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Abstract 

We focus on the problem of finding the best search set for expanding ring search (ERS) in wireless networks. 

ERS is widely used to locate randomly selected destinations or information in wireless networks such as 

wireless sensor networks In ERS, controlled flooding is employed to search for the destinations in a region 

limited by a time-to-live (TTL) before the searched region is expanded. The performance of such ERS schemes 

depends largely on the search set, the set of TTL values that are used sequentially to search for one destination. 

Using a cost function of searched area size, we identify, through analysis and numerical calculations, the 

optimum search set for the scenarios where the source is at the center of a circular region and the destination is 

randomly chosen within the entire network. When the location of the source node and the destination node are 

both randomly distributed, we provide an almost-optimal search set. This search set guarantees the search cost 

to be at most 1% higher than the minimum search cost, when the network radius is relatively large. 

 

Keywords: Flooding; Expanding ring search; Wireless networks; Search cost; Optimum 

 

1. Introduction 

In wireless communication networks such as wireless ad hoc networks [7] and wireless sensor networks [1], 

network nodes may need to inquire destinations that are unknown to themselves thus far. Since such an inquiry 

may take place before a routing path is found, routing information is usually unavailable in the context. One 

way to send the inquiry packet is to use the flooding technique, in which the packet is broadcasted and each 

neighboring node forwards the packet once. The process continues until every node in the network has for-

warded the packet once. Such a flooding scheme is usually termed as pure flooding. Pure flooding is rather 

expensive since it involves all nodes in the network. In fact, a ―broadcast storm" problem [12] may appear when 

inappropriate rebroadcasts are performed and when packet collisions occur frequently, requiring more 

rebroadcasts. These collisions degrade the overall network performance and should be avoided. Advanced 

techniques have been developed to reduce the number of redundant rebroadcasts while maintaining the 

reachability of the flooding process [12]. 

 

Since the destination may reside in an area that is relatively close to the source node, an expanding ring search 

(ERS) technique is employed in a number of networking protocols, such as routing [9,13] and information 

query [10]. In the ERS scheme, the query packet is broadcasted with a time-to-live (TTL) value. When the 

packet is received by other nodes, the TTL value on the packet is decremented. Then the packet will be 

rebroadcasted only if the TTL value is positive. The exact implementations of the ERS scheme vary in different 

protocols. For instance, in some ERS techniques, the initial TTL value is set to 1 for the first (ring) search. If 

such a search fails to find the destination, a new search is initiated with an incremented TTL value 2. The 

process continues until the initial TTL value reaches a threshold, L. Then a network-wide flooding is initiated 

[8]. The ERS scheme in dynamic source routing (DSR) [9] uses the California split rule [2], where the TTL 

value is doubled every time when the previous TTL value fails. In ad hoc on-demand distance vector (AODV) 
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routing [13], an ERS scheme is implemented to start with a TTL value of TTL_START and to increase the TTL 

by TTL_INCREMENT after each failure. 

 

Recently, several research papers have been published with the focus of analyzing search strategies such as the 

ERS schemes under various network settings [5,3,8]. It has been shown that the ERS schemes that increment 

the TTL value by one after each failure are generally ineffective. Therefore, it is interesting to identify the best 

search strategy, in terms of which set of TTLs should be used, for ERS. In this work, we analyze the cost of 

different search sets in the ERS technique and investigate the optimum search sets. We develop a general ana-

lytical framework to measure the search cost of different search sets in the ERS schemes. Based on this 

framework, we study wireless networks from which a destination is randomly chosen. When the source is at the 

origin of the circular network region, we identify the optimum search sets. When the source is randomly chosen 

from the network region, we provide an almost-optimal search set, which guarantees the search cost to be at 

most 1% higher than the minimum search cost when the network radius is relatively large. 

 

Similarly to other researchers [5,3,4], we neglect the effect of underlying medium access control (MAC) 

schemes and broadcast collisions in our analysis. Our focus in this work is on first-order effect of different 

search sets. We do not consider second-order effects such as those caused by different MAC protocols. We 

further argue that such collisions and, when necessary, rebroadcasts, will only change the search cost 

proportionally. Using this approach enables us to focus on the search cost caused by different search sets. 

 

The difference of our work with related work [5,3,4,8] is that our work focus on identifying a search set that 

performs close to the optimum search set. We develop a general analytical framework to find such search sets. 

