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Abstract: 

Statistical process control (SPC) is widely used in process industries to monitor variations in process attributes. 

Typically, automatic devices capture a multitude of measurements on process and product characteristics every 

few seconds. Operators and engineers commonly monitor only a small subset of these. Multivariate SPC has 

been proposed to fully utilize the available data, however, interpretation of multivariate information is often too 

complex for most line operators. This paper describes the design and implementation of a real-time multivariate 

process control system that features a graphical user interface (GUI) and provides useful information for both 

line operators and engineers. The information system described in this paper should provide large-scale 

manufacturers with better access to information for identifying opportunities in continuing to improve processes 

performance and business competitiveness.  

Keywords: Multivariate statistical process control; Real-time system; Continuous processes; Graphical user 

interface 

 

Article: 

1. Introduction 

The last decade has produced dramatic changes in the way businesses operate and more changes are anticipated 

at the beginning of the 21st century. To meet the challenges of the new business environment, organizations 

have embarked on a number of initiatives, such as just-in-time, Six Sigma, enterprise resource planning, supply 

chain management, and e-commerce. Information technology (IT) is a critical component in the success of these 

and other initiatives by providing the means to gather data, provide analytical support and deliver information 

where it is needed in a timely manner. Successful integration of IT with core business operations is critical and 

can be a source of competitive advantage. While operations provide products and services, IT provides the 

information needed to operate, control, and improve processes, products, services, and business performance. 

 

Many organizations have achieved significant improvements in business performance by utilizing an approach 

to quality, such as Six Sigma [1]. Popularized by Motorola and General Electric, Six Sigma is a systematic 

approach to data collection and statistical analysis to pinpoint sources of errors and ways of eliminating them. 

Six Sigma is an organization wide effort involves customers, operations personnel, engineers, management, and 

others to identify ways to add value for both the company and its customers. Manufacturing organizations, in 

particular, have utilized statistical process control (SPC) as a formal way to monitor and control process and 

product characteristics. SPC is often applied by constructing separate control charts of product quality 

characteristics or operational process characteristics that are used as independent indicators of process 

performance. An unusual pattern in one of these charts signals an assignable cause of variation. This approach 

is deficient since the observations of multiple process, or product, characteristics are assumed unrelated. In 

addition, the reliance on a small set of “favorite” variables ignores numerous process characteristics available 

from on-line data collection devices and does not fully utilize the available information. Multivariate methods 

are alternatives that incorporate the interdependence and volume of process characteristics. Until recent years, 

the application of multivariate methods for control charts were restricted and the results of multivariate methods 

suffered from the lack of effective presentation to allow for easy interpretation by operators and process 
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engineers. Implementation of multivariate methods should provide operators with a mechanism for rapid 

identification of errors and suggest their causes to enable informed corrective action. Further, information 

systems to analyze multivariate data and deliver information about process characteristics are now more widely 

available. 

 

This paper describes the design and development of a prototype for a real-time process control system based on 

multivariate SPC. Multivariate methods, specifically principal component analysis (PCA), are used to develop 

models of the steady-state operations of a manufacturing process. These models are used as a reference to 

monitor process performance and product characteristics. The system operates in real-time using data that is 

collected directly from the manufacturing process as it operates. This process data is analyzed using 

multivariate methods with reference to models of steady-state operation of the process. Operators and process 

engineers are informed of error conditions in the process and are presented with contribution plots that identify 

components of the manufacturing process making significant contribution to the observed variance in the 

process. The system presents this information using a graphical user interface (GUI) that was designed and 

developed to allow operators to interact with the system, and easily comprehend the results of this complex 

analysis for making decisions about the manufacturing process. 

 

In the following sections, we first describe the quality control environment and the requirements of systems 

support for decision-making in this context. We outline the characteristics of the process control problem and 

use them to extract a set of desirable characteristics of process control systems. This provides a framework for 

the application of the real time process control system outlined in this paper. The review of the literature 

focuses on SPC and multivariate SPC, and investigates the application of some advanced methods to process 

control problems, including expert systems and artificial neural networks. Some background information for the 

application of our real-time information system is provided preceding the presentation of the model for our 

system with a detailed description of the components of the model, their implementation and role in providing 

an effective information system for process control. The paper concludes with a summary and some limitations 

and directions for future research. 

