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Abstract:

A classification scheme for regular languages or finite semigroups was proposed by Pin through tree
hierarchies, a scheme related to the concatenation product, an operation on languages, and to the
Schutzenberger product, an operation on semigroups. Starting with a variety of finite semigroups (or
pseudovariety of semigroups) V, a pseudovariety of semigroups ¢,(V) is associated to each tree u. In this paper,
starting with the congruence ya generating a locally finite pseudovariety of semigroups V for the finite alphabet
A, we construct a congruence =, (ya) in such a way to generate 0,(V) for A. We give partial results on the
problem of comparing the congruences =, (ya) or the pseudovarieties ¢,(V). We also propose case studies of
associating trees to semidirect or two-sided semidirect products of locally finite pseudovarieties.

Article:

1. Introduction

A result of Kleene [10] shows that the class of recognizable languages (that is, recognized by finite automata)
coincides with the class of regular or rational languages which can be obtained from finite languages by the
boolean operations, the concatenation product and the star. Star-free languages are those rational languages
which can be obtained from finite languages by the boolean operations and the concatenation product only.
Several classification schemes for the star-free languages were proposed based on the alternating use of the
boolean operations and the concatenation product. This led to the natural notion of dot-depth. However, the first
question related to this notion "given a star-free language, is there an algorithm for computing its dot-depth?"
appears to be extremely difficult.

A classification scheme for rational languages was proposed by Pin through tree hierarchies [13]. This
classification scheme generalizes the above mentioned ones for star-free languages. Tree hierarchies are related
to the concatenation product, an operation on languages and to the Schiitzenberger product, an operation on
monoids or semigroups.

In this paper, we give some results on Pin's tree hierarchies. The notion of congruence plays a central role in our
approach. For any finite alphabet A, denote by A" the free monoid generated by A. We say that a monoid S is A-
generated if there exists a congruence y on A" such that S is isomorphic to A" /y. A pseudovariety of monoids V
is locally finite if for any A, there are finitely many A-generated monoids in V. Equivalently, there exists for
each A, a congruence ya such that an A-generated monoid S is in V if and only if S is a morphic image of A /ya.
By Eilenberg's one- to-one correspondence between the pseudovariety V and a *-variety of languages V, a
language L of A" is in A” if and only if L is a union of ya-classes.
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Starting with the congruence yA, we associate to each tree u a congruence(7,4) in such a way to generate the
class A" V, of recognizable languages of A" defined recursively as follows: If u is the tree reduced to a point,
thenA Vy=A V;ifu=

then A" V,, is the boolean algebra generated by the languages Ly aiLi, ...aL;, , where 0 <ig <iz< e <ic <m,

ay,..., ac are letters of A and for each 0 <j <Kk, L;, is in A"V w; - Pin showed that the Schitzenberger product is
J

perfectly adapted to the operation (Lo,..., Lk)Loas L1 ...axL«. This result allows to build, without reference to

languages, hierarchies of pseudovarieties of monoids corresponding, via Eilenberg's result, to the above-

mentioned hierarchies of *-varieties of languages. In other words, starting with a pseudovariety V, a

pseudovariety 0y(V) is associated to each tree u.

We first give partial results on the problem of comparing the congruences =, (ya) (Section 3). Our congruence
construction shows, in particular, that all the pseudovarieties of the hierarchy built from locally finite
pseudovarieties are locally finite (Section 4). Case studies are proposed of associating trees to semidirect or
two-sided semidirect products of locally finite pseudovarieties using our congruence construction (Section 5).
Definitions and results are given for pseudovarieties of monoids. Up to the obvious changes, they hold also for
pseudovarieties of semigroups. Unless otherwise specified, any congruence we discuss has finite index.

2. Preliminaries
This section is devoted to reviewing basic properties of finite monoids and recognizable languages. The reader
is referred to the books of Almeida [2], Eilenberg [8] and Pin [12] for further definitions and background.

2.1. Monoids

A semigroup is a set S together with an associative binary operation (generally denoted multiplicatively). If
there is an element 1 of S such that 1s = s1 =s for each s E S, then S is called a monoid and 1 is its unit. Sis a
group if S is a monoid and, for each s € S, there exists s' € S such that ss' = s's = 1. A subset of Sis a
subsemigroup (respectively submonoid, subgroup) of S if the induced binary operation makes it a semigroup
(respectively monoid, group).

Let Sand T be monoids. A morphism ¢:S — T is a mapping such that ¢(ss")= ¢(s) ¢(s") for all s,s' € S and ¢(1)=
1. We say that S divides T, and write S < T, if S is the image by a morphism of a submonoid of T.

If A is a set, we let A" be the free semigroup on A and A™ be the free monoid on A. A™ is the set of all finite
strings a; ...a; of elements of A and A° =A+ U {l}, where 1 is the empty string (when we write a; we will always
mean a letter in A). The operation in A" is the concatenation of these strings.

2.1.1. Varieties of finite monoids

A variety of monoids is a class of monoids that is closed under division and direct product. An M-variety is a
class of finite monoids that is closed under division and finite direct product. M-varieties are also called
pseudovarieties of monoids. Given a class C of finite monoids, the intersection of all M-varieties containing C
is still an M-variety, called the M-variety generated by C.

A (monoid) identity on a set A is a pair (X, y) of elements of A", usually indicated by a formal equality x = y. We
say that a monoid S satisfies an identity x =y (or that the identity x =y holds in S) and we write S |= x =y if, for



any morphism ¢: A" — S, we have ¢(x) = ¢(y). For an identity x = y and an M-variety V, the notation V=x =y
will abbreviate the fact that each S € V satisfies x y.

Work of Eilenberg and Schiitzenberger [9] showed that M-varieties are ultimately defined by sequences of
identities (that is, a monoid belongs to the given M-variety if and only if it satisfies all but finitely many of the
identities in the sequence), and that finitely generated M-varieties are equational or defined by sequences of
identities (that is, a monoid belongs to the given M-variety if and only if it satisfies all the identities in the
sequence).

We now list a few important M-varieties that we are going to use:

e A isthe M-variety of all finite aperiodic monoids (a monoid S is aperiodic if all groups in S are trivial).

e | is the trivial M-variety consisting only of the 1-element monoid.

e J; is the M-variety of all finite idempotent and commutative monoids (also called semilattices) defined by
the identities x* = x and xy = yx.

J is the M-variety of all finite J-trivial monoids.

M is the M-variety of all finite monoids.

R is the M-variety of all finite #-trivial monoids.

G is the M-variety of all finite groups (any M-variety contained in G will be called a G-variety).

2.2. Languages

Let A be a finite set. When we deal with languages, A is called an alphabet and its elements are called letters.
The elements of A” are called words on A. A language on A is a subset L of A”. A language L in A” is said to be
recognizable if there exists a finite monoid S and a morphism ¢:A” — S such that L = ¢ (¢(L)), that is, if x € L
and o(X) = o(y), theny € L. This is also equivalent to saying that there is a subset X of S such that L = ¢™}(X). In
that case, we say that S (or ¢) recognizes L. The notions of recognizable sets (by finite monoids and by finite
automata) are equivalent. To each language L, we associate a congruence ~ defined, for x, y € A”, by x ~y if
and only if uxv and uyv are both in L or both in A\L, for all u, v in A". The congruence ~_ is called the syntactic
congruence of L and the monoid M(L) =A™/ ~L is called the syntactic monoid of L. A monoid recognizes L if
and only if it is divided by M(L).

