
IJMMS 30:8 (2002) 491–504
PII. S0161171202011729

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

NOTE ON DECIPHERABILITY OF THREE-WORD CODES

F. BLANCHET-SADRI and T. HOWELL

Received 29 January 2001

The theory of uniquely decipherable (UD) codes has been widely developed in connection
with automata theory, combinatorics on words, formal languages, and monoid theory.
Recently, the concepts of multiset decipherable (MSD) and set decipherable (SD) codes were
developed to handle some special problems in the transmission of information. Unique
decipherability is a vital requirement in a wide range of coding applications where distinct
sequences of code words carry different information. However, in several applications,
it is necessary or desirable to communicate a description of a sequence of events where
the information of interest is the set of possible events, including multiplicity, but where
the order of occurrences is irrelevant. Suitable codes for these communication purposes
need not possess the UD property, but the weaker MSD property. In other applications,
the information of interest may be the presence or absence of possible events. The SD
property is adequate for such codes. Lempel (1986) showed that the UD and MSD properties
coincide for two-word codes and conjectured that every three-word MSD code is a UD
code. Guzmán (1995) showed that the UD, MSD, and SD properties coincide for two-word
codes and conjectured that these properties coincide for three-word codes. In an earlier
paper (2001), Blanchet-Sadri answered both conjectures positively for all three-word codes
{c1,c2,c3} satisfying |c1| = |c2| ≤ |c3|. In this note, we answer both conjectures positively
for other special three-word codes. Our procedures are based on techniques related to
dominoes.

2000 Mathematics Subject Classification: 94A15, 05A99, 94B35.

1. Introduction. Let A be a nonempty finite set or an alphabet; A∗ denotes the set

of all sequences of finite length (greater than or equal to 0) of elements of A (such

sequences are called words on A). The unique sequence of length 0, denoted by ε, is

called the empty word. A code C on A is a nonempty finite subset of A+ = A∗ \{ε}.
The words in C are called code words. A message on C is a word in A∗ that is a

concatenation of code words. The sequence of these code words is a decoding or

factorization of the message. The code C is called

• uniquely decipherable, if every message on C has a unique factorization into

code words;

• multiset decipherable, if any two factorizations of the same message on C yield

the same multiset of code words;

• set decipherable, if any two factorizations of the same message on C yield the

same set of code words.

Every UD code is MSD, and every MSD code is SD. It has been shown that these rela-

tionships are proper. The code C = {0,0111110,10101,1111} on {0,1} is an example

of a proper MSD code (i.e., an MSD code that is not UD). In fact, the message

(0111110)(10101)(1111)(0)= (0)(1111)(10101)(0111110) (1.1)

Made available courtesy of Hindawi Publishing Corp: http://www.hindawi.com/
***Reprinted with permission. No further reproduction is authorized without written permission from the Hindawi Publishing Corp.
This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.***

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149233835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com
http://www.hindawi.com/
https://libres.uncg.edu/ir/uncg/clist.aspx?id=565

492 F. BLANCHET-SADRI AND T. HOWELL

on C has two distinct factorizations into code words [3, 5]. The code

C = {0,010,11011,101101} (1.2)

on {0,1} is an example of a proper SD code (i.e., an SD code that is not MSD). The

message

(0)(101101)(11011)(0)(11011)(010)= (010)(11011)(101101)(101101)(0) (1.3)

on C has two distinct factorizations with distinct multisets of code words [3, 5].

Guzmán presents a complete list of proper MSD and proper SD four-word codes on

{0,1} with code words of length less than or equal to 7 [3]. It is decidable whether or

not a code C is UD [1, 5, 6, 9] (resp., MSD [5]).

For two-word codes, the UD, MSD, and SD properties coincide [3, 7]. For three-word

codes, it is an open question whether or not they coincide. Lempel [7] conjectured that

every three-word MSD code is a UD code, and Guzmán [3] conjectured that the UD,

MSD, and SD properties coincide for three-word codes. We answered both conjectures

positively for all three-word codes {c1,c2,c3} satisfying |c1| = |c2| ≤ |c3| [2]. In this

note, we give (in Section 1.1) a brief overview of Head’s and Weber’s domino technique

[5], and give (in Section 2) an application of this approach by proving that Lempel’s

and Guzmán’s conjectures are true for some special three-word codes.