 

2. Quality control environment 

Quality control problems occur when the quality of the final product is not within established acceptable 

parameters defined for normal operation. In these situations, decisions need to be made regarding the 

identification of the problem, discovery of the causes of the problem and the selection of a requisite course of 

action to solve the problem. Decision-making in process control problem involves the following activities: 

 

(i) Accurate detection of errors in the process. 

 

(ii) Identification of possible causes of errors. 

 

(iii) Analytical support for selection of a course of action to correct errors. 

 

(iv) Adherence to the temporal bounds of the problem context. 

 

Data from modern manufacturing environments contain many complex relationships due to the multiple 

processes that raw materials are subjected to in creating the final product. This complexity is compounded by 

the fact that IT used in manufacturing process industries allow for multiple data points to be collected and 

stored at frequent intervals in manufacturing data repositories creating large volumes of data. To be effective, 

any set of models that improves the understanding of the problem domain must be sophisticated and realistic 

enough to take into account the complex relationships within the data and incorporate them in the detection of 

errors in the process and the identification of their possible causes. Information systems that incorporate these 

models must provide the user with analytical support to explore the alternatives and their respective outcomes. 

If errors are identified in the manufacturing processes, they need to be corrected as soon as possible to avoid 

waste and consequent financial losses. There is a practical temporal bound to decision-making regarding 



potential courses of action to take when errors occur in a production line. Typically, losses in time lead to 

wasted products, which increase expenses. An ideal system would incorporate early warning mechanisms to 

warn operators of imminent failures in the system so that action could be taken to pre-empt such situations. 

Systems support for process control requires the following: 

 

(i) Use sophisticated models that accurately model the environment. 

 

(ii) Detect errors in the process. 

 

(iii) Provide warning of failures. 

 

(iv) Provide understandable presentation of results and outcomes. 

 

(v) Work within the temporal bounds of the problem domain. 

 

The temporal bound of the problem domain is a practical consideration in manufacturing processes control. A 

real-time system can be viewed as a conventional system with temporal bounds, the violations of which may 

invalidate operational consistency requirements. Real-time systems require more speed, interrupt scheduling, 

and prioritization as compared to conventional processes. This research uses a realistic definition of the 

temporal bound for the real-time requirement of the system noting that a stricter definition would require 

virtually instantaneous response times, which may not be required. This requirement is pragmatic in the context 

of manufacturing environments where faster response times can directly translate to smaller quantities of 

wasted, out of specification, products and less waste for the company. Real-time control systems have been a 

challenging and potentially useful area of research in process control. 

 

Statistical process control tries to achieve quality by examining product characteristics and the association of 

these measures to the process characteristics. The intent is to identify sources of variation in the process for 

conformance of the final product to established standards of quality. While SPC is widely used as a tool for 

monitoring variation in process characteristics, the typical application often falls short of its potential. Operating 

characteristics that are known, or believed, to have a significant impact on quality are chosen from various 

stages of the manufacturing process. This allows for a manageable subset of the process data to be viewed with 

control charts. The selection of this subset is done as part of the design of the quality control policy using expert 

opinion of process engineers and research and technology groups in the organization [2]. SPC is often applied 

by constructing separate control charts for each of the “favorite” variables. These charts are used as independent 

indicators of process performance. An unusual pattern in one of these charts may be taken as a signal of a 

special, or assignable, cause of variation. SPC may be implemented by monitoring either product quality 

characteristics or operational process characteristics. In either case, the presence of special causes of variability 

is based on the information supplied by a small subset of the available data. 