2.2.1. Varieties of Ianguage§ N
A *-variety Visa family A" V of sets of recognizable languages of A" defined for all finite alphabets A and
satisfying the following three conditions:

1. A"V is a boolean algebra, that is, if K and L are in A"V, then so are K U L, K N L and A"\L.
2. If o: A" — B isamorphismand L € B"V, then ¢! (L) e A" V.
3. IfLeEA"Vanda €A, thenboth {xEA"|ax e L}and {x e A" | xa€ L} arein A" V.

Eilenberg [8] proved that M-varieties and *-varieties are in one-to-one correspondence. If V is an M-variety,
then A"V ={L € A | M(L) € V} defines the corresponding *-variety V. If V is a *-variety, then the M-variety
generated by {M(L) | L € A" V for some A} defines the corresponding M-variety V.

Let V be an M-variety generated by the monoids Ss,...,Sm. Thus V is generated by S = S; x « » « x S, Let V be
the f-variety associated to V. Then A" is the Boolean closure of the sets ¢™(s) for all s € S and all morphisms
p:A" — S. Consequently, A" V is finite.

We now list *-varieties of languages associated to some of the M-varieties listed previously:

e A" 2 consists of the star-free languages of A" [16].
e A", ={0,A"} where 0 denotes the empty set.



e A* Fconsists of the piecewise testable languages of A* [17].
o A" consists of the rational languages of A™ [10].

We end this section with a few examples of locally finite M-varieties.

1. For any positive integer g and nonnegative integer m, Comg,n is the M-variety of all f|n|te commutative
monoids defined by the identities x™* x™ and xy= yx (we adopt the convention that X’ = = 1). For any word
x on Aand a € A, we denote by |x|, the number of occurrences of a in x. We define on A” the congruence
Bam BY xBqmy, if forall a € A, [X|la = |y|a O X|a, [Y]la =>m and X|a = |y|a mod q (81,0 will often be
abbreviated by ). An A-generated monoid S is in Comgy, if and only if S is a morphic image of A"/fqm,
(note that Com; o = 1). The M-variety Com of all finite commutative monoids (which is the join
Vgz1,m=0 Comyg ,,,) is not locally finite; the same is true for Com N A which is the join V5o Com, ,,

and Com N G which is the join V>, Comg o

2. A hierarchy was introduced by Straubing [21] for the star-free languages of A™: the set{0,A"} constitutes
A’ Vy; then, A™ V,, is the boolean algebra generated by the languages of the form LoasLs...aili, where I >
0, as,...,ai EAand Lg,..., Li € A" Vi1. Straubing's hierarchy induces, by Eilenberg's correspondence, a
hierarchy of M-varieties : Vo € V1 € V; C ¢ « « which is known to be strict [23]. We have Vo = I. Simon
[17] proved that V1 = J and hence V; is decidable. The problem remains open as to whether Vi is
decidable for k > 2.

Straubing's hierarchy can be refined as follows: for each k >1, m >0, A" Vi, is the boolean algebra generated
by the languages of the form LoaiL;...aiL;, where 0 <i<m, ay,...,a; € A and Ly,...,Li € A" Vi.1. Then, for each
positive integer k, Vi naturally contains a subhierarchy of M-varieties : Vo € Vi1 € Vk2 S ¢+ * S Vi

A remarkable fact about these hierarchies is their connections with some hierarchies of formal logic [22, 23,
11]. In particular, the congruences x . .m,) defined below are intimately related to Straubing's hierarchy,

namely to its kth level.

A word g ...a, on A is a subword of a word z on A if there exist words zy,...,zi on A such that z = zpa;2;...aiz;. For
any nonnegative integer m and word z on A, we denote by z)(z) the set of subwords of z of length less than or
equal to m. We define the congruence agm on A” by Xymy if a(m)(x) Xm)(Y) (a(l) 1,1 will often be abbreviated
by x). An A-generated monoid S is in V1, or Jy, if and only if S is a morphic image of A™/a(y)

We proceed with a generalization of oy related to an Ehrenfeucht-Fraissé game. We identify any word x on A
with a word model x =(2&, <*, (QX)aea) Where the universe 2k = {1,..., |x|} represents the set of positions of
letters in the word x (Jx| denotes the length of x), <* denotes the usual order relation on 2%, and Q¥ is a unary
relation on 2, containing the positions with letter a, for each a € A (we will often write QXp instead of p € Q7).
The game G (X, y), where m = (mq,...,my) is a k-tuple of positive integers (k >0) and X, y are words on A, is
played between two players | and 11 on the word models x and y. A play of the game consists of k moves. In the
ith move, Player | chooses, in x or in'y, a sequence of m; positions; then, Player Il chooses, in the remaining
word (y or x), also a sequence of m; positions. Before each move, Player | has to decide whether to choose his
next elements from x or from y. After k moves, by concatenating the position sequences chosen from x and from
y, two sequences pi,...,pn from x and qg,...,0, fromy have been formed where n = m; + « ¢ « + my. Player Il has
won the play if the following two conditions are satisfied : p; <* p; if and only if i<’ g; for all 1 <i, j <n, and
QZXp. if and only if Q7 q; for all 1 <i<nand a € A. Equivalently, the two subwords in x and y given by the
position sequences pa,...,pPn and ds,...,g, should coincide. If there is a winning strategy for Player Il in the game
to win each play we say that Player 1l wins G (X, y) and write Xom Y. The special case Gy(x,y) where T denotes a
k-tuple of I's is the standard Ehrenfeucht-Fraissé game [7]. The relation ax naturally defines a finite-index
congruence on A",



The congruences agx can be defined inductively as follows: First, if x=a;...apisawordonAand 1 <i<j<n
then x[i,j], x(i,J), x(i,j] and x[i,j) denote the factors a;...aj, @j+1...8j 1, &i+1...8; and a;...aj1 respectively. Now,
we have Xom, m)y if and only if

(a) For every pi,..., pm € 4 (P1 < ***<pm), there exist qs,...,qm € (01 < * * * m) Such that
(i) pi<'pjifandonlyifgi <’ qgjforall1<i,j<m,
(i) Q¥piifandonly if Q)giforall1<i<manda € A,
(i) x[lp1)am y[l,a1)
(iv)  x(pi, pi+1)am y(Qi, Qi+1) forall 1 <i<m,

(V) X(pm|x|]Jawm y(qm, lyl], and
(b) For every qj...,qm € 2 (g1 <* * * <qm), there exist pi,...,.pm € L (p1 < * * * < pm) such that (i)—(v) hold.

For fixed m , we define the M-variety Vs as follows: an A-generated monoid S is in Vi ifand only if Sis a

..........

locally finite.

3. For any words x,z on A with z = ay,...,a;, the binomial coefficient (z) is defined as the number of distinct
factorizations of the form x = xpa;X;...ajX; with words Xo,...,X; on A. For any prime number p and
nonnegative integer m, we define on A™ the congruence 8pm by Xdpmy if (¥) = (2) mod p whenever |z] <
m. We define the M;variety Hym as follows: an A-generated monoid S is in H,n if and only if S is a
morphic image of A /6, m. The M-variety Gp = U, Hp 5, OF all finite p-groups is not locally finite.

