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Abstract: 

The notion of an unavoidable set of words appears frequently in the fields of mathematics and theoretical 

computer science, in particular with its connection to the study of combinatorics on words. The theory of 

unavoidable sets has seen extensive study over the past twenty years. In this paper we extend the definition of 

unavoidable sets of words to unavoidable sets of partial words. Partial words, or finite sequences that may 

contain a number of ―do not know‖ symbols or ―holes,‖ appear naturally in several areas of current interest such 

as molecular biology, data communication, and DNA computing. We demonstrate the utility of the notion of 

unavoidability of sets of partial words by making use of it to identify several new classes of unavoidable sets of 

full words. Along the way we begin work on classifying the unavoidable sets of partial words of small 

cardinality. We pose a conjecture, and show that affirmative proof of this conjecture gives a sufficient condition 

for classifying all the unavoidable sets of partial words of size two. We give a result which makes the conjecture 

easy to verify for a significant number of cases. We characterize many forms of unavoidable sets of partial 

words of size three over a binary alphabet, and completely characterize such sets over a ternary alphabet. 

Finally, we extend our results to unavoidable sets of partial words of size k over a k-letter alphabet. 

 

Keywords: Combinatorics on words, Partial words, Unavoidable sets 

 

Article: 

1 Introduction 

An unavoidable set of words X over an alphabet A is a set for which any sufficiently long word over A will have 

a factor in X. It is clear from the definition that from each unavoidable set we can extract a finite unavoidable 

subset, so the study can be reduced to finite unavoidable sets. This concept was explicitly introduced in 1983 in 

connection with an attempt to characterize the rational languages among the context-free ones [1 1]. Since then 

it has been consistently studied by researchers in both mathematics and theoretical computer science. There is a 

vast literature on unavoidable sets of words and we refer the reader to [9, 10, 13, 15] for more information. 

 

Another concept relevant to this paper is that of a partial word, or a finite sequence of symbols over a finite 

alphabet that may contain a number of ―do not know‖ symbols or ―holes‖. Partial words appear in natural ways 

in several areas of current interest such as molecular biology, data communication, and DNA computing [2, 3, 

12]. While a word can be described as a total function whose range is the alphabet, a partial word is described 

as a partial function. More precisely a partial word of length n over a finite alphabet A is a partial function from 

{0,...,n − 1} into A. Elements of {0, . . . , n − 1 } with no image are called holes (a word is then just a partial 

word without holes). To emphasize this distinction we will often refer to words without holes as full words. In 

this paper, we introduce unavoidable sets of partial words. In terms of unavoidability, sets of partial words serve 

as efficient representations of sets of full words. This is strongly analogous to the study of unavoidable patterns, 

in which sets of patterns are used to represent infinite sets of full words [13]. The main goal here is to 

demonstrate that the study of unavoidable sets of partial words leads to new insights both on the theory of 
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unavoidable sets and on the combinatorial structure of the set of words A∗ as a whole. In accomplishing this we 

mainly focus on the problem of classifying unavoidable sets of partial words of small cardinality and in 

particular those with two or three elements. 

 

Efficient algorithms to determine if a finite set of full words X is unavoidable are well known [13, 14]. For 

example, we can check whether there is a loop in the finite automaton of Aho and Corasick [1] recognizing A∗ \ 

A∗XA∗. These same algorithms can be used to decide if a finite set of partial words X is unavoidable by 

determining the unavoidability of 
^
X , the set of all full words compatible with an element of X. However this 

incurs a dramatic loss in efficiency, as each partial word u in X can contribute as many as ||A||
||H(u)||

 elements to 
^
X (here H(u) denotes the set of holes of u). In [5], Blanchet-Sadri, Jungers and Palumbo showed that the 

problem of testing the unavoidability of a finite set of partial words over any alphabet of size larger or equal to 

two is NP-hard by using techniques similar to those used in a recent paper of Blondel, Jungers and Protasov on 

the complexity of computing the capacity of codes that avoid forbidden difference patterns [6].
 

 

The contents of our paper are summarized as follows. In Sect. 2, we review some basic definitions related to 

words and partial words. In Sect. 3, we recall the definition of unavoidable sets of words and some useful 

elementary properties. We present our definition of unavoidable sets of partial words and discuss testing 

unavoidability of such sets. There, we introduce the problem of classifying unavoidable sets of small 

cardinality. In Sect. 4, we restrict ourselves to sets with two elements. In particular, we propose in Sect. 4.1 a 

conjecture characterizing two-word unavoidable sets and prove that verifying this conjecture is sufficient for 

solving the size two problem. There, we also prove one direction of our conjecture. In Sect. 4.2, we give partial 

results towards the other direction of our conjecture and in particular prove that it is easy to verify in a large 

number of cases. In Sect. 5, we restrict ourselves to sets with three elements. In Sect. 5.1 we discuss the case of 

a binary alphabet, while in Sect. 5.2 we characterize the unavoidable sets of size three over a ternary alphabet. 

Finally in Sect. 6, we pose several questions related to unavoidable sets of partial words. 

 

2 Preliminaries 

Throughout this paper A is a fixed nonempty finite set called an alphabet whose elements we call letters. A 

word of length n over A is a finite sequence of elements of A and will be denoted by a0a1 ··· an−1 where ai ∈ A 

for every 0 ≤ i < n. We use A
*
 (respectively, A

n
) to denote the set of finite words over A (respectively, the set of 

words of length n over A). For u ∈ A
*
, we write |u| for the length of u. Under the concatenation operation of 

words, A∗ forms a free monoid whose identity is the empty word which we denote by ε. We will abbreviate 

A
*
\{ε} by A

+
. If there exist x, y ∈ A∗ such that u = xvy, then we say that v is a factor of u. 

 
A two-sided infinite word w is a function w: ℤ → A. A finite word u is a factor of w if u is a finite subsequence 

of w, that is, if there exists some i ∈ ℤ such that u = w(i) ··· w(i + |u| − 1). For a positive integer p, we say that w 

has period p, or that w is p-periodic, if w (i) = w (i + p) for all i ∈ ℤ. If w has period p for some p, then we call w 

periodic. If v is a nonempty finite word, then we denote by vℤ the unique two-sided infinite word w such that w 

has period |v| and w (0) ··· w(|v| − 1) = v. 

 

A word of finite length n over an alphabet A can be defined as a total function w : {0,..., n − 1} → A. 

Analogously a partial word of length n over A is a partial function u : {0,..., n − 1} → A. For 0 ≤ i < n, if u(i) is 

defined, then we say that i belongs to the domain of u (denoted by i ∈ D(u)). Otherwise we say that i belongs to 

the set of holes of u (denoted by i ∈ H(u)). In cases where H(u) is empty, we say that u is a full word. 

 

If u is a partial word of length n over A, then the companion of u is the total function u◊: {0,..., n − 1} → A◊ 

defined by 

 

        
          ∈     
          

  



where A◊ = A  ⋃ {◊}. Throughout this paper we identify a partial word with its companion. We reserve the term 

letter for elements of A. We will refer to an occurrence of the symbol ◊ in a partial word as a hole. We will 

denote by   
∗  the set of all partial words over A with an arbitrary number of holes. A partial word v is a factor of 

a partial word u if there exists partial words x, y (possibly equal to ε) such that u = xvy. We denote the set of all 

factors of u by F (u). The partial word v is a prefix (respectively, suffix) of u if x = ε (respectively, y = ε). The 

reverse of u, denoted rev(u), is the partial word u written backwards. If u is defined over the binary alphabet {a, 

b}, then the complement of u, denoted ū , is the partial word formed by replacing all the a’s with b’s and vice 

versa. 

 

Two partial words u and v of equal length are said to be compatible, denoted by u ↑ v, if u(i) = v(i) for every i ∈ 

D(u) ∩ D(v). If X is a set of partial words, then we use 
^
X  to denote the set of all full words compatible with an 

element of X. For example, if our alphabet is {a, b} and X = {◊a, b◊} then 
^
X  = {aa, ba, bb}. The partial word u 

is said to be contained in v, denoted by u ⊂ v, if |u| = |v| and u(i) = v(i) for all i ∈ D(u). If a partial word u can be 

written as u = u1◊u2◊ ··· un−1◊un, then the set {u1a1u2a2 ··· un−1an−1un | a1, a2,..., an−1 ∈ A} is called a partial 

expansion on u (note that u1, u2,..., un are partial words that may contain holes, and also note that u ⊂ v for every 

member v of a partial expansion on u). 

 

3 Unavoidable Sets 

We first recall the definition of an unavoidable set of full words and some relevant properties. Let X ⊂ A
*
. A 

two-sided infinite word w over A avoids X if no factor of w is a member of X. We say that X is unavoidable if no 

two-sided infinite word over A avoids X. In other words X is unavoidable if every two-sided infinite word over 

A has a factor in X. For example, over the binary alphabet {a, b} the set {a, bbb} is unavoidable. Indeed, if w 

did not have a as a factor we necessarily have w = bℤ and w thus has bbb as a factor. 