The framework can serve as a tool for further study in this field. We also provide guidelines for search set 

selections under various network setups. 

 

The rest of this paper is organized as follows. In Section 2, we summarize the related work. In Section 3, we 

present the network model of our analysis and our analytical framework to investigate the optimum search sets 

in ERS. We study the scenarios where the source is at the origin of the circular network region in Section 4. The 

scenarios in which the source is randomly chosen from the circular region are studied in Section 5. Section 6 

presents numerical results on integer search sets. We conclude our work and state future work directions in 

Section 7. 

 

2. Related work 

Cheng and Heinzelman investigated geography- based and hop-based flooding control methods [5]. It was 

proved that two-tier and three-tier hop-based flooding control methods can reduce the cost of broadcast. Both of 

the cost and the latency were studied. A general formula to determine good parameters for two-tier and three-

tier schemes was provided and investigated. Different to their work, we provide a general analytical framework 

and use it to investigate networks with different source distributions. 

 

Chang and Liu revisited the TTL-based controlled flooding search extensively [3]. When the probability 

distribution of the location of the searched object is known a priori, a dynamic programming formulation of the 

optimal search sets can be used. They also presented the necessary and sufficient conditions on the location 

distribution under which pure flooding and incremental ERS became optimum, respectively. One other major 

result is the optimization of worst-case search cost when the probability distribution of the location of the object 

is unknown. The optimization problem was later extended to include delay constraints [4]. The primary goal is 

to derive search strategies that minimize worst-case search cost subjected to a worst-case delay constraint. 

Different from their work, we try to obtain optimum search set when the node distribution probability function 

is known a priori. 

 

Hassan and Jha studied the optimum L for one class of ERS schemes with a search set of {l; 2,. .. , L}. The 

authors argued that there existed an optimum value of L, which minimizes the expected cost of broadcasts [8]. 



However, it is generally non-optimal to use a consecutive sequence of integers as the search set, as shown by 

other researchers [5,3]. 

 

Baryshnikov et al. studied the California split rule in a network that reduces to a path [2]. In the California split 

rule, the set of TTLs is u = {x1;x2;... ~ where xi=2
i-1

 for all i ≥ 1. In [11], alternative query algorithms of the 

Gnutella network were explored through simulations. A new query algorithm based on multiple random walks 

was proposed and evaluated. 

 

Krishnanmachari and Ahn optimized the number of data replicas for event information in wireless sensor 

networks [10]. The closed-form approximations for expected energy costs of search and data replication were 

used to derive replication strategies that minimize cost. It was found that the number of replication should be 

proportional to the square root of query rates. 

 
In our prior work [6], we generalized pure flooding and ERS into ring search (RS) schemes and developed a 

theoretical framework to show that a special three-step RS scheme is optimum among all three-step RS 

schemes. 

 

In this paper, we develop a general analytical framework to study different search sets with different source 

locations. This framework is used to investigate the optimum search set when the source is at the origin of the 

circular network region and when the source is randomly chosen in the network region. Instead of looking for 

optimum search sets, we identify three-ring almost-optimal search sets with search cost guarantees (of at most 

1% higher than the optimum search sets). These integer search sets can be easily applied to large wireless 

networks.  
 

3. Analytical model 

3.1. Assumptions and notations 

We assume that a source node S is searching for a destination node, D, in a network region X  ℝ2
. The events 

of these two nodes’ distribution in the network are mutually independent. We further assume that the wireless 

transmission media is broadcast in nature, i.e., when a node sends out a message, all physical neighbors will 

overhear it unless packet collisions occur. Throughout the paper, we use the following notations: 

 

 R: the network radius; 

 ξ: the distance between S and D, S — D ; 

 ri: search set for ERS, 1 ≪ i ≪ N, where N is the size of the search set
1
; 

 λ: node density of the network; and 

 |b|: the area of a ball b. 

 

3.2. Analytical model 

Consider a homogeneous ensemble of nodes in the plane ℝ2
 with large density A. Mathematically, it can be 

modeled as the homogeneous Poisson process with spatial density A, in other words, a homogeneous intensity 

measure Λ(dx) = λdx, in a domain X ℝ2
 which is assumed to contain the origin 0 for definitiveness. Although 

we do not consider it here, a non-homogeneous intensity measure can be used to model non-evenly spread 

nodes or to take into account a known prior distribution of the destination location. Changing if necessary the 

metric unit, we may assume that all the nodes have the maximal communicating distance of 1 unit. In order to 

find the destination, the source node employs the ERS mechanism, when first only the nodes at the distance not 

exceeding r1 are requested, next, at the distance not exceeding r2, etc., until the destination is found (cf. Fig. 1). 