1.1. A domino technique. Let A be an alphabet and C a code on A. The set of all

prefixes of words in C will be denoted by Prefix(C). The domino graph associated with

C is the directed graph G = (V ,E) where

V =
{

open, close,
(
u
ε

)
,
(
ε
u

)∣∣∣∣u∈ Prefix(C)\{ε}
}
, (1.4)

and E = E1∪E2∪E3∪E4 where

E1 =
{(

open,
(
u
ε

))
,
(

open,
(
ε
u

))∣∣∣∣u∈ C
}
,

E2 =
{((

u
ε

)
,close

)
,
((
ε
u

)
,close

)∣∣∣∣u∈ C
}
,

E3 =
{((

u
ε

)
,
(
uv
ε

))
,
((
ε
u

)
,
(
ε
uv

))∣∣∣∣v ∈ C
}
,

E4 =
{((

u
ε

)
,
(
ε
v

))
,
((
ε
u

)
,
(
v
ε

))∣∣∣∣uv ∈ C
}
.

(1.5)

The domino function associated with C is the mapping d from E to
{(

u
ε

)
,
(
ε
u

)
|u∈ C

}
defined on

• E1 by
(
open,

(
u
ε

))
�
(
ε
u

)
and

(
open,

(
ε
u

))
�
(
u
ε

)
,

• E2 by
((

u
ε

)
, close

)
�
(
u
ε

)
and

((
ε
u

)
, close

)
�
(
ε
u

)
,

• E3 by
((

u
ε

)
,
(
uv
ε

))
�
(
ε
v

)
and

((
ε
u

)
,
(
ε
uv

))
�
(
v
ε

)
,

• E4 by
((

u
ε

)
,
(
ε
v

))
�
(
uv
ε

)
and

((
ε
u

)
,
(
v
ε

))
�
(
ε
uv

)
.

NOTE ON DECIPHERABILITY OF THREE-WORD CODES 493

The domino associated with an edge e of E is the domino d(e) =
(
d1(e)
d2(e)

)
. The func-

tion d induces mappings d1 and d2 from E to C∪{ε} also called domino functions.

If p = e1 ···em is a path in G, the word d(e1)···d(em) (resp., d1(e1)···d1(em),
d2(e1)···d2(em)) will be denoted by d(p) (resp., d1(p), d2(p)).

A path p in G from open to some vertex
(
u
ε

)
, respectively,

(
ε
u

)
, is trying to find two

factorizations of the same message on C into code words beginning with distinct code

words. The decodings obtained so far are d1(p) and d2(p). The word u in A∗ denotes

the backlog of the first (resp., second) decoding as against the second (resp., first) one.

Guzmán [4] suggested to look at the simplified domino graph and the domino func-

tion of C . The simplified domino graph of C is a subgraph of the domino graph of C .

Replace E1 by E′1 =
{(

open,
(
ε
u

))
| u ∈ C

}
, E2 by E′2 =

{((
u
ε

)
,close

)
| u ∈ C

}
, V by V ′

which consists of open, close, and those vertices v in V such that there is a path from

open to close that goes through v , and E by E′ which consists of those edges e in E
such that there is a path from open to close going through e. The simplified domino

graph of C is denoted by G(C).
The UD, MSD, and SD properties of a code C can be characterized in terms of its

simplified domino graph G(C) and functions d1 and d2,

• C is not UD if and only if there is a path in G(C) from open to close [6].

• C is not MSD if and only if there is a path p in G(C) from open to close such that

d1(p) and d2(p) do not have the same multiset of code words [5].

• C is not SD if and only if there is a path p in G(C) from open to close such that

d1(p) and d2(p) do not have the same set of code words [3].