 

Following are two useful facts giving alternative characterizations of unavoidable sets: (1) The set X ⊂ A
*
 is 

unavoidable if and only if there are only finitely many words in A
*
 with no member of X as a factor; and (2) If 

the set X ⊂ A
*
 is finite, then X is unavoidable if and only if no periodic two-sided infinite word avoids it. Proofs 

can be found in [13]. 

 

We now give our extension of the definition of unavoidable sets of words to unavoidable sets of partial words. 

 

Definition 1 Let X ⊂   
∗ . A two-sided infinite word w over A avoids X if no factor of w is a member of 

^
X . We 

say that X is unavoidable if no two-sided infinite word over A avoids X. In other words X is unavoidable if every 

two-sided infinite word over A has a factor compatible with a member of X. 

 

For example, if our alphabet is {a, b} then the set X = {aa, b◊b} is unavoidable. Clearly bℤ does not avoid X. 

Thus if there were a two-sided infinite word w avoiding X it would have an a as a factor. Without loss of 

generality w(0) = a. Then since w avoids aa, w(− 1) = w(1) = b. Then bab ∈ 
^
X is a factor of w. 

 

Clearly if all the members of X are full words, then the new definition of unavoidable set is equivalent to the old 

one. There is a simple connection between sets of partial words and sets of full words that is worth noting. By 

the definition of 
^
X , w has a factor in 

^
X if and only if that same factor is compatible with a member of X. Thus 

the two-sided infinite words which avoid X are exactly those which avoid 
^
X , and X is unavoidable if and only if 

^
X is unavoidable. 

 

With regards to unavoidability X is then essentially a representation of a set of full words. This representation 

makes possible new approaches to unavoidable sets of full words. It is easier to consider the two-sided infinite 

words avoiding X = {aa, b◊
3
b} as those without an occurrence of aa and no two occurrences of b separated by 

three letters rather as the words avoiding 

 
^
X = {aa, baaab, baabb, babab, babbb, bbaab, bbabb, bbbab, bbbbb} 



It is also often useful to view a set of partial words as a collection of rules about the full words that avoid it. For 

example say that A is the binary alphabet {a, b} and X = {a◊
n
b, b◊

n
a} for some n ∈ ℕ. Let w be a word avoiding 

X. Whenever w(i + n + 1) = b, because w avoids a◊
n
b we necessarily have that w(i) = b. Similarly whenever w(i 

+ n + 1) = a, w(i) = a. Thus we can characterize the words avoiding X as exactly those with period n + 1. 

 

The following remark concerning symmetry will be used to allow us to focus on one set and apply the results to 

all symmetric sets. 

 

Remark 1 Say that w avoids X. The reverse word, rev(w), avoids Y = ⋃     ∈     and w̄ avoids Z = ~x∈X ¯x . 

 

An algorithm for determining if a set of full words is unavoidable or not, along with a proof of the correctness 

of the algorithm, can be found in [13]. To summarize that algorithm, if a set of full words X can be reduced to 

{ε} by elementary derivations, X is unavoidable. The elementary derivations from a set X to a set Y are defined 

as follows: 

 

1. Factoring—if there exist words x, y ∈ X such that y is a factor of x, then Y = X\{x}. 

2. Prefix-Suffix—if there exists a word x = ya ∈ X with a ∈ A such that for every b ∈ A there exists a suffix z 

of y where zb ∈ X, then Y = (X\{x}) ⋃ {y}.  

3. Shortcut—if there exists a word y such that ya ∈ X for all a ∈ A, then Y = (X\ ⋃    ∈ ) ⋃ {y}. 

 

Note that if a Shortcut operation is valid, then a Prefix-Suffix operation is as well. We adapt these elementary 

derivations to accommodate partial words as follows: 

 

1. Factoring—if there exist partial words x, y ∈ X and y ' ∈ F(x) such that y ⊂ y', then Y = X\{x}. 

2. Prefix-Suffix—if there exists a partial word x = ya ∈ X with a ∈ A such that for every b ∈ A there exists 

a suffix z of y and a partial word v ∈ X with v ⊂ zb, then Y =  (X \{x}) ⋃  {y}. 

3. Hole Truncation—if x◊
n
 ∈ X for some positive integer n, then Y = (X\{x◊

n
}) ⋃ {x}. 

4. Expansion—Y = (X\{x}) ⋃ {x1, x2,..., xn} where {x1, x2,..., xn} is a partial expansion of x ∈ X. 

 

Theorem 1 The operations 1–4 as defined above preserve avoidability, that is, X is avoidable if and only if Y is 

avoidable. 

 

Proof Details follow for the Prefix-Suffix operation. If a two-sided infinite word w does not avoid x, then w 

does not avoid y. Now suppose, for contradiction, that w avoids X but not y. Then there exists a factor  y' 

of w such that y ⊂ y'. Since w avoids x, let b ≠ a be the letter following the y' factor in w. Then by 

assumption, there exists a suffix z of y and a partial word v ∈ X with v ⊂ zb. Thus, there exists a suffix z' of 

y' satisfying z ⊂ z', and so v ⊂ zb ⊂ z'b. Therefore, z'b is a factor of w compatible with v ∈ X implying 

that w does not avoid X, a contradiction.                 ∎ 
 

It was shown in [13] that the Prefix-Suffix operation for full words can also be performed on the front of the 

word, that is, if there exists x = ay ∈ X with a ∈ A such that for every b ∈ A, there exists a prefix z of y where bz 

∈ X, then Y = (X\{x }) ⋃ {y} has the same avoidability as X. This is true for partial words as well and will be 

called the Suffix-Prefix operation. 

 

Algorithm 1 Let X ⊂   
∗ . Then X is unavoidable if and only if it can be transformed to {ε} by the elementary 

derivations defined above. To improve the efficiency of the algorithm, the Expansion operation is only 

considered valid if there exists x = ya ∈ X with a ∈ A such that for every b ∈ A there exist a suffix z of y and a 

partial word v ∈ X where zb ↑ v, and the positions chosen to expand are such that a Prefix-Suffix operation 

might become valid.  

 



Lemma 1 If Algorithm 1 reduces the original set down to Y and no more operations are valid, then there exist 

no valid Prefix-Suffix operations on the set Ŷ. 

 

Proof Suppose that there exists a word x' = y'a ∈ Ŷ with a ∈ A such that for every b ∈ A there exists a suffix z' of 

y' where v' = z'b ∈ Yˆ. We know that x' and v' came from partial words x, v ∈ Y and that x = ya for some partial 

word y satisfying y ⊂ y' (otherwise, x would end with a hole and the algorithm would not have terminated at Y 

since a Hole Truncation operation would be valid). There exists a suffix z of y such that z ⊂ z', and zb ↑ v. This 

implies that a valid Expansion operation of x exists in the set Y, so Algorithm 1 would not have terminated at Y, 

a contradiction.                          ∎ 

 

Theorem 2 Whenever Algorithm 1 is unable to reduce a set X to {ε}, X is avoidable. 

 

Proof First note that because every operation performed by Algorithm 1 either reduces the size of X, shortens a 

word in X, or reduces the number of holes in a word in X, it must eventually terminate. We know from Lemma 

1 that when Algorithm 1 terminates after reducing a set X to Y, the only operations that the full word algorithm 

could perform on Ŷ are Factoring or Shortcut operations. However, we know that if a Shortcut operation is 

valid, then a Prefix-Suffix operation must be as well, a contradiction, leaving only Factoring operations as a 

possibility. A Factoring operation can never make a Prefix-Suffix operation valid, as it results in the removal of 

a word from the set, rather than a modification of a word in the set. Also, Factoring operations alone can never 

reduce a set to {ε} unless ε is already contained in the set. Since ε cannot be in Y (otherwise, Algorithm 1 would 

have been able to perform Factoring operations), ε cannot be in Ŷ and thus, Ŷ cannot be reduced to {ε} by the 

full-word algorithm, and is therefore avoidable. This implies that Y, as well as the original set X, is also 

avoidable. Thus, whenever Algorithm 1 cannot reduce a set X to {ε}, X is avoidable.            ∎ 

 

The following example demonstrates how the partial word algorithm is used. The number above each arrow 

corresponds to the operation used to transform the set. 
 

Example 1 Starting with the set X = {a◊◊◊a, b◊◊◊b, a◊a◊b}, Algorithm 1 may perform the following chain of 

derivations: X →
2

 {a◊◊◊a, b◊◊◊b, a◊a◊} →
3

  {a◊◊◊a, b◊◊◊b, a◊a} →
4

  {a◊a◊a,a◊b◊a,b◊◊◊b,a◊a} →
1

  {a◊b◊a, 

b◊◊◊b, a◊a} →
4

  {a◊b◊a, b◊b◊b, b◊a◊b, a◊a} →
2

  {a◊b◊a, b◊b◊b, b◊a◊, a◊a} →
3

  {a◊b◊a, b◊b◊b, b◊a, 

a◊a} →
1

  {b◊b◊b, b◊a, a◊a} →
2&3

  {b◊b, b◊a, a◊a} →
2&3

  {b, b◊a, a◊a} →
1

  {b, a◊a →
2&3

 {b,a  →
2

 {ε, a} →
1

  {ε}. The 

operations reduced the set X to {ε}, so X is unavoidable. 

