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Abstract: 

A classification scheme for regular languages or finite semigroups was proposed by Pin through tree 

hierarchies, a scheme related to the concatenation product, an operation on languages, and to the 

Schützenberger product, an operation on semigroups. Starting with a variety of finite semigroups (or 

pseudovariety of semigroups) V, a pseudovariety of semigroups ◊u(V) is associated to each tree u. In this paper, 

starting with the congruence γA generating a locally finite pseudovariety of semigroups V for the finite alphabet 

A, we construct a congruence ≡u (γA) in such a way to generate ◊u(V) for A. We give partial results on the 

problem of comparing the congruences ≡u (γA) or the pseudovarieties ◊u(V). We also propose case studies of 

associating trees to semidirect or two-sided semidirect products of locally finite pseudovarieties.  

 

Article:  

1. Introduction 

A result of Kleene [10] shows that the class of recognizable languages (that is, recognized by finite automata) 

coincides with the class of regular or rational languages which can be obtained from finite languages by the 

boolean operations, the concatenation product and the star. Star-free languages are those rational languages 

which can be obtained from finite languages by the boolean operations and the concatenation product only. 

Several classification schemes for the star-free languages were proposed based on the alternating use of the 

boolean operations and the concatenation product. This led to the natural notion of dot-depth. However, the first 

question related to this notion "given a star-free language, is there an algorithm for computing its dot-depth?" 

appears to be extremely difficult. 

 

A classification scheme for rational languages was proposed by Pin through tree hierarchies [13]. This 

classification scheme generalizes the above mentioned ones for star-free languages. Tree hierarchies are related 

to the concatenation product, an operation on languages and to the Schützenberger product, an operation on 

monoids or semigroups. 

 

In this paper, we give some results on Pin's tree hierarchies. The notion of congruence plays a central role in our 

approach. For any finite alphabet A, denote by A
*
 the free monoid generated by A. We say that a monoid S is A-

generated if there exists a congruence y on A
*
 such that S is isomorphic to A

*
 /γ. A pseudovariety of monoids V 

is locally finite if for any A, there are finitely many A-generated monoids in V. Equivalently, there exists for 

each A, a congruence γA such that an A-generated monoid S is in V if and only if S is a morphic image of A
*
 /γA. 

By Eilenberg's one- to-one correspondence between the pseudovariety V and a *-variety of languages
~
 V, a 

language L of A
*
 is in A

*
 if and only if L is a union of γA-classes. 
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Starting with the congruence yA, we associate to each tree u a congruence(7,4) in such a way to generate the 

class A
* ~
 Vu of recognizable languages of A

*
 defined recursively as follows: If u is the tree reduced to a point, 

then A
* ~
 Vu = A

* ~
 V; if u =  

 

 
 

then A
* ~
 Vu, is the boolean algebra generated by the languages    a1Li, ...ak   , where 0 ≤ i0 < i1< • • • < ik  ≤ m, 

a1,…, ak are letters of A and for each 0 ≤ j ≤ k, Li, is in A
* ~
 V    

. Pin showed that the Schützenberger product is 

perfectly adapted to the operation (L0,…, Lk)L0a1 L1 ...akLk. This result allows to build, without reference to 

languages, hierarchies of pseudovarieties of monoids corresponding, via Eilenberg's result, to the above-

mentioned hierarchies of *-varieties of languages. In other words, starting with a pseudovariety V, a 

pseudovariety ◊u(V) is associated to each tree u. 

 

We first give partial results on the problem of comparing the congruences ≡u (γA) (Section 3). Our congruence 

construction shows, in particular, that all the pseudovarieties of the hierarchy built from locally finite 

pseudovarieties are locally finite (Section 4). Case studies are proposed of associating trees to semidirect or 

two-sided semidirect products of locally finite pseudovarieties using our congruence construction (Section 5). 

Definitions and results are given for pseudovarieties of monoids. Up to the obvious changes, they hold also for 

pseudovarieties of semigroups. Unless otherwise specified, any congruence we discuss has finite index. 

 

2. Preliminaries 

This section is devoted to reviewing basic properties of finite monoids and recognizable languages. The reader 

is referred to the books of Almeida [2], Eilenberg [8] and Pin [12] for further definitions and background. 

 

2.1. Monoids 

A semigroup is a set S together with an associative binary operation (generally denoted multiplicatively). If 

there is an element 1 of S such that 1s = s1 =s for each s E S, then S is called a monoid and 1 is its unit. S is a 

group if S is a monoid and, for each s ∈ S, there exists s' ∈ S such that ss' = s's = l. A subset of S is a 

subsemigroup (respectively submonoid, subgroup) of S if the induced binary operation makes it a semigroup 

(respectively monoid, group). 

 

Let S and T be monoids. A morphism φ:S → T is a mapping such that φ(ss')= φ(s) φ(s') for all s,s' ∈ S and φ(1)= 

1. We say that S divides T, and write S < T, if S is the image by a morphism of a submonoid of T. 

 

If A is a set, we let A
+
 be the free semigroup on A and A

*
 be the free monoid on A. A

+
 is the set of all finite 

strings a1 ...ai of elements of A and A
*
 =A+ U {l}, where 1 is the empty string (when we write aj we will always 

mean a letter in A). The operation in A
*
 is the concatenation of these strings. 

 

2.1.1. Varieties of finite monoids 

A variety of monoids is a class of monoids that is closed under division and direct product. An M-variety is a 

class of finite monoids that is closed under division and finite direct product. M-varieties are also called 

pseudovarieties of monoids. Given a class C of finite monoids, the intersection of all M-varieties containing C 

is still an M-variety, called the M-variety generated by C. 

 

A (monoid) identity on a set A is a pair (x, y) of elements of A
*
, usually indicated by a formal equality x = y. We 

say that a monoid S satisfies an identity x = y (or that the identity x = y holds in S) and we write S |= x = y if, for 



any morphism φ: A
*
 → S, we have φ(x) = φ(y). For an identity x = y and an M-variety V, the notation V = x = y 

will abbreviate the fact that each S ∈ V satisfies x y. 

 

Work of Eilenberg and Schiitzenberger [9] showed that M-varieties are ultimately defined by sequences of 

identities (that is, a monoid belongs to the given M-variety if and only if it satisfies all but finitely many of the 

identities in the sequence), and that finitely generated M-varieties are equational or defined by sequences of 

identities (that is, a monoid belongs to the given M-variety if and only if it satisfies all the identities in the 

sequence). 

 

We now list a few important M-varieties that we are going to use: 

 

 A is the M-variety of all finite aperiodic monoids (a monoid S is aperiodic if all groups in S are trivial). 

 I is the trivial M-variety consisting only of the 1-element monoid. 

 J1 is the M-variety of all finite idempotent and commutative monoids (also called semilattices) defined by 

the identities x
2
 = x and xy = yx. 

 J is the M-variety of all finite  -trivial monoids. 

 M is the M-variety of all finite monoids. 

 R is the M-variety of all finite  -trivial monoids. 

 G is the M-variety of all finite groups (any M-variety contained in G will be called a G-variety). 

 

2.2. Languages 

Let A be a finite set. When we deal with languages, A is called an alphabet and its elements are called letters. 

The elements of A
*
 are called words on A. A language on A is a subset L of A

*
. A language L in A

*
 is said to be 

recognizable if there exists a finite monoid S and a morphism φ:A
*
 → S such that L = φ

-1
 (φ(L)), that is, if x ∈ L 

and φ(x) = φ(y), then y ∈ L. This is also equivalent to saying that there is a subset X of S such that L = φ
-1

(X). In 

that case, we say that S (or φ) recognizes L. The notions of recognizable sets (by finite monoids and by finite 

automata) are equivalent. To each language L, we associate a congruence ~L defined, for x, y ∈ A
*
, by x ~Lγ if 

and only if uxv and uyv are both in L or both in A
*
\L, for all u, v in A

*
. The congruence  ~L is called the syntactic 

congruence of L and the monoid M(L) =A
*
/ ~L is called the syntactic monoid of L. A monoid recognizes L if 

and only if it is divided by M(L). 