 

This traditional approach to SPC is deficient for at least two reasons. First, the reliance on a small 

subset of all variables ignores the multitude of process information that is available from the online data 

collection devices [3]. Second, observations of multiple process or product characteristics are assumed to be 

unrelated. Almost any measure of product quality is dependent on a sequence of preceding processes. Hence, 

measures of process characteristics are often correlated [4]. The manufacturing process is a continuous process 

that performs a series of sequential transformations to inputs to produce the final output. Outputs from one part 

of the production process become inputs to the next. At any intermediate stage of the process, the properties of 

the intermediate product are the net result of the transformations that are applied to it. This suggests a high level 

of interrelationships in such systems. These relationships play an integral part in decision-making activity that 

determines causes of errors and explores alternatives for their correction. 

 

Multivariate methods take the interdependence and large volume of process characteristics into consideration. 

Multivariate SPC can be traced to Hotelling [5] and his T
2
 procedure. Jackson [6–9] and Jackson and Morris 



[10] extend Hotelling’s procedure using principal components. Other contributors to the development of 

multivariate SPC methods include Alt [11–13] and Montgomery and Wadsworth [14]. Until recent years, 

multivariate methods for control charts were restricted to applications where the multivariate space was neither 

too large nor ill conditioned. In addition, most operators and engineers often view multivariate analysis as too 

complex for practical use. There has been significant progress on these issues in recent years. Multivariate 

control charts based on PCA and other methods have been shown to be useful for handling large, ill-conditioned 

data sets [15–19]. The results of PCA, however, are not very intuitive and do not always lend themselves to 

easy interpretation. To overcome this limitation, contribution plots are used for detecting the variable(s) that 

causes an out-of-control signal [20,21]. Kourti and McGregor [20] suggest a method that uses contribution plots 

to identify each variable’s contribution to an out-of-control signal. “This approach is particularly applicable to 

large and ill-conditioned data sets” [22, p. 141]. PCA is well established as a useful multivariate model when, as 

in this environment, variables are auto-correlated due to the nature of the process and missing data points are 

often encountered as a result of the large number of variables and the unavoidable failure of data collection 

devices [4]. 

 

On-line instrumentation to capture process data and computer networks to assimilate the data into a database of 

process measurements are a preliminary requirement for multivariate SPC. Large modern manufacturing 

environments typically have these capabilities, whether for within the manufacturing environment or as part of 

an enterprise system. This is an important contribution of IT to process control. Process data is collected and 

delivered to sites that can assimilate all the information and update the control charts. Such an approach, that 

combines statistical and engineering process control, can provide an important tool for quality improvement 

[23]. IT can support the rapid identification of error sources using database query and retrieval techniques. Such 

techniques, however, involve a time delay for relevant data to be retrieved from the database, analyzed and 

processed for display. This delay is compounded when multiple sets of control limits must be maintained and 

multiple charts must be updated simultaneously. The inability to manage large amounts of data is often an 

obstacle to real-time updates of multiple control charts. More informative and intuitive graphical interfaces are 

needed to make the information presented by the control charts understandable for all operators and engineers. 

Multivariate SPC cannot become a practical tool for operators or process engineers until the results of methods 

such as PCA and contribution plots can be effectively presented and easily interpreted by operators and process 

engineers [4]. Specifically, the implementation of these procedures should provide operators with rapid 

identification of errors and which variable(s) caused an out-of-control signal [22, p. 141; 24, p. 126]. 

 

Object-oriented methods and simulation techniques have been evaluated by the process control researchers as 

alternative methods for effective process control. Object-oriented methods provide an effective approach for 

modeling the manufacturing process and incorporating the relationships between the entities of the system. The 

generated models are simpler and help the understanding, and hence the analysis of the system. Simulation 

methods recognize that process control systems are event-triggered systems that model and explain the 

relationships in the process and use these models to predict future behavior. Simulation models are typically 

theory-based and may not reflect real operating conditions. Thus, many critical nuances of the implementation 

of the manufacturing process may not be incorporated in the model [25]. Both object-oriented and simulation 

methods have considerable limitations in analyzing the massive volume of complex data inherent in 

manufacturing process data [26,27]. More effective methods are needed to analyze the large amounts of data 

from complex and continuous processes in order to determine the steps required to keep a process stable and to 

bring it back to stability when errors occur. 

