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Abstract: 

In this correspondence, we show that the problem of computing the complex roots of unity is not as simple as it 

seems at first. In particular, the formulas given in a standard programmer's reference book (Knuth, 

Seminumerical Algorithms, 1981) are shown to be numerically unstable, giving unacceptably large error for 

moderate sized sequences. We give alternative formulas, which we show to be superior both by analysis and 

experiment. 

 

Article: 

INTRODUCTION 

In most efficient implementations of the fast Fourier transform (FFT), tables of the powers of the roots of unity 

are precomputed so that expensive trigonometric function evaluation can be avoided when computing the 

transform. In this correspondence, we consider the problem of precomputing these values. For a good survey of 

issues arising in computing the FFT, the reader may refer to the excellent paper by Duhamel and Vetterli [1]. In 

particular, we show that the method given in a standard reference text [2] is numerically unstable, and can 

produce very inaccurate values for moderately sized sequences. More importantly, we present an alternative 

way of calculating the roots of unity, present analysis that shows its superiority over the previous method, and 

finally give empirical results showing that the benefits of the new method are indeed substantial. In addition, 

while computation time is not a big issue in the computations that we describe, our methods are computationally 

simpler than the previous method, so there seems to be no reason to choose the previous method over our new 

method. 

 

We consider the problem of computing the complex roots of unity   
  = e

2πik/n
 for k = 0, 1, ···, n - 1, where n is a 

power of two. It is well known that if the set of values Wr =       
 
are known for r = 0, 1, ··· , log2 n, then the 

entire table of   
  values can be computed by a very simple linear time algorithm (only a single complex 

multiplication is required per table entry). The accuracy of the   
  values depends entirely on the accuracy of 

the Wr values, so we concentrate on computing the Wr values. 

 

We can consider computing the real and imaginary parts of Wr = cr + isr separately, where 

 
In a standard programmer's reference book [2, p. 2921, Knuth gives the following recurrence equations for 

computing these sequences: 

 
While the equation for   r is stable, it should be obvious that since   r approaches one rather quickly, the equation 

for   r involves the subtraction of almost equal quantities and thus is very unstable. 
 

In this correspondence, we propose the following set of equations: 
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We will show by both analysis and experiment that the equations in (3) have much better error properties than 

the equations in (2). Furthermore, notice that in the equations in (3) a common factor has been found for both 

equations, meaning that only one square root needs to be taken when evaluating both equations. Therefore, not 

only are the new equations better in terms of error propagation, but they are also computationally simpler. 

 

II. ANALYSIS 

In this section, we will show that the formulas in equation (3) are correct mathematical representations of the 

series defined in equation (1), and that the formulas in equation (3) are stable. 

 

'The correctness of the formulas in (3) is obvious from the standard double-angle identities of trigonometry (see, 

for example, [31), namely 

 
Thus, it is obvious that if the recurrences could be computed exactly, then they would give the precise answers 

desired. Unfortunately, since most computers use binary floating point numbers for computations, and since the 

numbers we are computing are irrational, exact computation is impossible. 

 

In analyzing the stability of the recurrence equations in this correspondence, we will use u to represent machine 

precision. We assume that all computations are performed to this precision. In other words, if x and y represent 

binary floating point numbers, then adding these numbers produces an answer (1 +δ)(x+y), where δ represents 

the relative error introduced by rounding the result to fixed, finite precision, and we know that |δ| ≤ u. 

 

As an example of the stability analysis, as well as to demonstrate why Knuth's recurrence for s, is unstable, we 

will analyze the second recurrence in (2). In particular, we consider 

 
Let δc represent the relative error in the approximation   r (so   r = (1 + δc)cr), let δ1 represent the relative error 

introduced in the subtraction, and let δ2 represent the relative error introduced by talcing the square root. We 

will assume that dividing by two can be done exactly, since this is just a decrement of the floating point 

exponent. 

 

With these error terms, we can write the value that actually gets computed as 

 
If we were proving stability results about this equation, we would next go on to bound the relative error of the 

above expression. However, since for this equation we only wish to see that the recurrence is unstable, all that is 

required is examining the first term in the expression above. From our definitions (see (1)), it fairly easy to see 

that 
 

    
 ≈ 

   

   
  , so the error grows rapidly with r. Thus, Knuth's method for computing the sr series is unstable. 