 

2.2.1. Varieties of languages 

A *-variety 
~
 V is a family A

* ~
 V of sets of recognizable languages of A

*
 defined for all finite alphabets A and 

satisfying the following three conditions: 

 

1. A
* ~
 V is a boolean algebra, that is, if K and L are in A

* ~
 V, then so are K ⋃ L, K ⋂ L and A

*
\L. 

2. If φ: A
*
 → B

*
 is a morphism and L ∈ B

* ~
 V, then φ

-1
 (L) ∈ A

* ~
 V. 

3. If L ∈ A
* ~
 V and a ∈ A, then both {x E A

*
 | ax ∈ L} and {x ∈ A*

 | xa ∈ L} are in A
* ~
 V. 

 

Eilenberg [8] proved that M-varieties and *-varieties are in one-to-one correspondence. If V is an M-variety, 

then A
* ~
 V = {L ⊆ A

*
 | M(L) ∈ V} defines the corresponding *-variety 

~
 V. If 

~
 V is a *-variety, then the M-variety 

generated by {M(L) | L ∈ A
* ~
 V for some A} defines the corresponding M-variety V. 

 

Let V be an M-variety generated by the monoids S1,…,Sm. Thus V is generated by S = S1 x • • • x Sm. Let 
~
 V be 

the *-variety associated to V. Then A
*
 is the Boolean closure of the sets φ

-1
(s) for all s ∈ S and all morphisms 

φ:A
*
 → S. Consequently, A

* ~
 V is finite. 

 

We now list *-varieties of languages associated to some of the M-varieties listed previously: 

 

 A
*
   consists of the star-free languages of A

*
 [16]. 

 A
*
, = {0/ ,A

*
} where 0/  denotes the empty set. 



 A*   consists of the piecewise testable languages of A* [17]. 

 A
*  consists of the rational languages of A

*
 [10]. 

 

We end this section with a few examples of locally finite M-varieties. 
 

1. For any positive integer q and nonnegative integer m, Comq,m is the M-variety of all finite commutative 

monoids defined by the identities x
m+q

 x
m
 and xy= yx (we adopt the convention that x

0
 = 1). For any word 

x on A and a ∈ A, we denote by |x|a the number of occurrences of a in x. We define on A
*
 the congruence 

βq,m by xβq,my,  if for all a ∈ A, |x|a = |y|a  or x|a, |y|a ≥ m and x|a ≡ |y|a  mod q (β1,0 will often be 

abbreviated by ω). An A-generated monoid S is in Comq,m if and only if S is a morphic image of A
*
/βq,m, 

(note that Com1,0 = I). The M-variety Com of all finite commutative monoids (which is the join 

              ) is not locally finite; the same is true for Com ⋂ A which is the join              

and Com ⋂ G which is the join           . 

 

2. A hierarchy was introduced by Straubing [21] for the star-free languages of A
*
: the set{0/ ,A

*
} constitutes 

A
* ~
 V0; then, A

* ~
 Vk, is the boolean algebra generated by the languages of the form L0a1L1...aiLi, where I ≥ 

0, a1,...,ai ∈ A and L0,..., Li ∈ A
*
 

~
 Vk-1. Straubing's hierarchy induces, by Eilenberg's correspondence, a 

hierarchy of M-varieties : V0 ⊆ V1 ⊆ V2 ⊆ • • • which is known to be strict [23]. We have V0 = I. Simon 

[17] proved that V1 = J and hence V1 is decidable. The problem remains open as to whether Vk is 

decidable for k ≥ 2. 

 

Straubing's hierarchy can be refined as follows: for each k ≥ 1, m ≥ 0, A
* ~
 Vk,m is the boolean algebra generated 

by the languages of the form L0a1L1...aiLi, where 0 ≤ i ≤ m, a1,...,ai ∈ A and L0,...,Li ∈ A
* ~
 Vk-1. Then, for each 

positive integer k, Vk naturally contains a subhierarchy of M-varieties : Vk,0 ⊆ Vk,1 ⊆ Vk,2 ⊆ • • • ⊆ Vk. 

 

A remarkable fact about these hierarchies is their connections with some hierarchies of formal logic [22, 23, 

11]. In particular, the congruences           
 defined below are intimately related to Straubing's hierarchy, 

namely to its kth level. 

 

A word al ...a, on A is a subword of a word z on A if there exist words z0,...,zi on A such that z = z0a1z1...aizi. For 

any nonnegative integer m and word z on A, we denote by z(m)(z) the set of subwords of z of length less than or 

equal to m. We define the congruence α(m) on A
*
 by xχ(m)y if α(m)(x)= x(m)(y) (a(1)= β1,1 will often be abbreviated 

by χ). An A-generated monoid S is in V1,m or Jm if and only if S is a morphic image of A
*
/α(m) 

 

We proceed with a generalization of α(m) related to an Ehrenfeucht-Fraissé game. We identify any word x on A 

with a word model x =( x, <
x
, (  

 )a∈A) where the universe  x = {1,…, |x|} represents the set of positions of 

letters in the word x (|x| denotes the length of x), <
x
 denotes the usual order relation on  x, and   

  is a unary 

relation on  x, containing the positions with letter a, for each a ∈ A (we will often write   
 p instead of p ∈   

 ). 

The game Gm̄ (x, y), where m̄ = (m1,...,mk) is a k-tuple of positive integers (k ≥ 0) and x, y are words on A, is 

played between two players I and II on the word models x and y. A play of the game consists of k moves. In the 

ith move, Player I chooses, in x or in y, a sequence of mi positions; then, Player II chooses, in the remaining 

word (y or x), also a sequence of mi positions. Before each move, Player I has to decide whether to choose his 

next elements from x or from y. After k moves, by concatenating the position sequences chosen from x and from 

y, two sequences pi,...,pn from x and q1,...,qn from y have been formed where n = mi + • • • + mk. Player II has 

won the play if the following two conditions are satisfied : pi  <
x
 pj if and only if qi <

y
 qj for all 1 ≤ i, j ≤ n, and 

  
 p; if and only if   

 
qi for all 1 ≤ i ≤ n and a ∈ A. Equivalently, the two subwords in x and y given by the 

position sequences p1,…,pn and q1,…,qn should coincide. If there is a winning strategy for Player II in the game 

to win each play we say that Player II wins Gm̄ (x, y) and write xαm̄ y. The special case G l̄(x,y) where l̄  denotes a 

k-tuple of l's is the standard Ehrenfeucht-Fraissé game [7]. The relation αm̄  naturally defines a finite-index 

congruence on A
*
. 

 



The congruences αm̄  can be defined inductively as follows: First, if x= ai…an is a word on A and 1 ≤ i ≤ j ≤ n 

 then x[i,j], x(i,j), x(i,j] and x[i,j) denote the factors ai…aj, ai+1…aj —1, ai+1 …aj and ai…aj-1 respectively. Now, 

we have xα(m, m̄ )y if and only if 

 

(a) For every pi,…, pm ∈  x (p1 ≤ • • • ≤ pm), there exist q1,…,qm ∈ (q1 ≤ • • • qm) such that 

(i) pi <
x
 pj if and only if qi <

y
 qj for all 1 ≤ i, j ≤ m, 

(ii)   
 pi if and only if   

 
qi for all 1 ≤ i ≤ m and a ∈ A, 

(iii) x[l,p1)am̄ y[l,q1) 

(iv) x(pi, pi+1)am̄ y(qi, qi+1) for all 1 ≤ i < m,  

(v) x(pm,|x|]am̄ y(qm, |y|], and  

(b) For every qi,…,qm ∈  y (q1 ≤ • • • ≤ qm), there exist pi,...,pm ∈  x (p1 ≤ • • • ≤ pm) such that (i)—(v) hold. 

 

For fixed m̄ , we define the M-variety Vm̄  as follows: an A-generated monoid S is in Vm̄  if and only if S is a 

morphic image of A
*
 /αm̄ . Note that the equality V(m) = Jm holds. The M-variety Vk =                      

 is not 

locally finite. 

