
A Pairwise Key Pre-Distribution Scheme for Wireless Sensor Networks

By: Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney, Jonathan Katz, and Aram Khalili

W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili, "A Pairwise Key Pre-Distribution Scheme

for Wireless Sensor Networks," ACM Transactions on Information and System Security, vol. 8, no. 2, pp.

228-258, May 2005.

"© ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on

Information and System Security, 8(2) http://www.acm.org/

Abstract:

To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages

sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed

upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless

sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman

and other public-key based schemes, are not suitable for wireless sensor networks due to the limited

computational abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due

to the large amount of memory this requires when the network size is large.

In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a

new key pre-distribution scheme which substantially improves the resilience of the network compared to

previous schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated

overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than

the threshold, the probability that communications between any additional nodes are compromised is close to

zero. This desirable property lowers the initial payoff of smaller-scale network breaches to an adversary, and

makes it necessary for the adversary to attack a large fraction of the network before it can achieve any

significant gain.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security and

protection; C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Wireless

communication

General Terms: Security, Design, Algorithms

Additional Key Words and Phrases: Wireless sensor networks, Key pre-distribution, Security

Article:

1. INTRODUCTION

Recent advances in electronic and computer technologies have paved the way for the proliferation of wireless

sensor networks (WSNs). Sensor networks usually consist of a large number of ultra-small autonomous devices.

Each device, called a sensor node, is battery powered and equipped with integrated sensors, data processing

capabilities, and short-range radio communications. In typical application scenarios, sensor nodes are spread

randomly over the terrain under scrutiny and collect sensor data. Examples of sensor network projects include

SmartDust [Kahn et al. 1999] and WINS.
1

Sensor networks are being deployed for a wide variety of applications [Akyildiz et al. 2002], including military

sensing and tracking, environment monitoring, patient monitoring and tracking, smart environments, etc. When

sensor networks are deployed in a hostile environment, security becomes extremely important as these networks

are prone to different types of malicious attacks. For example, an adversary can easily listen to the traffic,

impersonate one of the network nodes, or intentionally provide misleading information to other nodes. To

provide security, communication should be encrypted and authenticated. The open problem is how to bootstrap

secure communications between sensor nodes, i.e., how to set up secret keys between communicating nodes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149233884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://libres.uncg.edu/ir/uncg/clist.aspx?id=3348
http://www.cis.syr.edu/~wedu/
http://web.ntpu.edu.tw/~yshan/
http://www.ecs.syr.edu/research/SensorFusionLab/People/varshney/
http://www.cs.umd.edu/~jkatz/
http://www.acm.org/

This problem is known as the key agreement problem. Although the problem has been widely studied in general

network environments, many schemes targeted at such environments are inapplicable to sensor networks due to

the unique features of the latter. In particular, key agreement schemes for WSNs must satisfy the following

requirements: (1) Low energy consumption: because sensor nodes are powered by batteries with limited power,

a key agreement scheme should have low communication and computation costs. (2) Low cost: because sensor

nodes are expected to be inexpensive, the associated hardware costs should be low. (3) Low memory usage:

because sensor nodes have very limited memory, the memory requirements of the scheme should be low. (4)

Lack of trusted infrastructure: sensor nodes are usually unattended and lack protection; therefore, none of the

nodes (except possibly for a limited number of base stations) should be considered ―trusted‖. (5) Resilient

against node capture: the resilience of the scheme should be high, where resilience refers to the percentage of

communication links — not involving compromised nodes — which remain secure following compromise of a

group of nodes. A scheme is ―perfectly resilient‖ if the compromise of any node (or any group of nodes) does

not compromise the security of any communication channels between non-compromised nodes.

Three types of key agreement schemes have been studied in general network environments: trusted-server

schemes, public-key schemes, and key pre-distribution schemes. Trusted-server schemes depend on a trusted

server for key agreement between nodes; an example is Kerberos [Neuman and Tso 1994]. This type of scheme

is not suitable for sensor networks because one cannot generally assume that any trusted infrastructure is in

place. Even if some base stations are available, relying on them for key agreement is inefficient because of the

communication costs involved. Public-key schemes depend on asymmetric cryptography and typically assume

some sort of public-key infrastructure which may not be present. Furthermore, the limited computational and

energy resources of sensor nodes make it infeasible to use public-key algorithms in WSNs. A third approach to

establish keys is via pre-distribution, where (secret) key information is distributed to all sensor nodes prior to

deployment. Such schemes seem most appropriate for WSNs, and it is this type of scheme we consider here.

If it is known which nodes will be in the same neighborhood before deployment, pairwise keys can be

established between these nodes (and only these nodes) a priori. However, most sensor network deployments

are random; thus, such an a priori knowledge about the topology of the network does not exist. A number of

key pre-distribution schemes do not rely on prior knowledge of the network topology. A naive solution is to let

all nodes store an identical master secret key. Any pair of nodes can use this master secret key to securely

establish a new pairwise key. However, this scheme does not exhibit desirable network resilience: if a single

node is compromised, the security of the entire sensor network is compromised. Some existing studies suggest

storing the master key in tamper-resistant hardware to reduce the risk, but this increases the cost and energy

consumption of each sensor. Furthermore, tamper-resistant hardware might not always be safe [Anderson and

Kuhn 1996].

At the other extreme, one might consider a key pre-distribution scheme in which each sensor stores N — 1 keys

(where N is the number of nodes in the network), each of which is known to only one other sensor node. This

scheme guarantees perfect resilience because compromised nodes do not leak information about keys shared

between two non-compromised nodes. Unfortunately, this scheme is impractical for sensors with an extremely

limited amount of memory because N can be very large. Moreover, this scheme does not easily allow new nodes

to be added to a pre-existing sensor network because the existing nodes will not have the new nodes’ keys.

Recently, two random key pre-distribution schemes suited for sensor networks have been proposed. The first

[Eschenauer and Gligor 2002] may be summarized as follows: before deployment, each sensor node receives a

random subset of keys from a large key pool; to agree on a key for communication, two nodes find a common

key (if any) within their subsets and use that key as their shared secret key. Now, the existence of a shared key

between a particular pair of nodes is not certain but is instead guaranteed only probabilistically (this probability

can be tuned by adjusting the parameters of the scheme). Eschenauer and Gligor note that this is not an

insurmountable problem as long as any two nodes can securely communicate via a sequence of secure links; see

Sections 4 and 7 for further discussion.

A generalization of this is the ―q-composite‖ scheme [Chan et al. 2003] which improves the resilience of the

network (for the same amount of key storage) and requires an attacker to compromise many more nodes in

order to compromise additional communication links. The difference between this scheme and the previous one

is that the q-composite scheme requires two nodes to find q (with q > 1) keys in common before deriving a

shared key and establishing a secure communication link. It is shown that, by increasing the value of q, network

resilience against node capture is improved for certain ranges of other parameters [Chan et al. 2003].

1.1 Main Contributions

The primary contribution of this work is a new key pre-distribution scheme which offers improved network

resilience (for the same storage constraints) compared to the existing schemes mentioned above. The scheme

requires more computation than previous schemes, but we show that this extra computation is smaller compared

to that required by public-key schemes. We provide a thorough theoretical analysis of the security of our

scheme, as well as its associated overhead. A high-level overview of this scheme, and a discussion of its

advantages, appear below. As a part of our analysis of the security of this scheme, we also introduce a rigorous

framework (i.e., formal definitions of security) appropriate for analyzing key pre-distribution schemes for

wireless sensor networks. Somewhat surprisingly, we find that prior definitions of security for key pre-

distribution schemes are insufficient for typical applications; thus, we believe our framework is of independent

interest and should prove useful for further work in this area.

