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Abstract: 

Excavation during July and August 1992 at 38G758 east of Jefferson, South Carolina, revealed an active Middle 

Holocene sand dune with buried Morrow Mountain and Guilford components on the lee side. 77e site is located 

on the upland margin overlooking a tributary of the Lynches River. Although it is possible that the artifact 

stratigraphy represents lowering as described by Michie (1990), three lines of internal evidence suggest that the 

components are partially in place. The lines of evidence are artifact size analysis, distribution of components 

relative to sand dune topography, and coherence of features. 77w Middle Holocene climatic contest of the site is 

inferred from global scale climate variables which suggest that desiccated uplands are a reasonable hypothesis. 

A Guilford feature, a cluster of large fire-cracked rock, was found to contain small fragments of bone which 

dated tο 5,350f60 B.Ρ. 77e site was covered which dated tο 5,350 ±60 B.Ρ. 77e site was covered with longleaf 

pines during the subsequent 1,000 years. Site 38L15 southeast of Columbia appears to be a similar dune site 

with buried middle Holocene components. 

 

Article: 

Copperhead Hollow (38C758) is located about 10 miles south of the South Carolina-North Carolina border and 

about 50 miles southeast of Charlotte, North Carolina near Jefferson, South Carolina (Figure 1, Foss et al. 1993; 

Gunn and Garrow 1993; Gunn and Wilson 1993). Ii was excavated during July and August of 1992 for the 

South Carolina Department of Highways and Public Transportation in preparation for construction of the 

Jefferson Highway 151 bypass. The excavation encompassed 120 m of 4,200 m2. The site is situated on the 

upland margin overlooking Fork Creek, a tributary of the Lynches River. Physiographically it is within the Sand 

Hills region of the Upper Coastal Plain and within a few miles of the Piedmont fall line. 

 

Sedimentological analysis, topographic landform observations, and investigation of horizonal and vertical 

artifact distributions led horizonal and vertical artifact distributions led tο the conclusion that the site is a 

stabilized sand dime (Foss et al. 1993). Carbon dates on botanical and archaeological specimens indicated that 

the dune was active between approximately 7,500 and 4,500 years ago, the period defined climatologically as 

the middle Holocene. Background research further suggested that the presence of active upland sand dimes was 

not uncommon on the Atlantic Slope during the middle Holocene. The middle Holocene contains three cultural 

phases, Stanley, Morrow Mountain, and Guilford (Blanton and Sassaman 1989; Coe 1964). Morrow Mountain 

(7,500-5,500 B.P) spans the greater part of the period and is characterized by numerous small sites, relatively 

homogenous tool inventories between sites irrespective of landform location, and substantial preference for 

quartz for tool manufacture (Sassaman 1991). Morrow Mountain diagnostics occur over an extremely wide 

range of geographic space and elevation (Gunn and Wilson 1993). Guilford appears to be largely restricted to 

the northern Piedmont. The objective of this article is tο suggest the context of middle Holocene climate of the 

Upper Coastal Plain at global, regional, and local scales, and derive a set of implications for landscape 

reconstruction and other future research questions. 
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Landscape reconstructions have generally been scaled in areal to regional spaces and at time periods of 

thousands of years. Such landscape models encompassing geomorphic and biotic conditions provide a 

comprehensive synthesis of general changes at epochal time scales (e.g., glacial and Holocene), with some 

representation of sub- epochal periods. Delcourt and Delcourt (1987), for example, studied the Appalachian 

summit region and covered the time from 20,000 B.P. to the present in four panels each representing between 

3,500 and 12,500 years (Figure 2). The antecedent heuristic device to landscape reconstruction panels was area 

wide vegetation reconstructions such as that offered by Whitehead (1965) for the Pleistocene and Holocene of 

Eastern United States. 

 

While these landscape reconstructions provide an articulation of landscape attributes in broad temporal and 

spatial generalizes, they gloss over much of the probable and reasonable diversity of past environments at brief 

time and local spatial scales. As Dincauze (1992) points out, these broad generalities have limited value for the 

study of archaeological sites. On the other hand, both the impact of global climate change on regions, and 

 

 

river system geomorphology are now available to augment understanding of site context. Knowledge of the 

processes which govern climate change and empirical investigations of climate have burgeoned m the last 

decade thanks to significant increments of research by climatologists, glaciologists, archaeologists, solar 

physicists, oceanographers, geologists, and others (Broeker and Denton 1990; Bryson and Goodman 1980; 

Gunn 1991; Gunn and Crumley 1989, 1991; Rampino et al. 1987; Schneider 1987; Schneider and Londer 1984; 