3. Congruences associated to trees
We denote by P the set of trees on the alphabet {c,c}. Formally, P is the set of words in {c, T} congruent to 1

in the congruence generated by the relation ct.= 1. Intuitively, the words of P are obtained as follows: Given a
tree, and starting from the root we encode ¢ for going down and T for going up. For example,

number of occurrences of the factor ¢t in u (we define the number of leaves of the empty word, 1(1), by 1). The
following two properties of trees are satisfied:

e Each non-empty tree u can be written uniquely as u= cuqC...cunC where m >0 and U,...,un € P. We have

1(U) = Xosizm L(uy).

e |f u= cuqC ...cu,C and u= vicv,Cvs Where v, € P, then the tree cv,C is factor of some cu;c.

Definition 3.1. Let A be a finite alphabet, u be a tree andbe equivalence relations on A”. We define an
equivalence relation =, (yi,...,Yiwy) On A" as follows:

e = (y) =y for each equivalence relation y on A",
e Ifu=cuC where Up € P, =, (y1,....510)= Zwo (11-- - Viqup))-



e Ifu=cueC...cunC where m >l and Uo...Un € P, =y (y1,...,¥1c) IS the equivalence relation on A" where X =,
(71,-->Y1qug))y if and only if

X Eui ()/l(uo)+---+l(ui_1)+1' Jyl(u0)+---+l(ui))y forall0<i<m,
(note that when i = 0, this means x =, (31,...,¥1(x,))y) and

1. Foreverypl,....pm€ 25 (p1<*** < pm), there exist qi,..., Gm € (g1 <* * * < gm) such that

(@) pi<*pjifandonly if gy <’ gj forall 1 <i, j <m,

(b) QXpiifand only if Q)giforalll<i<manda € A,

(©) X[L, Pi+1) =, (Vicug)+eeetiCuio)+17 -+ » Vicug) +eeetiqu))Y[1,0iva) fOrall 0 <i<m,
(d) X(Pi, Pit1) Zoi, (Vicug)+eee+1uin)+1r = r Viqug) +oee+i(up))Y(irbivy) forall 1 <i<m,
(€) X(Pis X =u;(Vicug)+esetiui_y)+10 = Vicug)+eeeriqup)y (@i y]) forall 0 <i<m,

and
2. Foreveryqi,...,0m € 2 (g1 < * * < gm) there exist p1,...,pm € Z& (p1 < * * * pm) such that (a)—(e) hold.

If yi=9eee=y;=yfor1<i<j<I(u), then we will abbreviate =, (y1,...,y1)) by

=u(yL,-- -,Vi-l,V"Hl, Vj+1:---:)/l(u))-

We will abbreviate =, (y“)) by =, (7). A consequence of Definition 3.1 is that if u=cugC...cu,T with Uo,...,un €
P, then we have

=u (yi’---! )/l(u)) = St (Euo(yl,---:yl(uo))'---a

=1, (Viqug)+eset L@ y)+17 =1 Vi(ug) +ese+1(up) ))-

Let m = (my,...,my) be a k-tuple of positive integers (k > 0). We have that =, (w) where the tree o is defined,

by induction on k, as follows: if k = 0, then ug, = [; then, for m (m,my, ..., my), Uz = (Cu(mt....,mk)ﬁ)mﬂ-

Lemma 3.1. Let A be a finite alphabet, u be a tree and y1,...,y1.) be finite-index congruences on A”. The
equivalence relation =y (y1,...,51w) IS a finite-index congruence on A .

Proof. The proof is by induction on u. If u = I, we have (y) = y. Otherwise, we factorize u as u=cuoC ...CunC
with Uo,...,un € P. We have the following two cases: Case 1 (m = 0) and Case 2 (m > 1).

Case 1. We have =, (y1,....)1w) = =u, (y1,---¥1uy)) @nd the result follows by the inductive hypothesis on uo.

Case 2. Let X =y (y1,...,iw)y and X' =y (y1,-..,0w)y'. We want to show that xx' =, (y1,...,n1w)yY". First, xx' =,
(Vi(ug) +-+1(ui_ ) +1,.. Y 1(ug) +-+1(u))YY' TOr all 0 <i <m by the inductive hypothesis on ui. Second, let py,...,pm €
e (Pi < @ ¢+ <Pn) (the proof is similar if starting with qy,...,0m € 2&y). Say pi,..., Pn < |X| and pn+i,...,Pm > |X|
for some 0 < n <m. We treat the case 0 < n < m (the other cases are simpler). Put p; = pn+1 - [X|,--.Pm—n = Pm
— |X]. From X =y (y1,...,)1w)Y, there exist d,...,qn € 24 (g1 << * » <) satisfying (a)-(e) (here, we let p,..., pn,
Pn,..., Pn € U for a total of m positions), and from x' =, (y1,....)1w)Y', there exist q1,...,qm—n € 4y (g1 < <
Qm-n) Satisfying (a)—(e) (here, we let p1,...,p1, D1, Pm—n € U for a total of m positions). Put gn+1 = q7 +
IVl,....0m = @m-n *+ |y|. The positions qg,...,0m € 2k are such that q; <+« « < qgm, and we have



X(PnsXI] =i, (Viug) 4 +1Gun_)+15+ - -5Y 1) +-+1(a))Y(Gns (Y1,
X [Iv p{) Eun(yl(uo)+---+l(un_1)+1a~-~ayl(uo)+---+l(un))yl [1’ q{)’

and by the inductive hypothesis on u, we get

XX (Pny Prv1) Sy, (Vigug) 4 +1Gun)+10+ - -V i)+ +1(wg)) YY' (OniOne1)-

Condition (d) easily follows. Conditions (a)—(c) and (e) are simpler. The relation =, (y1,..., 7)) IS hence a
congruence on A . This obviously is finite-index since ys,..., yiu) are. ]

3.1. Inclusion results
This section is concerned with comparing the equivalence relations = y1,..., yi) Proposition 3.1, Theorem 3.1,
Corollary 3.1 and Theorem 3.2 are adaptations of results of [13].

Proposition 3.1. Let A be a finite alphabet, u be a tree and y;,...,y1) be congruences on A”. We have

=u (Vl,---, Vl(u)): =cuc (Vl;---a Vl(u)): =cc (Eu (Vl,---, Vl(u)))
Proof. This is an immediate consequence of Definition 3.1. ]

Theorem 3.1. Let A be a finite alphabet, u=vicv,Cvs be a tree as well as v, and yy,...,y1) be congruences on A,
We have

=y (Vl; ceey y'(u))

- Evlcc'v3 (Vla---ayl(vl)! Evz ()/l(vl)+1a---a)/l(v1)+l(v2))’ yl(v1)+l(v2)+1a---ayl(u))

Proof. The proof is by induction on u. If u= cT, we have = (y) = =« (=1 (y)). Otherwise, we factorize uas u =
CUoC... CUmC With uo,...,un € P. We have the following two cases: Case 1 (m = 0) and Case 2 (m >1).

Case 1. If vivz = |, we get v, = U and by Proposition 3.1, we have =y (y1,...,Yiw) = Zcc Ev, (V- Viwy)))
Otherwise, we have v; = cvy, vz = v5T and hence up = v1cv, Trg. The result follows by Proposition 3.1 and the
inductive hypothesis on uo.