Our key pre-distribution scheme combines the key pre-distribution scheme of Blom [Blom 1985] (see also

[Blundo et al. 1993]) with the random key pre-distribution methods discussed previously. (We review this

scheme in detail in Section 3.) Blom’s scheme allows any pair of nodes to compute a secret shared key.

Compared to the ―trivial‖ scheme mentioned earlier (in which each node stores (N − 1) keys), Blom’s scheme

only requires nodes to store λ + 1 keys, where λ N. The tradeoff is that, unlike the (N — 1)-pairwise-key

scheme, Blom’s scheme is no longer perfectly resilient against node capture. Instead, it has the following λ-

secure property: as long as an adversary compromises no more than λ nodes, communication links between all

non-compromised nodes remain secure. However, once an adversary compromises more than λ nodes, all keys

in the entire network are compromised.

The threshold λ can be treated as a security parameter in that selection of a larger λ leads to greater resilience.

This threshold property of Blom’s scheme is a desirable feature because one can set λ such that an adversary

needs to attack a significant fraction of the network in order to achieve any payoff. However, increasing λ also

increases the amount of memory required to store key information. The goal of our scheme is to increase the

network’s resilience against node capture in a probabilistic sense (and not in a perfect sense, as in Blom’s

scheme) without using too much additional memory.

Roughly speaking, Blom’s scheme uses a single key space to ensure that any pair of nodes can compute a

shared key. Motivated by the random key pre-distribution schemes described previously [Eschenauer and

Gligor 2002; Chan et al. 2003], we propose a new scheme using multiple key spaces. That is, we first construct

 spaces using Blom’s scheme, and then have each sensor node carry key information from τ (with 2 ≤ τ <)

randomly selected key spaces. Now (from the properties of the underlying Blom scheme), if two nodes carry

key information from a common space they can compute a shared key. Of course, unlike Blom’s scheme it is no

longer certain that two nodes can generate a pair-wise key; instead (as in previous random key pre-distribution

schemes), we have only a probabilistic guarantee that this will occur. Our analysis shows that using the same

amount of memory (and for the same probability of deriving a shared key), our new scheme is substantially

more resilient than previous probabilistic key pre-distribution schemes.

The remainder of this paper is organized as follows. Section 2 describes our proposed framework for analyzing

the security of key pre-distribution schemes in terms of their effectiveness in establishing ―secure

(cryptographic) channels‖. We also show a simple method to convert any secure key pre-distribution scheme

into a scheme for establishing such channels. Section 3 reviews Blom’s key pre-distribution scheme which will

be used as a building block of our main scheme, which is described in Section 4. Section 5 rigorously quantifies

the resilience of our scheme against node capture, and compares our scheme with existing key pre-distribution

schemes. Section 6 presents the communication and computational overheads of our scheme, and Section 7

describes some further improvements of our scheme. We conclude in Section 8.

1.2 Other Related Work

The Eschenauer-Gligor scheme [Eschenauer and Gligor 2002] and the Chan-Perrig-Song scheme [Chan et al.

2003] have been reviewed earlier in this section. Detailed comparisons with these two schemes are given in

Section 5.

Blundo, et al. proposed several schemes allowing any group of n parties to compute a common key which is

perfectly secret with respect to any coalition of t other parties [Blundo et al. 1993]. When n = 2, their scheme is

essentially equivalent to Blom’s scheme (cf. [Blundo et al. 1993]). Although both Blom’s scheme (for n = 2)

and the main scheme of Blundo, et al. (for arbitrary n) match the known lower bound [Blundo et al. 1993] in

terms of their memory usage for any desired resilience t, we stress that this lower bound holds only when (1) all

groups of size n are required to be able to compute a shared key and (2) the network is perfectly resilient to at

most t captured nodes. By relaxing these requirements (slightly) and considering their probabilistic analogues,

we obtain more memory-efficient schemes.

Perrig, et al. proposed SPINS [Perrig et al. 2001], a security architecture in which each sensor node shares a

secret key with a base station. In this scheme, two sensor nodes cannot directly establish a secret key; however,

they can set up a shared key using the base station as a trusted third party. The scheme described in this work

does not rely on any trusted parties after nodes have been deployed.

A similar approach to the one described in this paper was independently developed by [Liu and Ning 2003],

which was published at the same time as the conference version of this paper [Du et al. 2003]. Liu and Ning’s

approach is based on Blundo’s (2-party) scheme, rather than on Blom’s scheme as done here. Thus, Liu and

Ning’s scheme is essentially equivalent to the one shown here. However, as compared to [Liu and Ning 2003],

this paper provides a more thorough analysis of both the security and the communication overhead; we also

introduce a rigorous framework (i.e., formal definitions of security) appropriate for analyzing key pre-

distribution schemes for wireless sensor networks.

2. A SECURITY FRAMEWORK FOR KEY PRE-DISTRIBUTION SCHEMES

Before describing our primary scheme in detail, we first propose a framework in which to analyze the security

of key pre-distribution schemes in general. Our starting point is the following simple observation: the goal of a

key pre-distribution scheme is not simply to distribute keys, but rather to distribute keys which can then be used

to secure network communication. While the former is necessary for the latter, it is decidedly not sufficient. In

particular, we show below that although previous schemes ensure that the key Kij established by some pair of

nodes i and j remains unknown to an adversary (with high probability, for some fraction of compromised

nodes), these schemes do not necessarily guarantee security if this key Kij is then used to, e.g., authenticate the

communication between these nodes. This emphasizes the importance of precise definitions of security, as well

as rigorous proofs in some well-defined model.

We develop our framework as follows: We first define key pre-distribution schemes, and then describe for such

schemes a ―basic‖ level of security. This definition captures the idea that an adversary should (except with low

probability) be unable to determine the key shared by some pair of users, and roughly corresponds to the level

of security considered by Eschenauer-Gligor and all subsequent work in this area. We then define a

stronger notion which more accurately represents the level of security expected from key pre-distribution

schemes when used in practice. For simplicity, we focus on the case of message authentication; our results

easily extend to other examples such as symmetric-key encryption. Our definition in this case (informally)

requires that an adversary be unable to insert a bogus message which is accepted as legitimate by one of the

nodes (except with low probability). Schemes meeting this, more stringent, notion of security are said to

achieve cryptographic key distribution. We then show that a scheme meeting the ―basic‖ notion of security is

not necessarily a secure cryptographic key distribution scheme. On a positive note, we show a simple way to

convert any scheme achieving the ―basic‖ level of security to one which is a secure cryptographic key

distribution scheme. Our definitions, as well as our results, are described here in a relatively informal fashion.

Yet, it is straightforward for the interested reader to derive formal definitions and statements of our results from

the discussion below.

We begin with a discussion of key pre-distribution schemes. We view such schemes as being composed of

algorithms for key generation, key distribution, and key derivation. In the randomized key generation phase,

some master secret information S is established. Given S and a node identity i, a deterministic key distribution

algorithm generates information k
i
 which will be stored by node i. Finally, during the key derivation phase, two

distinct nodes i and j holding k
i
 and k

j
, respectively, execute an algorithm Derive and output a shared key Kij

∈ {0, 1}
ℓ
 or ⊥ if no such key can be established. (The key derivation stage is assumed to be deterministic, but

it may potentially require interaction between nodes i and j.) Execution of this algorithm by node i (holding

information k
i
) is denoted as Derive (k

i
, i, j); we always require the basic correctness condition Derive(k

i
, i, j)

= Derive(k
j
, j, i). Note that a pair of nodes i, j is not guaranteed to be able to establish a shared key Kij ≠⊥ . For

any distinct i, j, we assume that the probability (over choice of master key S) that i and j can establish a shared

key (i.e., that Derive(k
i
, i, j) ≠⊥) is equal to some fixed parameter p, and we refer to this p as the connectivity

probability of the scheme.