Wendland and Bryson 1974; Williams and Wigley). A factor contributing ιο ιο this research direction is the 

concern scientists and policy makers have encountered for the effects of global warming, Detailed studies of 

global circulation and regional effects indicate that very significant climatic changes occur in quasi-cyclical 

periods ranging from years (e.g., ΕΙ Niño) to centuries (e.g., volcanism). In the perspective of regional cultural 

adaptations, each of these changes, whether it be a decade of drought or a century of exceptionally cold winters, 



must be addressed by regional cultures in order to insure survival and continuity (Gunn 1994). Regional context 

is also available from significant advances made by geoarchaeologists in river systems (Brooks awl Colquhoun 

1991) and comparable upland geomorpholology is being developed (Gunn and Poplin 1991; Johnson 1993; 

Michie 1990). 

 

Given the complex nexus of all of these lines of evidence, landscape panels composed of attributes will become 

increasingly a heuristic necessity. However, representing short term changes as time dependent panels would be 

an enormous task bath to prepare and to comprehend. Α time panel for every 300 years since 20,000 years ago, 

would yield 67 panels; a panel for every decade would yield 2,000 panels. Such an array of panels would undo 

the heuristic value of landscape reconstruction leaving the student of landscape with a bewildering information 

stream. To set time and space ιο scales useful for the study of cultural change (see Wise and Crumley 1993 for 

investigation of effective scale), and at the same time retain the heuristic properties of landscape reconstruction 

panels, another approach should be followed for sub-epochal time periods. 

 

One potential approach would be to construct panels which are not time dependent, but rather process 

dependent. Determining the nature of each panel would be a typological exercise not unlike typing artifacts by 

attributes (Figure 3, Attributes). Dzerdzeevskij (1968) found that global atmospheric circulation patterns could 

be classified into about a dozen types. The atmosphere changes suddenly from one type to anther about every 

10 days because of the restraints imposed on air streams by mountain systems, bodies of water, and other 

factors (Reinhold 1987). Because regional climates are a function of the dominance of one or more of these 

global patterns over a number of annual cycles (Gunn 1982), it is likely that one or a few panels incorporating 

key types would be necessary to represent the important climates of a given locality or region. For the present, 

these key types can be represented by the more traditional Koeppen climatic classification system concepts of 

tropical, subtropical, temperate, and Arctic airmasses, although further research will probably refine airmass 

attributes. The climate patterns would then be combined with attributes of local vegetation, fluvial chronology, 

and cultural landscape modification to produce a suite of panels summing the findings of a landscape study. 

Rather than being temporally driven, the panels would be process driven thus limiting their numbers without 

limiting the scope of their implications. Each panel(s) would represent a number of periods during which 

relatively stable climate of a few decades or centuries generated comparable landscape attribute combinations. 

 



The global circulation patterns as observed during the annual cycle are products of seasonal variation in the 

global temperature and atmospheric circulation patterns (Figure 3, Seasons). Α typical temperate latitude winter 

in Seasons). Α typical temperate latitude winter in the 1960s and 1970s (cool world) featured a dominant Arctic 

airmass characterized by dry and cold atmospheric attributes. This was followed by a temperate spring (warm 

and wet) and a subhumid summer (hot and dry). With the exception of the years following the 1982 El Chichon 

eruption, the 1980s were globally hot. Globally hot winters were dominated by circulation patterns which are 

more typical of cool world spring. The climatic attributes of a given panel are thus defined by the seasonal 

global average temperature or Global Energy Balance (GEB, Budyko 1977). The relationship between GEB and 

the climatic attributes of the landscape panels is repeated each time the GEB enters a given range (Figure 4 A-

E). The wet-warm panel applies each time the global average temperature enters the warm range. Marine, 

fluvial, vegetational, and cultural attributes can take less nimble and less reversible trajectories thus requiring 

additional panel sets when combined with the atmospheric attributes. 



 



 

In the South Carolina Coastal Plain. certain attributes of landscape composition have been under study for some 

time. Because of the proximity of the Atlantic Gulf Stream, sea level and coastal estuarian development 

influence the amount of moisture available at a given location. It has been found that sea levels rose to near 

present levels as late as about 6,000 B.P. Brooks and Colquhoun 1991). Following that time, the existing system 

of coastal shallows, barrier islands, and estuaries was established. The presence of a relatively high sea level in 

turn sponsored the filling of river floodplains. The development of stream floodplains is time transgressive from 

the coast beginning at about 6,000 B.P. and extending the upper reaches of the Coastal Plain by 4,000 B.P. 