 

Expert systems and neural networks are techniques from the artificial intelligence area that have been applied to 

provide support for process control. Expert systems formalize the knowledge of domain experts and make this 

available to non-experts [28]. Expert systems are used to model the system and provide excellent analytical 

support. Their strength lies in their ability to explain the alternatives and decision choices. Models generated by 

expert system are usually rule-based and do not capture the nuances of the manufacturing system. Expert 

systems, by themselves, do not make effective process control systems [29]. Neural networks are very effective 

in developing models for non-linear systems that require the ability to handle noisy data. They are useful for 



manufacturing process data that typically contains noisy and missing data due to intermittent failures of 

collection devices. Neural networks can be used to provide effective process control with on-line, real-time 

data. The prediction capabilities of neural networks can be used to provide early warning of failures in the 

outputs of the system. Neural networks can be trained to build accurate, sophisticated, and dynamic models of 

the system. They are commonly used as embedded intelligent components for control loops of individual pieces 

of machinery and are rarely used for modeling the entire manufacturing process [30]. Neural Networks are 

typically a “black-box” approach and provide little support to help the user understand the process and fare 

poorly in providing analytical support and understandable representation of the system. 

 

3. Model and implementation 

The site for the development of the model is a large automated continuous manufacturing facility where 

automatic devices collect data on hundreds of variables across the product line every few seconds. Previously, 

the use of this data to monitor process characteristics consisted primarily of operators and engineers periodically 

checking a few “favorite” variables. Even though a database could capture selected data, query and retrieval 

involve a time delay for relevant data to be retrieved, processed and displayed. The size of the database and 

methods of access affect this time delay. The delay is further compounded when multiple control charts must be 

updated simultaneously and multiple charts must be examined to make decisions about process and product 

characteristics. A process control system based on multivariate analysis overcomes many of these inadequacies. 

PCA is used to reduce a large number of variables, representing process characteristics, to fewer dimensions. 

Contribution plots and a graphical user interface are used to provide operators and process engineers with 

multivariate process control results that are easily accessible and informative. The system as implemented in a 

single plant location has proven to be useful to production personnel for monitoring and controlling process 

operations. In the following section, we describe the development and implementation of the model for the on-

line process control system. The model is based on an environment and conditions that typify many modern, 

large-scale manufacturing facilities with continuous processes. 

 

The model for the system developed consists of three main components: 

 

1. Data collection and storage. 

 

2. Data analysis. 

 

3. Graphical user interface. 

 

A description of the manufacturing environment and overview of the model is included in the summary of the 

first component. The method of multivariate analysis is described in the data analysis component, and the 

features of graphical user interface follow. 

 

3.1. Data collection and storage 

The model assumes the existence of automated data collection devices that obtain data about process and 

product characteristics from the manufacturing operations at regular time intervals and deposit them into some 

form of a database for query and retrieval. Fig. 1 provides an illustration of the model developed. Data collected 

from the manufacturing process is deposited in the operations data log (database). Most modern automated 

manufacturing facilities have similar systems in operation. Typically, this data is used for monitoring process 

outcomes, including SPC control charts, for periodic reporting, and analysis of historical information. 

 

In order to speed access to the data for the process control system, a direct link to the data capturing devices is 

used. A time slice of data is routed simultaneously to the data analysis component of the system and to the data 

log. The ability to bypass the database retrieval for data access reduces delays in data acquisition through query 

and provides real-time input to the data analysis component. The input of data on n variables at time t provides 

a snapshot of the entire system and is represented in Fig. 1 as a row matrix of size (1 × n), where n is the 

number of process variables captured at t = 1. 



 
3.2. Data analysis component 

The data analysis component uses data from two sources: historical data representing the steady-state 

characteristics of process variables under normal conditions; and real-time data used as input for judging current 

operating characteristics. Interfaces with various data collection equipment send current snapshots of the 

process at the same time the data is sent to the operations data log. Analysis of data, updates to process control 

charts, and graphical displays are performed in this component. A buffer of the most recent snapshots of raw 

data is maintained in memory, rather than in storage, to allow for rapid updates and calculations. This design 

criterion imposes high memory requirements on the system, but the size of the buffer maintained can be 

manipulated based on available memory. The prototype was developed using a 60–120 minute fixed size, 

circular buffer. Thus the prototype system provided a history on the last couple of hours of operation of the 

process. The raw data is maintained to allow the users to view recent trends in process data (discussed in the 

GUI section below). 