 

3. For any words x,z on A with z = a1,…,ai, the binomial coefficient (z) is defined as the number of distinct 

factorizations of the form x = x0a1x1…aixi with words x0,...,xi on A. For any prime number p and 

nonnegative integer m, we define on A
*
 the congruence δp,m by xδp,my if   

 
  ≡   

 
  mod p whenever |z| ≤ 

m. We define the M-variety Hp,m as follows: an A-generated monoid S is in Hp,m if and only if S is a 

morphic image of A
*
/δp,m. The M-variety Gp = ⋃         of all finite p-groups is not locally finite. 

 

3. Congruences associated to trees 

We denote by P the set of trees on the alphabet {c,c̄}. Formally, P is the set of words in {c, c̄}
*
 congruent to 1 

in the congruence generated by the relation cc̄.= 1. Intuitively, the words of P are obtained as follows: Given a 

tree, and starting from the root we encode c for going down and c̄ for going up. For example, 

 

 
 

is encoded by ccc̄ccc̄cc̄cc̄c̄c̄cc̄. The number of leaves of a non-empty word u on {c, c̄}, denoted by 1(u), is the 

number of occurrences of the factor cc̄ in u (we define the number of leaves of the empty word, l(1), by 1). The 

following two properties of trees are satisfied: 

 

 Each non-empty tree u can be written uniquely as u= cu0c̄...cumc̄ where m ≥ 0 and u0,…,um ∈ P. We have 

l(u) =            . 
 If u= cu0c̄ ...cumc̄ and u= v1cv2c̄v3 where v2 ∈ P, then the tree cv2c̄ is factor of some cuic̄. 

 

Definition 3.1. Let A be a finite alphabet, u be a tree andbe equivalence relations on A
*
. We define an 

equivalence relation ≡u (γi,...,γl(u)) on A
*
 as follows: 

 

 ≡1 (γ) = γ for each equivalence relation γ on A
*
. 

 If u = cu0c̄ where u0 ∈ P, ≡u (γ1,…,γl(u))= ≡u0 (γ1,…,      ). 



 If u = cu0c̄…cumc̄ where m ≥ l and u0…um ∈ P, ≡u (γ1,…,     ) is the equivalence relation on A
*
 where x ≡x 

(γ1,…,      )y if and only if 

 

x ≡  
 (                                       

)y for all 0 ≤ i ≤ m, 

 

(note that when i = 0, this means x ≡  
 (γl,…,      )γ) and 

 

1. For every p1,…,pm ∈  x (p1 ≤ • • • ≤ pm), there exist q1,…, qm ∈ (q1 ≤ • • • ≤ qm) such that 

 

(a) pi <
x
 pj if and only if qi <

y
 qj for all 1 ≤ i, j ≤ m, 

(b)   
 pi if and only if   

 
qi for all 1 ≤ i ≤ m and a ∈ A, 

(c) x[1, pi+1) ≡  
(                    

                   
)y[1,qi+1) for all 0 ≤ i < m, 

(d) x(pi, pi+1) ≡  
(                                       

)y(qi,qi+1) for all 1 ≤ i < m, 

(e) x(pi, |x|] ≡  
(                    

                   
)y (qi, |y|) for all 0 ≤ i < m,  

 

and 

 

2. For every q1,…,qm ∈  y (q1 ≤ • • • ≤ qm) there exist p1,…,pm ∈  x (p1 ≤ • • • pm) such that (a)—(e) hold. 

 

If γi = • • • = γj = γ for 1 ≤ i < j ≤ l(u), then we will abbreviate  ≡u (γ1,…,γl(u)) by 

 

≡u(γ1,…,γi-1,γ
j-i+1

, γj+1,…,     ). 

 

We will abbreviate ≡u (γ
1(u)

) by ≡u (γ). A consequence of Definition 3.l is that if u=cu0c̄...cumc̄ with u0,…,um ∈ 

P, then we have 

 

≡u (γi,…,      ) = ≡(c,c̄)m+1 (≡  
(γ1,…,      ),…, 

 

≡  
 (                                         ). 

 

Let m̄ = (m1,...,mk) be a k-tuple of positive integers (k ≥ 0). We have that ≡  
 (ω) where the tree αm̄ is defined, 

by induction on k, as follows: if k = 0, then um̄, = l; then, for m̄ (m,m1,…, mk), um̄ = (           
c̄)

m+1
. 

 

Lemma 3.1. Let A be a finite alphabet, u be a tree and γ1,…,γl(u) be finite-index congruences on A
*
. The 

equivalence relation ≡u (γ1,…,γl(u)) is a finite-index congruence on A
*
. 

 

Proof. The proof is by induction on u. If u = l, we have (γ) = γ. Otherwise, we factorize u as u=cu0c̄ ...cumc̄ 

with u0,...,um ∈ P. We have the following two cases: Case 1 (m = 0) and Case 2 (m ≥ 1). 

 

Case 1. We have ≡u (γ1,…,γl(u)) = ≡  
 (γ1,…,      ) and the result follows by the inductive hypothesis on u0. 

 

Case 2. Let x ≡u (γ1,…,γl(u))y and x' ≡u (γ1,…,γl(u))y'. We want to show that xx' ≡u (γ1,…,γl(u))yy'. First, xx' ≡u 

(                                   
)yy' for all 0 ≤ i ≤ m by the inductive hypothesis on ui. Second, let p1,…,pm ∈ 

 xx' (pi ≤ • • • ≤ Pm) (the proof is similar if starting with q1,…,qm ∈  yy'). Say pi,…, pn ≤ |x| and pn+i,...,pm > |x| 

for some 0 ≤ n ≤ m. We treat the case 0 < n < m (the other cases are simpler). Put   
  = pn+1 - |x|,...,    

  = pm 

— |x|. From x ≡u (γ1,…,γl(u))y, there exist q1,...,qn ∈  y (q1 ≤ • • • ≤ qn) satisfying (a)-(e) (here, we let p1,…, pn, 

pn,…, pn ∈  x for a total of m positions), and from x' ≡u (γ1,…,γl(u))y', there exist   
 ,…,    

  ∈  y'    
  ≤ • • • ≤ 

    
 ) satisfying (a)—(e) (here, we let   

 ,…,  
 ,   

 ,...,     
  ∈  x' for a total of m positions). Put qn+1 =   

  + 

|y|,…,qm =     
  + |y|. The positions q1,…,qm ∈  yy' are such that q1 ≤ • • • ≤ qm and we have 



x(pn,|x|] ≡  
 (                  ,…,              )y(qn, |y|], 

 

x' [l,   
 ) ≡  

(                  ,…,              )y' [1,   
 ), 

 

and by the inductive hypothesis on un we get 

 

xx' (pn, pn+1) ≡  
 (                  ,…,              ) yy' (qn,qn+1). 

 

Condition (d) easily follows. Conditions (a)—(c) and (e) are simpler. The relation ≡u (γ1,…, γl(u)) is hence a 

congruence on A
*
. This obviously is finite-index since γ1,…, γl(u) are.              ∎ 

 

3.1. Inclusion results 

This section is concerned with comparing the equivalence relations ≡u γ1,…, γl(u) Proposition 3.1, Theorem 3.l, 

Corollary 3.1 and Theorem 3.2 are adaptations of results of [13]. 

 

Proposition 3.1. Let A be a finite alphabet, u be a tree and γ1,…,γl(u) be congruences on A
*
. We have 

 

≡u (γ1,…, γl(u))= ≡cuc̄ (γ1,…, γl(u))= ≡cc̄ (≡u (γ1,…, γl(u))) 

 

Proof. This is an immediate consequence of Definition 3.1.               ∎ 

 

Theorem 3.1. Let A be a finite alphabet, u=v1cv2c̄v3 be a tree as well as v2 and γ1,…,γ1(u) be congruences on A
*
. 

We have 

 

≡u (γ1,…, γl(u)) 

 

= ≡        (γ1,…,      , ≡   (        ,…,            ),               ,…,     ) 

 

Proof. The proof is by induction on u. If u= cc̄, we have ≡cc̄ (y) = ≡cc̄ (≡1  (γ)). Otherwise, we factorize u as u = 

cu0c̄… cumc̄ with u0,…,um ∈ P. We have the following  two cases: Case 1 (m = 0) and Case 2 (m ≥ 1). 