Comparative studies of the Savannah (Blue Ridge) and South Edisto (Piedmont) rivers indicated that there are 

both common and unique attributes in the deposition records of their watersheds indicating that both global-

regional climate and idiosyncrasies of the dyers catchments influenced deposition; thus, each river must be 

studied in detail to distinguish these two influences. 

 

Vegetation during the Holocene has been studied at White Ροnd (Watts 1980) and in several studied at White 

Ροnd (Watts 1980) and in several river systems (Brooks and Colquhoum 1991). The riverine studies show a 

constant vegetation cover. At White Pond, which is a natural lake, there is possible indication of desiccation and 

interruption of the pollen record during the middle Holocene. The vegetation records of these two 



environments, riverine and upland pond, are potentially quite different River floodplains, as well, may be 

different from watershed to watershed because their headwaters vary between the Blue Ridge Mountains, the 

Piedmont, and the Coastal Plain (Brooks 1990:22; Goodyear eta]. 1979; Gunn and Wilson 1993:21-24). 

Because mountains capture quantities of moisture under most climatic conditions, rivers with mountain sources 

could have been continuously well-supplied with water. On the other hand, the dominance of either the 

subtropical or the Arctic dry airmass diminishes precipitation in the Piedmont and Coastal Plait; Piedmont and 

Coastal Plain rivers could experience periods of restricted rainfall when these airmasses are prevalent over the 

year. Upland ponds would be a special case resembling the Piedmont-Coastal Plain rivers, but more dependent 

on local precipitation because of their restricted catchment Upland ponds are common in the Piedmont because 

of tilted bedrock formations providing reservoirs (Gunn and Poplin 1991), although these sources of vegetation 

information have been exploited little if at all for paleoclimatic data. Work on a range of these environments is 

ongoing (Mark Brooks, personal communication 1993). 

 

Seasonality of precipitation is critical to the character of vegetation. Information on orbital wobble (or 

precession, see Broeker and Denton 1990) lends some new insights into this parameter during earlier phases of 

the Holocene. While it has been generally acknowledged since the 1940s that the middle Holocene was warmer 

than current conditions (Antevs 1948), the cause and nature of that climate has only recently emerged. The 

middle Holocene global average temperature appears to have been about two degrees (centigrade) higher than at 

present However, causes of that global climate suggest a very different set of conditions than one would 

envision by simply warming the world by two degrees while retaining current atmospheric processes. Studies of 

the effects of orbital precession have indicated that local environments adjusted to substantially different 

distributions of annual radiation budget (Davis 1984). During the early and middle Holocene, the radiation 

budget was radically different from that at present (Figure 5); radiation was about seven percent higher during 

the summer and seven percent lower during the winter (Kutzbach and Guetter 1986). This would have 

reformatted the seasons in the middle latitudes to extremely hot summers and extremely cold winters. The 

season of mixed tropical and Arctic airmass movements that we recognize as spring would have rushed 

northward through any given location in the temperate zone during a brief period of a week or so. In other 

words, following a long, cold, and dry winter, there would be almost no spring frontal precipitation; winter 

would have been followed immediately by the ballooning of the Bermuda subtropical high over the Southeast A 

long, dry, cold winter would have been followed by a long, hot, dry summer. 

 

On the Piedmont and Coastal Plain, these droughty conditions would create a thermal inversion precluding 

presipitation except at points of uplift such as the fall line, Piedmont mountain remnants, and Blue Ridge front. 

Since the hot world atmosphere would be more laden with moisture, however, the Blue Ridge might be almost 

permanently enshrouded in clouds, thunderstorms, and moisture. Thus, riνers originating in the Blueand 

moisture. Thus, rivers originating in the Blue Ridge would carry much runoff and might have favorable 

discharge-to-sediment load ratios. With little vegetation to hold upland sediments on the Piedmont and Coastal 

Plain, and little precipitation, Piedmont and Coastal Plain riνers would become sediment choked. This condition 

would be aggravated by torrential tropical storms, which increase with the length of the hot season (Wendland 

1977), streaming down on a denuded upland landscape. Under these conditions, only sand bodies with their 

inherent resistance to erosion would remain intact in the uplands. 

 

UPLAND CΟΝDITIΟΝS IN THE UPPERUPLAND CΟΝDITIΟΝS IN THE UPPER  COASTAL PLAIN AT 

COPPERHEAD HOLLOW 

Copperhead Hollow is located at the west upland margin of Fork Creek about 3.9 miles above its confluence 

with Lynches River. It is on one of a series of ridges that extend southeastward from the upland proper which 

forms the interfluve between Lynches River and Fork Creek. A once- active stream curls around the west side 

of the ridge. The sandy terminus of the ridge is visibly arcuate in shape with the arms of the arc pointing to the 

west (Figure 6). The relief from the interior of the arc to the top is about 1.5 meters. This topographic feature is 

recognizable as the form taken by sand dimes. Analysis of sediments from profiles across the dune (Figure 7) 

indicated that the surfacial sediments were eolian in grain size and surface texture (Foss et al. 1993). 