As an example, we consider the code c = {c1,c2,c3,c4} on {0,1} discussed in [5, 4]

(c1 = 0,c2 = 0111110,c3 = 10101, and c4 = 1111). The simplified domino graph and

function associated with this code are shown in Figure 1.1.

(
ε

111

)

(εc4)

open
(c1ε) (

ε
0

) (c4ε) (
ε

01111

) (εc2) (
10
ε

)

(c3ε)

(
1
ε

)(εc1)
(c4ε)

close
(

0111110
ε

)(c2ε) (
011111
ε

)
(c2ε)

(εc1) (
01
ε

)(εc4) (
ε

101

) (c1ε)(εc3) (
ε

1010

)
(εc3)

Figure 1.1

Each edge e is labeled by d(e). The path

p = open,
(
ε
0

)
,
(

ε
01111

)
,
(

10
ε

)
,
(
ε

101

)
,
(

01
ε

)
,
(

011111
ε

)
,
(

0111110
ε

)
,close (1.6)

is from open to close showing that C is not UD. However, every path p from open to

close is such that d1(p) and d2(p) have the same multiset of code words showing

that C is MSD.

494 F. BLANCHET-SADRI AND T. HOWELL

1.2. Preliminary lemmas. We give some preliminary lemmas that are used in

Section 2 to prove our main results.

Definition 1.1 (see Lothaire [8]). A nonempty word u on an alphabet A is called

primitive, if u= vn for some nonempty word v on A implies that n= 1.

Lemma 1.2 (see Lothaire [8]). Let u be a nonempty word on an alphabet A. There

exist a unique primitive word v and a unique positive integer n such that u = vn (v ,

denoted by
√
u, is called the root of u and n, denoted by exp(u), is called the exponent

of u). Moreover, all positive powers of u have the same root.

Lemma 1.3 (see Lothaire [8]). Let C = {u,v} be a two-word on an alphabet A. The

UD, MSD, and SD properties are equivalent to the following properties:

(1) uv ≠ vu.

(2)
√
u≠

√
v .

Lemma 1.4 (see Blanchet-Sadri [2]). Let u, x be nonempty words on an alphabet A
and let k be a positive integer. If {ux,(ux)ku} is SD, then ux ≠ xu.

Lemma 1.5. Let u, v , x, y be nonempty words on an alphabet A satisfying u≠ v .

(1) The equalities vyx =yxu= xuy cannot hold simultaneously.

(2)The equalities xvy = vyx =yxu cannot hold simultaneously.

Proof. We prove assertion (1) (assertion (2) is proved similarly). Sinceyxu= xuy ,

by Lemmas 1.2 and 1.3 there exist a unique primitive word w and unique positive

integers k and k′ such that y =wk and xu=wk′ . Put x =w�z and u= z′w�′ where

w is not a prefix of z andw is not a suffix of z′. If z,z′ = ε, thenu= v , a contradiction.

Otherwise, z,z′ ≠ ε and the equality vyx = xuy implies thatw = zz′ = z′z. Lemmas

1.2 and 1.3 imply the existence of a unique primitive word w′ and unique positive

integers m and m′ satisfying z = (w′)m and z′ = (w′)m′
. We get w = (w′)m+m′

, a

contradiction with the fact that w is primitive.

Lemma 1.6. Let u, v , x, y be nonempty words on an alphabet A satisfying u ≠ v .

If the equalities vyx =yxv =yux hold simultaneously, then u= (z′z)k, v = (zz′)k,
x = (z′z)�z′, and y = (zz′)mz for some k > 0, � ≥ 0, m≥ 0, and words z,z′ on A.

Proof. Since vyx = yxv , by Lemmas 1.2 and 1.3 there exist a unique primitive

word w and unique positive integers k and k′ such that v = wk and yx = wk′ . Put

y = w�z and x = z′w�′ where w is not a prefix of z and w is not a suffix of z′. If

z,z′ = ε, thenu= v , a contradiction. Otherwise, z,z′ ≠ ε andw = zz′, and the equality

yxv =yux implies that u= (z′z)k and the result follows.