A ―basic‖ level of security is defined via the following game: First run an instance of the key pre-distribution

scheme. An adversary is given I = { (i1,),... , (it, k
it
) } for t randomly-selected nodes {i1, . . . , it} (this I

represents what the adversary learns after compromising t randomly-selected nodes). The adversary must then

output (i, j, K), where i, j, I and K ∈ {0, 1}
ℓ
 represents its ―guess‖ for the key Kij. We say the adversary

succeeds if its guess is correct, and denote its probability of success (conditioned on the master secret

information S and the information I which is available to the adversary) as Pr[Succ | S, I]. We say a key pre-

distribution scheme is (t, , δ)-secure if for any adversary we have:

PrS, I [Pr[Succ | S, I] ≤] ≥ 1 – δ.

We remark that in analyzing the security of our scheme in Section 5.1, we set = 2
−ℓ

 (essentially the best

possible, since the keyspace is {0, 1}
ℓ
) and then derive appropriate relations between t and δ.

Before introducing a notion of security which is more along the lines of what is desired in practice, we augment

a key pre-distribution scheme with an additional message authentication algorithm Mac and message

verification algorithm Vrfy. Now, once nodes i, j establish a shared key Kij ≠⊥ , node i can authenticate its

communication to node j as follows (j can authenticate its communication to i similarly): before sending

message m, node i computes tag = MacKij (m) and sends tag along with m; upon receiving (m, tag), node j

accepts m only if VrfyKij (m, tag) = 1. For completeness, we define (m) = ⊥ for all m, and (m,

tag) = 0 for all m, tag.

We now define cryptographic key distribution via the following game: First run an instance of the key pre-

distribution scheme, and give I = {(i1,), . . . , (it, k
it
)} to an adversary as before. Additionally, the adversary

can repeatedly make an unbounded number of message authentication requests of the form Mac(i′, j′, m), with

the effect that node i′ authenticates message m for node j′ (using key Ki′j′) and returns the resulting tag to the

adversary. Finally, the adversary outputs (i, j, m*, tag*) and we say the adversary succeeds if: (1) VrfyKij (m*,

tag*) = 1 (in particular, this will require Kij ⊥), and (2) the adversary had never requested Mac(i, j, m*) or

Mac(j, i, m*). That is, success corresponds to the adversary’s ability to ―insert‖ a bogus message m* which is

accepted as valid by one of i, j even though neither node authenticated this message. (This definition is a

straightforward ―lifting‖ of the standard notion of security for message authentication [Bellare et al. 2000] to the

multi-party setting.) As above, let Pr[Succ | S, I] denote the adversary’s probability of success conditioned on

the values of S and I. Fixing
2
 some time bound T, we say a scheme is a (t, , δ) -secure cryptographic key

distribution scheme if, for any adversary running in time T we have

PrS, I [Pr[Succ | S, I] ≤] ≥ 1 — δ.

Note that we must now limit the computational abilities of the adversary since secure message authentication

for an unbounded number of messages is impossible otherwise.

It is instructive to note that a key pre-distribution scheme secure in the basic sense need not be a cryptographic

key distribution scheme. For example, consider a scheme in which Kij is equal to Ki′j′ (for some (i′, j′) ≠ (i, j))

with some high (i.e., non-negligible) probability; this is true for both the Eschenauer-Gligor and Chan-Perrig-

Song schemes. Now, even if an adversary does not compromise any nodes, and even if it cannot guess Kij (and

hence the scheme remains secure in the basic sense), the scheme is not a secure cryptographic key distribution

scheme. In particular, an adversary can take messages that were authenticated by i′ and intended for j′, and send

these messages to j while claiming they originated from i; with high probability (namely, whenever Ki′j′ = Kij),

the adversary’s insertion goes undetected.

This problem of ―repeated keys‖ has been noticed (although informally) in previous work. However, we stress

that subtle problems may arise even when the probability of ―repeated keys‖ is small. Whenever the keys used

by different pairs of parties are not independent (in an information-theoretic sense), a formal proof that the

scheme meets the requirements of a cryptographic key distribution scheme will not be possible. In fact,

dependence between keys generated by the various pairs of parties reflects a serious potential vulnerability, as

this leaves open the possibility of related-key attacks on the message authentication code or the lower-level

primitives (e.g., block ciphers) from which the MAC is constructed. The possibility of such related-key attacks

also rules out the easy ―fix‖ in which nodes pre-pend the identities of the sender/receiver to any authenticated

messages; although this prevents the ―repeated-key ― attack discussed earlier, it does nothing to protect against

related-key attacks.

Luckily, it is simple to derive cryptographic key distribution schemes from key pre-distribution schemes in the

random oracle model [Bellare and Rogaway 1993]. Let Kij be the key derived by nodes i and j in some key pre-

distribution scheme which is assumed to be secure in the basic sense discussed above. These nodes then

compute
 = H (i, j, Kij), where H is a hash function modeled as a random oracle. This key

 is then used by

i and j (as the key for any secure MAC) to authenticate their communication as suggested above. It can be

shown that if the initial scheme is (t, , δ) -secure in the basic sense, and if the probability of forgery for the

MAC is ′ (for an adversary running in time T), then the modified scheme is a (t, qh · + (
 · ′, δ)-secure

cryptographic key distribution scheme, where qh is a bound on the number of random oracle queries (i.e., hash

function evaluations) made by an adversary. The proof is straightforward, and is omitted here.

Since one may always convert any secure key pre-distribution scheme into a cryptographic key distribution

scheme, we will analyze the security of our proposed scheme in the ―basic‖ sense with the understanding that

the above transformation should be applied before the scheme is used in practice. This modular analysis of

security is (we believe) simpler, more intuitive, and less prone to error.

3. BACKGROUND: BLOM’S KEY PRE-DISTRIBUTION SCHEME

Blom proposed a key pre-distribution method that allows any pair of nodes in a network to be able to derive a

pairwise secret key [Blom 1985]. It has the property that as long as no more than λ nodes are compromised, all

communication links of non-compromised nodes remain secure (we refer to this as being ―λ-secure‖); using the

terminology of the previous section, the scheme is (λ, 2
−ℓ

, 0)-secure, where ℓ is the length of the shared key. We

now briefly describe Blom’s scheme (we have made some slight modifications to the scheme in order to make it

more suitable for sensor networks, but the essential features remain unchanged).

We assume some agreed-upon (λ + 1) × N matrix G over a finite field GF(q), where N is the size of the network

and q > N. This matrix G is public information and may be shared by different systems; even adversaries are

assumed to know G. During the key generation phase the base station creates a random (λ + 1) × (λ + 1)

symmetric matrix D over GF(q), and computes an N × (λ + 1) matrix A = (D · G)
T
, where (D · G)

T
 is the

transpose of D · G. Matrix D must be kept secret, and should not be disclosed to adversaries or to any sensor

nodes (although, as will be discussed, one row of (D · G)
T
 will be disclosed to each sensor node). Because D is

symmetric, it is easy to see that

A · G = (D · G)
T
 · G = G

T
 · D

T
 · G = G

T
 · D · G = (A · G)

T
;

i.e., A · G is a symmetric matrix. If we let K = A · G, we know that Kij = Kji, where Kij is the element in the ith

row and jth column of K. The idea is to use Kij (or Kji) as the pairwise key between node i and node j. Fig. 1

illustrates how the pairwise key Kij = Kji is generated. To carry out the above computation, nodes i and j should

be able to compute Kij and Kji, respectively. This can be easily achieved using the following key pre-distribution

scheme, for k = 1, . . . , N:

(1) store the kth row of matrix A at node k, and

(2) store the kth column of matrix G at node k.
3

Then, when nodes i and j need to establish pairwise key, they first exchange their columns of G and then

compute Kij and Kji, respectively, using their private rows of A. Because G is public information, its columns

can be transmitted in plaintext. It has been shown [Blom 1985] that the above scheme is λ-secure if any λ+ 1

columns of G are linearly independent. This λ-secure property guarantees that no coalition of up to λ nodes (not

including i and j) have any information about Kij or Kji.