 

Buried artifact distributions show there to be two areas (Figure 8) of the site in which artifacts occur in coherent 

distributions of levels and features, one on the lee side of the dune to the southeast (Locus A [Unit 5]) and the 

other on the northeast (Locus Β [Unit 6]). There is a corridor northeast (Locus Β [Unit 6]). There is a corridor 

between the two loci that is relatively free of artifacts (Unit 15). 

 

Locus A contained artifacts in coherent patterns to about 40 cm below the surface. The deepest of the 

occupation levels contained fire-cracked rock, a prismatic blade fragment (Figure 9), a scraper on a crest blade, 

a teardrop scraper, and a quartzite hammerstone. Though no late Paleoindian or early Archaic diagnostics were 

found in this level, three were found in the level above (two Hardaway and one Kirk). This second deepest 

occupation level contained predominantly Morrow Mountain points (n=6). The level immediately below the 

plowzone, and mostly between plow scars, contained a Guilford point and a Savannah River point. Several fire-

cracked rock features were defined, as well as carbon features that proved to be longleaf pine roots (Shea 1993). 

A carbon sample was submitted for dating from one of the longleaf pine tree roots which returned a date of 

3,49Q.+70 B.P. (Beta 56172). 

 

Locus Β contained fewer artifacts per unit of Locus Β contained fewer artifacts per unit of excavation. Tie 

sediments were distinctly more eolian than in Locus A. The diagnostics were exclusively of Guilford age (n=4). 



A carbon sample was taken from a longleaf pine tree root for dating which returned a date of 3,790±60 B.P. 

(Beta 56174). Small pieces of large mammal bone 

 



 

were collected from a fire-cracked root feature; they were accelerator dated t0 5,350±60 BP. (Beta 56174). This 

is the first date on Guilford age deposits. Α date of 4,805±139 was obtained on a gedeposits. Α date of 

4,805±139 was obtained on a stratum containing Brier Creek points at Phinizy Swamp (Elliott et al. 1993:164, 

191, 355). Brier Creek points are relatively large and thick Guilford-related points that are frequently made on 

chert. 

 

Material collected from the surface included 174 lb (79 kg) of fire cracked rock and diagnostics from all cultural 

phases of the Holocene. Relatively few of the Morrow Mountain diagnostics—so prominent in the subsurface 

(n=10)—were found on the surface (n=6)- Guilford diagnostics, however, were more abundant on the surface 

(n=10) than in the subsurface (n=7); this reflects the near-surface stratigraphic position of the Guilford 

component and perhaps more stability of the dime during the Guilford occupation. 

 

Over 10,000 fragments of fire-cracked rock from the subsurface were quantified as to size. Analysis of these 

data suggested that fire-cracked rock fragments of less than 4 cm were moving down the sediment column 

(Figure 10, see Gunn and Wilson 1993; Johnson 1993; Michie 1990 for discussion). The rate of movement 

varied with sediment texture and area of the site (Figure 11); course sandy areas of the site experienced less 

movement, fragments in finer grained sediments experienced more movement 

 

The topography, artifact analysis, analysis of artifact movement, and radiocarbon dating suggest the following 

interpretation of the site. The dune may have been active during the late Paleoindian and/or Early Archaic, an 

exceptionally dry and hot early Holocene period (Gunn 1992a, 1992b). The dune was clearly active during the 

Morrow Mountain phase (ca. 7,500 to 5,500 B.P.). The prevailing winds, presumably during dry winters, with 

westerly to northwesterly directions, buried the Morrow Mountain component. Conditions on the dime limited 

occupation to the southeast area of the site, perhaps by unstable surface conditions on the dune proper which 

was represented by the unoccupied area to the east and northeast. During the subsequent Guilford phase (ca. 

5,500 to 5,000 B.P.) the dune was stable enough to allow occupation over the whole of the lee and top side of 

the dune as evidenced by the distribution of 



 



 



 



 



Guilford points. It remained, however, active enough to bury the Guilford component(s), particularly on the 

northeast side of the site. This may indicate that the prevailing (winter?) winds were from the southwest. (Was 

this due to changes in prevailing winds caused by the establishment of coastal shallows? By 4,000 tο 3,500 B.P. 

the dune was stabilized and longleaf pines had had time to grow old and die (hundreds of years). The surface 

has been stable since that time as artifacts from following periods were confined to the surface. 

