracy assessment was conducted by randomly 

selecting points on the images (Table 4). With an accuracy of 87%, the result is comparable to or better than 

other land use/cover studies using similar imagery sources (Allen & Kupfer, 2000; De Bruin & Gorte, 2000; 

Phinn & Stanford, 2001). The major source of error seems to be the barren coastal land being confused with 

built-up surface. Fig. 5 shows the classified image with the simplified classes of built-up surface and non-built-

up surfaces. 

 
 

3.2. Relationship between land use and population density 

The area of the built-up surface based on the classification of the Landsat imagery was calculated and then 

divided by the total area for each subdistrict to obtain the proportion of built-up surface (Fig. 6). The proportion 



of built-up surface has a spatial pattern similar to that of population density (Fig. 2), with values ranging from 

0.8 to 1.0 in the central core of the city; then dropping quickly into the surrounding rural areas. The population 

density and the proportion of built-up surface at the subdistrict level are statistically correlated with a 

correlation coefficient of 0.8640 (exponential relationship). 

 
 

 
We also examined the relationship between the proportion of built-up surface and population density at 

different scales as represented by the buffers of different sizes surrounding the water monitoring stations. Fig. 7 

suggests that the relationships between built-up surface proportion and population density summarized for the 

buffers become stronger as the buffer size increases. Table 5 contains the results of bivariate regression of built-

up surface proportion against population density. The R2 values become higher for larger buffers, partially 

because population density is calculated from the subdistrict averages, which has a lower spatial resolution than 

the proportion of built-up surface derived from the satellite images. For smaller buffers, local land use patterns 

may or may not entirely conform to the pattern of population distribution. For example, non-residential land 

uses may be a significant portion of a buffer of 100 m along the stream of interest. As the buffer increases, the 

land use pattern within the buffer becomes more and more similar to the regional land use pattern that is 

strongly associated with the spatial pattern of population distribution. 



 
Shanghai’s urban infrastructure development strongly mirrors its population distribution. Before China 

reformed the housing system in the mid-1990s, state-owned enterprises were responsible for providing housing 

for their employees. With bicycles and public transit systems as the major mode of transportation, housing 

developments were located as close to the locations of employment as possible. Even today, the employers are 

still heavily involved in arranging housing for their employees. This explains the close association between 

urban land use and population density for larger buffers as well as at the subdistrict level. 

 



 
3.3. Spatial pattern of water quality parameters 

Fig. 8 shows spatial variation patterns of the water quality parameters. DO has low values for stream segments 

within the city and high values in the rural area, while all other parameters have higher values in the city and 

lower values in the rural area. To help interpreting the data, the surface water quality standards (State 

Environmental Protection Administration, 2002) regarding those parameters are presented in Table 5. Type III 

water is considered moderately polluted, while Type IV and Type V represent heavily polluted water. The 

graduated symbol classes in Fig. 8 conform to the water quality standards, except for levels exceeding the 

limits. Most monitoring stations in 1995 registered levels corresponding to Type IV or V water or worse for 

almost all water quality parameters examined in this study, indicating heavily polluted water across the study 

area with the poorest water quality found in the central city area (Fig. 8). It can be argued that the intensity of 

urban contribution of pollutants much outweighed the agricultural non-point source pollution, as indicated by 

some of the common measures of non-point pollution (total N, total P, and NH3-N). In fact, the effect of urban 

pollution obscures the effect of agricultural non-point source pollution (Table 6). 

 



 
 

 



By examining Figs. 2, 5 and 8, one would assume that both population density and proportion of built-up 

surface should be similarly correlated with water quality parameters. This is further illustrated by the 

distribution of point pollution sources in Shanghai (1995 data available only for the area west and north of the 

Huangpu River). Fig. 9 shows that the concentration of point pollution sources is very high in the central city, 

decreasing outwards with a few clusters. 

 
The Shanghai Municipal Government claims that almost all industrial wastewater is treated before discharging 

into waterways (Shanghai Statistical Bureau, 2002). Since the late 1970s, major industrial projects are required 

to include pollution control measures in the design stage, so that the effluents will meet the standards for 

discharging into waterways at the time when the factory begins its operation––the “Three Synchronicities 

Policy” (Shen et al., 2002; Ward & Liang, 1995). There are also laws and policies that require Environmental 

Impact Assessment (EIA) for major projects and the polluters to pay fines if the effluents do not meet the stan-

dards––the “Polluter-Pays Principal’’ (Shen et al., 2002). However, enforcement of these laws and policies has 

been difficult and inefficient. For example, over time, as the factory expands, the designed capacity of 

wastewater treatment may not be updated in many cases. When effluents fail to meet the standards, the fines 

assessed tend to be so low that the enterprises simply pay the fines and continue the pollution process, rather 

than upgrade the pollution control measures. 