 

Is there an efficient algorithm to determine if a finite set of partial words is unavoidable? In [5], it was shown 

that testing unavoidability on sets of partial words is much harder to handle than the similar problem for full 

words. Indeed, using a reduction from the 3SAT problem that is known to be NP-complete, the problem of 

determining if a finite set of partial words over a k-letter alphabet where k ≥ 2 is unavoidable was shown to be 

NP-hard. 
 

It is most natural to look first for the unavoidable sets of partial words that have small cardinality. Insight into 

the structure of A
*
 can be gained by identifying an unavoidable set, especially if that set contains few elements. 

For example, in Sect. 4.1 we will show that for the binary alphabet {a, b} the set {a◊
7
a, b◊b◊

3
b} is unavoidable. 

Thus in any sufficiently long binary word either two a’s occur separated by seven letters, or three b’s occur for 

which the first two are separated by a single letter and the second two are separated by three letters. 
 

Any set of partial words containing the empty word or ◊
n
 for some n ∈ ℕ will be called a trivial unavoidable set. 

If a set of partial words is unavoidable, then it must have an element compatible with a factor of each two-sided 

infinite unary word. In particular no nontrivial unavoidable set can have fewer elements than the alphabet. 

Every word avoids the empty set, so there are no unavoidable sets of size 0. It is also clear that unless the 

alphabet is unary the only unavoidable sets of size 1 are the trivial ones. If the alphabet is unary, then every 

nonempty set is unavoidable and in that case there is only one two-sided infinite word. We will not consider the 

unary alphabet further in this paper. 



 
References [7, 8, 16] contain studies on classical pattern avoidability related to our considerations.  

 

4 Two-Word Unavoidable Sets 

To find nontrivial unavoidable sets of size 2 we may assume that A = {a, b}. Classifying the unavoidable sets of 

size 2 is a daunting task and is the focus of this section. 

 

Say X = {x1, x2} is unavoidable. As mentioned before if X is nontrivial it must be that one member of X is 

compatible with a power of a and the other is compatible with a power of b, as that is the only way to guarantee 

that both aℤ and bℤ will not avoid X. So in order to classify the unavoidable sets of size 2, it is sufficient to 

determine for which nonnegative integers m1, m2,..., mk and n1, n2,..., nl the set 

 

Xm1,...,mk|n1,...,nl = {a   a ··· a   a, b   b ··· b   b} 

 

is unavoidable. We can in fact simplify the situation a little further. The following lemma tells us that it is 

enough to solve the problem for cases where m1 +1, m2 + 1,..., mk + 1 and n1 + 1 , n2 + 1 ,..., nl + 1 are relatively 

prime. 

 

Lemma 2 Let p be a positive integer. The set X =                 
 is unavoidable if and only if the set 

 

Y = {a◊
p(m1+1)−1

a ··· a◊
p(mk+1)−1

a, b◊
p(n1+1)−1

b ··· b◊
p(nl+1)−1

b} 

 

is unavoidable. 

 

Proof In terms of notation it will be helpful to define 
 

       

 

   

     

 

Now suppose the two-sided infinite word w avoids X, and let  

 

v = ··· (w(− 1))
p
 (w(0))

p
 (w(1))

p
 ··· 

 

We claim that v avoids Y. Suppose otherwise. Then v has a factor compatible with some x ∈ Y. Without loss of 

generality say that 

x = a◊
p (m1+1)−1

a ··· a◊
p (mk+1)−1

a 

Then to say that v has a factor compatible with x is equivalent to saying that there exists i ∈ Z for which 

 
v(i) = v(i + pM1) = · · · = v(i + pMk) = a 

 

But if we set h = ⌊ 
 

 
 ⌋ then this implies that 

 

w(h) = w(h + M1) = · · · = w(h + Mk) = a 

 

contradicting the fact that w avoids X. 

 

We prove the other direction analogously. Suppose now that the two-sided infinite word w avoids Y, and set v = 

··· w(−p)w(0)w(p) · · ·. We claim that v avoids X. 



Otherwise v has a factor compatible with some x ∈ X which we may suppose without loss of generality is a   a 

··· a   a. Then there exists i ∈ ℤ for which 

 

v(i) = v(i + M1) = · · · = v(i + Mk) = a 

 

but this implies that 

 

w(pi) = w(pi + pM1) = · · · = w(pi + pMk) = a 

 

which contradicts the fact that w avoids Y.                 ∎ 

 

By Remark 1, two simple facts of symmetry are also worth noting. Say that w avoids 

 

                    
 

 

The reverse word ··· w(1)w(0)w(−1) ··· avoids                     
, and the word obtained from w by swapping the 

a’s and b’s avoids                     
. Hence one of these sets is unavoidable precisely when all three of them are. 

 

In order to solve the problem of identifying when                     
 is unavoidable we start with small values of 

k and l. The set {a, b   b ··· b   b} is unavoidable for if w is a two-sided infinite word which lacks a factor 

compatible with a it must be bℤ. This handles the case where k = 0 (and symmetrically l = 0). 

 

4.1 Results for k > 0 and l > 0 

We first consider the case where k = 1 and l = 1, that is, we consider the set Xm|n = {a◊
m
a, b◊

n
b}. In this case, we 

can give an elegant characterization of which integers m, n make this set unavoidable. 

 

Theorem 3 Write m + 1 = 2
s
r0, n + 1 = 2

t
r1 where r0, r1 are odd. Then Xm|n is unavoidable if and only if s ≠ t. 

 

Proof Let w be a two-sided infinite word avoiding Xm|n. Then w also avoids b◊
m
b. Otherwise for some i ∈ ℤ, 

w(i) = b and w(i + m + 1) = b. Since w avoids b◊
n
b we must have that w (i + n + 1) = a and w (i + m + 1 + n + 1) 

= a, which contradicts the fact that w avoids a◊
m
a. A symmetrical argument shows that w avoids a◊

n
a. 

 

For ease of notation, write ‾a = b and ‾b = a. Let p ∈ ℕ. We will say that a two- sided infinite word is p-

alternating if for all i ∈ ℤ, w (i) = ‾‾‾‾‾‾‾‾‾w(i + p) . By our previous observation w avoids Xm|n if and only if w is m+1-

alternating and n+1-alternating. Thus to prove the theorem it is sufficient to show that a two-sided infinite word 

exists which is p-alternating and q-alternating if and only if s = t where p = 2
s
r0 and q = 2

t
r1 with r0 and r1 odd. 

Notice that if w is p-alternating then it has period 2p. 

 

Suppose s ≠ t. Without loss of generality say s < t. Then s + 1 ≤ t. Let l be the least common multiple of p and 

q. The prime factorization of l must have no greater power of 2 than the prime factorization of q. Thus there 

exists an odd number k such that kq ≡ 0 mod 2p (here k = r0). If there were a two-sided infinite word w which 

was p-alternating and q-alternating we would have w (0) = w (2p) = w (kq) since w has period 2p. But since k is 

odd and w is q-alternating we also have w(0) = w(kq). This is a contradiction. We have half of the necessary 

implication. 

 

Suppose s = t. Then p = 2
s
r0, q = 2

s
r1. We only need to prove that there exists some w which is p-alternating and 

q-alternating and we do this by induction on s. If s = 0, then p and q are odd. Then the word ··· ababab ··· is p-

alternating and q-alternating. This handles our base case. Now say w is 2
s
r0 and 2

s
r1-alternating. Then 

 

v = ··· w(−1)w(− 1)w(0)w(0)w(1)w(1) ··· 



 

is 2
s+1

r0 and 2
s+1

r1-alternating. This finishes the induction and our proof.             ∎ 
 

We next consider the case where k = 1 and l = 2, that is, sets of the form         
 = {a◊

m
a, b   b   b}. 

 

Proposition 1 Suppose either m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and n1 + 1 divides n2 + 1. Then         
 is 

unavoidable if and only if {a◊
m
a, b   b} is unavoidable. 

 

Proof If a two-sided infinite word w avoids {a◊
m
a, b   b} then it also avoids         

. Now we suppose instead 

that {a◊
m
a, b   b} is unavoidable. 

 

We will just consider the case m = 2n1 + n2 + 2, the situation where m = n2 − n1 − 1 is similar. Suppose for 

contradiction that the two-sided infinite word w avoids X. Since {a◊
m
a, b   b} is unavoidable and w avoids 

a◊
m
a, w must have a factor compatible with b   b. Suppose without loss of generality that w(0) = w (n1 + 1) = 

b. We must have that w (n1 + n2 + 2) = a which immediately gives us 

 

w (n1 + n2 + 2 − m − 1) = w (n1 + n2 + 1 − 2n1 − n2 − 2) = w (−n1 − 1) = b 

 

Since w(−n1 − 1) = w (0) = b, we must have w (n2 + 1) = a. By an easy induction we can verify that this process 

continues, and we ultimately find that 

 

a = w(n2 + 1) = w(n2 + 1 − (n1 + 1)) = w(n2 + 1 − 2(n1 + 1)) = · · ·  
 

Since n1 + 1 divides n2 + 1 we find that w (0) = a, a contradiction.              ∎ 

 

One notable consequence of Proposition 1 is that if m is odd, then both {a◊
m
a, bb◊

m+1
b} and {a◊

m
a, bb◊

m−2
b} 

are unavoidable. 