 

Case 1. If v1v3 = l, we get v2 = u0 and by Proposition 3.1, we have ≡u (γ1,…,γl(u)) = ≡cc̄ (≡  (γ1,…,      )) 

Otherwise, we have v1 =    
 , v3 =   

 c̄ and hence u0 =   
 cv2 c̄  

 . The result follows by Proposition 3.1 and the 

inductive hypothesis on u0. 

 

Case 2. Then some cuic̄ has cv2c̄ as factor. We put cuic̄ = v'cv2c̄v'' and by using Proposition 3.l and the 

inductive hypothesis, we get ≡     
 (γ1,…,      

) = ≡  
 γ1,…,γl(v')), ≡  (        ,…,            ), 

(              
,…,      ). The result follows from ≡u (γ1,…,γl(u)), = ≡         (≡  

 (γ1,…,      ) ,…, ≡  
 

                          )).              ∎ 

 

Corollary 3.1. Let A be a finite alphabet, u = v1ccv2c̄c̄v3 be a tree as well as v2 and γ1,...,γl(u) be congruences on 

A
*
. We have ≡u (γ1,…, γl(u)). = ≡          (γ1,…, γl(u)). 

 

Proof. By Proposition 3.1 and Theorem 3.1.                   ∎ 

 

Corollary 3.1 enables us to restrict ourselves to the set P' of trees in which each node is either a leaf or has a 

number of children greater than 1. 

 



If u is a tree and u= v1cv2c̄v3 is a factorization of u, then we say that the occurrences of c and c̄ defined by this 

factorization are related if v2 is a tree. Each occurrence of c in u is related to a unique occurrence of c in u. If u 

and v are trees, then we say that u is extracted from v if u can be obtained from v by removing in v a certain 

number of related occurrences of c and c̄. 

 

Theorem 3.2. Let A be a finite alphabet, u and v be trees, u be extracted from v and y be a congruence on A
*
. 

We have ≡v (γ) ⊆ ≡u (γ). 

 

Proof. We treat the case where v = v1cv2c̄v3 with v2 ∈ P and u = v1v2v3. The proof is by induction on v. If v = cc̄, 

then u = 1 and the result is obvious. Otherwise, we factorize v as v = cw0c̄...cwmc̄ with w0,…,wm ∈ P. We have 

the following two cases: Case 1 (m = 0) and Case 2 (m ≥ 1).  

 

Case l. If v1v3 = l, we get v2 = w0 = u and the result follows. Otherwise, we have v1 = c  
  and v3 =   

 c̄ and the 

equality w0   
 cv2c̄  

  results. By using the inductive hypothesis on w0, we deduce 

 

≡v (γ) = ≡  
 (γ) ⊆ ≡  

     
  (γ) = ≡   

     
    (γ) = ≡u (γ). 

 

Case 2. Then some cwic̄ has cv2c̄ as factor. We put cwic̄ = v'cv2c̄v'' and c  
 c̄ = v'v2v". By using the inductive 

hypothesis ≡  
 (γ) ⊆ ≡  

  (γ), we get 

 

≡v (γ) = ≡         (≡  
 (γ),…,≡  

 (γ)) 

⊆ ≡         (≡  
 (γ),…,≡  

  (γ),…,≡  
 (γ)) = ≡u (γ).       ∎ 

 

Let m be a positive integer. We now define the (m) positions in a word x that will lead to an inclusion result 

useful for our purposes. These positions were defined in some of our earlier papers (like [4]) but they are 

needed to understand the proofs of our new results. So we repeat their definition for the sake of completeness.  

 

Let x be a word on a finite alphabet A. To find the positions that spell the first occurrences of every subword of 

length ≤ m of x (or the (m) first positions in x), proceed inductively as follows: 

 

 Let x1 denote the smallest prefix of x such that α(x1)= α(x) (call p1 the last position of x1), 

 Let xi+1 denote the smallest prefix of x(pi,|x|] such that α(xi+1)= α(x(pi,|x|]) (call pi+1 the last position of xi+1) 

for 1 ≤ i < m. 

 

If |α(x)| = 1 (|α(x)| denotes the cardinality of α(x)), the positions p1,…,pm are the ones we are looking for and the 
procedure terminates. If |α(x)| > 1, the positions p1,…,pm are among the ones we are looking for. To find the 
others, repeat the process to find the (m) first positions in x[1, p1) and the (m — i) first positions in x(pi, pi+1) for 
1 ≤ i < m. 
 

We can define similarly the positions that spell the last occurrences of every subword of length ≤ m of x (or the 

(m) last positions in x). The (m) first and the (m) last positions in x are called the (m) positions in x. 

 

Consider the following example: Let A = {a, b} and 

 

x = aaaaaabababbbbbbababaaabbab aaa            . 

 

The underlined (respectively overlined) positions of x are the (3) first (respectively last) positions in x. 

 



The following lemmas give necessary and sufficient conditions for ≡        (α(m), ω
n-1

, α(m))-equivalence, as 

well as ≡      (α(m), γ)- and ≡      (γ, α(m))-equivalences.  

 

Lemma 3.2. Let A be a finite alphabet, x and y be words on A and m n be positive integers. Let p1,…,ps ∈  x (p1 

< • • • < ps) (respectively q1,…,qt ∈  y (q1 < • • • <gt)), be the (m) positions in x (respectively y). We have x 

≡        (α(m), ω
n-1

 α(m))y if and only if the following three conditions are satisfied: 

 

1. s = t. 

2.   
  pi if and only if   

 
qi for all 1 ≤ i ≤ s and a ∈ A.  

3. x(pi, pi+1)α(n)y(qi,qi+1) for all 1 ≤ i < s. 

 

Proof. Assume that Conditions (1)—(3) hold. First, the α(m)-equivalence of x and y follows from (1) and (2). 

Second, let   
 ,…,  

  ∈  x (  
  ≤ • • • ≤   

 ) (the proof is similar when starting with positions in  y). 

 

Case l. If some of the   
 ’s are among pi,…,ps, then for each such   

 , there exists 1 ≤ ij ≤ s such that   
  =    . 

Since (1) holds, we may consider   
  =    . Condition (2) implies that   

   
 'i if and only if   

 
  
  for a ∈ A. 

 

Case 2. If   
 ,…,    

  ∈            
 for some 1 ≤ i < s, 1 ≤ j ≤ • • • ≤ j' then from (3), there exist   

 ,…,    
  ∈  

           
 (  

  ≤ • • • ≤    
 ) such that   

  <
x
   

  if and only if   
  <

y
   

  for all j ≤ k,   ≤ j', and   
   

   if and only if 

  
   

  for all j ≤   ≤ j' and a ∈ A. 

 

The positions   
 ,…,   

  ∈  y are such that   
  ≤ • • • ≤   

  and satisfy 

 

   
  <

x
   

  if and only if   
  <

y
   

  for all 1 ≤ i,j ≤ n,  

   
   

  if and only if   
 
  
  for all 1 ≤ i ≤ n and a ∈ A, 

 x[1,   
 )α(m) y[1,   

 ), 

 x(  
 ,|x|]α(m)y(  

 , |y|] 

 

Conversely, assume x ≡       (α(m), ω
n-1

, α(m))y. Conditions (1) and (2) hold by considering each of the (m) 

positions in turn. To see that Condition (3) holds, let   
 ,…,   

  ∈            
 (  

  ≤ • • • ≤   
 ) (the proof is similar 

when starting with positions in            
). There exist suitable positions   

 ,…,   
  ∈  y (  

  ≤ • • • ≤   
 ) The 

facts that x[1,   
 )α(m) y[1,   

 ) and x(  
 , |x|]α(m) y(  

 , |y|] guarantee the membership of   
 ,...,   

  in            
.  ∎ 

 

Lemma 3.13. Let A be a finite alphabet, x and y be words on A, γ be a congruence on A* and m be a positive 

integer. Let p1,…,ps ∈  x (p1 < • • • < ps) (respectively q1,…, qt ∈  y (q1 < • • • < qt)) be the (m) first positions 

in x (respectively y). We have x ≡      (α(m), γ)y if and only if the following five conditions are satisfied: 

 

1. s = t. 

