
Stable Computation of the Complex Roots of Unity

By: Stephen R. Tate

S. R. Tate. “Stable Computation of the Complex Roots of Unity”, IEEE Transactions on Signal Processing, Vol.

43, No. 7, 1995, pp. 1709–1711.

(c) 1995 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other users, including reprinting/ republishing this material for advertising or promotional purposes,

creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted

components of this work in other works.

Abstract:

In this correspondence, we show that the problem of computing the complex roots of unity is not as simple as it

seems at first. In particular, the formulas given in a standard programmer's reference book (Knuth,

Seminumerical Algorithms, 1981) are shown to be numerically unstable, giving unacceptably large error for

moderate sized sequences. We give alternative formulas, which we show to be superior both by analysis and

experiment.

Article:

INTRODUCTION

In most efficient implementations of the fast Fourier transform (FFT), tables of the powers of the roots of unity

are precomputed so that expensive trigonometric function evaluation can be avoided when computing the

transform. In this correspondence, we consider the problem of precomputing these values. For a good survey of

issues arising in computing the FFT, the reader may refer to the excellent paper by Duhamel and Vetterli [1]. In

particular, we show that the method given in a standard reference text [2] is numerically unstable, and can

produce very inaccurate values for moderately sized sequences. More importantly, we present an alternative

way of calculating the roots of unity, present analysis that shows its superiority over the previous method, and

finally give empirical results showing that the benefits of the new method are indeed substantial. In addition,

while computation time is not a big issue in the computations that we describe, our methods are computationally

simpler than the previous method, so there seems to be no reason to choose the previous method over our new

method.

We consider the problem of computing the complex roots of unity
 = e

2πik/n
 for k = 0, 1, ···, n - 1, where n is a

power of two. It is well known that if the set of values Wr =

are known for r = 0, 1, ··· , log2 n, then the

entire table of
 values can be computed by a very simple linear time algorithm (only a single complex

multiplication is required per table entry). The accuracy of the
 values depends entirely on the accuracy of

the Wr values, so we concentrate on computing the Wr values.

We can consider computing the real and imaginary parts of Wr = cr + isr separately, where

In a standard programmer's reference book [2, p. 2921, Knuth gives the following recurrence equations for

computing these sequences:

While the equation for r is stable, it should be obvious that since r approaches one rather quickly, the equation

for r involves the subtraction of almost equal quantities and thus is very unstable.

In this correspondence, we propose the following set of equations:

http://libres.uncg.edu/ir/uncg/clist.aspx?id=110

We will show by both analysis and experiment that the equations in (3) have much better error properties than

the equations in (2). Furthermore, notice that in the equations in (3) a common factor has been found for both

equations, meaning that only one square root needs to be taken when evaluating both equations. Therefore, not

only are the new equations better in terms of error propagation, but they are also computationally simpler.

II. ANALYSIS

In this section, we will show that the formulas in equation (3) are correct mathematical representations of the

series defined in equation (1), and that the formulas in equation (3) are stable.

'The correctness of the formulas in (3) is obvious from the standard double-angle identities of trigonometry (see,

for example, [31), namely

Thus, it is obvious that if the recurrences could be computed exactly, then they would give the precise answers

desired. Unfortunately, since most computers use binary floating point numbers for computations, and since the

numbers we are computing are irrational, exact computation is impossible.

In analyzing the stability of the recurrence equations in this correspondence, we will use u to represent machine

precision. We assume that all computations are performed to this precision. In other words, if x and y represent

binary floating point numbers, then adding these numbers produces an answer (1 +δ)(x+y), where δ represents

the relative error introduced by rounding the result to fixed, finite precision, and we know that |δ| ≤ u.

As an example of the stability analysis, as well as to demonstrate why Knuth's recurrence for s, is unstable, we

will analyze the second recurrence in (2). In particular, we consider

Let δc represent the relative error in the approximation r (so r = (1 + δc)cr), let δ1 represent the relative error

introduced in the subtraction, and let δ2 represent the relative error introduced by talcing the square root. We

will assume that dividing by two can be done exactly, since this is just a decrement of the floating point

exponent.

With these error terms, we can write the value that actually gets computed as

If we were proving stability results about this equation, we would next go on to bound the relative error of the

above expression. However, since for this equation we only wish to see that the recurrence is unstable, all that is

required is examining the first term in the expression above. From our definitions (see (1)), it fairly easy to see

that

 ≈

 , so the error grows rapidly with r. Thus, Knuth's method for computing the sr series is unstable.