 

The next theorem takes advantage of the perpetuating pattern phenomenon in a more complicated context. 

Proposition 1 held because each a forced a b into the next position of an occurrence of w(i) = w(i + n1 + 1) = b, 

which in turn forced a new a in w. This created a single traveling sequence of a’s and b’s, causing an a to 

overlap with the b at w(0), yielding a contradiction. In the next argument, we take notice of the fact that each a 

occurring in w may contribute to two occurrences of w(i) = w(i + n1 + 1) = b simultaneously so that a 

contradiction will occur after many traveling sequences of letters appear and overlap. 

 

Theorem 4 Say that m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and that the highest power of 2 dividing n1 + 1 is less 

than the highest power of 2 dividing m + 1. Then         
 is unavoidable. 

 

Proof Since the highest power of 2 dividing n1 + 1 is different than the highest power of 2 dividing m + 1, we 

have that the set Y = {a◊
m
a, b   b} is unavoidable. Consider first the case where m = n2 − n1 − 1 and suppose 

for contradiction that there exists a two-sided infinite word w that avoids X. Then w has no factor compatible 

with a◊
m
a, and so since Y is unavoidable it must have a factor compatible with bon1 b. Assume without loss of 

generality that w(0) = b and w(n1 + 1) = b. 

 

We now generate an infinite table of facts about w. Two horizontally adjacent entries in the table will represent 

positions in w which are n1 + 1 letters apart. Two vertically adjacent entries in the table will represent positions 

in w which are m + 1 = n2 − n1 letters apart. The two upper left entries of our table are w(0) = b and w(n1 + 1) = 

b, two facts we have already assumed. Since w avoids         
 we have more information relevant to the table: 

two horizontally adjacent b entries force an a entry diagonally down and to the right from them, and an a entry 

forces a b entry in the vertically adjacent positions. From these rules we can build the following table, labeling 

the columns C0, C1,...: 

 



 

For i ∈ ℕ, we shall define vi to be the factor of w represented by Ci. If i is odd then Ci has i entries, and if i is 

even then Ci has i + 1 entries. Thus we define  

 

   
                                                                       
                                                      

  

 

Two adjacent entries in Ci represent a distance of m + 1 positions between letters in vi. Thus for i even we have 

that |vi| = im + 1 and for i odd we have that |vi| = (i − 1)m + 1. We can also use the table to get some partial 

information about the positions of a’s and b’s in vi. For j ∈ ℕ, vi (j) = b if j ≡ 0 mod (2m + 2), and vi (j) = a if j ≡ 

(m + 1) mod (2m+2). 
 

Because the highest power of 2 dividing n1 + 1 is no greater than the highest power of 2 dividing m1 + 1, there 

exists some k for which k(n1 + 1) ≡ (m + 1) mod (2m + 2). Take i sufficiently large so that |vi| > kn1 + k. Because 

of how k was chosen, we have that vi (kn1 + k) = a. However examining the table we see that 

 

w((i + k)n1 + i + k) = vi(kn1 + k) = vi+k(0) = b 

 

a contradiction. This handles the situation where m = n2 − n1 − 1. The proof for the case where m = 2n1 + n2 + 2 

is similar, the only difference is that the table will represent increasingly negative positions of w, rather than 

increasingly positive ones.                               ∎ 

 

As an application of Theorem 4, take m = 1. Let us see for which n1 ∈ ℕ the hypotheses of the theorem hold to 

make         
 unavoidable. The highest power of 2 dividing n1 + 1 should be less than the highest power of 2 

dividing m + 1 = 2. Thus n1 + 1 must be odd, n1 is even. Since m = 1 we cannot have m = 2n1 + n2 + 2. Say we 

have m = n2 − n1 − 1. Then n2 = n1 + 2. So we have that for any even n1, the set {a◊a,b◊
n
b◊

n+2
 b} is unavoidable. 

We will prove in Sect. 4.2 that this is a complete characterization of unavoidability of         
 for m = 1. 

 

The next proposition identifies another large class of unavoidable sets using a modification of the strategies 

discussed so far. 

 

Proposition 2 Suppose n 1 < n2, 2m = n1 + n2 and |m − n1| divides m + 1. Then         
 is unavoidable. 

 

Proof Say for contradiction that the two-sided infinite word w does avoid         
. An a occurs in w, say 

without loss of generality that w(0) = a. Then w(−m − 1) = w(m + 1) = b. We have n1 + 1 + n2 + 1 = 2m + 2, and 

so since w avoids b   b   b we necessarily have w(−m − 1 + n1 + 1) = w(n1 − m) = a. Repeating this argument, 

 

w(2(n1 − m)) = w(3(n1 − m)) = · · · = a 

 

But since n1 − m divides m + 1, w (−m − 1) = a, a contradiction.                         ∎ 

 

By taking n1 = m − 1 and n2 = m + 1, Proposition 2 yields a nice fact: the set {a◊
m
a, b◊

m−1
b ◊

m+1 
b} is 

unavoidable for all m > 0. 

 

We believe that together Lemma 2, Propositions 1, 2, and Theorem 4 nearly give a complete characterization of 

when         
 is unavoidable. Following is what we believe to be the only exception. 

 

Proposition 3 The set X6|1,3 = {a◊
6
 a,b◊b◊

3
b} is unavoidable. 



Proof We first claim that any two-sided infinite word w which avoids X6|1,3 must also avoid b◊b◊b. Suppose 

otherwise. Then w avoids X6|1,3 but has a factor compatible with b◊b◊b. Without loss of generality say that w(0) 

= w(2) = w(4) = b. Then we have w(6) = w(8) = a, which in turn implies that w(−1) = w(1) = b. This implies that 

w(5) = a, which tells us that w(−2) = b. Since w(−2) = w(0) = b, w (4) = a, a contradiction. 

 
Now suppose for contradiction that the two-sided infinite word w avoids X6|1,3. It must avoid a◊

6
a, and since 

{a◊
6
a, b◊b} is unavoidable it has a factor compatible with b◊b. Say without loss of generality that w(0) = w(2) = 

b. The reader may verify that this ultimately leads to a contradiction, using the fact that w avoids X6|1,3 and 

{b◊b◊b}.                      ∎ 

 

We now state our conjecture. 

 

Conjecture 1 The set         
 is unavoidable precisely when the hypotheses of at least one of Lemma 2, 

Propositions 1, 2, 3 or Theorem 4 hold. Restated, 

 

        
 is unavoidable for relatively prime m + 1, n1 +1 and n2 +1 with n1 ≤ n2 if and only if one of 

thefollowing conditions (or their symmetric equivalents) hold: 

 Proposition 1: The case where the set {a◊
m
a, b   b} is unavoidable, m = 2n1 + n2 + 2 or m = n2 − n1 − 

1, and n1 + 1 divides n2 + 1. 

 Theorem 4: The case where m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and the highest power of 2 dividing n1 + 

1 is less than the highest power of 2 dividing m + 1. 

 Proposition 2: The case where n1 < n2, 2m = n1 + n2 and |m − n1| divides m + 1. 

 Proposition 3: The case where m = 6, n1 = 1 and n2 = 3. 

 

The reader may verify that for any fixed m the only one of the above conditions that contributes infinitely many 

unavoidable sets to         
 is Theorem 4, and that this theorem never applies to even m. Thus the conjecture 

states that there are only finitely many values of m, n1, n2 with m fixed and even and         
 unavoidable. We 

will prove in Sect. 4.2 that this is indeed the case. 

 

Using Lemma 2 we may assume without loss of generality that m + 1, n1 + 1, n2 + 1 are relatively prime. An 

important consequence of the conjecture is that in order for         
 to be unavoidable it is necessary that either 

m = 6 and {n1, n2} = {1, 3}, or that one of the following equations hold: 

 

 

 

Using this fact we can show that an affirmative proof of the conjecture has a powerful consequence. 

 

We end this section with the following proposition which implies that if Conjecture 1 is true then we have 

completely classified the unavoidable sets of size 2. 

 

Proposition 4 If Conjecture 1 holds, then                 
is avoidable for all k ≥ 2 and l ≥ 2, and for all k ≥ 1 

and l ≥ 3. 

 

Proof Assuming Conjecture 1 holds, it is enough to prove that both 



           
 and           

 

 

are avoidable for all m1,m2,n1,n2. We handle the case of            
. Assume without loss of generality that m1, 

m2, n1, n2 are relatively prime. In order for this set to be unavoidable it is necessary that the sets 

 

{a   a , b    b   b}, {a   a, b   b   b}, {a   a   a, b   b} 

 

and the set {a   a   a, b   b} are unavoidable as well. For each of these sets, Conjecture 1 gives a necessary 

condition: either m = 6 and n1 = 1, n2 = 3 (or symmetrically n1 = 3, n2 = 1) or one of (1), (2), (3), (4) or (5) must 

hold. Consider the following tables: 

 

 
 

In order for            
 to be unavoidable it is necessary that at least one equation from each column be 

satisfied. It is easy to verify using a computer algebra system that this is impossible except in the case where the 

last equation in each column is satisfied. However in this case m1 = m2 = n1 = n2 and so by Theorem 3 the set is 

avoidable. 