Case 2. Then some cu;C has cv,T as factor. We put cuT = v'cv,cv'" and by using Proposition 3.1 and the
inductive hypothesis, we get =cu,c (Jio.--Yicun) = Zuq Tiseed100): Sy V(o)1 Vi(w Y100
(Vl(v’)+l(v2)+1""’yl(ul))' The result follows from =y (y1,....01w), = Sceym+t Euy (Ms--Viqug)) 5+ S
Yiug)++l(umo1)+17 > V1(u)))- u

Corollary 3.1. Let A be a finite alphabet, u = v;iccv,CTvs be a tree as well as v, and yy,...,yiu) be congruences on
A'. We have =, (yl,..., yl(u))- = =y cvytvs (yl,..., Vl(u))-

Proof. By Proposition 3.1 and Theorem 3.1. |

Corollary 3.1 enables us to restrict ourselves to the set P* of trees in which each node is either a leaf or has a
number of children greater than 1.



If u is a tree and u= vicv,Cvs is a factorization of u, then we say that the occurrences of ¢ and T defined by this

factorization are related if v is a tree. Each occurrence of ¢ in u is related to a unique occurrence of c inu. Ifu
and v are trees, then we say that u is extracted from v if u can be obtained from v by removing in v a certain
number of related occurrences of ¢ and T.

Theorem 3.2. Let A be a finite alphabet, u and v be trees, u be extracted from v and y be a congruence on A",
We have =, (y) € =, ().

Proof. We treat the case where v = v;cv,Cvs with v, € P and u = vivpvs. The proof is by induction on v. If v = cC,
then u = 1 and the result is obvious. Otherwise, we factorize v as v = cwyC...cwWnC With wo,...,wn € P. We have
the following two cases: Case 1 (m = 0) and Case 2 (m > 1).

Case I. If vivsz = |, we get v, = wp = u and the result follows. Otherwise, we have v; = cv; and v3 = v5T and the
equality wy v;cvoCrg results. By using the inductive hypothesis on wy, we deduce

Ev(V) = EWO (V) c Ev{vzvé (V) = Ecv{vzvéc_ (V) == (V)

Case 2. Then some cwiT has cv,T as factor. We put cwiT = v'cv,Tv" and cw;T = V'vpv". By using the inductive
hypothesis =, (y) < = (y), we get

= (7)) = ZScomtt Ewy (05 Zwy, (7))
S =Zcomtt (FEwy ) oZ0! 0B, ) ==u(y). @

Let m be a positive integer. We now define the (m) positions in a word x that will lead to an inclusion result
useful for our purposes. These positions were defined in some of our earlier papers (like [4]) but they are
needed to understand the proofs of our new results. So we repeat their definition for the sake of completeness.

Let x be a word on a finite alphabet A. To find the positions that spell the first occurrences of every subword of
length < m of x (or the (m) first positions in x), proceed inductively as follows:

e Let x; denote the smallest prefix of x such that a(x;)= a(x) (call p; the last position of x;),
e Let xj:1 denote the smallest prefix of x(pi,|x|] such that a(xi+1)= a(x(pi,|X|]) (call pi+1 the last position of Xi1)
for1<i<m.

If |a(X)] = 1 (Ja(X)| denotes the cardinality of a(x)), the positions ps,...,pm are the ones we are looking for and the
procedure terminates. If |a(x)| > 1, the positions p,...,pm are among the ones we are looking for. To find the
others, repeat the process to find the (m) first positions in x[1, p;) and the (m — i) first positions in x(p;, pi+1) for
1<i<m.

We can define similarly the positions that spell the last occurrences of every subword of length <m of x (or the
(m) last positions in x). The (m) first and the (m) last positions in x are called the (m) positions in x.

Consider the following example: Let A = {a, b} and

X = aaaaaabababbbbbbababaaabbabbaaaaabbaa.

The underlined (respectively overlined) positions of x are the (3) first (respectively last) positions in x.



The following lemmas give necessary and sufficient conditions for = zn+1 (o(m), o™, agmy)-equivalence, as
well as =52 (am), 7)- and = ¢z (7, omy)-€quivalences.

Lemma 3.2. Let A be a finite alphabet, x and y be words on A and m n be positive integers. Let py,....ps € Zx (p1
< e oo <) (respectively qs,...,0t € 2 (01 < * * * <gi)), be the (m) positions in x (respectively y). We have x
=com+ (o), o™ amy)y if and only if the following three conditions are satisfied:

1. s=t
2. Q¥ piifandonlyif Q) giforall1<i<sanda € A.
3. x(pi, pi+1)omy(0i,gi+1) forall 1 <i<s.

Proof. Assume that Conditions (1)—(3) hold. First, the om)-equivalence of x and y follows from (1) and (2).
Second, let p;,...,p5 € 2 (p; <=+ *<pj}) (the proof is similar when starting with positions in 2).

Case I. If some of the p;’s are among pj,...,ps, then for each such p}, there exists 1 <i;<s such that p; = Pi;-
Since (1) holds, we may consider q; = qi;- Condition (2) implies that Q7 p;'i if and only if Qfl'pj’- fora € A
Case 2. If pj,..., jr € Uy(p,p,,,) TOr some 1 <i<s, 1<j<eee«<j then from (3), there exist q;,..., g €

Wy (quqi00) (@) <***<qjs) such that p;, <*p; if and only if q; <’ q; for all j <k, #<j', and Q7 p; if and only if
Qiq, forallj<Z<j anda€A.

The positions q;,..., g, € 4 are such that q; <« « + <q, and satisfy

o p{ <"pjifandonlyifq; <'q; forall 1 <ij<n,

e QXp/ifandonlyif Q)q/ forall1<i<nanda €A,
i X[1! p{)a(m) y[lv ql,)v

o X(pn |XlJamy(qn, I¥I]

Conversely, assume X =z n+1(m), o™, agm)y. Conditions (1) and (2) hold by considering each of the (m)
positions in turn. To see that Condition (3) holds, let ps,..., pn € Uyp,p,,) @1 = ** <py) (the proof is similar
when starting with positions in U, .. ). There exist suitable positions q;,..., g, € 25 (q; <***<qy) The

facts that x[1, p1)am) Y[1, q1) and x(q,, [X[lem Y(qn, ly|] guarantee the membership of q;,..., g, in U |

v(qi9i+1)"
Lemma 3.13. Let A be a finite alphabet, x and y be words on A, y be a congruence on A* and m be a positive
integer. Let py,...,ps € 2& (p1< * * * < ps) (respectively qi,..., Gt € 4, (g1 < * * * < Q1)) be the (m) first positions
in X (respectively y). We have X = ¢z (om), 7)Y if and only if the following five conditions are satisfied:

s=t.
QZXpi if and only if Q) q; for all 1<i <sand a € A.
X(Pi,[X[Iyy(ailyl] for all 1< <.
For all 1<i < s and for every p € Uy, p...)
(respectively p € Uy, p,. ,)) such that

a. QXpifandonlyif Q¥qfora€A,

b. x(p.IXIIyy(a.lyl]-
5. Forevery p € Uy, ) (respectively g € Uy, 1), there exists g € Uy, q 1y P € Uyp, 1x) SUCh that
(a)—(b) hold.