An Example of a Matrix G

We show an example of a matrix G which can be used in the above scheme. Recall that any λ + 1 columns of G

must be linearly independent in order to achieve the λ-secure property. Since each pairwise key is represented

by an element in the finite field GF(q), we must set q to be larger than the key size we desire. Thus, if 64-bit

keys are desired we may choose q as the smallest prime number larger than 2
64

 (alternately, we may choose q =

2
64

); note that for all reasonable values of N we will have q > N as required. Let s be a primitive element of

GF(q); that is, each nonzero element in GF(q) can be represented by some power of s. A feasible G can be

designed as follows [MacWilliams and Sloane 1977]:

Since s is primitive, s

i
≠ s

j
if i ≠ j mod q. Since G is a Vandermonde matrix and q > N, it can be shown that any λ

+ 1 columns of G are linearly independent [MacWilliams and Sloane 1977]. This matrix G has the nice property

that its columns can be generated by an appropriate power of the primitive element s. That is, to store the kth

column of G at node k we need only store the seed s
k
 at this node which can then regenerate the column when

needed. Other tradeoffs between memory usage and computational complexity will be discussed later in the

paper.

4. A MULTIPLE-SPACE KEY PRE-DISTRIBUTION SCHEME

Blom’s scheme achieves optimal resilience at the expense of relatively large memory requirement. Here, we

demonstrate a scheme which achieves good — although not optimal — resilience but which offers the

advantage of requiring much lower memory usage. Our idea is based on the following observations: Blom’s

method guarantees that any pair of nodes can establish a shared secret key. If we imagine a graph in which each

sensor node is a vertex and there is an edge between nodes only if they can establish a shared key, then Blom’s

scheme results in a complete graph (i.e., an edge exists between any two nodes). Although such connectivity is

desirable, it is not necessary. To achieve our goal of allowing any two nodes to communicate, all we need is a

connected graph. By relaxing the requirement in this way, we achieve a scheme requiring much less storage.

Before we describe our proposed scheme, we define a key space (or space in short) as a matrix D as defined in

the previous section. (The matrix G will be fixed.) We say a node holds key space D if the node stores the secret

information generated from (D, G) using Blom’s scheme. Note that two nodes can calculate pairwise key if they

hold a common key space.

4.1 Key Pre-Distribution Phase

During the key pre-distribution phase, we assign information to each node such that after deployment

neighboring sensor nodes can establish a shared secret key with high probability. Assume that each sensor node

has a unique identity ranging from 1 to N. Our key generation/distribution phase consists of the following steps:

Step 1: Generating a G matrix. We first select a primitive element from a finite field GF(q), where q is larger

than the desired key length (and also q > N), and then construct a matrix G of size (λ + 1) N as discussed in

the previous section. (Here, λ is parameter whose function will be discussed later.) Let G(j) represent the jth

column of G. Our goal is to provide G(j) to node j. However, as discussed in Section 3, although G(j) contains

(λ + 1) elements, each sensor only needs to store a ―seed‖ (i.e., a single field element which is the second entry

of the desired column) which can be used to regenerate G(j). Therefore the memory usage for storing G (j) at a

node is just a single element. Since the seed is unique for each sensor node, it can also be used as a node

identity.

Step 2: Generating keyspaces. We generate ω random, symmetric matrices D1, . . . ,Dω of size (λ + 1) × (λ +

1). We then compute the matrix Ai = (Di · G)
T
. Let Ai(j) represent the jth row of Ai.

Step 3: Selecting τ spaces per node. For each node, we randomly select τ (2 ≤ τ < ω) distinct key spaces from

the ω possible choices. For each space Di selected by node j, we store the jth row of Ai at this node. This

information is secret; under no circumstance should a node send this information to any other node. Using

Blom’s scheme, two nodes can establish a common secret key if they both hold a common key space.

Since Ai is an N (λ + 1) matrix, Ai(j) contains (λ + 1) elements. Therefore, each node needs to store (λ + 1)τ

elements in its memory. Because the length of each element is (roughly) the same as the length of the shared

secret keys which will ultimately be generated, the memory usage of each node is (λ + 1)τ times the length of

the key (we do not count the seed used to regenerate G(j), since this seed may also serve as the node identity).

4.2 Key Agreement Phase

After deployment, each node needs to discover whether it shares a key space with its neighbors. To do this, each

node broadcasts a message containing the following information: (1) the node’s id, (2) the indices of the spaces

it carries,
4
 and (3) the seed used to generate the appropriate column of G (as mentioned earlier, we could also let

this be equal to the node identity, in which case this step is not needed).

Assume that nodes i and j are neighbors, and have sent the above broadcast messages. If they determine that

they share a common space, say Dc, they can compute a pairwise secret key using Blom’s scheme: Initially

node i has Ac (i) and seed for G(i), and node j has Ac(j) and seed for G(j). After exchanging the seeds, node i can

regenerate G(j) and node j can regenerate G(i); then the pairwise secret key Kij = Kji between nodes i and j can

be computed in the following manner by these two nodes, respectively:

Kij = Kji = Ac(i) · G(j) = Ac(j) · G(i).

After secret keys with neighbors are set up, the entire sensor network forms the following key-sharing graph:

DEFINITION 4. 1. (Key-sharing graph) Let V represent all the nodes in the sensor network. A key-sharing

graph Gks (V, E) is defined in the following manner: For any two nodes i and j in V, there exists an edge

between them if and only if (1) nodes i and j share at least one common key space, and (2) nodes i and j can

reach each other (i.e., are within wireless transmission range).

We now show how two neighboring nodes i and j who do not share a common key space can still establish a

shared secret key. The idea is to use the secure channels that have already been established in the key-sharing

graph Gks: as long as Gks is connected, two neighboring nodes i and j can always find a path in Gks from i to j.

Assume that the path is i, v1, . . . , vt, j. To establish a common secret key between i and j, node i first generates

a random key K. Then i sends the key to v1 using their secure link; v1 sends the key to v2 using the secure link

between v1 and v2, and so on until j receives the key from vt. Nodes i and j use this secret key K as their pairwise

key. Because the key is always forwarded over a secure link, no nodes beyond this path can determine the key.

4.3 Computing ω, τ, and the Memory Usage

As we have just shown, to make it possible for any pair of nodes to be able to find a secret key between them,

the key sharing graph Gks (V, E) needs to be connected. Given the size and the density of a network, how can we

select values for ω and τ such that the graph Gks is connected with high probability? We use the following three-

step approach, adapted from [Eschenauer and Gligor 2002]. Although this approach is heuristic and not

rigorous, it has been suggested and used in previous work in this area [Eschenauer and Gligor 2002; Chan et al.

2003].