 

Now we consider           
. In order for this set to be unavoidable, it is necessary that {a◊

m
a,b   b   b}, 

{a◊
m
a,b   b   b},  {a◊

m
a,b        b   b} and {a◊

m
a, b   b        b} be unavoidable as well. Again, for 

each of these sets Conjecture 1 gives a necessary condition: either m = 6 and {n1, n2} = {1, 3} or one of (1), (2), 

(3), (4) or (5) must hold. Consider now the following tables: 

 

 
 



Again unavoidability of           
 requires that one equation from each column be satisfied. It is easy to verify 

that no such system of equations has a nonnegative solution.                      ∎ 

 

4.2 Other Results for k = 1 and l = 2 

In order to prove the conjecture, only one direction remains. We must show that if none of the hypotheses of 

Lemma 2, Propositions 1, 2, 3 or Theorem 4 hold then        
 is avoidable. In this section we give partial 

results towards this goal. 

 

We have found that in general identifying sets of the form        
 as avoidable tends to be a more difficult task 

than identifying them as unavoidable. In the case of unavoidability we needed only consider a single word then 

derive a contradiction from its necessary structural properties. To find a class of avoidable sets we must invent 

some general procedure for producing a two-sided infinite word which avoids each such set. This is precisely 

what we move towards in the following propositions in which we verify that the conjecture holds for certain 

values of m and n1. 

 

It is easy to see that none of (1), (2), (3), (4) or (5) are satisfied when max(n1, n2) < m ≤ n1 + n2 + 2. Thus the 

conjecture for such values is that        
 is avoidable. The following fact verifies that this is indeed the case. 

 

Proposition 5 If max(n1, n2) < m < n1 + n2 + 2 then        
 is avoidable. 

 

Proof Let v = a
m
 b

m+1
 and w = vℤ. We claim that w avoids        

. Clearly it avoids a◊
m
a. Let i ∈ ℤ. If w(i) = w 

(i + n1 + 1) = b, then the gap in b   b cannot straddle a block of a’s, since n1 < m and these blocks come in 

sequences m letters long. Thus we must have w(i) ··· w(i + n1 + 1) =      . Similarly if w(i) = w(i + n2 + 1) = b 

since n2 < m we have w(i) ··· w(i + n2 + 1) =      . Hence if therewere i ∈ ℤ with w(i)=w(i + n1 +1)= w(i + n1 + 

n2 + 2) = b, we would have w(i) ··· w(i + n1 + n2 + 2) =          which is impossible since m + 1 < n1 + n2 + 3.   

                      ∎ 
The next proposition makes the conjecture easy to verify for a large number of even values of m. 

 

Proposition 6 Assume m is even and that 2m ≤ min(n1, n2). Then        
 is avoidable. 

 

Proof If either n1 or n2 is even then either {a◊
m
a, b   b} or {a◊

m
a, b   b} is avoidable by Theorem 3. Both 

situations imply that        
 is avoidable. Thus we only need to prove that        

 is avoidable for n1, n2 odd. 

Say without loss of generality that n1 ≤ n2. 

 

Let v = b
m
, and let u = baba ··· ab with |u| = n2 + 2. We claim that w = (uv)ℤ avoids        

. Clearly it avoids 

a◊
m
a. Because of periodicity, it is enough to prove that for any i ∈ {0,..., n2 + 2 + m − 1} if w(i − n1 − 1) = b and 

w(i) = b then w(i + n2 + 1) = a. We claim that such an i must be greater than m. Suppose for contradiction i ≤ m. 

Then −|uv| = −n2 − 2 − m < i − n1 − 1 < −m = −|v|. Thus w(i − n1 − 1) occurs in the repetition of u at w(−n2 − 1 − 

m) ··· w(−m − 1), and so since i − n1 − 1 is an even number, w(i − n1 − 1) = a which is a contradiction. Thus we 

indeed have that i > m. 
 
Since i > m we have that 

 

|uv| = n2 + 2 + m ≤ i + n2 + 1 ≤ n2 + 2 + m − 1 + n2 + 2  

= 2n2 + m + 3 = |uv| +|u| − 1 

 

Thus w(i + n2 + 1) occurs in the second repetition of u at w(n2 + 2 + m) ··· w(2n2 + m + 3), and so since i + n2 + 

1 is an even number, w(i + n2 + 1) = a.                  ∎ 
 



For any fixed even m there are then only finitely many values of n1, n2 which might be unavoidable. The reader 

may verify that this is consistent with the conjecture. The reader may also verify that the conjecture for m = 0 is 

that        
 is always avoidable, and indeed this is given by Proposition 6. Similarly the conjecture for m = 2 is 

that        
 is avoidable except for n1 = 1, n2 = 3 or n2 = 3, n1 = 1. It is easy to find avoiding two-sided infinite 

words for other values of n1 and n2 less than 5 when m = 2. By Proposition 6 this is all that is necessary to 

confirm the conjecture for m = 2. In this way we have been able to verify the conjecture for all even m up to 

very large values. The odd values of m seem to be much more difficult and will most likely require more 

sophisticated techniques. The following proposition gives our confirmation of the conjecture for m = 1. 

 

Proposition 7 The conjecture holds for m = 1, that is,        
 is unavoidable if and only if n1 and n2 are even 

numbers with |n1 − n2| = 2. 

 

Proof That        
 is unavoidable for n1 and n2 even with |n1 − n2| = 2 is a direct consequence of Theorem 4 and 

was explained in Sect. 4.1. Thus we only need to prove that the set is avoidable for other values of n 1 and n2 . 

We divide these values of n1 and n2 into cases and prove that        
 is avoidable in each case. By symmetry we 

may assume that n1 ≤ n2 throughout. 
 

Claim 1. For n1 or n2 odd        
 is avoidable. If both n1 and n2 are odd then m + 1, n1 + 1, n2 + 1 are all 

divisible by 2. Thus by applying Lemma 2 with Proposition 6 we find that        
 is avoidable. If either n1 or n2 

is equivalent to 1 mod 4 then        
 is avoidable by Theorem 3. The last case to consider is when n1 or n2 is 

equivalent to 3 mod 4. By symmetry we may suppose that n1 ≡ 3 mod 4 and n2 is even. Thus we divide into two 

further cases. 

 

First say n2 ≡ 0 mod 4 and write n2 = 4k. Let v = (aabb)
k
 abb. We prove that w = vℤ avoids        

. Certainly it 

avoids a◊a. By periodicity we may assume without loss of generality that i ∈ {0,..., |v| − 1} and w(i + n1 + 1) = 

w(i + n1 + n2 + 2) = b. We then only need to prove that w(i) = a. Since w is |v| = (4k + 3)-periodic, we have that 

w(i + n1 + n2 + 2) = w(i + n1 + n2+2−n2−3) = w(i +n1 − 1). Examining v we see that w(i +n1 − 1) = w(i + n1 + 1) 

= b can only occur if i + n1 + 1 = 4k + 1. It is easy to see that since n1 + 1 ≡ 0 mod 4 and n 1 ≤ n2 that w (i + n1 + 

1 − n1 − 1) = a, and so w (i) = a. 

 

For the second case say n2 ≡ 2 mod 4 and write n2 = 4k + 2. The reader may verify using a similar argument that 

((aabb)
k
 aabbb)ℤ avoids        

 in this case and the claim is proved. 

 

Claim 2. If n1 <n2 − 2 and either n1 ≡ 0 mod 4 and n2 ≡ 2 mod 4, or n1 ≡ 2 mod 4 and n2 ≡ 0 mod 4, then        
 

is avoidable. Take the first case, n1 ≡ 0 mod 4 and n2 ≡ 2 mod 4. Write n2 = 4k + 2, with k ≥ 1 which is valid 

since we have assumed n1 < n2 − 2. Let v = (aabb)
k−1

 aabbb. Our argument is similar to those used for the last 

claim. In particular we show that w = vℤ avoids        
. Certainly it avoids a◊a. By periodicity we may assume 

without loss of generality that i ∈ {0,..., |v| − 1} and w(i + n1 + 1) = w(i + n1 + n2 + 2) = b. We then only need to 

prove that w (i) = a. Since w is |v| = (4k + 1)-periodic, we have that w (i + n1 + n2 + 2) = w(i + n1 + n2 + 2 − n2 

+1) = w(i + n1 + 3). Examining v we see that w(i +n1 + 1) = w(i +n1 +3) = b can only occur for w(i +n1 + 1) = 4k 

− 2. It is easy to see that since n1 + 1 ≡ 1 mod 4 and n1 < n2 − 2 that w(i + n1 + 1 − n1 − 1) = a, and so w (i) = a. 

 

For the second case, where n1 ≡ 2 mod 4 and n2 ≡ 0 mod 4, write n2 = 4k. Then ((aabb)
k−1

 abb) avoids        
 

and the claim is proved. 

 

The only possible values of n1 and n2 left to consider are where n1, n2 ≡ 0 mod 4 or n1, n2 ≡ 2 mod 4. 