PN PE

(respectively g € U, (g, 4,,,)), there exists g € Uy, g, 4.

A similar statement is valid for the (m) last positions and = .z)2 (7,a(m)-equivalence.



Proof. Assume that Conditions (1)—(5) hold. First, the om)-equivalence of x and y follows from (1) and (2), and
their y-equivalence from (2) and (3) (with i = 1) and the fact that p; = g; = . Second, let p be a position in 2
(the proof is similar when starting with a position in 2). Assume QZp.

Case 1. p = p; for some 1 <ii <. Since (1) holds, we may consider g = g;. Condition (2) implies that Q. q.

Case2.pelU y for for some 1 <i <. From (4), there exists g € U y such that Q. q.

x(PLPi+1 Y(q1.9i+1

Case 3. p € Uyp, |x- From (5), there exists p € U, 4 |y)y, SUCh that Q. q.
In all cases, (1)—(5) and the choice of g imply that X[l, p)amy[1,q) and x(p, |x])y,y(a,|yl]-

Conversely, assume X = ¢z (omyy)y. Conditions (I)—(3) hold by considering each of the (m) first positions in
turn. To see that Condition (4) holds, let p be in Uy, ...y (the proof is similar when starting with ¢ in g €

Wy (q,,q40))- ASSUMe Qzp. Hence there exists g in 2, such that Q. q, X[1, p)amy[1,9) and x(p, |X|]yy(a.|yl].
Assume that q € U, (4, q,.,)- HENCE g € Uy g4 OF g € Uy g, . 1ypj- From the choice of the pj's and the gj's, we get
a contradiction with either q € Q2; or x[l, p)am) Y[1,q). Condition (5) follows similarly. |

Note that in the case where y = w, Conditions (3)—(5) can be replaced by

X(Ps, |X[Jey(as, 1y1] and x(pi, pis1)ey(Qi, Givr) for all 1<i <s.

Theorem 3.3. Let A be a finite alphabet, y be a congruence on A” and m be a positive integer. We have

m+1

— —_ — 1
=c(cc)™t1ece (0™, p)= =cMm*+l(cco)mtt (a)m+ ')

and

m+1) —_ —

m+1
~ T (ccc ).

=cec(ce)™tic (0 @ ym+1gm+l (7,0
Proof. The inclusion, =cmzcoym(w) S = eym+1 (w) is clear from Theorem 3.2. S0 = m+1gcgym+1 (0™, y) =
=02 Ecmecm(®@),7) € Eez Eem+r (0), Y) = S¢(cgm+1TCT (w™*,y) by Theorem 3.1. For the reverse
inclusion, let us assume that x, y are such that X =, gm+1¢cz (0™, )y or x = coyz (om),y)y- We want to show
that X = m+1gegym+ (0™ y)y or x = (cM(EcE)™ECE (0™*, y)y. By Definition 3.1, we need to show that x

=cmeceym (w)y, Xpy and

o Forevery p € %, there exists q € 2 such that
(a) QZXpifandonly if Q)qfora€ A,
() X[1, p) =cmzceym (w)y[1,0),
() x(p. |x[Izv (a.lyl] . and

e Forevery q € 2, there exists p € 2k such that (a)—(c) hold.

Under our assumption, this is equivalent to showing that xyy and

o Forevery p € 4, there exists g € 2 such that (a)—(c) hold, and
o Forevery q € 4, there exists p € 2 such that (a)—(c) hold.



To see this, we proceed by induction on m. We have X =cmgcoym (w)y if and only if X = m-1zceym-1)zcz (@)Y
if and only if X = m-1gzm-1 (w)y and

o For every p € 4, there exists q € 4 such that
(d) QZpifandonly if Q)qforac€ A,
(e) X[1, p=cm-1(zczym(@)y[1,0), and
o Forevery q € 4, there exists p € 2 such that (d)—(e) hold.

For m = 1,(w)y if and only if Xay (which is part of our assumption). The result follows since am) € om-1) and

=cmeceym (0) € Zem-1(zcgym-1 (@)

Now, the y-equivalence of x and y is part of our assumption. Next, since x =2 (am),)y, the (m) first positions
in x and y satisfy (I)—(5) of Lemma 3.13. So let p € 2, (the proof is similar if starting with q € ). Assume
Qzp.

Case 1. p = p; for some 1 <i <s. Since (I) holds, we may consider g = g;. Conditions (2) and (3) imply that Q. q
and x(p,[x[Tyy(a.Iyl]-

Case 2. p € Uy(p, p;,,) for some 1 <i <s.From (4), there exists q € U,,,,, .., ) Such that Q2 q and x(p, [x|]yy(a,

Iyl]

Case 3. p € Uy(p, |x(1- From (5), there exists g € U, ,_ |, SUch that Q. q and x(p, |x[1yy(a.Iyl].

In all cases, (I)—(5) and the choice of q imply that X[I, p) =cmzqzm (w)y[l,0). This is done by induction on m.
For m=1, X[l, p) =cmzceym (w)y[1,q) if and only if x[I, p)xy[1,q). For m > I, we will show that x [1, p)

=cmieeym (0)y[1,9) by showing that X[, p) =¢ceymece (@)y[1,9) or X[l, p) = (o) (Xm-1), @) y[1,9) (using the
inductive hypothesis). We treat Case 2 (Case 1 and Case 3 are handled similarly).

We need to show that x[l, p)am-1)Y[1, ) (which is obvious) and

o Forevery p' € 2 p), there exists q" € 21,q) such that
(f) QFp'ifandonly if Q) q for b € A,
(9) X1, )Xy Y[1,0°), and
o Forevery p' € 2,11, there exists p' € 24[1,5) such that (f)—(g) hold.
So let p' € Zup) (the proof is similar if starting with q' € 21,¢)). Assume Q7p'.

Case 2.1.p' € Uy1p, - Ifp' = pj for some 1 <j <, consider g' =q; which satisfies Qz’q'. Ifp' e ux(pj,pm)
for some 1 <j < i, then from (4), consider ' € uy(qj,qm) satisfying Qz’q'.

Case 2.2. p' = pi. Consider g' = q; satisfying Qf,’q'.

Case 2.3. p' € Uy, p)- Here, let pj be the last of the (m — 1) first positions in X[1, pi) (pi exists, otherwise X(p;
pi+1) = 1). Consider g’ to be the first occurrence of b in llx(pj,qi]

In Cases 2.1-2.3, we see that X[1, p")am-1) Y[1, q'). ]

We end this section with a lemma similar to Lemma 3.2 involving the congruence 1 instead of om).



Lemma 3.4. Let A be a finite alphabet, x and y be words on A and m,n be positive integers. Let py,..., ps € 2
(p1< * ¢ * < ps) (respectively qa,...,q: € (01 < * * * <(qy)) be the positions that spell the first m and the last m
occurrences of every letter of x (respectively y). We have X = zn-1 (Brm@™™ Brm)y if and only if the following
three conditions are satisfied:

=t
QZXpiifand only if Q)i forall 1 <i<sanda € A.

.S
. X( pi pi+1)amy(Qi, gi+1) forall 1 <i<s.

WN P

Proof. The proof is similar to that of Lemma 3.2. ]

4. Pseudovarieties associated to trees
We are now going to review a few facts about the Schiitzenberger product. A first version Of this product was
introduced in [16], and it was generalized in [20].