2.   
 pi if and only if   

 
qi for all 1≤ i ≤ s and a ∈ A. 

3. x(pi,|x|]γy(qi,|y|] for all 1≤ i ≤ s. 

4. For all 1≤ i < s and for every p ∈            
 (respectively q ∈            

), there exists q ∈            
 

(respectively p ∈            
) such that 

a.   
 p if and only if   

 q for a ∈ A, 

b. x(p,|x|]γy(q,|y|]. 

5. For every p ∈            (respectively q ∈           ), there exists q ∈            p ∈            such that 

(a)—(b) hold. 

 

A similar statement is valid for the (m) last positions and ≡      (γ,α(m))-equivalence. 



Proof. Assume that Conditions (1)—(5) hold. First, the α(m)-equivalence of x and y follows from (l) and (2), and 

their γ-equivalence from (2) and (3) (with i = 1) and the fact that pl = qi = l. Second, let p be a position in  x  

(the proof is similar when starting with a position in  y). Assume   
 p. 

 

Case 1. p = pi for some 1 ≤ i < s. Since (1) holds, we may consider q = qi. Condition (2) implies that   
 

q. 

 

Case 2. p ∈            
 for for some 1 ≤ i < s. From (4), there exists q ∈            

 such that   
 

q. 

 

Case 3. p ∈           . From (5), there exists p ∈           , such that   
 

q. 

 

In all cases, (1)—(5) and the choice of q imply that x[l, p)α(m)y[1,q) and x(p, |x|)γ,y(q,|y|]. 

 

Conversely, assume x ≡      (α(m)γ)y. Conditions (l)—(3) hold by considering each of the (m) first positions in 

turn. To see that Condition (4) holds, let p be in            
 (the proof is similar when starting with q in q ∈ 

           
). Assume   

 p. Hence there exists q in  y, such that   
 

q, x[1, p)α(m)y[1,q) and x(p,|x|]γy(q,|y|]. 

Assume that q ∉            
. Hence q ∈         

 or q ∈             
. From the choice of the pj's and the qj's, we get 

a contradiction with either q ∈   
 

; or x[l, p)α(m) y[1,q). Condition (5) follows similarly.               ∎ 

 

Note that in the case where y = ω, Conditions (3)—(5) can be replaced by  

 

x(ps, |x|]αy(qs, |y|] and x(pi, pi+1)αy(qi, qi+1) for all 1≤ i < s. 

 

Theorem 3.3. Let A be a finite alphabet, γ be a congruence on A
*
 and m be a positive integer. We have  

 

≡            (ω
m+1

, γ)= ≡             (ω
m+1

, γ) 

 

and 

 

≡              (γ, ω
m+1

)
 
= ≡

         
    (γ,ω

m+1
). 

 

Proof. The inclusion, ≡        (ω) ⊆ ≡        (ω) is clear from Theorem 3.2. So ≡             (ω
m+1

, γ) = 

≡      (≡        (ω), γ) ⊆ ≡      (≡        (ω), y) = ≡        c̄cc̄ (ω
m+1

,γ) by Theorem 3.l. For the reverse 

inclusion, let us assume that x, y are such that x ≡            (ω
m+1

, γ)y or x ≡      (α(m),γ)y. We want to show 

that x ≡             (ω
m+1

 γ)y or x ≡              (ω
m+1

, γ)y. By Definition 3.l, we need to show that x 

≡         (ω)y, xγy and 

 

 For every p ∈  x, there exists q ∈  y such that 

(a)   
 p if and only if   

 
q for a ∈ A, 

(b) x[1, p) ≡         (ω)y[1,q), 

(c) x(p, |x|]γy (q,|y|] , and 

 

 For every q ∈  y, there exists p ∈  x such that (a)—(c) hold.  

 

Under our assumption, this is equivalent to showing that xγy and 

 

 For every p ∈  x, there exists q ∈  y such that (a)—(c) hold, and 

 For every q ∈  y, there exists p ∈  x such that (a)—(c) hold.  

 



To see this, we proceed by induction on m. We have x ≡           (ω)y if and only if x ≡                   (ω)y 

if and only if x ≡              (ω)y and 

 

 For every p ∈  x, there exists q ∈  y such that 

(d)   
 p if and only if   

 
q for a ∈ A, 

(e) x[1, p ≡           (ω)y[1,q), and 

 For every q ∈  y, there exists p ∈  x such that (d)—(e) hold.  

 

For m = 1,(w)y if and only if xαy (which is part of our assumption). The result follows since α(m) ⊆ α(m-1) and 

≡          (ω) ⊆ ≡              (ω). 

 

Now, the γ-equivalence of x and y is part of our assumption. Next, since x ≡      (α(m),γ)y, the (m) first positions 

in x and y satisfy (l)—(5) of Lemma 3.13. So let p ∈  x, (the proof is similar if starting with q ∈  y). Assume 

  
 p. 

 

Case 1. p = pi for some 1 ≤ i ≤ s. Since (l) holds, we may consider q = qi. Conditions (2) and (3) imply that   
 

q 

and x(p,|x|]γy(q,|y|]. 

 

Case 2. p ∈            
 for some 1 ≤ i < s. From (4), there exists q ∈            

 such that   
 

q and x(p,|x|]γy(q, 

|y|] 

 

Case 3. p ∈           . From (5), there exists q ∈            such that   
 

q and x(p,|x|]γy(q,|y|]. 

 

In all cases, (l)—(5) and the choice of q imply that x[l, p) ≡         (ω)y[l,q). This is done by induction on m. 

For m= l, x[l, p) ≡         (ω)y[1,q) if and only if x[l, p)xy[1,q). For m > l, we will show that x [1, p) 

≡         (ω)y[1,q) by showing that x[l, p) ≡          (ω)y[1,q) or x[I, p) ≡      (x(m-1), ω) y[1,q) (using the 

inductive hypothesis). We treat Case 2 (Case 1 and Case 3 are handled similarly). 

 

We need to show that x[l, p)α(m-1) y[1, q) (which is obvious) and 

 

 For every p' ∈  x[1,p), there exists q' ∈  y[1,q) such that 

(f)   
 p' if and only if   

 
q' for b ∈ A, 

(g) x[1, p')x(m-1) y[1,q'), and 

 For every p' ∈  y,[1,p), there exists p' ∈  x[1,p) such that (f)—(g) hold.  

 

So let p' ∈  x[1,p) (the proof is similar if starting with q' ∈  y[1,q)). Assume   
 p'.  

 

Case 2.1. p' ∈          
. If p' = pj for some 1 ≤ j < i, consider q' =qj which satisfies   

 
q'. If p' ∈            

 

for some 1 ≤ j < i, then from (4), consider q' ∈            
 satisfying   

 
q'. 

 

Case 2.2. p' = pi. Consider q' = qi satisfying   
 

q'. 

 

Case 2.3. p' ∈         
. Here, let pi be the last of the (m — l) first positions in x[1, pi) (pi exists, otherwise x(pi 

pi+1) = 1). Consider q' to be the first occurrence of b in          
 

 

In Cases 2.l-2.3, we see that x[1, p')α(m-1) y[1, q').                            ∎ 

 

We end this section with a lemma similar to Lemma 3.2 involving the congruence β1,m instead of α(m).  



Lemma 3.4. Let A be a finite alphabet, x and y be words on A and m,n be positive integers. Let p1,…, ps ∈  x 

(p1< • • • < ps) (respectively q1,...,qt ∈ (q1 < • • • < qt)) be the positions that spell the first m and the last m 

occurrences of every letter of x (respectively y). We have x ≡        (β1,m,ω
n-1

,β1,m)y if and only if the following 

three conditions are satisfied: 

 

1. S =  t. 

2.   
 pi if and only if   

 
qi for all 1 ≤ i ≤ s and a ∈ A. 

3. x( pi pi+1)α(n)y(qi, gi+1) for all 1 ≤ i < s. 