 

Claim3. If n1 < n2 − 2 and either n1, n2 ≡ 0 mod 4 or n1, n2 ≡ 2 mod 4 then        
 is avoidable. First say n1, n2 ≡ 

0 mod 4 and write n2 = 4k. In this case (aabb)
k
 abb avoids        

. Secondly suppose n1, n2 ≡ 2 mod 4 and write 

n2 = 4k + 2. In this case (aabb)
k
 aabbb avoids        

.                       ∎ 



The following and final proposition says that if m and n1 are close enough in value then        
 is avoidable for 

large enough n2. 

 

Proposition 8 Let s ∈ ℕ with s < m − 2. Then for n > 2(m + 1)
2
 + m − 1,          = {a◊

m
a, b◊

m+s
b◊

n
b} is 

avoidable. 

 

Proof For any p ∈ ℕ all integers greater than p
2
 can be written as pq + (p + 1) r for some q, r ∈ ℕ. This is 

because 

 

pp, (p − 1)p + p + 1, (p − 2)p + 2(p +1),...,p + (p − 1)(p + 1) 

 

is a sequence of consecutive integers with p members. 

 

Now let C = {b
m+1

a
m+1

, b
m+2

 a
m+1

}. There exists u ∈ C
*
 with |u| = n − m − 2. We claim that w = uℤ avoids 

         . It certainly avoids a◊
m
a. We need to verify that whenever w (i − m − s − 1) = b and w (i) = b that w (i 

+ n + 1) = a. Examining C we see that the only i’s for which this is possible are those for which w(i) is part of 

an initial segment of s b’s in a sequence of b’s. Say without loss of generality that 

 

w(0)w(1) ··· w(s) ··· w(m) = b
m
 and w(m+1) = a 

 

Since w is (n − m − 2)-periodic, w(s + n + 1) = w(s + m + 3), s + m + 3 < m – 2 + m + 3 = 2m + 1 so w(s + n + 1) 

= a. Similarly w(0 + n + 1) = w(m + 3) =a. Thus w has no factor compatible with b◊
m+s

 b◊
n
b and so w avoids 

        .                      ∎ 

 

5 Three-Word Unavoidable Sets  

In this section, we restrict ourselves to three-element sets. As discussed earlier, if the cardinality of an alphabet 

is larger than the number of words in the set, the set is always avoidable. Since the set here has size 3, the 

alphabet is unary, binary or ternary. As previously stated, the unary alphabet is trivial. We discuss three-word 

unavoidable sets over a binary alphabet in Sect. 5.1 and over a ternary alphabet in Sect. 5.2. 

 

5.1 The Case of a Binary Alphabet 

Here, we assume that the alphabet A is binary with distinct letters a and b. We will be considering nontrivial 

sets of size 3 over A that have the form 

 

X = {a◊
m
a, b◊

n
b, u}                           (6) 

 

where u is a partial word over A, and no two-word subset of X is unavoidable. The question is: What forms can 

the partial word u take so that the set X is unavoidable?  

 

We first investigate for which integers m, n and l the set 

 

X = {a◊
m
a, b◊

n
b, a◊

l
x} 

 

is unavoidable where x ∈ A. 

 

Theorem 5 If X = {a◊
m
a, b◊

n
b, a◊

l
b} for some integers m, n and l, then X is unavoidable if and only if gcd(l + 1, 

m + n + 2) is odd or there exists some integer j such that (m + 1) ≡ j(l + 1) mod (m + n + 2). 

 

Proof Let d = 
     

               
. First note that any two-sided infinite word w which avoids X must be (m + n + 2)-

periodic in order to avoid the words a◊
m
a and b◊

n
b, and we let z denote one period of w. For the remainder of 



the proof we consider any position i of z to be i mod (m + n + 2) as any index which is bigger than |z| correlates 

to a position in another occurrence of z in w. We can assume without loss of generality that position 0 of z is an 

a, as we know w must contain at least one a. We know that in order to avoid a◊
l
b, position i (l + 1) of z must 

also be an a for all i ∈ ℕ. This accounts for exactly d of the m + n + 2 positions of z. For each a we have placed, 

we must place a b in position i (m + l + 2) of z in order to avoid a◊
m
a. If there exists some integer j such that (m 

+ 1) ≡ j(l + 1) mod (m + n + 2), then these b’s will need to be at the same positions as the a’s already placed, 

resulting in a contradiction, indicating that X is unavoidable. Otherwise, all of these b’s will be placed in 

unfilled positions of z, bringing the total number of determined positions in z to 2d. 

 

Notice that at least one of the unfilled positions of z must be filled with an a. To show this, first note that every 

a already placed has a b m + 1 spaces after it, which, due to the length of z being m + n + 2, results in the same b 

being n + 1 spaces before it. Since every a has the position n + 1 spaces behind it filled, any unfilled position in 

z either has a b or an unfilled position n + 1 spaces after it. In either case, there is an unfilled position in z which 

must be filled with an a to avoid b◊
n
b. Furthermore, placing a single a in any of the unfilled positions of z 

amounts to filling 2d of the unfilled positions of z, as the same restrictions which generated the first group from 

the original a can be applied to this new a. 

 

If gcd(l + 1, m + n + 2) is odd, then we can never entirely fill z in groups of 2d positions, meaning that there is 

no word w which avoids X and thus X is unavoidable. 

 

If gcd(l + 1, m + n + 2) is even, then using the same construction as before, we can completely fill z in groups of 

2d positions, forming a word w = zℤ which avoids X, so X is avoidable.              ∎ 

 

Theorem 6 If X = {a◊
m
a, b◊

n
b, a◊

l
a} for some integers m, n and l, then X is unavoidable if and only if some 

proper subset of X is unavoidable. 

 

Proof Let d = 
         

                
. Clearly if some proper subset of X is unavoidable, X is also unavoidable, and so 

we only need to show that if every proper subset of X is avoidable, then X is avoidable. Assume that X contains 

no unavoidable proper subsets. Note that, similar to Theorem 5, any two-sided infinite word w which avoids X 

must be (m + n + 2) -periodic. Let z denote one such period of w, and let the zeroth position of z be an a, and 

again consider any position i of z to be i mod (m + n + 2). To avoid the words a◊
l
a and b◊

n
b, we can fill in every 

position p of z with an a, where p ≡ i (l + n + 2) mod (m + n + 2) for some i ∈ ℕ, and every position q of z with 

a b, where q ≡ (i (l + n + 2) + l + 1) mod (m + n + 2). This will fill in exactly d positions of z. Furthermore, 

every a placed in z has a b m + 1 places after it, ensuring that z does not contain a factor compatible with a◊
m
a. 

To see this, note that the positions of z that are m + 1 places away from an a, which have the form (i (l + n + 2) 

+ m + 1) mod (m + n + 2), are exactly the spaces already filled in with b’s. Comparing the two forms, we see 

that if there exists an integer k such that 

 

(m + 1) ≡ (k(l + n + 2) + l + 1) mod (m + n + 2) 

 

then the indices are identical. If k = m + n + 1, this condition is satisfied, and so we can conclude that z does not 

contain a factor compatible with a◊
m
a. 

 

Now we only need to show that we can fill in the remaining positions of z with this same pattern. We know that 

if gcd(l + n + 2, m + n + 2) is even, we will be able to completely fill in z with these groups of d positions. 

Furthermore, because every proper subset of X is avoidable, we know from Theorem 3 that m, n and l all have 

the same parity. Thus, both l +n + 2 and m +n + 2 are even, so gcd(l + n + 2, m + n + 2) must be even, allowing 

us to make a full word z such that w = zℤ avoids X when no proper subset of X is unavoidable.           ∎ 

 



Theorems 5 and 6 completely characterize all three-word unavoidable sets where each word has only two 

defined positions and provide us with some conditions that more complex sets must satisfy in order to be 

unavoidable. 

 

The following proposition provides some necessary conditions for the unavoidability of a three-word set X with 

one word having three defined positions.  

 

Proposition 9 If X = {a◊
m
a, b◊

n
b, a◊

l
x◊

p
y} for some integers m, n, l, p and some letters x, y ∈ A, then X is 

unavoidable only if the conditions from Theorems 5 and 6 hold for all the substring sets of X. 

 

Proof For X to be avoidable, it is sufficient that one of the sets 

 

{a◊
m
a, b◊

n
b, a◊

l
x}, {a◊

m
a,b◊

n
b,x◊

p
y} or {a◊

m
a,b◊

n
b,a◊

l+p+1
y} 

 

be avoidable. We call these sets the substring sets of X. So all the substring sets of X must be unavoidable in 

order for X to be unavoidable, and the substring sets have the same forms as in Theorems 5 and 6.          ∎ 

 

We obtain the following two corollaries. 

 

Corollary 1 The set X = {a◊
n
a, b◊

n
b, a◊

m
b} is unavoidable for some integers m and n if and only if L = 

             

   
 is odd. 

 

Proof To show the result, we will first show that the conditions of Theorem 5 imply that L is odd. 

 

Suppose that d = gcd(m + 1, 2(n + 1)) is odd. Set m + 1 = k1d and n + 1 = k2d for some k1, k2. For d to be odd, m 

+ 1 must be odd so k1 is odd. Since k1 is odd, L = 
     

   
 = k1 is odd. 