 

The raw process data is typically acquired from different parts of the manufacturing process and represent a 

variety of information about the process, such as temperature, power output, etc., for which the units of 

measurement vary greatly. Therefore, the data should be normalized prior to further analysis. If the data 

available for analysis consists of n observations of p variables, the raw data from the process is represented in 

Fig. 1 as a matrix of n × p values. The values of means and variance of the p variables used to normalize the 

real-time data were obtained from the steady-state operation of the process. This requires that two more vectors 

of the means and variances of the steady-state data must be maintained in current memory as part of the 

initialization of the system. 

 

The creation of a model of the steady-state process is central to this system. The selection of data for developing 

steady-state characteristics is critical, as this forms the basis for future decisions on product quality. Data should 

be collected from times when product quality is acceptable. Data from multiple production runs is used to offset 

the variability attributed to a particular day. This data set is sufficiently large to capture typical process 

conditions and be statistically valid. Validation of data is achieved by comparisons with parameters for 

operating characteristics when acceptable product was produced. The goal is that this nominal data set should 

reflect the set of acceptable conditions for production. 



To eliminate the effects of different measurement scales, the variables in the nominal data set are also 

normalized in the same way as described above for the real-time data. PCA is used with the resulting 

normalized nominal data set to obtain principal component scores. The principal component scores calculated 

from the nominal data matrix are identified in this paper, and shown in Fig. 1, as the process model matrix. A 

subset of all principal components is chosen to create the process model matrix. This subset is chosen based on 

the percentage of variability explained by successive principal components. The order of extraction is based on 

their ability to explain variability. The relative importance of the ith principal component is measured by the 

variance of that principal component as a ratio to the sum of the variance for all principal components. The first 

principal component extracted explains the largest proportion of variance, the second explains the next largest 

proportion, etc. Since the proportion of variance explained by successive principal components decreases, users 

may extract principal components until a certain proportion of explained variability is achieved. In the prototype 

system, principal components were extracted until at least 95% of the variability in the data was explained. 

Various rules have been developed for deciding when to stop extracting principal components. To provide 

flexibility, the system allows users to specify the desired proportion. 

 

The next step is to use the normalized real-time data and the steady-state model of the process, to generate 

scores for the overall performance of the system. As shown in Fig. 1, the normalized real-time data is multiplied 

by the process model matrix to produce a vector of size equal to the number of principal components. In the 

traditional approach to multivariate SPC, the elements of this vector can be plotted against each other and 

compared against upper control limits. For two principal components, this creates an elliptical control region 

such that the points on the ellipse correspond to upper control limits [21]. Any point that falls within the ellipse 

represents an observation within the control limits. Points outside the control limits warrant further 

investigation. These may be investigated though contribution plots on principal component scores. Miller et al. 

[31] and MacGregor et al. [32] suggest calculating the contribution of each variable (in a principal component) 

to the principal component score. These variable contributions are plotted to provide a diagnostic tool to 

identify variables contributing to an out-of-control point [33]. This approach was used to develop the prototype 

system that features a graphical user interface and diagnostic tools. 

 

Modern manufacturing facilities typically produce multiple products, each of which often differ significantly in 

both process and product characteristics. Many also have automated changeovers where controlling equipment 

change parameters of the manufacturing process and raw materials, to effect corresponding changes in product 

characteristics. In such cases, the measurements taken on a steady-state process significantly differ from one 

product to another. For such multi-grade product lines, data must be collected for each product and a steady-

state model must be developed for each grade of the product. 