 

Proof. The proof is similar to that of Lemma 3.2.                 ∎ 
 

4. Pseudovarieties associated to trees 
We are now going to review a few facts about the Schützenberger product. A first version 0f this product was 

introduced in [16], and it was generalized in [20]. 

 

Let m be a positive integer and S1,...,Sm be finite monoids. We define the Schiitzenberger product of S1,...,Sm, 

denoted by ◊m(Si,...,Sm), to be the submonoid of m × m matrices with the usual multiplication of matrices, of the 

form x = (xij), 1 ≤ i, j ≤ m, in which the (i, j)-entry is a subset of S1× • • • × Sm and satisfying the following three 

conditions: 

 

1.  If i > j, then xij = 0/  

2.  If i = j, then xii = {(1,...,1,si,l,...,1)} for some si ∈ Si (here, si is the ith component in the m-tuple). 

3.  If i < j, then xij ⊆ {(s1,…,sm) ∈ S1 × • • • × Sm | s1 = • • • = si-1 = l = sj+1 = • • • =sm} (here, 1 is the unit of 

S1,…,Sm). 

 

Note that these matrices are exactly the upper-triangular matrices whose ith diagonal entry corresponds to a 

singleton of Si and whose (i,j)-entry (if i < j) to a subset of Si × • • • × Sj If   = (si,...,sj) ∈ Si × • • • × Sj and =  
 
, 

(   
  ,…,   

  ), then       = (si,…, sj-1,sj   
  ,      

  ,…,    
  ) if j= i', and is undefined otherwise. This multiplication is 

extended to sets in the usual fashion; addition is given by set union. It is easy to check that ◊m(S1,…,Sm) is a 

monoid. 

 

If W, W1,…, Wm are M-varieties, ◊m(W1,...,Wm) denotes the M-variety generated by the products of the form 

◊m(S1,...,Sm) with Si ∈ W for all 1 ≤ i ≤ m. Also, we write ◊m(W) for ◊m(W,...,W) and ◊(W) = ⋃      (W) It is 

not difficult to see that ◊m(W) ⊆ ◊m+1 (W) and that ◊(W) is an M-variety. 

 

The algebraic operation on monoids that corresponds to the concatenation of languages was identified to be the 

Schiitzenberger product. 

 

Proposition 4.1 (Pin [13], Reutenauer [14], Straubing [20]). Let m be a positive integer. Let
~

  W0,...,
~

  Wm be *-

varieties and W0,…,Wm be the associated M-varieties. If
~

  W is the *-variety associated to ◊m+1(W0,...,Wm), then 

for each finite alphabet A, A
* ~
  W is the Boolean algebra generated by the languages of the form    a1   …ak   , 

where 0 ≤ i0 < i1 < • • • <ik ≤ a1,...,ak ∈ A and     ∈ A
* ~
  W   , for all 0 ≤ j ≤ k. 

 

The following definition associates pseudovarieties to trees. 

 

Definition 4.1 (Pin [13]). Let u be a tree and W1,...,Wl(u) be M-varieties. We define an M-variety 

◊u(W1,...,Wl(u)) as follows: 

 

 ◊1(W) = W for each M-variety W. 

 If u=cu0c̄, where u0 ∈ P, ◊u(W1,…,Wl(u) =    
(W1,…,      . 



 If u=cu0c̄...cumc̄ where m ≥ 1 and u0,…,um ∈ P, ◊u(W1,…,      ) is the M- variety generated by the 

Schiitzenberger products of the form ◊m+1(S0,…,Sm), where 

 

S0 ∈    
 (W1,…,       ),…,Sm ∈    

 (                                   ). 

 

If Wi = • • • = Wj = W for 1 ≤ i < j ≤ l(u), then we will abbreviate ◊u(W1,…, Wl(u)) by 

 

◊u(W1,…,Wi-l, W
j-i+1

,Wj+1,…,Wl(u)). 

 

We will abbreviate ◊u(W
l(u)

) by ◊u(W). More generally, if L ⊆ P, we denote by ◊L(W) the join        ∈ . A 

consequence of Definition 4.1 is that if u=cu0c̄…cumc̄ with u0,..., um ∈ P, then we have 

 

◊u(W1,…,Wl(u)) =          (   
(W1,…,      ), 

 

…,    
                                     ). 

 

The following theorem together with Proposition 4.1 describe, for each tree u, the *-variety of languages 

associated to the M-variety ◊u(W1,…,Wl(u)). 

 

Theorem 4.1 (Pin [13]). If m is a positive integer and W0,…,Wm are M-varieties, then 

 

        (W0,…,Wm) = ◊m+1 (W0,…,Wm). 

 

Now, let u be a tree and W1,…,Wl(u)) be locally finite M-varieties. The following proposition shows that 

◊u(W1,…,Wl(u)) is also locally finite. 

 

Proposition 4.2. Let A be a finite alphabet, u be a tree and W1,...,Wl(u) be locally finite M-varieties. For 1 ≤ i ≤ 

1(u), let γi, be the congruence generating Wi for A. Then, an A-generated monoid S belongs to ◊u(W1,…,Wl(u)) 

if and only if S is a morphic image of A
*
 /≡u (γ1, • • • γl(u)). 

 

Proof. Let 
~
 Vu be the *-variety of languages associated to ◊u(W1,…,Wl(u)). We want to show that A

* ~
 Vu = 

 ≡             
 where  ≡             

 denotes the set of languages on A that are unions of classes of ≡u (γ1,…,γl(u)). 

The proof is by induction on u. If u= 1 and γ is the congruence generating W for A, then ◊1(W) = W and ≡1 (γ) 

= γ. Otherwise, we factorize u as u=cu0c̄...cumc̄ with u0,...,um ∈ P. If m = 0, then  u (W1,…,Wl(u)) = 

   
(W1,…,      ), ≡u (γ1,…,γl(u)) = ≡  

(γ1,…,      ) and the result follows by the inductive hypothesis on u0. 

If m ≥ 1, then from 

 

 u(W1,…,Wl(u)) =          (   
(W1,…,      ), 

 

…,   
(                  

                 
)) 

 

using the inductive hypothesis, Proposition 4.1 and Theorem 4.1, we can conclude that A
*
 

~
 Vu is the boolean 

algebra generated by the languages of the form    a1   ...ak   , where 0 ≤ i0 < i1  < • • • < ik ≤ m, a1,…,ak ∈ A 

and     ∈  ≡   
  

                  
    

             
 
  for all 0 ≤ j ≤ k. The result follows since each ≡u (γ1,…,yl(u))-

class is a boolean combination of sets of the form    a1   ...ak   , where 0 ≤ i0 < i1 < • • • < ik ≤ m, a1,…,ak ∈ A 

and each     is a ≡   
  

                  
    

             
 
-class (this comes directly from Definition 3.l 

where the sets    a1   ...ak    are induced by the corresponding positions p1,…,pm (p1 ≤ • • • ≤ pm) (a total of k 

different positions) and q1,…,qm (q1 ≤ • • • ≤ qm) (a total of k different positions)).               ∎ 



5. Semidirect products 

We are now going to review a few facts about semidirect products. 

 

Let S and T be monoids. For the sake of clarity, when semidirect products are considered, we will usually 

express the operation of S additively (without assuming commutativity) and T multiplicatively. We will let 0 

denote the unit of S and 1 the unit of T. A left unitary action of T on S is a map (t,s) ↦ ts from T × S into S 

satisfying (tt')s = t(t's), t(s + s')= ts + ts', t0 = 0 and 1s =s for all s,s' ∈ S and t,t' ∈ T; a right unitary action of T 

on S is a map (t,s) ↦ st from T × S into S satisfying s(tt')-= (st)t', (s + s')t = st + s't, 0t = 0 and s1 = s for all s,s' 

∈ S and t, t' ∈ T . If a left unitary action of T on S is given, the semidirect product S *T is the set S x T with 

operation (s,t)(s', t')= (s + ts', tt'). If commuting left and right unitary actions of Ton S are given (that is, t(st') = 

(ts)t' for all s ∈ S and t,t' ∈ T), the two-sided semidirect product S * * T is the set S × T with operation 

(s,t)(s',0=(st' + ts',tt'). Properties of the semidirect product are studied in [8] and properties of the two-sided 

semidirect product are found in [15]. Semidirect products are special cases of two-sided semidirect products. 