Step 1: Computing required local connectivity. Let Pc be the probability that the key-

sharing graph is connected. We refer to this as the global connectivity. We let local connectivity p refer to the

probability of two neighboring nodes sharing at least one space; i.e., the probability that two neighboring nodes

can establish a common key. The global connectivity and the local connectivity are related: to achieve a desired

global connectivity Pc, the local connectivity must be higher than a certain threshold value called the required

local connectivity, and denoted by prequired.

Using results from the theory of random graphs [Erdos and Rényi 1959], we can relate the average node degree

d to the global connectivity probability Pc in a network of size N (for N large):

For a given density of sensor network deployment, let n be the expected number of neighbors within wireless

communication range of a node. Since the expected node degree in Gks should be at least d as calculated above,

the required local connectivity prequired can be estimated as:

We stress that this only guarantees connectivity in a heuristic (and not a rigorous) sense: to apply the theory of

random graphs it must be the case that a node has edges with other nodes uniformly distributed throughout the

graph. Here, however, nodes only have edges to their physically-close neighbors. Yet, we are not aware of any

problems in practice with using this heuristic estimate.

Step 2: Computing actual local connectivity. After we have selected values for ω and τ, the actual local

connectivity is determined by these values. We use pactual to represent the actual local connectivity; namely,

pactual is the actual probability of two neighboring nodes sharing at least one key space (which is the same as the

probability that they can establish a common key). Since pactual = 1 − Pr(two nodes do not share any space), we

have

Values of pactual have been plotted in Fig. 2 for τ = 2, 4, 6, 8 and ω varying from τ to 100. For example, one can

see that when τ = 4, the value of ω must be at most 25 in order to achieve local connectivity pactual ≥ 0. 5.

The collection of sets of spaces assigned to each sensor form a probabilistic quorum system [Malkhi et al. 2001]

; the goal is for two sensors to have a space in common with high probability. Next we show that if

τ ≥

 , then the probability of intersection is at least pactual. For example, when τ ≥ , the

probability of intersection is at least 1/2. This helps explain the behavior observed in Fig. 2. A proof of this

fact, similar to proof of the ―birthday paradox‖, is as follows: It is well-known that 1 − x ≤ e
−x

for all x ≥ 0.

Therefore,

Accordingly, to achieve a desired pactual for a given ω we must have

Step 3: Computing ω and τ. Knowing the required local connectivity prequired and the actual local connectivity

pactual, in order to achieve the desired global connectivity Pc, we should have pactual ≥ prequired. Thus:

So, in order to achieve a certain Pc for a network of size N with n expected neighbors for each node, we just

need to find values of ω and τ such that Inequality (4) is satisfied.

Step 4: Computing memory usage. For each selected space in Blom’s scheme, a node needs to carry λ + 1

field elements; Hence the total memory usage m for each node is:

field elements (As mentioned earlier, we do not count the seed needed to generate G(i) since this can also serve

as the node identity.)

5. SECURITY ANALYSIS

We evaluate the multiple-space key pre-distribution scheme in terms of its resilience against node capture. Our

evaluation is based on two metrics: (1) When x nodes are captured, what is the probability that at least one key

space is broken? This analysis shows when the network starts to become insecure. (2) When x nodes are

captured, what fraction of the additional communication (i.e., communication among uncaptured nodes) also

becomes compromised? This analysis shows the expected payoff an adversary obtains after capturing a certain

number of nodes. In our analysis we assume that the adversary has no a priori knowledge of the keys carried by

each sensor and we therefore model the attacker as compromising random nodes.
5

5.1 Probability of At Least One Space Being Broken

We define our unit of memory as the size of a secret key (e.g., 64 bits). In Blom’s scheme, for a space to be λ-

secure each node needs to use memory of size λ + 1. Therefore, if the memory usage is m and each node needs

to carry τ spaces, the value of λ should be ⌊

 ⌋ − 1. We use this value for λ in the following analysis.

Let Si be the event that the ith key space is compromised (for i ∈ {1,.. . , ω}), let Cx be the event that x nodes are

compromised in the network, and set θ =

 . We have

Pr(at least one space is broken | Cx) = Pr(S1 ∪ S2 ∪ … ∪ Sω | Cx).

Applying the union bound, we obtain

Due to the fact that each key space is broken with equal probability, we have

Therefore,

We now need to calculate Pr(S1 | Cx), the probability of the first key space being compromised when x nodes are

compromised. Because each node carries information from τ spaces, the probability that each compromised

node carries information about the first key space is 0 =

. Therefore, after x nodes are compromised, the

probability that exactly j of these x nodes contain information about the first key space is (
 θ

j
(1 − θ)

x−j
. Since

each key space can be ―broken‖ only after at least λ + 1 nodes are compromised (by the λ-secure property of the

underlying Blom’s scheme), we have the following result:

Combining Inequality (6) and Equation (7), we thus obtain the following upper bound:

We plot both simulation and analytical results in Fig. 3. From the figure, the two results match each other

closely, meaning that the union bound works quite well in the scenarios we discuss. Fig. 3 shows, for example,

that when the memory usage is set to 200, ω is set to 50, and τ is set to 4, the value of λ for each space is 49 =

⌊

 ⌋ − 1, but an adversary needs to capture about 380 nodes in order to be able to break at least one key space

with reasonably-high probability.

5.2 The Fraction of Compromised Network Communication

To better understand the resilience of our key pre-distribution scheme, we explore the effect of the capture of x

sensor nodes by an adversary on the security of the rest of the network. In particular, we calculate the fraction of

additional communication (i.e., communication among the uncaptured nodes) that an adversary can compromise

based on the information retrieved from the x captured nodes. To compute this fraction, we first compute the

probability that any one of the additional communication links is compromised after x nodes are captured. Note

that we only consider the links in the key-sharing graph, and each of these links is secured using a pairwise key

computed from the common key space shared by the two nodes of this link. We should also notice that after the

key setup stage, two neighboring nodes can use the established secure links to agree upon another random key

to secure their communication. Because this key is not generated from any key space, the security of this new

random key does not directly depend on whether the key spaces are broken. However, if an adversary can

record all communication during the key setup stage, he/she can still compromise this new key after

compromising the corresponding links in the key-sharing graph.

Let c be a link in the key-sharing graph between two uncompromised nodes, and let K be the communication

key used for this link. Let Si denote the ith key space, and let i represent the joint event that K belongs to Si and

Si is compromised. We use the notation K ∈ Si to represent that ―key K was derived using Si‖. The probability of

c being compromised given the compromise of x other nodes is:

Pr(S1 is compromised | Cx) can be calculated using Equation (7). The probability that K belongs to space S1 is

the probability that link c uses a key from space S1. Since key spaces are assigned uniformly from the ω

possibilities, we have:

Therefore,

Assume that there are γ secure communication links that do not involve any of the x compromised nodes. Given

the probability Pr(c is broken | Cx), we know that the expected fraction of broken communication links among

those γ links is

5.2.1 Comparison to previous work. We first consider the compromise of links in the key-sharing graph. Fig. 4

compares our scheme with the Chan-Perrig-Song scheme (for q = 2, 3) and the Eschenauer-Gligor scheme (i.e.,

with q = 1). The figure clearly shows the advantages of our scheme. Taking as an example the case in which m

= 200 and pactual = 0.33, in both the Chan-Perrig-Song and Eschenauer-Gligor schemes an adversary needs to

compromise less than 100 nodes in order to compromise 10% of the links in the key-sharing graph. In our

scheme, however, the adversary needs to compromise 500 nodes before compromising 10% of the links.