Let m be a positive integer and S;,...,Sy be finite monoids. We define the Schiitzenberger product of S;,...,S,
denoted by Om(Si,...,Sm), to be the submonoid of m x m matrices with the usual multiplication of matrices, of the
form x = (xij), 1 <1, j <m, in which the (i, j)-entry is a subset of S;x « « « x S, and satisfying the following three
conditions:

1. Ifi>],thenx;=10

2. Ifi=j, then x;i = {(1,...,1,si,1,...,1) } for some s; € S; (here, s; is the ith component in the m-tuple).

3. Ifi <j, then xi; € {(S1,...,Sm) ESy X ¢ e e X S| Sy =¢ e =5;1 = | =Sji1 =« * =5y} (here, 1 is the unit of
Sl,...,Sm).

Note that these matrices are exactly the upper-triangular matrices whose ith diagonal entry corresponds to a
singleton of S; and whose (i,j)-entry (if i <j)to asubset of S;x e+ e x S If 5 = (5j,...,5) €Six + e+ x Sjand = 5,
(Siry---»Sjr), then 58" = (Si,..., Sj-1,8S;7, Sjr,1»---» S;7) if j= i', and is undefined otherwise. This multiplication is
extended to sets in the usual fashion; addition is given by set union. It is easy to check that On(Sy,...,Sm) is a
monoid.

If W, Wi,..., Wp, are M-varieties, On(Wh1,...,Wn) denotes the M-variety generated by the products of the form
Om(S1,...,Sm) with S; € W for all 1 <i <m. Also, we write 0n,(W) for 0n(W,...,W) and O(W) = U1 0m (W) It is
not difficult to see that On(W) S Om+1 (W) and that O(W) is an M-variety.

The algebraic operation on monoids that corresponds to the concatenation of languages was identified to be the
Schiitzenberger product.

Proposition 4.1 (Pin [13], Reutenauer [14], Straubing [20]). Let m be a positive integer. Let Wy,..., Wp, be *-
varieties and W,...,W, be the associated M-varieties. If W is the *-variety associated to Om+1(Wo,...,Wn), then
for each finite alphabet A, A~ W is the Boolean algebra generated by the languages of the form LiaiL;, ...aL

where 0 < jp<iy<ee+<ix<ay..a€AandL, €A” W, forall0<j<k

i

The following definition associates pseudovarieties to trees.

Definition 4.1 (Pin [13]). Let u be a tree and W4,..., Wy be M-varieties. We define an M-variety
Ou(W4,..., W) as follows:

o 01(W) =W for each M-variety W.
e Ifu=cueT, where up € P, Ou(W1,...,.Wi) = 04,y (W1,...,. W)



e If u=cupC...cunC where m > 1 and Uo,...,un € P, Ou(Wi,...,W,(,) is the M- variety generated by the
Schiitzenberger products of the form On+1(So,...,Sm), where

SO € Ouo (Wl,..., wl(uo)),...,Sm € Oum (Wl(u0)+...+l(um_1)+1, ...,Wl(u0)+...+l(um)).
IfWj=eee=W;=W for 1<i<]j=<I(u), then we will abbreviate 0,(Ws4,..., W) by
Ou(Wi,...,. Wiy, W Wi Wig).

We will abbreviate ¢,(W'™) by ¢,(W). More generally, if L € P, we denote by 0, (W) the join V.0, (W). A
consequence of Definition 4.1 is that if u=cucC...cu,C with uo,..., Uy € P, then we have

Ou(Wi,....Wi) = 0 cgym+r (0 (Wi, Wigup)),

coos Qe Wicug) +otiCume)+10 -+ » Wigug) +-+1(um)))-

The following theorem together with Proposition 4.1 describe, for each tree u, the *-variety of languages
associated to the M-variety Oy(Wa,...,W)q)).

Theorem 4.1 (Pin [13]). If m is a positive integer and W,...,W, are M-varieties, then
O(CE)mH(Wo,...,Wm) = Om+1 (Wo,...,.Wp).

Now, let u be a tree and Wa,...,W) be locally finite M-varieties. The following proposition shows that
Ou(Wha,...,Wy() is also locally finite.

Proposition 4.2. Let A be a finite alphabet, u be a tree and W4,...,W)) be locally finite M-varieties. For 1 <i <
1(u), let y;, be the congruence generating Wi; for A. Then, an A-generated monoid S belongs to ¢y(Wa,...,.Wiw)
if and only if S is a morphic image of A /=, (y1, * * * yiw)-

Proof. Let V, be the *-variety of languages associated to 0,(Wa,...,Wiw). We want to show that A"V, =

Lz, (revi0) where Lz, tivia) denotes the set of languages on A that are unions of classes of =, (y1,...,71u))-

The proof is by induction on u. If u= 1 and y is the congruence generating W for A, then 0,(W) =W and =; (y)
= y. Otherwise, we factorize u as U=CugC...Cu,C With Uo,...,un € P. If m = 0, then 0, (W4,...,Wiw) =

Oy (Wi, Wi )y Zu (1 5010) = S (Y1,- - 5Yiug)) @nd the result follows by the inductive hypothesis on u.
If m>1, then from

Ou(Wa,....Wiw) = 0ceym+r (Oug (Wi, .. Wigup)),

. --’Oum(Wl(u0)+---+l(um_1)+1: L) wl(uo)+---+l(um)))

using the inductive hypothesis, Proposition 4.1 and Theorem 4.1, we can conclude that A* V, is the boolean
algebra generated by the languages of the form L; aiL;, ...axL;,, where 0 <ip <iy <ee+<ix<m, a,...,a €A

L
and L € Lzuij v y for all 0 < j <k. The result follows since each =, (y1,...,Yiu)-

son¥
l(u0)+~--+l(uij_1)+1 l(u0)+---+l(uij)
class is a boolean combination of sets of the form L; aiL;, ...aL;,, where 0 <fp <ip<eeses<ix<m, a...,a €A

L
and each L isa=,, -class (this comes directly from Definition 3.1
]

(yl(u0)+---+l(uij_1)+1' " yl(u0)+---+l(uij)
where the sets L; aiL;, ...akL;, are induced by the corresponding positions ps,...,pm (P1 < * * * < pm) (a total of k
different positions) and d,...,qm (01 < * * * < gn) (a total of k different positions)). [



5. Semidirect products
We are now going to review a few facts about semidirect products.

Let Sand T be monoids. For the sake of clarity, when semidirect products are considered, we will usually
express the operation of S additively (without assuming commutativity) and T multiplicatively. We will let O
denote the unit of S and 1 the unit of T. A left unitary action of T on Sisa map (t,s) » tsfrom T x Sinto S
satisfying (tt')s = t(t's), t(s + s')=ts + ts', t0 = 0 and 1s =s for all 5,s' € S and t,t' € T; a right unitary action of T
onSisamap (t,s) = stfrom T x S into S satisfying s(tt')-= (st)t’, (s + s')t = st + s't, 0t = 0 and s1 = s for all 5,5’
e€Sandt, t €T. Ifa left unitary action of T on S is given, the semidirect product S *T is the set S x T with
operation (s,t)(s', t)= (s + ts', tt'). If commuting left and right unitary actions of Ton S are given (that is, t(st") =
(ts)t' for all s € Sand t,t' € T), the two-sided semidirect product S * * T is the set S x T with operation
(s,t)(s",0=(st' + ts',tt"). Properties of the semidirect product are studied in [8] and properties of the two-sided
semidirect product are found in [15]. Semidirect products are special cases of two-sided semidirect products.