 

Two-sided semidirect products induce an operation on M-varieties. Let V and W be M-varieties. We define V * 

* W to be the M-variety generated by the products S ** T with S ∈ V and T ∈ W. We have S ∈ V * * W if and 

only if S divides some product S * * T with S ∈ V and T ∈ W. The definition of the M-variety V * W is similar. 

Note that * is associative on M-varieties and that ** is not. Neither * nor ** is associative on monoids. The 

operation * behaves well with respect to directed unions [8, 15]. 

 

Straubing has given a general construction to describe the languages recognized by the semidirect product of 

two finite monoids ("principle of the semidirect product") [19]. Weil has given such a construction for two-

sided products [24]. The following results are consequences of their constructions and the equality R = ⋃   
 

    

where   
  denotes Jl * • • • *Jl (Jl appears m times) [18]. 

 

Proposition 5.1 (Pin [13]). Let 
~
 V be a *-variety and V be the associated M-variety. If

~
  W is the *-variety 

associated to J1, * V, then for each finite alphabet A, A*
~

  W is the boolean algebra generated by the languages 

of the form L or LaA
*
, where a ∈ A and L ∈ A

* ~
 V. In other words, J1 * V =        (V, I). If

~
  W' is the *-variety 

associated to R * V, then for each finite alphabet A, A
* ~
  W' is the smallest boolean algebra containing A* 

~
 V 

and closed for the operations L ↦ LaA
*
 where a ∈ A. 

 

Proposition 5.2 (Weil [24]). Let
~
 V be a *-variety and V be the associated M-variety. If

~
  W is the *-variety 

associated to J1 * * V, then for each finite alphabet A, A*
~

  W is the boolean algebra generated by the languages 

of the form L or LaL', where a ∈ A and L,L' ∈ A*
~
 V. In other words, J1 * * V =        (V). 

 

The following representations of free objects for V * W and V * * W were obtained by Almeida and Weil. The 

free object on the alphabet A in the variety generated by a pseudovariety V is represented by Fv(A). In general, 

Fv(A) does not lie in V. We have Fv(A) ∈ V if and only if Fv(A) is finite. In case V is M, Fv(A) is A*. 

 

Proposition 5.3 (Almeida and Weil [l]). Let V and W be M-varieties such that Fv(A) ∈ V and Fw(A) ∈ W for all 

finite alphabets A. Then so is V * W. 

 

Moreover, for a finite alphabet A, let T = Fw(A) and S= Fv(T × A). Consider: 

 

1. The left unitary action of T on S defined by t(t1,a) = (tt1,a) for all t,t1 ∈ T and a ∈ A. 

2. The associated semidirect product S * T. 

 

Then there exists a one-to-one morphism from Fv*w(A) into S * T that maps a into ((1,a),a). 

 

Proposition 5.4 (Almeida and Weil [3]). Let V and W be M-varieties such that Fv(A) ∈ V and Fw(A) ∈ W for 

all finite alphabets A. Then so is V ** W. 



 

Moreover, for a finite alphabet A, let T = Fw(A) and S =Fv(T x A x T). Consider: 

 

1. The left unitary action of T on S defined by t(t1,a,t2) = (tt1,a,t2) for all t,t1,t2 ∈ T and a ∈ A. 

2. The right unitary action of T on S defined by (t1, a, t2)t = (t1, a, t2t) for all t, t1, t2 ∈ T and a ∈ A. 

3. The associated two-sided semidirect product S * * T. 

 

Then there exists a one-to-one morphism from Fv**w(A) into S * * T that maps a into ((1,a,1),a). 

 

5.1. Congruences associated to semidirect products 

In this section, we associate congruences to semidirect and two-sided semidirect products of locally finite M-

varieties. 

 

Let A be a finite alphabet. Let W be a locally finite M-variety and γA be the finite-index congruence on A
*
 such 

that an A-generated monoid S belongs to W if and only if S is a morphic image of A
*
/γA. The free object Fw(A) 

is isomorphic to A
*
/yA. The pseudovariety W is such that Fw(A) ∈ W. We denote by     the projection from A

*
 

into Fw(A) that maps a to the generator a of Fw(A). If x, y ∈ A
*
, then    (x) =    (y) if and only if    y. 

 

Definition 5.1. Let B = Fw(A) × A and z be a word on A. Let    
 : A

*
 → B

*
 be defined by σ   

 (1) = 1 and 

 

   
 (a1…ai) = (   (z),a1)(    (za1), a2)…(    (za1…ai-1),ai).  

 

We often denote    
 (x) simply by    (x). 

 

Definition 5.2. Let B = Fw(A) × A × Fw(A) and z,z' be words on A. Let    
    

: A
*
 → B

*
 be defined by    

    
 (1)= 1 

and 

   
    

 (a1…ai) = (   (z), a1,    (a2…aiz'))(
1
r),(    (za1), a2,    (a3…a,z' ))  

…(   (za1…ai-1), ai,    (z')) 

 

We often denote    
   

(x) simply by    (x). 

 

Fix two locally finite M-varieties V and W. Let βA (respectively γA) be the finite-index congruence generating V 

(respectively W) for the finite alphabet A. 

 

5.1.1. The case V * W 

Let A be a finite alphabet and B = Fw(A) × A. We define an equivalence relation        on A
*
 as follows: 

 

x        y if and only if    (x)βB   (y) and xγAy. 

 

Proposition 5.5. The equivalence relation        is a finite-index congruence on A
*
. 

 

Proof. We will abbreviate βB by β and γA by γ throughout the proof. Assume x ~β,γ y and x' ~β,γ  y'. We have 

 

σγ(x)βσγ(y) and xγy 

 

and similarly with x and y replaced by x' and y'. Since y is a congruence we have xx'yyy'. The above, the fact 

that πγ(x) = πγ(y), and the fact that β is a congruence imply that 

 

σγ(xx') = σy(x)  
 (x') = σγ(x)   

 
(x')βσγ(y)   

 
(y')=σγ(yy'). 

 



Thus xx' ~β,γ yy' showing that ~β,γ is a congruence. This obviously is a finite-index congruence since β and y are. 

∎ 

 

Proposition 5.6. Let V and W be locally finite M-varieties. Let γA (respectively βB) be the finite-index 

congruence generating W (respectively V) for the finite alphabet A (respectively, B = Fw(A) × A). Then, an A-

generated monoid S belongs to V * W if and only if S is a morphic image of A
*
/~      . 

 

Proof. We will abbreviate βB by β and γA by γ throughout the proof. Let x = y be an identity on A, say x = a1…ai 

and y = b1…bj. Then x = y holds in V * W if and only if x and y represent the same element of Fv*w(A). By 

Proposition 5.3, this is equivalent to x and y having the same image under the one-to-one morphism from Fv*w 

(A) into Fv(B)*Fw(A) defined by a ↦ ((1,a),a) and where the left unitary action of Fw(A) on Fv(B) is given by 

t(t1,a)=(tt1,a). The above morphism maps x to  

 

((1, a1) + (a1,a2) + • • • + (a1…ai-1, ai),a1…ai), (1) 

 

and y to 

 

((1, b1) + (b1,b2) + • • • + (b1…bj-1, bj),a1…bj), (2) 

 

(here, Fv(B) is written additively). The identity x = y holds in Fv*w(A) if and only if corresponding components 

of the pairs (1) and (2) coincide. Denote by x' (respectively y') the first component of (1) (respectively (2)). 

Then, Fv*w(A) = x = y is equivalent to the two conditions Fv(B) ∣= x' = y' and Fw(A)= x = y, or σγ(x)βσγ(y) and 

xγy.                       ∎ 

 

5.1.2. The case V * * W 

Let A be a finite alphabet and B = Fw(A) × A × Fw(A). We define an equivalence relation        on A
*
 as 

follows: 

 

x        if and only if    (x)βB    (y) and xγAy. 