Lemma 1.7 (see Blanchet-Sadri [2]). Let u, v , x be nonempty words on an alphabet

A satisfying u≠ v . The equalities ux = xv and vx = xu cannot hold simultaneously.

2. Some special three-word codes. We show that the UD, MSD, and SD properties

are equivalent to the special three-word codes described in Theorems 2.1, 2.2, and

2.3.

Let C = {c1,c2,c3} be a three-word SD code on alphabet A satisfying |c1| < |c2| <
|c3|. Let c2 and c3 be written, respectively, as ck1u and ck1v where c1 is not a prefix

NOTE ON DECIPHERABILITY OF THREE-WORD CODES 495

of u, c1 is not a prefix of v,u is not a prefix of v , k > 0, and u,v ≠ ε. For each

of our theorems, we need only to show that C is UD. It is easy to see that {c1,c2},
{c1,c3}, and {c2,c3} are two-word SD codes, and are therefore MSD and UD codes by

Lemma 1.3. When constructing G(C), we see that E′1 consists of the edges
(
open,

(
ε
ci

))
and E′2 consists of the edges

((
ci
ε

)
,close

)
. No E3- nor E4-edge leaves

(
ε
c2

)
and no E3-

nor E4-edge leaves
(
ε
c3

)
.

Let ui (resp., vi,wi) be the prefix of length i of c1 (resp., c2, c3). We write c1 =uixi.
When trying to build a path from open to close, a list of vertices gets generated. The

vertices are among
(
ui
ε

)
,
(
vi
ε

)
,
(
wi
ε

)
,
(
ε
ui

)
,
(
ε
vi

)
, and

(
ε
wi

)
where 0 < i ≤ |c3|. The E3- or

E4-edges leaving
(
ui
ε

)
,
(
vi
ε

)
,
(
wi
ε

)
,
(
ε
ui

)
,
(
ε
vi

)
, and

(
ε
wi

)
are easily described.

We need to check that none of the generated vertices is of the form
(
c1
ε

)
,
(
c2
ε

)
, or

(
c3
ε

)
(otherwise there would be a path from open to close). It is obvious that

(
c1
ε

)
is not the

end vertex of any E3-edge and
(
c3
ε

)
is not the end vertex of any E4-edge. If

(
c1
ε

)
is the

end vertex of an E4-edge of the form
((

ε
ui

)
,
(
c1
ε

))
(resp.,

((
ε
vi

)
,
(
c1
ε

))
,
((

ε
wi

)
,
(
c1
ε

))
), then

c2 =uic1 or c3 =uic1 (resp., c2 = vic1 or c3 = vic1, c2 =wic1 or c3 =wic1). Similarly, if(
c2
ε

)
is the end vertex of an E4-edge of the form

((
ε
ui

)
,
(
c2
ε

))
, respectively,

((
ε
vi

)
,
(
c2
ε

))
,((

ε
wi

)
,
(
c2
ε

))
, then c3 = uic2 (resp., c3 = vic2,c3 = wic2). If

(
c2
ε

)
is the end vertex of

an E3-edge of the form
((

ui
ε

)
,
(
uic1
ε

))
, respectively,

((
vi
ε

)
,
(
vic1
ε

))
,
((

wi
ε

)
,
(
wic1
ε

))
, then

c2 =uic1 (resp., c2 = vic1, c2 =wic1). If
(
c3
ε

)
is the end vertex of an E3-edge of the form((

ui
ε

)
,
(
uic1
ε

))
(resp.,

((
vi
ε

)
,
(
vic1
ε

))
,
((

wi
ε

)
,
(
wic1
ε

))
,
((

ui
ε

)
,
(
uic2
ε

))
,
((

vi
ε

)
,
(
vic2
ε

))
,
((

wi
ε

)
,(

wic2
ε

))
), then c3 = uic1 (resp., c3 = vic1, c3 =wic1, c3 = uic2, c3 = vic2, c3 =wic2).