 

3.3. Graphical user interface 

This section describes a prototype designed and implemented at a large, automated, continuous, manufacturing 

facility. Some graphical user interfaces developed are shown with the information made available to users of the 

system. To develop the model, the entire process was divided into smaller sections and one section was used to 

test the prototype. Preliminary results from this system were encouraging and the model has been expanded to 

include the entire process. Experience indicates that benefits arise from maintaining the ability to analyze small 

sections of the process. Among the benefits are speed and processing efficiency, as well as the ability to 

examine in detail one part of a larger process. In large manufacturing processes, there are often sub-parts that 

have critical importance to the overall product quality and are often the targets of process control efforts. The 

system developed allows users the option of examining such critical sub-parts of the process or the entire 

process. 

 

The initial interface for the user is shown in Fig. 2. The user begins by selecting the part of the process to be 

analyzed; the option “Entire Process,” as discussed above, is also available. Other options shown in Fig. 2 are 

not available until the user selects a process part for analysis. Once this selection is made, the default options for 

that part are loaded. These options include the number of principal components to be used (set here to the 

number of principal components required to explain 95% of variance). This interface requires the user to enter a 



product code for the product currently being produced. This requirement is subject to change as soon as the 

description of the current product code becomes available online. The “Reset Defaults” option selects defaults 

for the number of principal components and the number of data points to keep in current memory. 

 

The menu option “Model Settings,” shown on the interface in Fig. 2, opens another dialogue to allow the user to 

select options for control limits and display settings for the control charts. The default settings that are taken for 

the model include, the number of principal components to be included, the number of variables in the model, 

the maximum allowable standard prediction error, and other settings used to establish limits for data plots, as 

illustrated in Fig. 3. On a cautionary note, the options on this screen assume that the user is familiar with the 

parameters for the control charts and the other charts that are generated. This is intended for use primarily by 

control engineers and should be protected as it may affect the behavior of the system. 

                          
After the user has selected and confirmed the options for the control charts, the “Begin Analysis” control button 

becomes available for selection. This loads the process models and the means and standard deviations of the 

nominal data as benchmarks for analyzing current raw data. All variable names and their descriptions are also 

loaded at this time. The system establishes a real-time link with the data collection equipment and begins to 

collect data. We chose to implement the system with real-time data readings taken every minute. A combination 

of dynamic data exchange (DDE) and object-link embedding (OLE) were used to establish these links, using a 

DDE client and an OLE server. One possible technique is to use some data manipulation software such as 

Matlab
®
 or Excel

®
 to behave as the DDE client to the data collection equipment and as the OLE server for the 

real-time analysis software. Other techniques may be used, such as creating tags that serve as direct DDE clients 

to the data collection software. However, this technique increases the number of active DDE conversations, 

which has an adverse effect on the volume of network traffic and response time. Once the link with the data 

collection equipment is established, real-time monitoring of the manufacturing process may begin. In the 

initialization stages, the data buffers are empty, and the first few readings provide little information for 

detecting trends. 

 

To initialize the system, two options are available: 

 

(a) Use recent data (the previous hour) to establish a baseline 

 

This option allows for the possibility that data could be from a different product. Such data may have process 

characteristics that are different from those expected by the process model. Thus, the model may report that the 

entire last hour of production was out-of-control. Newer incoming data shows better conformance to the model 

and tends to stabilize with the new parameters. 

 

(b) Allow the system to collect a few minutes worth of data 



Approximately 5–10 minutes of data will allow the system to work with data collected for the current product. 

In this case, there is a stabilization period while the system collects enough data to display trends. This period 

coincides with the manufacturing process stabilization that occurs for a product changeover to take place. 

 

In developing the system, the second option was chosen because it corresponds with the characteristics of the 

manufacturing process more closely. There are advantages and disadvantages to each option, as discussed 

above, and one may be preferable in a particular environment. 