Therefore, our scheme quite substantially lowers the initial payoff to an adversary for small-scale network

breaches. We remark that although Chan, Perrig, and Song propose improving the security of their scheme

using multi-path key reinforcement [Chan et al. 2003], the same technique can be applied to our scheme to

improve the security as well; we leave further comparison to our future work.

In Blom’s scheme, when m = 200 the network is perfectly secure if less than 200 nodes are compromised, but is

completely compromised as soon as 200 nodes are compromised (pactual is always equal to 1 in Blom’s scheme).

In Fig. 4, we have only considered the security performance of our key pre-distribution scheme when two

neighboring nodes can directly compute a shared key. Since the local connection probability is less than 1, two

neighboring nodes might need to use a multi-hop path to set up a shared key (as discussed in Section 4). We

refer to the secure channel established in this way as an indirect link. When any node or link along the multi-

hop path used to establish an indirect link is compromised, the indirect link itself is also compromised. Our

analysis in Fig. 4 does not take such indirect links into account.

Due to the complexity of the analysis in this case, we used computer simulations to compare the resilience of

our scheme in this case to previous schemes. We simulated a sensor network with n = 1000 nodes where

indirect links were assumed between any pair of nodes where a direct link did not exist (the indirect link was

assumed to be set up over the shortest existing path within the key-sharing graph); all other system parameters

are the same as in n Fig. 4. We randomly picked x sensor nodes and considered them to be compromised. We

then counted the number of secure links (including indirect links) that are compromised due to this capture. The

results of our simulation are shown in Fig. 5. ¿From the figure, we see that our scheme is still significantly

better than the Eschenauer-Gligor and Chan-Perrig-Song schemes. However, in all these schemes, the fraction

of communication links compromised when indirect links are taken into account increases more quickly. This is

due to the fact that, when considering indirect links, some of the intermediate nodes and links that help to

establish the indirect links might be compromised, leading to the compromise of a portion of the indirect links.

This also explains why the fraction of compromised links when pactual = 0.33 is slightly higher than when pactual

= 0.5, as there are more indirect links in the former scenario than in the latter scenario.

5.2.2 Further Analysis. Even though Equation (9) can be used for numerical computation, it is too complex to

allow a closed-form analytical result expressing the relationship between x, m, ω, and τ. The results in Fig. 4

indicate that there is a small range of x in which the fraction of compromised links increases exponentially with

respect to x. Here, we develop an analytical estimate of this range. It should be noted that Equation (9) is the tail

of a binomial distribution. Therefore, using known bounds on the tail of a binomial distribution [Peterson 1972]

we can derive the following theorem whose proof is given in Appendix A.

THEOREM 5. 1. Assume that λ =

 ≫ 1, so that λ + 1 ≈ λ. Define the entropy function of y, for 0 ≤ y ≤ 1, as

H(y) = −y ln y − (1 − y) ln(1 − y) and let H′ (y) = dH(y) /dy. Then for all x ≥ λ+ 1,

According to [Peterson 1972], E(α, θ) < 0 when x >

. So, when x >

, the lower bound indicates that the tail

of the binomial distribution increases exponentially with respect to x. It is also true that E(α, θ) > 0 when

Inequality (11) is satisfied [Peterson 1972]. The upper bound indicates that the tail of the binomial distribution

can be exponentially bounded away from 1 when x is much less than

 . For example, when m = 200, τ = 2, ω

= 11, and x is 25% less than

 (i.e., x = 0.75 ·

 = 413), then the upper bound is e

-5.089
 = 0.006, which is two

orders of magnitude smaller than 1. Hence,

 can be used as an estimate (upper bound) of the value of x for

which the fraction of compromised links increases exponentially with respect to x. So the adversary can obtain

higher payoff when the number of nodes it compromises is close to

 .. The results shown in Fig. 4 verify that

this estimate is quite accurate.

Based on the above discussion, the number of nodes an adversary needs to compromise to gain a significant

payoff is linearly related to the amount of the memory used when ω and τ are fixed. That is, if the probability of

any two nodes sharing at least one space, pactual, is fixed, then increasing the memory space at each node linearly

increases the degree of security. For fixed memory usage, the security is linearly related to

 . Since ω and τ are

related to pactual, one should choose those values of ω and τ that satisfy the requirement on global connectivity

and at the same time yield the largest value of

 . For example, by using Inequality (4), one may find all pairs

(ω, τ) satisfying the requirement on the global connectivity. Among all the pairs, the one with the largest value

of

 gives the best security.

When the average number of neighbors of each sensor is decreased, Equation (2) shows that the value of prequired

increases. For a network of size N with desired global connectivity Pc, the value of pactual must be increased in

order to guarantee that the whole network is connected. However, the resilience of our scheme is weakened due

to larger pactual. In the following we give a simple sufficient condition on n (the average number of neighbors

per node) such that our scheme is ―useful‖; i.e., has better resilience (for a given amount of memory) than

Blom’s scheme. That is, we want to find the minimum value of n which guarantees ω/τ
2
 > 1. As derived in

Section 4.3,

Thus, when 1 –

 ≥ prequired = d/n then pactual ≥ prequired. It is easy to derive that whenever n ≥

 the

requirement pactual ≥ prequired can be satisfied while simultaneously achieving ω/τ
2
 > 1. For example, with N =

1000 and pc = 0.9999, having n =

 = 26 neighbors per node (on average) implies that our scheme is

―useful.‖

6. OVERHEAD ANALYSIS

6.1 Communication Overhead

According to our previous discussions, the probability pactual that two neighboring nodes share a key space is

less than 1. When two neighboring nodes are not connected directly, they need to find a path (in the key-sharing

graph) to connect to each other. In this section, we investigate the number of hops required on this path for

various parameters of our scheme. Our analytical approach is similar to that given in [Chan et al. 2003].

Let ph (ℓ) be the probability that the smallest number of hops needed to connect two neighboring nodes is ℓ.

Obviously, ph (1) is pactual. For ph (2), the third node connecting these two nodes must be in the overlapped

region of the transmission range of node i and node j, as shown in Fig. 6. The size of this overlap region is:

where r is the transmission range of each node. The total number of nodes in the overlap region is:

where n is the total number of sensor nodes in the transmission range of a sensor node.

We then calculate ph (2, z), the probability that i and j are not connected directly but there exists at least one

common neighbor connecting them, given that the distance between i and j is z:

where p2,1 (z) is the probability that none of the common neighbors of i and j is connected to both of them given

that i and j are not connected.

The value of ph (2) can be calculated as the average of ph (2, z) throughout all the possible values of z:

A similar approach may be used to calculate ph (3). The only difference is that, in the case of ph (3), we need to

find the probability that two nodes u and v, that are neighboring to nodes i and j, respectively, should provide a

secure link between nodes i and j as shown in Fig. 7.

We provide the full derivations of ph (2) and ph (3) in Appendix B. The final results are as follows:

We plot the values of ph (1), ph (2), and ph (3) in Fig. 8. From these figures, we can observe that ph (1) + ph (2) ≈

1 when τ is large (i.e., the probability that at most 2 hops are required is essentially 1).

6.2 Computational Overhead

As indicated in Section 3, it is necessary for nodes to calculate the common keys by using the corresponding

columns of matrix G. If G is a Vandermonde matrix, the dominating computational cost of our scheme is due to

2λ − 1 multiplications in the field GF(q): λ − 1 come from the need to regenerate the corresponding column of

G from a seed, while the other λ multiplications come from the inner product of the corresponding row of (DG)
T

with this column of G. Note that this can be easily reduced to only λ multiplications using Horner’s rule for

polynomial evaluation. (Although O(λ) additions in GF(q) are also necessary, these are dominated by the field

multiplications.)