Two-sided semidirect products induce an operation on M-varieties. Let VV and W be M-varieties. We define V *
* W to be the M-variety generated by the products S ** TwithSe Vand T € W. We have S e V * * W if and
only if S divides some product S * * T with S € V and T € W. The definition of the M-variety V * W is similar.
Note that * is associative on M-varieties and that ** is not. Neither * nor ** is associative on monoids. The
operation * behaves well with respect to directed unions [8, 15].

Straubing has given a general construction to describe the languages recognized by the semidirect product of
two finite monoids ("principle of the semidirect product™) [19]. Weil has given such a construction for two-
sided products [24]. The following results are consequences of their constructions and the equality R = U0 JI
where J;™ denotes J; * ¢ « « *J; (J; appears m times) [18].

Proposition 5.1 (Pin [13]). Let V be a *-variety and V be the associated M-variety. If W is the *-variety
associated to J;, * V, then for each finite alphabet A, A* W is the boolean algebra generated by the languages
of the form L or LaA”, wherea € Aand L € A™ V. In other words, J, * V = Oz (V) ). If W' is the *-variety
associated to R * V, then for each finite alphabet A, A~ W' is the smallest boolean algebra containing A* V
and closed for the operations L ~ LaA” where a € A.

Proposition 5.2 (Weil [24]). Let V be a *-variety and V be the associated M-variety. If W is the *-variety
associated to J; * * V, then for each finite alphabet A, A* W is the boolean algebra generated by the languages
of the form L or LaL', where a € Aand L,L' € A* V. In other words, J; * * V = 0 ¢z (V).

The following representations of free objects for V * W and V * * W were obtained by Almeida and Weil. The
free object on the alphabet A in the variety generated by a pseudovariety V is represented by F,(A). In general,
Fv(A) does not lie in V. We have F,(A) € V if and only if F,(A) is finite. In case V is M, F,(A) is A*.

Proposition 5.3 (Almeida and Weil [I]). Let V and W be M-varieties such that F,(A) € V and F,(A) € W for all
finite alphabets A. Then so is V * W.

Moreover, for a finite alphabet A, let T = F(A) and S= F,(T x A). Consider:

1. The left unitary action of T on S defined by t(t;,a) = (tt;,a) for all t,t; € T and a € A.
2. The associated semidirect product S * T.

Then there exists a one-to-one morphism from Fy«,(A) into S * T that maps a into ((1,a),a).

Proposition 5.4 (Almeida and Weil [3]). Let V and W be M-varieties such that Fv(A) € V and F,(A) € W for
all finite alphabets A. Then so is V ** W.



Moreover, for a finite alphabet A, let T = F(A) and S =F,(T x A x T). Consider:

1. The left unitary action of T on S defined by t(t;,a,t2) = (tt3,a,t2) for all t,t;,t; € T and a € A.

2. The right unitary action of T on S defined by (t, a, t2)t = (1, a, tot) for all t, t;, t; € T and a € A.

3. The associated two-sided semidirect product S * * T.

Then there exists a one-to-one morphism from Fy+,(A) into S * * T that maps a into ((1,a,1),a).

5.1. Congruences associated to semidirect products

In this section, we associate congruences to semidirect and two-sided semidirect products of locally finite M-
varieties.

Let A be a finite alphabet. Let W be a locally finite M-variety and ya be the finite-index congruence on A™ such

that an A-generated monoid S belongs to W if and only if S is a morphic image of A”/ya. The free object Fy,(A)
is isomorphic to A /ya. The pseudovariety W is such that F,(A) € W. We denote by m,,, the projection from A

into F,(A) that maps a to the generator a of Fy(A). If x, y € A", then m,,(x) =m,,(y) ifand only if , y.
Definition 5.1. Let B = F,,(A) x A and z be a word on A. Let 6Z,: A" — B be defined by 5oZ,(1) = 1 and

o, (ar...a) = (m,,(2),a1)( 7, ,(za1), @)...(m, ,(z81...81),&).

We often denote a7/, (x) simply by g, ,(X).

Definition 5.2. Let B = F(A) X A x Fy(A) and z,z' be words on A. Let Tff': A" — B be defined by Tff' (1)=1
and

rfAZ (a1...a) = (m,,(2), &1, 1y, (22...a2")) (‘1) (7 ,(z24), B2, 7Ty, (B5...2,2"))
...(m, ,(za1...ai1), &, Ty, (2))

We often denote 7, (x) simply by 7, ,(X).

Fix two locally finite M-varieties V and W. Let Sa (respectively ya) be the finite-index congruence generating V
(respectively W) for the finite alphabet A.

5.1.1. Thecase V * W
Let A be a finite alphabet and B = F,,(A) x A. We define an equivalence relation ~5_.,, on A" as follows:

X ~pev, Y ifand only if o, (X)Bsa, , (y) and Xyay.
Proposition 5.5. The equivalence relation ~¢_ ., is afinite-index congruence on A
Proof. We will abbreviate g by $ and ya by y throughout the proof. Assume x ~4, y and X' ~, y'. We have

oy(X)fo(y) and xyy

and similarly with x and y replaced by x' and y'. Since y is a congruence we have xx'yyy'. The above, the fact
that z,(X) = m,(y), and the fact that / is a congruence imply that

a,(xx") = 0y(X)05 (X') = 0,(X) 75 (X)Bo(y) 7; (Y)=a,(yy").



Thus xx' ~4, yy' showing that ~4, is a congruence. This obviously is a finite-index congruence since  and y are.
|

Proposition 5.6. Let V and W be locally finite M-varieties. Let ya (respectively Sg) be the finite-index
congruence generating W (respectively V) for the finite alphabet A (respectively, B = F,(A) x A). Then, an A-
generated monoid S belongs to V * W if and only if S is a morphic image of A*/~~ﬁ3,m-

Proof. We will abbreviate g by # and ya by y throughout the proof. Let x =y be an identity on A, say X = a;...a;
and 'y = bs...bj. Then x =y holds in V * W if and only if x and y represent the same element of F,«y(A). By
Proposition 5.3, this is equivalent to x and y having the same image under the one-to-one morphism from Fy«,
(A) into F(B)*Fw(A) defined by a ~ ((1,a),a) and where the left unitary action of F(A) on F,(B) is given by
t(t;,a)=(tt1,a). The above morphism maps x to

((]_1 al) + (al,ag) + oo+ (al...ai-l, ai),al...ai), (1)
and y to
((1, by) + (bg,bp) + o e o+ (b1...bj1, by),a1...0y), (2)

(here, Fy(B) is written additively). The identity x =y holds in Fv=w(A) if and only if corresponding components
of the pairs (1) and (2) coincide. Denote by x' (respectively y') the first component of (1) (respectively (2)).
Then, Fy«w(A) = X =y is equivalent to the two conditions Fy(B) |=x" = y" and F(A)= x =y, or g,(X)po,(y) and
XpY. |

5.1.2. Thecase V * * W
Let A be a finite alphabet and B = F,,(A) x A x F,(A). We define an equivalence relation =4, , on A" as
follows:

X ~g.., ifand only if 7, (X)Bs 7, ,(y) and Xyay.
Proposition 5.7. The equivalence relationis a finite-index congruence on A",

Proof. Using the notation in the proof of Proposition 5.5, assuming x =g, y and X' =g, y", the result follows from

7,0) = T () ) =12 () 7)) frr ) 1Y) = gy, u

Proposition 5.8. Let V and W be locally finite M-varieties. Let ya (respectively Sg) be the finite-index
congruence generating W (respectively V) for the finite alphabet A (respectively B = F(A) x A x Fy(A)). Then,
an A-generated monoid S belongs to V* * W if and only if S is a morphic image of A*/’“V'ﬂa,m-

Proof. The proof is similar to that of Proposition 5.6 using Proposition 5.4 instead of Proposition 5.3. |

5.2. Trees associated to semidirect products
In this section, we associate trees to some semidirect and two-sided semidirect products of locally finite M-
varieties.