 

Upland Conditions in the Upper Coastal Plain 

This scenario implies that the uplands of the Sand Hills were denuded of vegetation capable of restraining 

eolian transport at least during some sub-epochal intervals of the middle Holocene (Figure 3, Middle Holocene 

B). An important research question at this point is whether Morrow Mountain occupants inhabited Copperhead 

Hollow during periods of active eolianization or during intervening periods of relative surface stability. In the 

Guilford case, there is sufficient evidence tο the Guilford case, there is sufficient evidence tο raise this question. 

There is at least one period of generally recognized middle Holocene global cooling, or respite, at 5300 B.P. 

Since this corresponds to the date on the Guilford horizon, was Guilford occupation limited to a relatively brief 

episode, perhaps a century, of moist cool climate in an otherwise hot and dry period? Because there is only one 

date on the Guilford occupation, this study offers no resolution of this question although coincidence flags the 

event for intensive research. 

 

The uplands were attractive to Middle Αrchaic peoples for occupation. We suggest that, given the sedimentary 

evidence of forest denudation and open cover, perhaps grasslands, occupants of the Morrow Mountain and 

perhaps the Guilford phases were present as big game hunters. Bison and elk might be considered as potential 

targets, although the more usual whitetailed deer would also be possible depending on whether the vegetation 

was grassland (grazers) or scrub oak savanna (browsers). 

 

In addition to the apparent sand dime at Copperhead Hollow, there are other indications of middle Holocene 

dune activity in the Coastal Plain. The topography of 38LΧ5 southeast of Columbia. The topography of 38LΧ5 

southeast of Columbia (Anderson 1979) resembles that of Copperhead Hollow with as arcuate western edge; it 

also possesses a buried Morrow Mountain component on the southeast side. Sand dunes have also been 

identified in the Cape Fear drainage and dated to the middle Holocene between 7,700 and 5,720 Β.Ρ. (Sollers 

and Mills 1991). 

 

Pollen evidence specifically defining the vegetation of the uplands on the Atlantic Slope is generally lacking; 

the only hint is the possible middle Holocene hiatus at White Pond. However, at the B. L. Higbee oxbow on the 

Tombigbee River in Mississippi in a somewhat similar fall line situation, the vegetation of the adjacent uplands 

during the middle Holocene was judged to be scrub oak woodland (Whitehead and Sheehan 1982). Can a 

similar cover be documented for the Atlantic Slope? 

 

The current consensus appears tο be that uplands were under a forest cover during the middle Holocene 

(Sassaman 1991). However, presuming that a grassland (bison and elk) or a scrub oak savanna (whitetailed 

deer) was the middle Holocene upland cover, resolves at least one question. Larson (1980) proposed that upland 

pine barrens such as those observed in the Southeast during the Colonial Period, were essentially dead in terms 

of foraging potential. If a continuity of upland pine barrens (cool and wet climate) is assumed through the 

middle Holocene (Figure 3, Middle Holocene A), the presence of middle Holocene archaeological sites on the 

uplands calls into question Larson's pine barrens hypothesis. If grasslands (and dunes) and/or scrub oak savanna 

or mosaic are assumed (Figure 3, Middle Holocene B), there is no conflict, and Larson's pine barren hypothesis 

could still be correct. The dunes at 38LΧ5 and Copperhead Hollow argue for an open upland cover. Also, if 

there was filling of rivers on the Atlantic Slope, as there was during the middle Holocene generally over the 

Southeast (Brakenridge 1980), this argues for grasslands, even sparse grasslands (Schumm 1965). During the 

historic period, Lawson (1967) suggests that at least some part of the upper Piedmont near Yadkinνille, North 

Carolina was in grasslands in the 1700s although he did not visit them. He indicated that these people 

specialized in bison hunting. Globally, the early 1700s was a relatively warm period. 

 



CONCLUSIONS 

Middle Holocene conditions at the Copperhead Hollow site, the presence of another dune site of similar 

configuration (38LΧ5), and other dunes and negative pollen evidence, argue for desiccation of upland in the 

upper Coastal Plain during the Middle Holocene. Global climate during this period, driven by extremely variant 

insolation regime, probably would have fostered an open vegetation cover, most likely grasslands or scrub oak. 

River drainage systems originating in the Piedmont and Coastal Plain would be expected to be sediment 

chocked if uplands were poorly covered. A grassland biome may have been favorable to reliance on large game. 
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