A natural choice is to work with fields of characteristic 2 (i.e., fields of the form GF(2

k
)) both because

multiplications in this field are rather efficient and also because elements in such fields naturally map to bit

strings which can then be used as cryptographic keys. We observe that to derive a 64-bit key it is not necessary

to work over GF(2
k
) with k ≥ 64; instead, one can define the key as the concatenation of multiple ―sub-keys‖

each of which lie in a smaller field. As an example, a 64-bit key can be composed of four 16-bit keys. In

general, this will lead to improved efficiency since, continuing with the above example, 4λ multiplications in

GF(2
16

) are more efficient than λ multiplications in GF(2
64

) . The key observation is that security is not affected

by working over GF(q) where q is ―small‖; this is because our security arguments are information-theoretic and

do not rely on any ―cryptographic hardness‖ of the field GF(q). The only requirement is that we work in a field

GF(q) with q > N, where N is the number of nodes in the network.

We implemented our key pre-distribution scheme on MICAz sensor nodes [CROSS-BOW TECHNOLOY,

INC.]. The time of computing a 64-bit key when m = 200 and τ = 4 (i.e., λ = 50) is described in Table I for

various underlying fields. Note that when working over GF(2
16

) the total number of multiplications is

 ∗ λ =

200, while when working over GF(2
32

) the total number of multiplications is

 ∗ λ = 100. We list the

performance for computations using 16-bit, 32-bit, and 64-bit multiplications. The performance results indicate

that moving to smaller fields does improve the performance. More importantly, the results show that our key

pre-distribution scheme is quite practical: if we use four 16-bit sub-keys as a 64-bit key, a sensor can compute

over 100 such keys within one second.

7. IMPROVING SECURITY USING TWO-HOP NEIGHBORS

In this section we describe a way to further improve the security of our key pre-distribution scheme, following

[Chan et al. 2003]. Using Inequality (4), we have

Notice that the left side is smaller when ω is larger, and the right side is smaller when n is larger when other

parameters are fixed. Therefore, when the network size N, the global connectivity Pc, and τ are fixed, we can

select a larger ω if the expected number of neighbors n increases while still satisfying the above inequality. We

know immediately from Inequality (11) that the larger the value of ω is, the more resilient the network will be.

Therefore, increasing n can lead to security improvement.

One can increase n by increasing the communication range of a node, but this also increases the energy

consumption. Another approach is to use two-hop neighbors. A two-hop neighbor of node v is a node that can

be reached via one of v’s one-hop (or direct) neighbors. To send a message to a two-hop neighbor, v needs to

ask its direct neighbor to forward the message. Since the intermediate node only forwards the message and does

not need to read the contents of the message, there is no need to establish a secure channel between the sender

and the intermediate node, or between the intermediate node and the two-hop neighbor. As long as the sender

and its two-hop neighbor can establish a secure channel, the communication between them will be secured.

If two nodes, i and j, are two-hop neighbors and both of them carry key information from a common key space,

they can find a secret key between themselves using the following approach: First, they find an intermediate

node I that is a neighbor of both of them. Nodes i and j then exchange information as in the one-hop case,

except that this is done via I. Then, i and j find a common key space, and compute their secret key as before.

Nodes i and j can then encrypt any future communication between them using this key. Although all future

communication still needs to pass through an intermediate node, the intermediate node cannot decrypt the

message if it does not carry the key space shared by i and j.

After all direct neighbors and two-hop neighbors have established secure channels among themselves, the entire

network forms an extended key-sharing graph Geks in which two nodes are connected by an edge if there is a

secure channel between them; i.e., these two nodes (1) have at least one common key space, and (2) are either

direct neighbors or two-hop neighbors. Once we have formed Geks, key agreement between any pair of two

neighboring nodes i and j can be performed based on Geks in the same way as it is performed based on the

original key-sharing graph Gks. The only difference is that now some edges in the graph represent a channel

between two-hop neighbors, and thus message forwarding is needed.

7.1 Security Improvement

Security can be improved significantly if key agreement is based on Geks. When we treat a two-hop neighbor as

a neighbor, the radius of the range covered by a node doubles, so the area that a node can cover is increased by

a factor of four. Therefore, the expected number of neighbors n' for each node in Geks is about four times as

large in Gks. According to Equations (1) and (2), to achieve the same connectivity Pc as that of Gks, the value of

prequired for Geks is one fourth of the value of prequired for Gks. Thus, the value of pactual for Geks is one fourth of the

value of pactual for Gks. As we have already shown, when τ is fixed, decreasing the desired pactual means that ω

can be increased. For example, assuming network size N = 10, 000, connectivity probability Pc = 1 — 10
-5

, and

fixing τ = 2, we need to select ω = 7 for the Gks-based key agreement scheme; however, using the Geks-based

scheme, we can select ω = 31. The security of the latter scheme is improved significantly. Using Equation (9),

we plot the fraction of compromised links for the above two cases in Fig. 9.

Fig. 9. Fraction of compromised links in the key-sharing and extended key-sharing graphs. The left curve

uses the 1-hop-neighbor scheme (with w = 7 and τ = 2), and the right curve uses the 2-hop-neighbor scheme

(with w = 31, and τ = 2). Both figures achieve the same global connectivity probability Pc = 0.99999. Note

that the resilience only depends on the values of w and τ, while the connectivity probability depends on

whether a one-hop or two-hop scheme is used.

7.2 Overhead Analysis

Such security improvement does come with a cost. If the length (the total number of edges) of a path between

two nodes in Geks is ℓ, the actual number of hops along this path is larger than ℓ because some edges in Geks

connect two-hop neighbors. For each node, the number of two-hop neighbors on the average is three times the

number of one-hop neighbors if nodes are uniformly distributed. Therefore, assuming that the probability of

selecting a two-hop edge and a one-hop edge is the same, for a path of length ℓ, the expected actual length is

 ∗

2ℓ +

 ∗ ℓ = 1. 75ℓ (note, however, that in practice one can achieve better than this by selectively choosing one-

hop edges when they exist). Let
 (ℓ) be the ph (ℓ) value of the two-hop-neighbor scheme and let

 (ℓ) be the

ph (ℓ) value of the basic scheme (i.e., only using direct neighbors); assume the maximum length of the shortest

path between two neighbors is L. Then the ratio between the overhead of the two-hop-neighbor scheme and that

of the basic scheme can be estimated using the following formula:

where we do not need to multiply first term by 1.75 since if two neighbors share a common key, the path

between them is never a two-hop edge. As an example, the overhead ratio of the two schemes used in Fig. 9 is

3.18: namely, with 3.18 times more overhead, the resilience is improved by a factor of 4. The communication

cost discussed here occurs only during the key setup phase, so it is a one-time cost.

8. CONCLUSIONS

We have proposed a framework in which to analyze the security of key pre-distribution schemes, and we expect

this framework will be useful to others working in this area. We have also presented a new pairwise key pre-

distribution scheme for wireless sensor net-works. Our scheme has a number of appealing properties. First, our

scheme is scalable and flexible, and nodes do not need to be deployed at the same time; they can be added

after initial deployment, and still be able to establish secret keys with existing nodes. Com-pared to existing key

pre-distribution schemes, our scheme is substantially more resilient against node capture. Our analysis and

simulation results have shown, for example, that to compromise 10% of the secure links in a network secured

using our scheme, an adversary has to compromise 5 times as many nodes as he/she had to compromise in a

network se-cured by the Chan-Perrig-Song or Eschenauer-Gligor schemes. Furthermore, we have also shown

that network resilience can be further improved if we use multi-hop neighbors.