 

Suppose that there exists some integer j such that (n + 1) ≡ j(m + 1) mod (2n + 2). Let d = gcd(m + 1, n + 1) and 

set m + 1 = k1d and n + 1 = k2d, where k1, k2 must be relatively prime. We can then write j(k1d) ≡ k2d mod 

(2k2d), which is equivalent to jk1 = (2i + 1)k2 for some i. If k2 is even, then k1 is odd since this is the only 

possible way that both k1 and k2 be relatively prime. If k2 is odd, then 
        

   
 = k1 is also odd. Similar to the 

previous case, k1 is odd means that L is odd. 

 

We will now show that L is odd implies the conditions of Theorem 5. Let d = gcd(m + 1, n + 1) and set m + 1 = 

k1d and n + 1 = k2d for some k1, k2. Note that because L is odd, k1 must also be odd. Also, notice that (n + 1) ≡ 

j(m + 1) mod (2n + 2) can be written as jd(k1 − 
  

 
) ≡ 0 mod (2k2d), which is true when j = k2 and k1 is odd.       ∎ 

 

Corollary 2 The set X = {a◊
n
a, b◊

n
b, a◊

m
a} where m, n are integers satisfying m < n is unavoidable if and only 

if 
            

   
 is odd. 

 

Proof If we look at the set Y = {a◊
n
a, b◊

n
b, a◊

m
a◊

n−m−1
b}, we see that a valid Prefix-Suffix operation followed 

by Hole Truncations can reduce Y to X, indicating that the two sets have the same avoidability. However, we 

could also perform a Suffix-Prefix operation and Hole Truncations on Y to reduce it to Z = {a◊
n
a, b◊

n
b, 

a◊
n−m−1

b}, and so X and Z have the same avoidability. We know from 
            

   
 is odd, and since the 

Corollary 1 that Z is unavoidable if and only if avoidability of Z is the same as the avoidability of X, this 

completes our proof.                     ∎ 

 



We are now interested in three-word unavoidable sets where all words have length n and every proper subset is 

avoidable. It is easy to verify that the set {a◊
n−2

 a, b◊
n −2

b} is avoidable, as the word (a
n−1

b
n−1

)ℤ avoids it. Thus, 

we describe a set of words, W, each of length n such that when one is added to the set {a◊
n−2

 a, b◊
n−2

b}, the set 

becomes unavoidable and both {a◊
n−2

a, u } and {b◊
n−2

b, u} are avoidable for u E W. Notice that because u has 

length n, if it were to begin and end with the same letter, then either a◊
n−2

 a or b◊
n−2

b would be compatible with 

it, and the set would be avoidable. Thus u must have the form a◊
n−2

b with some number of holes filled in. We 

consider the word a◊
n−2

 b with no holes filled in trivial. Although words of the form b◊
n−2

a with some (or none) 

of the holes filled in may also form unavoidable sets, we also consider these trivial due to symmetry. During the 

analysis of these sets, some unique patterns were found. 

 

Conjecture 2 Every word in W has exactly two, three, or four defined positions. 

 

Theorem 7 Every word u ∈ W has both a’s and b’s. Additionally, if we consider only those words that begin 

with an a, every a in u appears before any b’s. 

 

Proof Suppose, for contradiction, that there exists a word u ∈ W that contains only a’s and holes. Then, u is 

compatible with a◊
n-2

 a so a Factoring operation can be performed, leaving the set {a◊
n-2

a, b◊
n-2

b}, which is 

avoidable as stated above. 

 

For the second part, suppose, for contradiction, that there exists a word u ∈ W such that a b occurs before an a. 

If that is the case, the word (a
n-1

b
n-1

)Z avoids the set {u, a◊
n-2

a, b◊
n-2

b},which contradicts the definition of W.  ∎ 

 

The next result is an extension of Corollary 1, and characterizes all words in W that have three defined 

positions. 

 

Corollary 3 Let x E la, bI. The word a◊
m
x◊

n-m-3
b is in W if and only if 

            

   
 is odd if x = b or  

              

   
 is odd if x = a. 

 

Proof Notice that there exists a valid Prefix-Suffix operation on the set {a◊n-2 a, b◊n-2b, a◊mx◊n -m-3 b} 

that, along with Hole Truncation operations, can reduce it to {a◊
n-2

a, b◊
n-2

b, a◊
m

x }. In the case where x 

= a, the set has the form covered by Corollary 2, and when x = b, it has the form covered by Corollary 1. In 

either case, the conditions for unavoidability are identical to those stated above.             ∎ 
 

In the remainder of this section, we partially characterize words in W that have four defined positions. 

 

Proposition 10 The set X = {a◊
n-2

a, b◊
n-2

b, a◊
l
x◊

p
y◊

n-l-p-4
b} where x, y ∈ A and n, l, p are integers is 

unavoidable only if Proposition 9 holds for the sets 

 

Y1 = {a◊
n-2

a, b◊
n-2

b, a◊
l
x◊

p
y} 

Y2 = {a◊
n-2

a, b◊
n-2

b, x◊
p
y◊

n-l-p-4
b} 

 

Proof Notice that a Prefix-Suffix operation can be performed to reduce X to Y1 and a Suffix-Prefix operation 

can be performed to reduce X to Y2. Hence, the sets have the same avoidability. By Proposition 9, X is 

unavoidable only if certain conditions are met by Y1 and Y2.               ∎ 
 

Proposition 11 The words of the form aab◊
n-4

b, a◊
n-4

abb, a◊
n-4

aab, and abb◊
n-4

b are in the set W if and only if n 

> 4 is odd. 

 

Proof First, notice that by Remark 1 we only need to consider aab◊
n-4

b. We transform the set {a◊
n-2

a, b◊
n-2

b, 

aab◊
n-4

b} using the algorithm defined in Sect. 3. By a Prefix-Suffix operation followed by Hole Truncation 



operations, it can be seen that this set has the same avoidability as {a◊
n-2

a, b◊
n-2

b, aab}. By Expanding the word 

aon-2 a at the positions of the last two holes and then performing a Prefix-Suffix operation, we get the set {a◊
n-

4
aa, a◊

n-4
aba, a◊

n-4
baa, a◊

n-4
bba, b◊

n-2
b, aab}. We can now perform an Expansion on the word a◊

n-4
aa one hole 

at a time, starting with the last, and then perform a Prefix-Suffix operation each time. We are then left with the 

set 

 

 

 

Then, Factoring operations result in the set {aa, a◊
n-4

aba, a◊
n-4

bba, b◊
n-2

b}.Expansions on the word b◊
n-2

b and 

Prefix-Suffix operations transform the set to {aa, a◊
n-4

aba, a◊
n-4

bba, b◊
n-3

a, bb◊
n-4

b, ba◊
n-4

bb}. A Prefix-Suffix 

operation, followed by a Hole Truncation, results in the set {aa, a◊
n-4

aba, a◊
n-4

bba, b◊
n-3

a, bb, ba◊
n-4

bb}. 

Furthermore, Factoring operations can result in the set {aa, a◊
n-4

aba, b◊
n-3

a, bb}. 
 
Notice that if a◊

n-4
aba or b◊

n-3
a is expanded such that it has an aa or bb as a factor, it will be removed by a 

Factoring operation. If all Expansions have aa or bb, we will be left with the set {aa, bb}, which means the 

original set is avoidable since it could not be transformed to {ε}. 
 

Suppose n is even. Then a◊
n-4

aba has even length. Since we want the a’s and b’s to alternate, the full expansion 

word should have the form (ab)
 

 
 or (ba) 

 

 
. However, notice that neither of these start and end with an a, so 

every full expansion of a◊
n-4

aba will have a factor of aa or bb and thus, it can be eliminated from the set. 

Likewise, b◊
n-3

a has odd length and the full expansion word should be of the form a(ba)
   

 
 or b(ab) 

   

 
 to 

ensure that a’s and b’s alternate. However, none of these start with a b and end with an a so every full 

expansion of b◊
n-3

a has aa or bb as a factor. This word can also be deleted by a Factoring operation, leaving the 

set {aa, bb}. Therefore, the set is avoidable for n even. 

 

Suppose n is odd. Then a◊
n-4

aba has odd length. Notice that the full expansion a(ba) 
   

 
 is compatible with this 

word and alternates a’s and b’s. Additionally, b◊
n-3

a also has one full expansion that alternates letters, 

specifically, (ba) 
   

 
.Thus, Expansion and Factoring operations get us to the set {aa, bb, (ba) 

   

 
,a(ba) 

   

 
}. 

Prefix-Suffix operations can then be done on the two longest words several times to transform the set to {aa, bb, 

a, b}, which can be reduced by Prefix-Suffix operations to {ε}. Therefore, the set is unavoidable for n odd. 

  

Thus, the set is unavoidable if and only if n > 4 is odd.               ∎ 
 

Proposition 12 The words of the form aa◊
n-4

ab and ab◊
n-4

bb are in the set W if and only if n > 4 is odd. 

 

Proof We consider the set X = {aa◊n−4 ab, a◊n −2 a, b◊n−2 b}. The unavoidability of {ab◊
n−4

bb, a◊
n−2

a, 

b◊
n−2

b} can then be easily seen by symmetry. 