We need to consider the cases c2 = vic1, c3 =wic1, and c3 =wic2.

For the rest of the discussion, we can assume that u or v is a prefix of c1 (otherwise,

it is not difficult to see that there is no path in G(C) from open to close). Since u is

not a prefix of v and |u| < |v|, u and v cannot be both prefixes of c1. In either

case, |u| < |c1|. To simplify the notation, put x|u| = x, and whenever |v| < |c1|, put

x|v| =y .

First, assume that v is a prefix of c1. Here, y ≠ ε and vy ≠ yv by Lemma 1.4. To

simplify the notation, put u|u| = w. in the case where c3 = wic1, since i = |ck−1
1 v|,

we have wi = ck−1
1 v and c3 = ck−1

1 vc1 = ck1v yielding vy = yv , a contradiction. In

the case where c3 = wic2, we have i = |v| − |u|, wi = ui, c3 = uick1u = ck1v , and

c1 = uixi = vy . Put v = uit where t ≠ ε. The equality uick1u = ck1uit implies that

t = u and uixi = xiui. But then, c1 = uixi = uiuy = uyui. We then conclude that

u is a prefix of c1, which is a contradiction. In the case where c2 = vic1, we have

i= |ck−1
1 u|. If y �∈ Prefix(C)\{ε}, we get Figure 2.1.

Otherwise, put vy = yv′ where v′ ≠ v (v′ �∈ Prefix(C) \ {ε}). If u is not a prefix

of v′, then add the edge
((

v
ε

)
,
(
ε
y

))
to Figure 2.1. Otherwise, put v′ =us where s ≠ ε.

We have vi = ck−1
1 w, c2 = ck−1

1 wc1 = ck1u, and therefore c1 =wx = xu= vy . We have

v =wt where t ≠ ε, and thereforewty = tyu=yus withu≠w. By Lemma 1.5(1), we

get s ≠ t. Since |s| = |t|, we conclude that s �∈ Prefix(C)\{ε}. Add the edges
((

v
ε

)
,
(
ε
y

))
and

((
ck−1

1 v
ε

)
,
(
ε
yu

))
to Figure 2.1.

496 F. BLANCHET-SADRI AND T. HOWELL

(
ck−1

1 v
ε

) (
ck−2

1 v
ε

) (
c1v
ε

) (
v
ε

)

open
(
ε
c1

) (
ε
c2

1

)
···

(
ε

ck−1
1

) (
ε
ck1

)

Figure 2.1

In the rest of the note, we assume thatu is a prefix of c1. Here,x ≠ ε andux ≠ xu by

Lemma 1.4. In the case where c2 = vic1, we have vi = ck−1
1 u and c2 = ck−1

1 uc1 = ck1u.

We conclude that ux = xu, a contradiction. In the cases where c3 =wic1 or c3 =wic2,

if x �∈ Prefix(C)\{ε}, we get Figure 2.2.

(
ck−1

1 u
ε

) (
ck−2

1 u
ε

) (
c1u
ε

) (
u
ε

)

open
(
ε
c1

) (
ε
c2

1

)
···

(
ε

ck−1
1

) (
ε
ck1

)

Figure 2.2

Otherwise, put ux = xu′ where u′ ≠ u (u′ �∈ Prefix(C)\{ε}). If u′ is not a prefix

of v , then add the edge
((

u
ε

)
,
(
ε
x

))
to Figure 2.2. Otherwise, put v = u′cq1z where c1

is not a prefix of z and q ≥ 0. Note that if z = ε, then c3 = ck1u′cq1 = ck−1
1 ucq+1