 

In recent years, there are more and more privately owned small manufacturing enterprises that do not follow the 

government guidance in pollution control. Above all, the monitoring of point sources takes the form of self-

reporting since the local environmental agencies simply do not have the personnel and financial means to 

monitor all pollution sources. This situation is especially serious in the rural outskirts and along the fringe of the 

central city (Leman, 2002; Shen et al., 2002). According to Ward and Liang (1995), only one-third of domestic 

wastewater generated by the city is processed by wastewater treatment plants. The balance is used in agriculture 

(a diminishing practice), collected by canals and discharged to the Yangtze River or the ocean, or discharged to 

local waterways. It should also be pointed out that the capacities of wastewater collection and treatment are 

much lower in the surrounding rural areas. Additionally, over 2000 small shallow landfills together with three 

major landfills used by the municipal government allow leachate to seep or flow laterally into nearby 

waterways. All of the above factors explain the spatial patterns of water quality parameters in Shanghai in the 

mid-1990s and the close associations between water quality, population density, and urban built-up surface. 

 

Results of stepwise regression clearly demonstrate the impact of spatial scale on such relationships. In general,
 

R
2
 values increase with buffer size, from a mean of 0.549 for models of 100 m buffers to a mean of 0.642 for 

models of 2000 m buffers (Table 7). Built-up surface appears to be a better predictor of water quality than 

population density. For all 45 models (9 water quality parameters and 5 buffer sizes), built-up surface is 

included in 42 models, while population density and river rank are included in 26 and 21 models, respectively. 

Additionally, in stepwise selection built-up surface is the first variable to enter 33 models, explaining most 

variance in water quality parameters. In comparison, population density is the first variable to enter only 12 

models. With increasing buffer size, built-up surface becomes more dominant, especially for buffers 1000 and 

2000 m in size (Table 7). For smaller buffers, there is a greater tendency for both built-up surface and 

population density to be included in the models (17 out of 27 models for buffers 100–500 m). For larger buffers 

(1000–2000 m), two thirds of the models (12 out of 18) contain either variable, but not both, resulting from 

increased colinearity between the two variables (Fig. 7). Most models are based on exponential relationships, 



except for DO and TP that have linear models for larger buffers (500–2000 m). The exponential relationships 

suggest that the impact of urbanization on water quality tends to amplify with an accelerated pattern as 

urbanization intensifies. 

 
 

 
As to individual water quality variables, DO is among the best-explained with high R

2
 values for all buffer sizes 

(Table 8). Models of smaller buffers (100–500 m) contain both built-up surface and population density. 

Population density is the first variable to enter models of 100–200 m buffers, but built-up surface first enters the 

rest of the models. River rank is not significant for any of the DO models. COD’s models consistently include 

all three independent variables, but built-up surface is the dominant variable entering first into all models. 

BOD5’s models include all three variables for buffers 100–500 m in size; then population density drops out for 

the larger buffers. Built-up surface enters first into all models. Of the three water quality parameters that 

represent nutrient levels, all NH3-N’s models include only built-up surface. The same is true for TN’s models of 

the buffers 200–2000 m in size. For TP, built-up surface and river rank enter the models for buffers 200–2000 

m in size. Oil, phenol and THG represent mostly industrial pollution. For smaller buffers (100–500 m), both 

built-up surface and population density are included in oil’s models, while built-up surface and river rank are 

included in the models for larger buffers. For all phenol’s models, all three independent variables enter the 

models. However, unlike the COD models that also include all three independent variables, population density 

is the dominant variable for phenol’s models. Models for THG have low R
2
 values overall, which is partially 



caused by many observations below the detection limits being registered as half of the detection limits in the 

data set. Population density is the single predictor for buffers 100–200 m in size. Although built-up surface is 

included in models of larger buffer sizes, population density remains the first variable to enter all the models of 

THG. Additionally, THG is the only exception that the best model was found for the 200 m buffers (R
2
 = 

0.436). All other water quality parameters have their best models found for the largest buffer. 

 
The results found above suggest that the major factors of the spatial pattern of water quality have a regional or 

diffuse nature. This also supports the earlier assumption that water quality monitored at a given cross-section of 

the waterways actually represents the effect of all pollution sources in a large area rather than the area 

immediately surrounding the monitoring site. Although it would have been optimum if the size of buffers could 

be further increased, the radius of 2000 m seems to have reached the limit for data independence since at this 

scale, many buffer zones begin to overlap significantly. Table 9 contains the best regression models of the water 

quality parameters, most of them for the buffers of 2000 m radius. Built-up surface proportion is included in all 

models. Only three models contain both built-up surface proportion and population density due to high levels of 

colinearity for large buffers. River rank is included in 5 out of the 9 models. 