 

Proposition 5.7. The equivalence relationis a finite-index congruence on A
*
. 

 

Proof. Using the notation in the proof of Proposition 5.5, assuming x ≈β,γ y and x' ≈β,γ y', the result follows from 

 

τγ(xx') =   
    

(x)   
   

(x') =   
    

(x)   
   

(x') β  
    

(y)   
   

(y') = τγ(yy').         ∎ 

 

Proposition 5.8. Let V and W be locally finite M-varieties. Let yA (respectively βB) be the finite-index 

congruence generating W (respectively V) for the finite alphabet A (respectively B = Fw(A) × A x Fw(A)). Then, 

an A-generated monoid S belongs to V* * W if and only if S is a morphic image of A
*
/      . 

 

Proof. The proof is similar to that of Proposition 5.6 using Proposition 5.4 instead of Proposition 5.3.          ∎ 

 

5.2. Trees associated to semidirect products 

In this section, we associate trees to some semidirect and two-sided semidirect products of locally finite M-

varieties. 

 

The following theorem provides equalities which relate with Propositions 5.l and 5.2. Let γ be the finite-index 

congruence generating a locally finite M-variety V for the finite alphabet A. By Proposition 5.6 (respectively 

5.8), the congruence (respectively generates J1 * V (respectively J1* * V) for A. By Proposition 4.2, ≡     (γ, 

ω) (respectively ≡     (γ)) generates       (V, I) (respectively       (V)) for A. 



Theorem 5.1. Let A be a finite alphabet and γ be a congruence on A
*
. We have ~x,y = ≡      (γ, ω) and ≈α,γ = 

≡      (γ). 

 

Proof. We have x ≡     (γ, ω)y if and only if xyy and 

 

1. For every p ∈  x, there exists q ∈  y such that 

(a)   
 p if and only if   

 
q for a ∈ A, 

(b) x[l, p)γ y[l,q), and 

2. For every q ∈  y there exists p ∈  x such that (a) and (b) hold. 

It is easy to see that x ≡     (y, ω)y if and only if σy(x)ασy(y) and xyy. 

 

We have x ≡     (γ)y if and only if xyy and 

 

1. For every p ∈  x there exists q ∈  y such that 

(a)   
 p if and only if   

 
q for a ∈ A, 

(b) x[1, p)γy[1,q), 

(c) x(p, ∣x∣]γy(q, ∣y∣], and 

2. For every q ∈  y, there exists p ∈  x such that (a)—(c) hold. 

It is easy to see that x ≡     (γ)y if and only if τy(x)ατy(y) and xγy.                       ∎ 

 

Corollary 5.1. Let yi be the sequence of congruences defined by yi = α and yi+1 = ≡     (yi). The equality yi = 

≡   
 (ω) =    

 holds where  i is a sequence of i 1's. 

 

Theorem 5.2. Let m be a positive integer, H be a locally finite G-variety and y be the congruence generating H 

for the finite alphabet A. Then        
 =       

 =≡        (y). 

 

Proof. We have x ≡       (γ)y if and only if xγy and 

 

1. For every p1,…,pm ∈  x (p1 ≤ • • • ≤ pm), there exist q1,…,qm ∈ (q1 ≤ • • • ≤ qm) such that 

(a) pi <
x
 pj if and only if qi <

y
 qj for all 1 ≤ i,j ≤ m, 

(b)   
 pi if and only if   

 
qi for all 1 ≤ i ≤ m and a ∈ A, 

(c) x[1, pi+1)γy[l,qi+1) for all 0 ≤ i < m, 

(d) x(pi, pi+1)γy(qi,qi+1) for all 1 ≤ i < m, 

(e) x(pi, ∣x∣]γy(qi, ∣y∣] for all 0 < i <m, and 

2. For every qi,…,qm ∈  y (qi ≤ • • • ≤ qm), there exist p1,…,pm ∈  x (p1 ≤ • • • ≤ pm) such that (a)—(e) 

hold. 

 

We have x        
 y if and only if σy(x)α(m)σy(y) and xγy. This is equivalent to saying that x        

 y if and only 

if xγy and 

 
1. For every pi,…,pm ∈  x (p1 ≤ • • • ≤ pm), there exist q1,…,qm  y (q1 ≤ • • • ≤ qm) such that (a)—(c) hold,  

and 

2. For every qi,...,qm ∈  y (q1 ≤ • • • ≤ qm), there exist p1,...,pm ∈  x (p1 ≤ • • • ≤ pm) such that (a)—(c) hold. 

 

We have x        
 y if and only if τγ(x)α(m)τγ(y) and xγy. This is equivalent to saying that x        

 y if and only 

if xγy and 

 



1. For every p1,…, pm ∈  x (p1 ≤ • • • ≤ pm), there exist q1,..,qm ∈  y (q1 ≤ • • • ≤ qm) such that (a)—(c) and (e) 

hold, and 

2. For every qi,...,qm ∈  y (q1 ≤ • • • ≤ qm), there exist p1,…,pm ∈  x (p1 ≤ • • • ≤ pm) such that (a)—(c) and (e) 

hold. 

 

Since H is a G-variety and γ generates H for A (γ is a group congruence), the conditions xγy and (a)—(c) imply 

(d) and (e). We conclude that x ≡        (γ)y if and only if x        
 y if and only if x        

 y.           ∎ 

 

Theorem 5.3. Let A be a finite alphabet and m, n be positive integers. We have 

 

         

 
=≡       

 
(      

   ,     ). 

 

Consequently, Jn * * Jm =          (Jm)I
n-1

, Jm)                          (I). 

 

Proof. By Lemma 3.2, we have x ≡        (α(m), ω
n-1

, α(m))y if and only if      
(x)α(n)      

(y) and xα(m)y.        ∎ 

 

Theorem 5.4. Let A be a finite alphabet and m, n be positive integers. We have 

 

         
 
=≡       

 
(         ,     ). 

 

Consequently, Jn * * Com1,m =          (Com1,m, I
n-1

, Com1,m). 

 

Proof. By Lemma 3.4, we have x ≡        (β1,m ω
n-1

,β1,m)y if and only if      (x)α(n)      (y) and xβ1,my.          ∎ 

 

We end this section with a few results on a conjecture of Pin. It was conjectured in [13] that if u, v ∈ P', then 

◊u(I) ⊆ ◊v (I) (in other words, ≡v (ω) ⊆ ≡u (ω)) if and only if u is extracted from v. The following two results 

give counterexamples. 

 

Theorem 5.5 (Blanchet-Sadri [5]). If m > 1, then 

 

  
    =                 (I) =                 (I) = J1 * Jm 

 

Proof. By Theorem 5.l, if γi is the sequence of congruences defined by γi = ~α,α and γi+1 = ≡      (γi, ω), then the 

equality γi  = ≡               (ω) holds. Also, we have the equality        
 = ≡      (α(m), ω) by Theorem 5.1. The 

result then follows from Theorem 3.3 with γ = ω.                 ∎ 

 

Theorem 5.6. If m> 1, then 

 

              (I) ⊆                 (I). 

 

Proof. The equality                 (I) =                 (I) holds by Theorem 5.5. But the latter is included in 

                (I) since ≡              (ω) ⊆ ≡               (ω) by Theorem 3.2. We have (c(cc̄)
m+1 

c̄)
2
 = u(m,1) and 

(ccc̄cc̄c̄)
m+1

 = u(m,1). The result then follows from the inclusion ≡      
 (ω) = α(m,1) ⊆ α(l,m) = ≡      

 (ω) from 

[6].              ∎ 

 

Theorem 5.6 answers a statement at the end of Section 3 of [13]. But Pin's conjecture was shown to be true in 

an important special case. 

 



Theorem 5.7 (Blanchet-Sadri [6]). Let P" be the set of trees     where    is a tuple of positive integers either of 

length 1 or of the form (m1,…,mk, 1) for some m1,…,mk. If u, v ∈ P", then ◊u(I) ⊆ ◊v(I) if and only if u is 

extracted from v. 
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