1 and

so c2c
q+1
1 = c1c3, a contradiction with the fact that C is SD. Note also that if q ≥ k

and z = u′, then c1c3 = c2c
q−k
1 c2c1, a contradiction with the fact that C is SD. It is

not difficult to see that ci1z �∈ Prefix(C)\{ε} (0≤ i < k) unless z is a prefix of c1, and

ck1z ∈ Prefix(C)\{ε} only if z is a prefix of u or v . Whenever z is a prefix of c1, put

x|z| = x1 and whenever z is a prefix of u, put c2 = ck1zcp
′

1 y ′ where p′ ≥ 0 and c1 is

not a prefix of y ′. In the case where z is a prefix of v , put c3 = ck1zcq
′

1 z′ where q′ ≥ 0

and c1 is not a prefix of z′.
The following points enable us to assume that |z| < |u| and z is a prefix of u

whenever z is a prefix of c1 and c3 =wic1:

• if |z| = |u|, then z =u=u′, a contradiction;

• if |z|> |u|, then put z =ut = t′u′ fore some t,t′ ≠ ε. Here, c1 =utx1 = tx1u′ =
t′u′x1 implies that t = t′. We also have x = tx1 = x1t and c1 =ux1t = x1tu′ =
tu′x1. These equalities cannot hold simultaneously by Lemma 1.5(1).

If c3 =wic2 and |z| = |u|, we have z = u and z is not a prefix of v . In this case, if

q < k−1, u=u′, a contradiction, and if q ≥ k−1, C is not SD (c1c3 = c2c
q−k+1
1 c2). The

above and the following points enable us to assume that |z|< |u|, z is a prefix of u,

and q > k−1 whenever z is a prefix of c1 and c3 =wic2:

• if |z|> |u|, then put z =ut = t′u for some t,t′ ≠ ε. Here, c1 =utx1 = tx1u′ =
x1u′t′ and t = t′. These equalities cannot hold simultaneously by Lemma 1.5(1);

NOTE ON DECIPHERABILITY OF THREE-WORD CODES 497

• if |z| < |u|, then put u = zt = t′z for some t,t′ ≠ ε, and put u′ = z′′t′. In this

case, if q < k, then ck1u′c
q
1z = cq1zck1u and c1 = ztx = txz′′ = xz′′t′ with t = t′.

These equalities cannot hold simultaneously by Lemma 1.5(1).

Trying to build a path from open to close, add
((

u
ε

)
,
(
ε
x

))
and Figure 2.3 to Figure 2.2.

(
ck−1

1 u
ε

) (
ck1u

′
ε

) (
ck1u

′c1
ε

) ··· (
ck1u

′cq−1
1

ε

) (
ck1u

′cq1
ε

)

Figure 2.3

The edge
((

ck−1
1 u
ε

)
,
(
ck−1

1 uc2
ε

))
is added in case q > k−1, or q = k−1, u is a proper

prefix of z, and z is not a prefix of v . The edge
((

ck1u
′ci1
ε

)
,
(
ck1u

′ci1c2
ε

))
is added in case

0 ≤ i < q− k. The edge
((

ck1u
′cq−k1
ε

)
,
(
ck1u

′cq−k1 c2
ε

))
is added in case q > k− 1, u is a

proper prefix of z, and z is not a prefix of v . The edge
((

ck−1
1 u
ε

)
,
(

ε
cq+1

1 z

))
is added in

case q < k−1 and z is a prefix of u, or q = k−1 and z is a prefix of u or v . The edge((
ck1u

′cq−k1
ε

)
,
(
ε
ck1z

))
is added in case q > k−1 and z is a prefix of u or v . If i ≥ 0 and

q−k < i ≤ q, the edge
((

ck1u
′ci1
ε

)
,
(

ε
cq−i1 z

))
is added in case z is a prefix of u. Note that

no E3- nor E4-edge leaves
(
ε
x

)
, and no E3- nor E4-edge leaves the vertices in Figure 2.3

other than the edges discussed above.

In the rest of the discussion, wheneveru is a proper prefix of z, we put z =ur where

r ≠ ε and x is not a prefix of r , and whenever u′ is a prefix of z, we put z = u′r ′. It

is not difficult to see that r �∈ Prefix(C)\{ε} (otherwise, ur = z is a prefix of ux = c1

and therefore z is a prefix of u, a contradiction). Note the following points:

• No E3-edge leaves
(
ck−1

1 uc2
ε

)
unless q = k and u′ is a prefix of z. No E4-edge leaves(

ck−1
1 uc2
ε

)
other than

((
ck−1

1 uc2
ε

)
,
(
ε
xz

))
in case q = k and xz ∈ Prefix(C)\{ε}.