 
Tables 8 and 9 show that built-up surface proportion entered more models than population density. Both 

variables are used as the measure of the intensity of urbanization. Since built-up surface is obtained from 

satellite images of 30 m resolution, it should represent mostly local land use patterns, especially for the smaller 

buffers. Population density, on the other hand, is derived from the census data at the subdistrict level of a much 

coarser spatial resolution, and therefore, represents the intensity of urbanization from a regional perspective or 

the background condition for water quality at a specific cross-section. For smaller buffers, there is a better 

chance that both built-up surface proportion and population density are included in the model because these two 

variables tend to be more different in nature. At these scales, water quality is influenced by both regional land 

use patterns as well as local conditions. This signifies the need to manage water environment through local 

planning measures, such as maintaining greenspace along riverbanks as buffer zones and removing pollution 

sources within vicinity of waterways. As stated earlier, with increasing buffer size, the land use pattern within 

the buffers more and more approaches that of the regional scale. As the home of 13 million people, residential 

land uses dominate large portions of the total built-up surface across the city. Therefore, the built-up surface 



proportion within the larger buffers will acquire the characteristics of regional pattern of population distribution 

and replace the effect of population density in regression analysis. Regional planning measures that can be 

effective in water quality management may include redistribution/relocation of population and polluting 

industries, increasing regional wastewater treatment capacity, and implementing land use policies that limit 

further expansion of the city. 

 

A recent study pointed out that in the foreseeable future, the conditions for housing, social services, public 

health, greenspace, and drinking water will be substantially improved for Shanghai, while the air and water 

quality will continue to deteriorate into the following decades (Ying & Kung, 2000). As Shanghai’s population 

continues to grow, with intensive residential housing construction continuing into the foreseeable future and 

infrastructure lagging behind demands, the quantitative relationships between built-up surface, population 

density, and water quality as defined in this study should remain strong. It is noted that the mismatch of the 

dates of image acquisition and water quality data may have introduced errors to the empirical models in this 

study. However, results from this study indicate strong linkages between water quality and land use patterns and 

the nature of these linkages should not change substantially in the near future. It also calls the need for further 

studies to investigate possible changes in such relationships between water quality and land use patterns due to 

implementation of pollution control measures and changes in functionality of land uses at regional scales. 

 

4. Conclusion 

In this study, land use/cover classification was conducted using Landsat 7 ETM+ images for Shanghai, the 

largest city and industrial center of China. The focus was the land used for urban development, categorically 

defined as built-up surface. It was found that the proportion of built-up surface and population density were 

closely associated spatially, and therefore, satellite images can provide an excellent measure of the intensity of 

urbanization. In regression analysis, the proportion of built-up surface appeared to be a better predictor of water 

quality than population density. Regression analysis indicated that built-up surface and/or population density 

can explain 60–70% or more of the variances for most water quality parameters examined. As the buffer size 

increased, the model performance improved for most water quality parameters. 

 

Shanghai has gone through a similar path as many developing or newly developed countries, focusing on 

economic development while ignoring environmental degradation. Lessons learned from the past indicate that 

this can be a costly process in the long run (Chakrabarti, 2001; Chi, 1994; Kabala, 1985; Reich, 1983; Takahasi, 

2001). The Shanghai Municipal Government has realized that to achieve the goal of transforming Shanghai into 

a “global city”, Shanghai must improve its image as a heavily polluted city on the list of the World Health 

Organization (Yusuf & Wu, 2002). Investment in Shanghai’s urban infrastructure skyrocketed since the early 

1990s (Ning, 1999). Environment-related investment amounted to 3% of the total GDP by 2001 (Shanghai 

Municipal Government, 2002), much higher than the national goal of 1.0– 1.5% of the total GDP (Shen et al., 

2002). The government has defined the future for the city as a global financial center with preferential 

development of high value-added manufacturing, such as hi-tech and automotive industries. Many old, low 

value-added and polluting industries in the central city core are either relocated or closed (Leman, 2002). 

Between 1991 and 1998, 12,000 enterprises along with 400,000 households were relocated from the central city 

to the suburbs and the rural outskirts as the result of industrial restructuring, new developments for housing, and 

the reconstruction of the central core (Yusuf & Wu, 2002). By 2020, more than a dozen new wastewater 

treatment plants will be completed. With expanded capacity of the current 31 wastewater treatment plants, the 

total capacity will reach 5.74 million tons/day (Shanghai EPB et al., 2001). This represents more than 5 times of 

the current capacity and will almost meet the demand of the projected domestic wastewater discharge increases. 

These measures will certainly change the spatial pattern of water quality in and around Shanghai. By then the 

relationships between built-up surface, population density and water quality will be much different from those 

examined in this study, with new challenges of pollution control mostly in the suburban and exurban towns and 

the rural outskirts of the city. However, under the current condition, it is possible that the relationships derived 

in this study can be used to predict regional pattern of water quality in the near future for areas in Shanghai with 

no or few water quality monitoring data, since it is relatively easy to obtain updated satellite images and 

determine the spatial distribution of built-up surface using the methods outlined in this study. These 



relationships also provide insight into planning and treatment measures to alleviate water pollution problems 

and offer the basis for future comparisons to determine the trend of improvement or deterioration of the water 

environment in Shanghai. 
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