The search cost of ERS is proportional to the number of nodes involved in sending the search packets until the 

destination is found as it is reception handling and re-transmissions of the search packets by these nodes that 

distinguish the idling system from the one with an active search. Before we establish an analytic formula for the 

cost, we should remark the following. 

 



Overall cost of the system functioning has many components, not all of which are relevant to the optimization 

of the search cost. First of all, this concerns the constant power drainage due to idling of the nodes. Next, 

whatever search mechanism is employed, it takes the same amount of energy to communicate back the location 

of the destination, once it is found, to the search originating node, so this cost may be excluded from the cost 

function to be optimized. Finally, the cost of re-broadcasts due to collisions of packets can be taken into account 

by adjusting the parameters of the transmission and reception cost, simply by multiplying them by 1 plus the 

probability of re-broadcast. Also, without loss of generality, the cost of handling of the packet can be included 

to the cost of reception. 

 

We will be interested in the case when the density λ is high, and call the asymptotic search cost the almost sure 

limit of the normalized search cost when λ → ∞, provided it exists. Such a situation is typical in the sensor 

networks in contrast to other wireless networks which may and usually are rather dense. Ever lowering cost of 

mass production of sensors allows for increased redundancy provided by a dense distribution of the sensors in 

failure critical situations like hazard monitoring or military applications. Another scenario which falls into our 

framework is when the network is sparse, but the communicating distance is rather large relative to the typical 

inter-node distances. In essence, we require that the number of nodes in direct communication of a node to be 

large. 

 

When λ is high, the nodes at the distance of at most n hops from S fill the ball bn of radius n (assuming bn ⊂ X 

for the moment). The number of nodes inside a ball of radius n is Poisson(λπn
2
)-distributed, so, divided by λ, it 

approaches with probability 1 the area πn
2
 with the error of order O(λ

-1/2
) that provides the basis for our choice 

of the cost function below. 

 

Let Pr; Pt denote the cost of reception and transmission of the search packet, respectively. To discover the 

destination when ξ ≤ 1, it only takes one inquiry transmission from the source, consecutive reception of the 

nodes within the ball b1. Thus the consumed energy, divided by λ ≫ 1, gives the asymptotic cost approaching a 

constant Pr |b1| = πPr. We will ignore this constant value contribution to the cost function in the sequel. When 1 

< ξ ≤ r1 + 1, then (up to the specified ball approximation error), the search cost involves requesting all the nodes 

in the overlap region of X and the ball br1 to broadcast the inquiry once. These broadcasts are received by the 

nodes in one-neighborhood of the broadcasting nodes. Therefore, the incurred cost writes 

 
If r1 + 1 < ξ ≤ r2 + 1, so that the first search cannot locate the destination, but the second one will, the cost will 

be 

 
In general, the normalized by 1/(Pr+Pt) cost is equal to 

 

where α = Pr=(Pr +Pt) and r0 = 0 by definition (c.f. [3, Eq. (1)]). N here is the maximal number of tries, which, 

in principal, may be infinity. There are a few conditions to meet in order to avoid degenerate cases. The first 

evident condition is that 

 



 
Further conditions depend on the support of the distribution of ξ. If it is unbounded, we necessarily have N = ∞ 

and rn → ∞. Otherwise with positive probability some distant destinations that occur with a positive probability 

will never be detected. If sup n is a compact set then we require that 

 

for 1 ≤ N < ∞. Condition (4) states that the very last search should be flooding to all the nodes where the 

destination maybe found. Without loss of generality, rN maybe put to ess sup ξ - 1, where 

ess sup ξ = inf{z : P{ξ > z} = 0}. 

Taking expectation with respect to the radius distribution n of the destination, we arrive at the following 

formula for the average cost of the search scheme using the sequence {r1; r2; ... ; rN}: 

 
 

The goal is to find the minimum of this cost over 0 < r1 < r2 < ••• < rN = ess sup ξ - 1 when ess sup ξ < ∞ or over 

an infinite growing sequence {ri}; i = 1; 2;... otherwise. 