We prove that our equations are stable in proof of the following theorem.

Theorem1: If the formulas given in (3) are computed using floating point binary with precision u ≤

, and if we

define the error terms δc,r and δs,r by

Note: At first glance, it appears that the error bound for δs,r is unacceptable, since it grows exponentially.

However, since u is typically very small, the geometric ratio of this sequence is actually very close to one. For

example, in the most common form of single precision representation, the mantissa has 24 bits, so we can use u

= 2
-23

. Even when r = 20 (corresponding to an WI' of over a million elements), the bound in the Theorem 1 says

that |δs,20| < 2
-15

. In fact, with a more rigorous proof, it can be proved that for u = 2
-23

, the error is bounded by

|δs,20| < 2
-17

. Experimental results (see Section III) show that in fact the error may be much smaller than shown

by this upper bound.

Proof: As above, we will make explicit the rounding errors introduced from computation using finite precision

numbers. Consider the computation of r+1 in (3). As before, we make the realistic assumption that

multiplication and division by two can be performed exactly, so these computations add no error to the final

result. Thus, the computation of r+1 is represented by

where δ1 represents the relative error caused by the addition, δ2 represents the relative error caused by the

square root, and δc,r represents the relative error of the approximation r. Obviously, if we can find a positive

value such that

Then we have proved the bound |δc,r+1| ≤ .

We will now introduce an easily verified fact that will be helpful in proving error bounds.

Fact 1: Let α1 and α2 be small constants, and define αmax = max{|α1|, |α2|}. Then

Returning to the analysis of the relative error introduced in the computation of r+1, using Fact 1 from above,

and the fact that

 <

, we can clearly bound the relative error by

Since u ≤

, a little manipulation yields

Note that this is a somewhat looser bound than can obtained, but it will suffice for our purposes. An even tighter

lower bound can be trivially obtained, giving our intermediate result that

From this equation, it can easily be shown by induction that for all r ≥ 1

which completes the proof of the first error bound in the theorem statement.

To prove the error bound for the r sequence, first notice that the denominator of the recurrence for r in (3) will

have relative error δc,r+1, Since the denominator is only a factor of two different from the value r+1. In other

words, we know that

Now, we introduce another easily verifies fact to simplify analysis.

Fact 2: if |δ| ≤

, then

Using Fact 2 in conjunction with the error bound that we have already proved for δc,r+1, we get

In other words

or (solving this recurrence)

which completes the proof of the second error bound.

III. EMPIRICAL RESULTS

In this section, we report on results obtained in some simple implementations of both methods of computing

roots of unity. The implementations calculated approximate cr and sr series' using single precision floating point

operations. To compute the error, we compared these values with the double precision values computed by the

library functions sin(x) and cos (x). The formulas for cr given by Knuth and in this correspondence are

essentially the same, so the two implementations give identical results and have very small errors. On the other

hand, the computed sr values show some significant differences, and the results of our experiments are shown in

Table I.

As can be seen from the table, the error in computing the sr series via the method found in Knuth's book has

significant errors around the tenth term. In fact, at the thirteenth term, the relative error of Knuth's method is

approximately five orders of magnitude worse than the new method presented in this paper. These experiments

show that the instability of Knuth's method is a very real problem, but one that can be overcome by using (3).

IV. CONCLUSION

We have demonstrated that the method for computing roots of unity given in a standard programmer's reference

guide [2] is unstable. The instability is apparent from the analysis, and experimental evidence shows that the

instability is indeed a problem for realistically sized data sets.

More importantly, in (3) we have given alternative formulas for the computation of the roots of unity. We have

shown both by analysis and experiment that the new equations are indeed stable, and provide substantially more

accurate results than the previous formulas. In addition, although the complexity of the equations is not a great

issue for this problem, the new formulas are computationally simpler than the previous ones. Given these

results, it seems that the formulas in (3) are the only reasonable way of computing the complex roots of unity.

REFERENCES

[1] P. Duhamel and M. Vetterli, "Fast Fourier transforms: A tutorial review and a state of the art," Signal

Processing, vol. 19, pp. 259-299,1990.

[2] D. E. Knuth, Seminumerical Algorithms, vol. 2 of The Art of Computer Programming. Reading, MA:

Addison-Wesley, 1981,2nd ed.

[3] W. H. Beyer, Ed., CRC Standard Mathematical Tables. Boca Raton, FL: CRC Press, Inc., 1981, 26th ed.