 

We prove that our equations are stable in proof of the following theorem. 

 

Theorem1: If the formulas given in (3) are computed using floating point binary with precision u ≤ 
 

  
, and if we 

define the error terms δc,r and δs,r by 

 



Note: At first glance, it appears that the error bound for δs,r is unacceptable, since it grows exponentially. 

However, since u is typically very small, the geometric ratio of this sequence is actually very close to one. For 

example, in the most common form of single precision representation, the mantissa has 24 bits, so we can use u 

= 2
-23

. Even when r = 20 (corresponding to an WI' of over a million elements), the bound in the Theorem 1 says 

that |δs,20| < 2
-15

. In fact, with a more rigorous proof, it can be proved that for u = 2
-23

, the error is bounded by 

|δs,20| < 2
-17

. Experimental results (see Section III) show that in fact the error may be much smaller than shown 

by this upper bound. 

 

Proof: As above, we will make explicit the rounding errors introduced from computation using finite precision 

numbers. Consider the computation of   r+1 in (3). As before, we make the realistic assumption that 

multiplication and division by two can be performed exactly, so these computations add no error to the final 

result. Thus, the computation of   r+1  is represented by 

 
where δ1 represents the relative error caused by the addition, δ2 represents the relative error caused by the 

square root, and δc,r represents the relative error of the approximation   r. Obviously, if we can find a positive 

value   such that 

 
Then we have proved the bound |δc,r+1| ≤  . 

 

We will now introduce an easily verified fact that will be helpful in proving error bounds. 

 

Fact 1: Let α1 and α2 be small constants, and define αmax = max{|α1|, |α2|}. Then 

 
Returning to the analysis of the relative error introduced in the computation of   r+1, using Fact 1 from above, 

and the fact that 
  

    
 < 

 

 
, we can clearly bound the relative error by 

 

Since u ≤ 
 

  
, a little manipulation yields 

 
Note that this is a somewhat looser bound than can obtained, but it will suffice for our purposes. An even tighter 

lower bound can be trivially obtained, giving our intermediate result that 

 
From this equation, it can easily be shown by induction that for all r ≥ 1 

 
which completes the proof of the first error bound in the theorem statement. 

 

To prove the error bound for the   r sequence, first notice that the denominator of the recurrence for   r in (3) will 

have relative error δc,r+1, Since the denominator is only a factor of two different from the value   r+1. In other 

words, we know that 

 



Now, we introduce another easily verifies fact to simplify analysis. 

 

Fact 2: if |δ| ≤ 
 

 
, then 

 

 
Using Fact 2 in conjunction with the error bound that we have already proved for δc,r+1, we get 

 
In other words 

 
or (solving this recurrence) 

 
which completes the proof of the second error bound.  

 

III. EMPIRICAL RESULTS 

In this section, we report on results obtained in some simple implementations of both methods of computing 

roots of unity. The implementations calculated approximate cr and sr series' using single precision floating point 

operations. To compute the error, we compared these values with the double precision values computed by the 

library functions sin(x) and cos (x). The formulas for cr given by Knuth and in this correspondence are 

essentially the same, so the two implementations give identical results and have very small errors. On the other 

hand, the computed sr values show some significant differences, and the results of our experiments are shown in 

Table I. 

 

As can be seen from the table, the error in computing the sr series via the method found in Knuth's book has 

significant errors around the tenth term. In fact, at the thirteenth term, the relative error of Knuth's method is 

approximately five orders of magnitude worse than the new method presented in this paper. These experiments 

show that the instability of Knuth's method is a very real problem, but one that can be overcome by using (3). 

 

 

 



IV. CONCLUSION 

We have demonstrated that the method for computing roots of unity given in a standard programmer's reference 

guide [2] is unstable. The instability is apparent from the analysis, and experimental evidence shows that the 

instability is indeed a problem for realistically sized data sets. 

 

More importantly, in (3) we have given alternative formulas for the computation of the roots of unity. We have 

shown both by analysis and experiment that the new equations are indeed stable, and provide substantially more 

accurate results than the previous formulas. In addition, although the complexity of the equations is not a great 

issue for this problem, the new formulas are computationally simpler than the previous ones. Given these 

results, it seems that the formulas in (3) are the only reasonable way of computing the complex roots of unity. 
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