 

Before we proceed, we make the final assumption. The parameter α = Pr/(Pr +Pt) above does not exceed 1/2 

because Pr ≤ Pt. In fact, the cost of reception has been demonstrated by other researchers to be similar to that of 



the idling nodes, so α is actually a small number. In addition, the summands in (6) are proportional to the area 

of balls brk, so to   
 , while the terms in (7) behave as rk. Since all rk > 1, we argue that disregarding the smaller 

order term 1 will not change much the optimal solution for E 0. We will make remarks on the actual error 

bounds of this approximation later when we consider particular examples. From now on, we will be dealing 

with optimization of the goal function  given by formula (6). 

 

There may be two approaches to optimize the cost: static and dynamic. In the former case one looks for the 

sequence rk (or the counting measure it) minimizing . In the later case, each next rk is chosen recursively on 

the basis of already tried r1; ... ; rk-1. We focus on static search set in this work. 

 

4. Source at the origin of a circle 

In this section, we assume that the network region is a circle and S is at the origin of the circle. Based on this 

assumption, X is in fact a ball with radius of R, bR. The distribution function of D becomes

 

 
There are two special cases. When N = 1, r0 = 0 (flooding), 

F1 (x1) = F1 (R - 1) = (R - 1)
2
(R

2
 — 1) 

= R
4
 - 2R

3
+2R - 1 =  

 . 

 

When N = 2, r0 = 0, and rN = r2 = R — 1, we have  

F2(x1) =   
 (R

2
 — 1) + (R -  1)2(R

2
 - (x

1
 + 1)

2
),  

 

which attains the minimal value 

  
 =

 

 
(2R

4
 - 5R

3
+3R

2
+R - l)        (13) 

 

for x1 = (R - 1)/2. It is seen that   
  -   

  = (R - 1)
3/

2 > 0 for R > 1. Therefore, when R > 1, two-step search set 

always outperforms the pure flooding scheme. Since 

 
the performance gain of using two-step search set as compared to flooding diminishes with the increase of R. 

When N = 3, (9) becomes 

 



where we have used r3 = R — 1. 

 

Taking partial derivative of (14) over r1 and r2 and letting it equal to 0, respectively, we have 

 

The optimum search sets with N = 3 should satisfy (15). Closed-form solutions to (15) are rather complex, 

however its asymptotic solutions can be found as follows: 

 

It is very likely that r*1 « R, then r*2 satisfies 

 
 

and r*1 should satisfy 

 
 
Combining (16) and (17) with (15), asymptotically   

  and   
  should be 

 
 
which has been confirmed by our numerical results with the use of fmincon in Matlab.
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When N > 3, a closed-form expression for the optimum search sets is very difficult to obtain. We rely on 

numerical methods to find the optimum search set, with the use of fmincon in Matlab. The optimum search set 

and the search cost are shown in Figs. 2 and 3. 

 

In Fig. 2, we show the optimum search sets   
  and   

 , with N = 3, as their ratio over the asymptotic values 

suggested in (18). Note that when R < 13, the optimum N = 3 search sets degenerate to two rings. 

 

The search costs of different search sets are compared in Fig. 3. We define relative cost of a search set as its 

search cost normalized by that of the optimum search set, i.e., the minimum search cost: 

 
where 

*
 represents the minimum search cost. Based on Fig. 3 we can see that the three-step search set as 

defined in (18) performs very close to the optimum search set. In fact, the normalized search cost is mostly less 

than 1.01. When R is relatively large, flooding should be used instead since it only introduces less than 1% extra 

search cost. 

 

5. Source randomly chosen from X 

In Section 4, we considered the scenarios where the source node S is always at the origin of the circular region. 

In this section, S is assumed to be randomly distributed in the network region X = bR. The problem of finding a 

common ERS strategy for all the nodes which would minimize the overall expected cost is on order. 

 

Since both nodes S and D are uniformly distributed in X ⊆ ℝ2
 independently, the average asymptotic ring search 

cost may be calculated from (6): 



 
As above, rN should correspond to flooding which means rN = diamX— 1 = sup{||jx—y||; x;y ∈ X} - 1 and, as 

before, we neglect the contribution of the smaller order term (7) to the optimum solution of the cost. 