The following theorem provides equalities which relate with Propositions 5.1 and 5.2. Let y be the finite-index
congruence generating a locally finite M-variety V for the finite alphabet A. By Proposition 5.6 (respectively
5.8), the congruence (respectively generates J; * V (respectively J;* * V) for A. By Proposition 4.2, = (7,

w) (respectively = .¢2(y)) generates 0 .z2(V, 1) (respectively 0 z2(V)) for A.



Theorem 5.1. Let A be a finite alphabet and y be a congruence on A”. We have ~xy = (e (1 @) and =, =
=z (V)

Proof. We have X =¢2(y, »)y if and only if xyy and

1. Forevery p € 2, there exists q € 2/ such that
(@) QXp ifand only if Q2 q for a € A,
(b) x[l, p)y yIl.9), and
2. For every q € 2 there exists p € 2 such that (a) and (b) hold.
It is easy to see that X =¢2(y, w)y if and only if ay(X)asy(y) and xyy.

We have x = z2(y)y if and only if xyy and

1. For every p € 2 there exists q € 2 such that
(@) QXp ifand only if Q2 q for a € A,
(b) x[1, p)yy[1.0),
(¢) x(p. IxI]yy(q, Iyl], and
2. Forevery q € 2, there exists p € 24 such that (a)—(c) hold.
It is easy to see that X =¢z()y if and only if 7(X)az,(y) and xyy. ]

Corollary 5.1. Let y; be the sequence of congruences defined by yi = a and yi«1 = =¢)2(yi). The equality yi =
=,. (®) = a, holds where T; is a sequence of i 1's.

Theorem 5.2. Let m be a positive integer, H be a locally finite G-variety and y be the congruence generating H
for the finite alphabet A. Then ~, '\, ==¢ . ==(@ym+1 (¥)-

Proof. We have X = m+1(p)y if and only if xyy and

1. Foreverypi,....pm € 4 (p1 < *** < pm), there exist qs,...,qm € (1 < * * * < gm) Such that
(@) pi<‘pjifandonly if gg<’ g forall 1 <i,j <m,
(b) QXpiifand only if QYgiforalll <i<manda €A,
() x[1, pi+1)yy[l,qi+1) forall0 <i<m,
(d) x(pi, pi+1)yy(0i,gi+2) forall 1 <i<m,
(e) x(pi, IXIyy(qi, lyl] forall 0 < i <m, and
2. For every di,...,Qm € 4 (0i < * * < (), there exist pa,...,pm € &y (p1 < * * « < pm) such that (a)—(e)
hold.

We have x ~agmyy Y if and only if oy(X)amoy(y) and xyy. This is equivalent to saying that x ~agmy Y if and only
if xyy and

1. For every pi,...,pm € 25 (p1 < * * * < pm), there exist qy,...,qm & (41 < * * » < 0m) such that (a)—(c) hold,
and
2. For every i,....0m € 2 (Q1 < * * * < Qm), there exist p,...,.pm € 2 (p1 < * * * < pm) such that (a)—(c) hold.

We have x S amyy Y if and only if 7,(x)am) 7,(y) and xyy. This is equivalent to saying that x X aimyy Y if and only
if xyy and



1. For every pa,..., Pm € 25 (p1 < ¢ * « < pm), there exist qs,..,0m € 4 (g1 < * * * < (m) Such that (a)—(c) and (e)
hold, and

2. For every g,...,0m € 45 (1 < * * * < Qm), there exist pa,...,pm € 2 (P1 < * * * < pm) such that (a)—(c) and (e)
hold.

Since H is a G-variety and y generates H for A (y is a group congruence), the conditions xyy and (a)—(c) imply
(d) and (e). We conclude that X =(zm+1 (y)y ifand only ifx ~ . yifandonly ifx =, ., y. |

Theorem 5.3. Let A be a finite alphabet and m, n be positive integers. We have

Ry == (@M (@(my» w1 A(m))-
Consequently, Jn * * Jn = 0 yn+r (Im)I™, Im) Occcym*icaym-1(cmymrz (1)
Proof. By Lemma 3.2, we have X = gn+1 (a(m), o™, am)y if and only if 7, o (X)amy Tam (y) and Xaqm)y. [
Theorem 5.4. Let A be a finite alphabet and m, n be positive integers. We have

R amyBim —=(ce)"+1 (Bim, @™, Bim).
Consequently, J, * * ComMym = 0(zyntr (COMym, 1™, Comym).
Proof. By Lemma 3.4, we have X = zn+1 (Bim o™ B1m)y if and only if T8, m (X)) Tg, ,, (V) @aNd XB1my. ]
We end this section with a few results on a conjecture of Pin. It was conjectured in [13] that if u, v € P', then
Ou() € Oy (1) (in other words, =, (w) € =, (w)) if and only if u is extracted from v. The following two results
give counterexamples.

Theorem 5.5 (Blanchet-Sadri [5]). If m > 1, then

= 0 cm+1(geqymt = Ocicoymticee (1) =J1* In
Proof. By Theorem 5.1, if yi is the sequence of congruences defined by yi = ~o,q and yis1 = = ¢z (i, @), then the
equality yi = = i+1(z.zi+1 (@) holds. Also, we have the equality ~ @ amy = = () (a(m), @) by Theorem 5.1. The
result then follows from Theorem 3.3 with y = w. |

Theorem 5.6. If m> 1, then
Ocmt1zeaym+t (1) € O ccecceym+r (1).

Proof. The equality 0 m+1zceym+1 (1) = O¢(ceym+1ece (1) holds by Theorem 5.5. But the latter is included in

0 ceaymricyz (1) SiNCE =y (ymr1g2 () S =eeymticee (@) by Theorem 3.2. We have (c(c€)™™ €)* = Uy and
(ccecce)™ ! = Ugm,1)- The result then follows from the inclusion =uima) (@) = am) € agm = =y m (w) from
[6]. |

Theorem 5.6 answers a statement at the end of Section 3 of [13]. But Pin's conjecture was shown to be true in
an important special case.



Theorem 5.7 (Blanchet-Sadri [6]). Let P" be the set of trees u;; where m is a tuple of positive integers either of
length 1 or of the form (my,...,m, 1) for some my,...,my. If u, v € P", then Oy(1) < O(1) if and only if u is
extracted from v.
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