 

Based on the techniques described in the data analysis component section above, the incoming data is 

normalized and multiplied by the model scores matrix, which produces a 1 × p row matrix, where p is the 

number of principal components in the model. A data point for each principal component is plotted, as shown in 

Fig. 4. The ellipse depicts the target bounds that are computed based on Hotelling’s T
2
 statistic. One point on 

this “Target Plot” represents 1 minute of the system’s composite performance. As new data is collected, this 

procedure is repeated for new data points and the plot is refreshed. The points on this plot are color-scaled so 

that the most recent plots have the brightest color and the older data points fade into the dark background. This 

is the primary interface presented to the users of this system. The data points are interpreted in the same way as 

the points on a single variable control chart. If the points fall within the ellipse, then the process is behaving 

correctly; otherwise an out-of-control condition has occurred and must be investigated. This is a two-

dimensional plot with one principal component on the horizontal axis and another principal component on the 

vertical axis. The principal components used for the data points and the control limit ellipse, are identified in the 

labels and text boxes below the plot. The user may view plots of different principal components by selecting 

them on the control buttons. 

                       
As shown in Fig. 4, the user may view standard prediction error (SPE) plots and contribution plots. The SPE 

plots are calculated based on the differences between the actual incoming data and the data represented by the 

model. They provide information similar to that presented by the target plots. The SPE plots are presented as a 

line chart that is updated in real-time as new data arrives. By selecting the command button labeled 

“Contributions,” the user is presented with a chart of the contribution of each variable to the variation in the 

process at that time. This interface is shown in Fig. 5. 

 

From Fig. 5, the user gains a perception of the variables that contribute most to the variance. Typically, the 

sequence of the variables on this chart follows the sequence of the variables as they occur in the manufacturing 

process. A high degree of clustering at particular locations may reflect a localized occurrence of variance 

contributors in the process. Ideally, randomly scattered bars with small contribution magnitudes are desirable. 

This would imply that the errors are randomly scattered throughout the process and that there is little localized 

contribution of variance to the entire process. If variables from a certain region show up as high contributors, 

this is a good indication that a particular machine, or machine part, is the main contributor to the variance in the 

process. With a large number of variables, the chart in Fig. 5 may not clearly identify the major contributors to 

the variance. Thus, another option was incorporated to allow the variables to be sorted and displayed in order of 



their contribution to the variance in the process. Selecting the command button “Sort” generates a Pareto-like 

display of the top ten contributors to the variance in the process in descending order. Fig. 6 illustrates this 

display. 

               
 

The chart in Fig.6 also identifies an index number, and command choice, for each variable displayed. Clicking 

on the button for a variable generates a time-ordered chart (or trend plot) for the variable, using the data 

currently available in the system (see Fig. 7). The display in Fig. 6 also allows the user an option to return to the 

chart in Fig. 5, by selecting the button “All Variables”. This would be required once the user has finished 

examining the primary contributors to variance and wants an overall view of the process. The horizontal lines in 

Fig.7 represent the acceptable range for this variable, as determined by the steady-state model. The user may 

return to the Fig. 6 display by selecting the “OK” button. 

 

4. Conclusion 

This series of easy to understand and intuitive displays captures the intricacies of the complex nature of the 

large manufacturing process. The user is presented with an information system that provides an accurate overall 

picture of the entire process with the ability to drill-down into details about individual measurements taken from 

the process. The process of identifying an in control state is as simple as checking to see whether the data point 

that represents the current state of the process is inside the target circle. The user does not have to understand 

any of the complex multivariate control charts and statistical calculations that create the interface. Further, if 

out-of-control signals are observed, the user may examine a series of other displays to identify the source of 

variation. 

 

Initial runs of the prototype on both sub-parts of the process and on the entire process have been very 

encouraging. It was observed that the system was able to identify errors in the process at least as well as the 

existing SPC system that was previously in place. The system overcomes one of the major limitations in the 

existing SPC systems, which is lack of information on probable causes. A feature of an overall contribution 

plot, which was seen as major benefit by both process engineers and line operators, was the overall view of 

contributions of variance in the process. Often, the operators were able to identify possible malfunctions in 

machinery components from the region in which contributions to variance were high. The system, with minor 

modifications, was adopted by the manufacturing facility and is currently in use as one of their process control 

systems. The development and implementation of similar systems for other manufacturing environments should 

also prove beneficial. 
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