 

The above expression simplifies to 

  
 

In particular, if X is the disk bR of radius R at the origin, then 

 



 

 

 

The function A (r1, r2, d) above is the area of the intersection on two disks with radii r1 and r2 with their centers 

separated by the distance d (cf. Fig. 4). Its explicit formula is rather cumbersome, but not difficult to compute: 



 
 

Typical form of functions  are shown in Fig. 5. 

 

Numeric analysis with the help of statistical computing package R
3
 shows that the optimal N can be as large as 

7, especially for relatively small R. For instance, for R = 1 the minimal cost of 0.3023865 is obtained for the 

following sequence of r1, ... , r6: 0.01092865, 0.1092967, 0.3564751, 0.6603114, 0.8808269, 0.9783151 (r7 = 

rN = 1). However, the minimal cost when using N = 1, ... , 6 rings are as follows: 1.842555 (flooding), 

0.3756568, 0.3178889, 0.3050929, 0.3026054,  0.30245560, so we see that rather good approximation (the cost 

less than 1% higher than the overall minimum) to the minimum cost is already obtained when using just three 

rings before flooding of radii 0.1733899, 0.467521 and 0.7702083 (N = 4). Although we have not included the 

number of rings or latency in our cost function, practical observations suggest that one can easily tolerate an 

error of a few percent to decide in favor of an ―almost optimal" policy with a fewer number of rings. Taking this 

approach with tolerance of 1% or less, we come to the following recommendation. For the ranges of R smaller 

than 3.4, three rings and then flooding ERS strategy should be used. When R is between 3.4 and 11, 2 rings and 

flooding ERS is optimal. One ring of size approximately 0.83R and flooding is optimal for mid-range 11 ≤ R ≤ 

90. For larger R, flooding should be used from the start, as it makes only less than 1% difference with the 

minimum search cost. 

 

The best search sets, among all search sets with N = 12, 3, 4}, relative to R are shown in Fig. 6. We present the 

best search sets among all N = 12, 3, 41 search sets as thick lines in different segments of R. Thin lines are the 

best search set values of each individual N = 2, 3, and 4, respectively. For instance, for R = 5, the optimal 

strategy is to use N = 3 and r1 = 0.546R = 2.73, r2 = 1.358R = 6.79, and r3 = 9 (points on the short-dashed thick 

lines multiplied by R = 5). Should, however, one wants to use N = 2, the search set should be r1 = 0.793R (the 

fourth line from bottom) which provides the minimum cost over all N = 2 search sets. Similarly, for the N = 4 

case, the minimum is provided by the rings of sizes r1 = 0.099R, r2 = 0.701R, r3 = 1.461R, and r4 = 2R - 1, 

respectively (thin lines continued from the thick lines optimal in the range 1–3.4 of R). 

 

Finally, our calculations show that adding the term 1 defined in (7) even with maximal possible value of a = 

1/2 altered the optimal values for the radii only slightly. For instance, when R = 10, the difference does not 

exceed 0.3. When α = 0. 1, the difference was negligible. This reinforces our claim that the term 1 can be 

disregarded in the optimization goal function. 

 

6. Integer search sets 

In the protocols currently used, only integer TTL values are allowed in ERS schemes. We investigate such 

optimum integer search sets through numerical calculations. We used integer argument fmincon in Matlab to 

look for the optimum search sets. 

 

 

 

 



6.1. Source at the origin of a circle 

Table 1 presents the optimum integer search sets for some values of R. Our first observation is that all of these 

optimum search sets have only two elements, i.e., N 1/4 2. Similar results were reported in [6].
4
 Based on the 

numbers in Table 1, we conclude that the optimum search sets are {  
 ,  

   = { ⌊(R – 1)/2⌋, R – 1} 

 

 

 

In Fig. 7, we present the normalized search cost, p, the ratio between the search cost of flooding and the 

minimum search cost in each R. We can see from Fig. 7 that, as R increases, the cost saving with the use of the 

optimum search set is diminishing. In fact, when R = 50, the cost saving of using the optimum search set as 



compared to using flooding is roughly 1%. With the consideration of search delay and additional operational 

costs, flooding should be chosen instead as R increases further. 

 

 

 

All results shown above are based on the assumption of dense networks, which should satisfy (8). It would be 

interesting to see how our scheme reacts to networks that do not satisfy (8). In Fig. 8, we compare the relative 

cost of our suggested search set and the pure flooding scheme under sparser networks through Matlab 

simulations. The source is assumed to be at the origin of the circles with radius of 4 or 6. We can observe from 

Fig. 8 that our scheme operates with a search cost that is at most 10% higher than that of the optimum search 

set. The pure flooding scheme has much higher relative cost. 