We have conducted a thorough analysis of the efficiency of our scheme. We have shown that when pactual ≥

0.33, a node can (with very high probability) reach any neighbor within at most 3 hops. The computational

requirements of our scheme are very modest, as demonstrated by our implementation on MICAz sensor nodes

and resulting performance.

APPENDIX

A. PROOF OF THEOREM 5.1

Assume x ≥ λ + 1. According to the bound on the tail of a binomial distribution [Peterson 1972], Equation (9)

can be bounded as follows:

B. CALCULATION OF PH(2) AND PH(3)

In the following, we assume the distance between two nodes i and j is z.

B.1 Calculation of ph (2)

The third node connecting nodes i and j must be in the overlapped region of the transmission range of node i

and node j, as shown in Fig. 6. As stated in Equation (12) the size of this overlapped region is:

where r is the transmission range of each node. Since, on the average, each node has n neighbors within

communication range, the nodal density inside the transmission range is:

Let ph (2, z) be the probability that i and j are not connected directly but there exists at least one common

neighbor connecting them, given that the distance between i and j is z. Then:

where i and j represent the set of nodes in range of nodes i and j, respectively, p2,1 (z) is the probability that

none of the common neighbors of i and j is connected to both of them given that i and j are not connected, and

 means two nodes share at least one key space. Since the choices of key spaces for each node are

independent,

where p2,2 is the probability that a neighbor node, ℓ, of i and j is not connected to both of them given that i and j

are not connected. Also:

where (

 is the number of ways to select τ keys from ω key spaces for i, (
 is the number of ways to select

completely different τ keys for j, and (
 - 2 + (

 + (
 gives the number of ways to select keys for ℓ

such that ℓ is connected to both i and j.

The PDF of z, denoted f (z), can be expressed as:

where we replace z by y =

.

B.2 Calculation of ph (3)

ph (3) can be calculated with a similar method. We define ph (3, z) as the probability that 3 hops are needed to

connect node i and node j, given that the distance between them is z (z ≤ r):

where 1 − p3,1 (z) is the probability that there exists at least a pair of nodes u and v connected to each other and

connected to i and j separately, given that i and j are not directly connected, nor can they be connected through

another common neighbor.

The exact calculation of p3,1 (z) is complicated. We give an approximation as follows: For every neighbor v of

node j, we find all possible nodes u, which may satisfy i u v j. We then calculate the number of such

pairs of (u, v). Assuming that node v is at location (y, θ) (putting j at the origin), the distance x between nodes v i

is:

Obviously, node u should reside in the shaded area in Fig. 7. The expected number of nodes residing in the

small neighborhood of (y, θ) is ρy · dy · dθ. The number of nodes in the overlap region of circle i and circle v,

Aoverlap(x), can be expressed as ρ · Aoverlap(x). So the total number of pairs (u, v), given that the distance between i

and j is z, is:

where p3,2 is the probability that for a pair of nodes u ∈ Ni and v ∈ Nj, secure connections cannot be made

through path i, u, v, and j, given that i and j are not directly connected nor can they be connected through a

common neighbor. p3,2 can be estimated
6
 as follows:

where (

 is the number of ways to select τ keys from ω key spaces for i, (
 is the number of ways to select

completely different τ keys for j, a represents the number of common keys shared by u and i, b represents the

number of common keys shared by v and j, c represents the number of common keys shared by u and v, (

gives the number of ways to select the common keys different to i and j from the pool of key spaces, (

is the number of ways to select the τ − a − c keys for u, and (

 gives the number of ways to select the

τ — b — c keys for v. Based on the distribution of z, we have:

replacing x, y, and z with x′ =

, y′ =

, and z′ =

. We further simplify our notation by dropping the primes from

these variables. Thus,

Notes:
1
 Wireless Integrated Network Sensors, University of California. See: http://www.janet.ucla.edu/WINS.

2
We may also let T be a parameter of the definition, but for simplicity have not done so.

3We will show later that a sensor need not store the whole column, because each column can be generated from

a single field element.

4If we do not wish to disclose the indices of the spaces each node carries, we can use a challenge-response

technique instead [Chan et al. 2003].

http://www.janet.ucla.edu/WINS

5 This assumption is reasonable due to the randomness in the key selection process, especially if we assume that

a challenge-response technique is used to establish keys (cf. footnote 4).

6Eq. (17) is an approximation because the probability is obtained using only the fact that node i and j are not

directly connected.

REFERENCES

AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., AND CAYIRCI, E. 2002. A survey on sensor

networks. IEEE Communications Magazine 40, 8 (August), 102–114.

ANDERSON, R. AND KUHN, M. 1996. Tamper resistance —- a cautionary note. In Proceedings of the

Second Usenix Workshop on Electronic Commerce. 1–11.

BELLARE, M., KILIAN, J., AND ROGAWAY, P. 2000. The security of the cipher block chaining message

authentication code. Journal of Computer and System Sciences 61, 3, 362–399.

BELLARE, M. AND ROGAWAY, P. 1993. Random oracles are practical: a paradigm for designing efficient

protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security. 62–73.

BLOM, R. 1985. An optimal class of symmetric key generation systems. Advances in Cryptology: Proceedings

of EUROCRYPT 84 (Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, eds.), Lecture Notes in Computer

Science, Springer- Verlag 209, 335–338.

BLUNDO, C., SANTIS, A. D., HERZBERG, A., KUTTEN, S., VACCARO, U., AND YUNG, M. 1993.

Perfectly-secure key distribution for dynamic conferences. Lecture Notes in Computer Science 740, 471–486.

CHAN, H., PERRIG, A., AND SONG, D. 2003. Random key predistribution schemes for sensor networks. In

IEEE Symposium on Security and Privacy. Berkeley, California, 197–213.

CROSSBOW TECHNOLOY, INC. Available at http://www.xbow.com/.

DU, W., DENG, J., HAN, Y. S., AND VARSHNEY, P. 2003. A pairwise key pre-distribution scheme for

wireless sensor networks. In Proceedings of the 1 0th ACM Conference on Computer and Communications

Security 42–51.

ERDOS AND RÉNYI. 1959. On random graphs I. Publ. Math. Debrecen 6,290–297.

ESCHENAUER, L. AND GLIGOR, V. D. 2002. A key-management scheme for distributed sensor networks. In

Proceedings of the 9th ACM Conference on Computer and Communications Security. 41–47.

KAHN, J., KATZ, R., AND PISTER, K. 1999. Next century challenges: Mobile networking for smart dust. In

Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom). 483–492.

LIU, D. AND NING, P. 2003. Establishing pairwise keys in distributed sensor networks. In Proceedings of the

10th ACM Conference on Computer and Communications Security. 52–61.

MACWILLIAMS, F. AND SLOANE, N. 1977. The Theory of Error-Correcting Codes. Elsevier Science

Publishing Company, Inc.

MALKHI, D., REITER, M., WOOL, A., AND WRIGHT, R. N. 2001. Probabilistic quorum systems.

Information and Computation 170, 2, 184–206.

NEUMAN, B. C. AND TSO, T. 1994. Kerberos: An authentication service for computer networks. IEEE

Communications 32, 9 (September), 33–38.

PERRIG, A., SZEWCZYK, R., WEN, V., CULLAR, D., AND TYGAR, J. 2001. SPINS: Security protocols for

sensor networks. In Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile Computing

and Networking (MobiCom). 189–199.

PETERSON, W. W. 1972. Error-Correcting Codes, second ed. MIT Press.

http://www.xbow.com/