 

If n is odd, then we show that no two-sided infinite word w avoids X. Otherwise, one position of w must be an a, 

so we will arbitrarily label w(0) = a. To avoid a◊
n−2

a, w(n − 1) = b. Notice that to avoid aa◊
n−4

ab, w(1) or w(n − 

2) must be a b. Suppose w(1) = b (the other case is similar). Then w(n) = a to avoid b◊
n−2

b. 

 

Suppose w(2) = b. Then, w(n + 1) = a to avoid b◊
n−2

b. To avoid a◊
n−2

a and b◊
n−2

b, w(2n − 2) = a and w(2n − 1) 

= w(2n) = b. Thus, w has the substring w(n)w(n + 1) ··· w(2n − 2)w(2n − 1) compatible with aa◊
n−4

ab, so w does 

not avoid aa◊
n−4

ab. 

 

Suppose w(2) = a. Then, w(n + 1) = b to avoid a◊
n−2

a. Notice that w(3) ≠ a because then w would contain the 

substring w(2)w(3) ··· w(n)w(n + 1) compatible with aa◊
n−4

ab. Hence, w(3) = b. If w(4) = b, then we will have 

the same problem noted above starting at position n + 2. To avoid aa◊
n−4

ab, we must continue to alternate a’s 



and b’s (the way we started numbering the word w, every even position should be an a and every odd position a 

b). However, we also know that w(n − 1) = b so two a’s or two b’s will appear next to each other, which will 

cause the string aa◊
n−4

ab to be compatible with a factor in w while trying to avoid a◊
n−2

a and b◊
n−2

b. 
 

If n is even, then the two-sided infinite word w = (ab)ℤ avoids X.              ∎ 

 

5.2 The Case of a Ternary Alphabet 

Here, we assume that the alphabet A is ternary with distinct letters a, b, and c. Thus, in order for a set X to be 

unavoidable, one element must be compatible with a factor of aℤ, another with bℤ, and the remaining element 

with cℤ since this is the only way to guarantee that aℤ, bℤ, and cℤ will not avoid X. Hence, an unavoidable set of 

size 3 has the form 

 

{a   a ··· a   a, b   b ··· b   b, c   c ··· c   c} (7) 

 

for some nonnegative integers m1,...,mi , n1,...,nj, and l1,...,lk, which will be denoted by 

 

                              
 

 

The goal is to find which values of m1,...,mi, n1,...,nj, and l1,...,lk make the set  
                              

 unavoidable. 

 

Notice that if i, j or k is zero, then X contains a word that is a single letter and any word w which avoids X 

cannot contain that letter. Thus, the problem of finding the avoidability of X reduces to determining whether or 

not the set containing the remaining two words is unavoidable over a binary alphabet. We consider such cases 

to be trivial, as they reduce to two-word sets over a binary alphabet. For the rest of this section we will only 

consider sets where i, j and k are all nonzero. 

 

Remark 2 For Xm1,...,mi |n1,...,nj |l1,...,lk to be avoidable, it is sufficient that one of the substring sets 

 

{a   a ··· a  
  a , b   b ··· b 

 
  b, c   c ··· c  

  c} 

 
for some i' ≤ i, j' ≤ j and k' ≤ k be avoidable. 

 

Note that because every two-sided infinite word must have a factor compatible with an element of an 

unavoidable set, we can gather restrictions on unavoidable sets by examining specific two-sided infinite words. 

For example, in order for a set of the form X = {a◊
m
a, b◊

n
b, c◊

l
c} to be unavoidable, the two-sided infinite word 

w = (aabc)ℤ must contain a factor compatible with one of the elements of X. Along with all the possible 

reletterings of w, we get the condition that either any of l, m and n is congruent to 3 mod 4 or all of l, m and n 

are congruent to either 0 mod 4 or 2 mod 4. In general, for a two-sided infinite word with period p, we get the 

condition that either any of l, m and n is congruent to (p − 1) mod p or another condition C involving the 

congruence modulo p of some of l, m and n. If C includes a condition requiring any of l, m and n to be 

congruent to i mod p, we say C includes i. For example, if there are two a’s 3 positions apart in a period of 

length p, then the corresponding C will involve m being congruent to 3 mod p, and so C includes 3. Any 

unavoidable set must either satisfy C or have at least one of l, m and n be congruent to (p − 1) mod p, otherwise 

the two-sided infinite word that generated C will avoid the set. 

 

Lemma 3 There exists a two-sided infinite word w over the ternary alphabet {a, b, c} with period p that avoids 

the set Y = {a◊
i
a, b◊

i
b, c◊

i
c} for every positive integer i such that i ≤ L ⌊

   

 
⌋. 

 



Proof Consider the word v = a
i+1

 (b
i+1

c
i+1

)ℤ. Let vp be the prefix of length p of v, and let w
1
 be vℤ. Note that wl 

avoids Y when i < ⌊
   

 
⌋ because no two occurrences of the same letter are i positions apart. Let w2 = (a

i+1
b

i
 c

q
)ℤ, 

where q = 1 if p is even, and 2 otherwise. If i = ⌊
   

 
⌋, then w2 avoids Y, completing the proof.           ∎ 

 

Theorem 8 For any unavoidable set of the form X = {a◊
m
a, b◊

n
b, c◊

l
c} where m, n and l are integers, for every 

p ≥ 8 one of l, m or n must be congruent to (p − 1) mod p. 

 

Proof Let wi, i ≤ ⌊
   

 
⌋, denote a two-sided infinite word with period p that avoids the set Y = {a◊

i
a, b◊

i
b, c◊

i
c}, 

which we know exists from Lemma 3. From wi we get the restriction on X that either any of l, m and n must be 

congruent to (p − 1) mod p or some other condition Ci on the congruence modulo p of l, m and n. Since wi 

avoids Y, no two occurrences of the same letter in wi are i or p − i − 2 positions apart, so Ci does not include i or 

p − i − 2. Notice that all of the restrictions generated by the wi’s can be satisfied if any of l, m and n is congruent 

to (p − 1) mod p. 

 

For contradiction, assume that the restrictions generated by all wi’s can be satisfied without any of l, m and n 

being congruent to (p − 1) mod p. This requires that all Ci’s be simultaneously satisfiable. Notice that for any i 

≠ j, the only way for both Ci and Cj to be satisfied is if both include some k distinct from both i and j, or at least 

one of l, m and n be congruent to i mod p to satisfy Cj and at least one be congruent to j mod p to satisfy Ci. 

When p ≥ 8, there are at least four distinct Ci’s and because for all j ≤ p − 2, some Ci does not include j, the only 

way all of the Ci’s can be simultaneously satisfied is that for every i at least one of l, m and n be congruent to i 

mod p. However, because there are at least four distinct values of i and only three variables, there must be at 

least one Ci that cannot be satisfied at the same time as the others, resulting in a contradiction. Thus, the only 

way for X to be unavoidable is that one of l, m or n be congruent to (p − 1) mod p.            ∎ 

 

Corollary 4 There exist no nontrivial three-word sets over a ternary alphabet that are unavoidable. 

 

Proof Let X = {a◊
m
a, b◊

n
b, c◊

l
c} where m, n and l are integers be unavoidable. From Theorem 8, we know that 

for every p ≥ 8 one of l, m or n must be congruent to (p − 1) mod p. Let q = max(l, m, n) + 8. Clearly none of l, 

m, n are congruent to (q − 1) mod q, which is a contradiction.               ∎ 

 

We end this section by extending Corollary 4 to unavoidable sets of k words over an alphabet of cardinality k. 

 

Corollary 5 There exist no nontrivial k-word sets over a k-letter alphabet where k ≥ ≥ 3 that are unavoidable. 

 

Proof The proof is done by induction on k. The base case, k = 3, is true by Corollary 4. For the inductive step, 

the (k + 1)-word set must have the form 

 

{a1     a1···a1 
     a1,...,ak+1       ak+1···ak+1  

         ak+1} (8) 

 

where a1,...,ak+1 are the distinct elements of the alphabet. According to the inductive hypothesis, the subset 

 

{a1     a1···a1 
     a1,...,ak     ak···ak 

     ak} (9) 

 

is avoidable over the alphabet {a1,...,ak}. The word that avoids (9) will also avoid (8), as the word does not 

contain the letter ak+1.                ∎ 

 

6 Conclusion 

Conjecture 1, although tested in numerous cases via computer, and verified for m = 1 and a large number of 

even values of m, still remains to be proven. As it has been shown in Sect. 4.1, an affirmative answer to this 



question would imply that                      
 is avoidable for all k ≥ 2 and l ≥ 2 and for all k ≥ 1 and l ≥ 3, and 

would settle the classification of all unavoidable two-word sets. 

 

In Theorems 5 and 6, we have completely characterized all three-word unavoidable sets over a binary alphabet 

where each word has at most two defined positions. We have discussed some special cases concerning three-

word unavoidable sets over a binary alphabet where one word has more than two defined positions, but general 

criteria for these sets have not been found. 

 

We have also completely characterized all k-word unavoidable sets over a k-letter alphabet for k ≥ 3. Indeed, in 

Corollary 5 we have proved that there are no nontrivial such sets, but k-word sets where k is larger than the 

alphabet size have not been considered for k > 3. 
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