 

In order to investigate the performance of our suggested search set in sparse and small-diameter networks, we 

simulated our suggested search set and pure flooding scheme in networks with radius of 1, 2, and 3. The results 

are presented in Fig. 9. N changes from 4 to 30 with node density being as low as 0.14 node per unit area. When 

radius is 3, the relative cost decreases as N increases. Therefore, the benefit of using our suggested search set 

improves as node density increases. An interesting fluctuation of relative cost in small N range can be seen for 

networks with radius as 2. This could be caused by network partition and unusually long paths of reaching some 

nodes. When radius is 1, all nodes can be reached in one broadcast. 

 

In Fig. 10, we compare our suggested search set with several related schemes: the incremental ERS scheme, 

California split, and the L-threshold scheme. The relative cost of our suggested search set can be seen to be 

lower than all other schemes. Note that search cost of our scheme is 2–10% higher than the optimum search set. 

This is because of the sparse network condition that invalidates (8). 



 

 

6.2. Source randomly chosen from X 

When the source may reside in any location within X = bR, the optimum integer search sets differ from those 

shown in Table 1. Table 2 presents the optimum search sets corresponding to some relatively small R values. 

Interestingly, the maximum N in such optimum search sets is 4. This suggests that, even as R increases, the 

number of elements in the optimum search set is at most 4. 

 



 

 

Fig. 11 presents the normalized search cost, p, of flooding and an N = 2 search set {r1 = R; r2 = 2R - 1} over the 

minimum search cost in each R. It can be observed that the cost of flooding is significantly higher than that of 

the optimum search sets, even though this cost is decreasing as R increases. Instead of presenting the optimum 

search sets, we show the search cost of a search set with two elements, N = 2, with r1 = R and r2 = 2R - 1. 

Interestingly, we observe that such a simple search set introduces rather low extra cost over the optimum search 

cost. In fact, when R > 13, the extra cost of the N = 2 search set is at most 1% higher than the minimum search 

cost. Therefore, we recommend the use of this simple search set for the scenario where the source is chosen 

randomly from a circular network region with radius R > 13. 

 

7. Conclusions and future works 

Expanding ring search (ERS) is a widely- employed technique in computer networks especially in wireless 

networks in order to find services, destinations, or servers. In this work, we have developed a general analytical 

framework to study different search sets. Using this framework, we have been able to investigate the optimum 

search set when the source is at the origin of the circular network region. The optimum search set of such 

networks should be {r1 ; r2 } = { L(R — 1)=2]; R — 1 } with R as the radius of the circular network region. In 

the scenarios where the source is randomly chosen from the network, we have provided an almost-optimal 

search set, {r1; r2} = {R; 2R — 1 }, that guarantees the search cost to be at most 1% higher than the minimum 

search cost when R is relatively large, i.e., R > 13. 



 

 

The main contribution of our work is that we have identified a search set that performs close to the optimum 

search set, which is hard to find. We have developed a general analytical framework to find such search sets. 

The framework can serve as a tool for further study in this field. We also provide guidelines for search set 

selections under various network setups. 

 

We have assumed that the destination is chosen from the network randomly. In some applications, nodes in 

some regions are more likely to be chosen. How will such a destination selection probability distribution affect 

our optimum search set? In addition, it is intuitive that node density affects the network connectivity and 

topology. Will it change the optimum search set as well? Furthermore, our discussions have been limited to 

finding one destination. When multiple destinations need to be found simultaneously, what search sets should 

be used? Search delay would also be an interesting subject of study. For instance, how can we identify the best 

search set that satisfies a certain delay upper bound? We leave these interesting questions to our future work. 
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Notes: 

1. We do not restrict these ri values to integers in our framework. Integer search sets will be investigated in 

Section 6. 

2. In fact, all optimum search sets were numerically calculated through the fmincon package in Matlab. 

Basically, we looked for an optimum N and t1; t2; ... ; tN-1 that minimize function (10) under the 

constraints of (11). These optimum search sets serve as the performance upper bound for all schemes. 

3.  http://www.R-project.org.  

4. Note the different notations of the search sets used in this paper and [6]. 

http://www.r-project.org/