• No E3- nor E4-edges leave
(
ck1u

′ci1c2
ε

)
(0≤ i < q−k−1).

• For q > k and i= q−k−1, no E3-edge leaves
(
ck1u

′ci1c2
ε

)
unlessu′ is a prefix of z, and

no E4-edge leaves
(
ck1u

′ci1c2
ε

)
other than

((
ck1u

′ci1c2
ε

)
,
(
ε
xz

))
in case xz ∈ Prefix(C)\{ε}.

• No E3- nor E4-edges leave
(
ck1u

′cq−k1 c2
ε

)
.

We now state and prove our main results.

Theorem 2.1. Let C , u, v , and z be defined as described above. If z is a prefix of

both u and v , then C is UD.

Proof. Here |z| < |u|. Put u = zt and u′ = zt′ where t,t′ ≠ ε and t ≠ t′. First,

assume that c3 = wic1. Here u′ = t′z and c1 = ztx = xzt′ = xt′z = zxt′ = txz.

By Lemma 1.5(2), the equalities ztx = txz = xzt′ cannot hold simultaneously. Now,

assume that c3 =wic2. Here u= t′z and c1 = ztx = xzt′ = t′zx = zxt′. Since t′zx =
zxt′ = ztx, by Lemma 1.6, t = (s′s)�, t′ = (ss′)�, x = (s′s)ms′, z = (ss′)ns for some

� > 0,m≥ 0,n≥ 0, and words s,s′ onA. The equality ztx = xzt′ implies that ss′ = s′s,
and therefore t = t′, a contradiction.

498 F. BLANCHET-SADRI AND T. HOWELL

Theorem 2.2. Let C , u, v , and z be defined as described above. If z is a prefix of u
but not a prefix of v , then C is UD.

Proof. Here, |z| < |u|. Put u = zt and u′ = z′′t′, where z ≠ z′′ and t,t′ ≠ ε. We

have xz �∈ Prefix(C)\{ε} since c1 = xz′′t and z ≠ z′′.
First, assume that c3 = wic1. Here u′ = t′z and c1 = ztx = zxt′ = txz = xz′′t′ =

xt′z. If t = t′, then zxt = xtz = xz′′t. By Lemma 1.6, z′′ = (s′s)�, z = (ss′)�, t =
(s′s)ms′, x = (ss′)ns for some � > 0, m≥ 0, n≥ 0, and words s,s′ on A. The equality

txz = xtz implies that ss′ = s′s, and therefore z = z′′, a contradiction. Otherwise,

since |t| < |u| and c1 = txz, we get u = tz′′′ for some z′′′. We have zx = xz′′ and

z′′′x = xz. Certainly z′′′ ≠ z, and by Lemma 1.7, z′′′ ≠ z′′. By Lemma 1.6, since ztx =
txz = tz′′′x, put z′′′ = (s′s)�, z = (ss′)�, x = (s′s)ms′, and t = (ss′)ns for some � > 0,

m≥ 0, n≥ 0, and words s,s′ on A. Wheneverm> 0, the equality ztx = xz′′t′ implies

that ss′ = s′s and z = z′′′, a contradiction. Otherwise, x is a prefix of z′′′ and we put

z′′′ = xy and z = yx, where y = (ss′)�−1s. Here y cannot be a prefix of z′′ or the

equality xz′′t′ = zxt′ implies that z = z′′′. Trying to build a path from open to close,

the edge
((

u
ε

)
,
(
ε
x

))
together with Figure 2.3 are added to Figure 2.2. We now discuss

the other edges added.

First, assume that q ≤ k. Whenever q < k, add
((

ck−1
1 u
ε

)
,
(

ε
cq+1

1 z

))
to the graph and

whenever q = k, add
((

ck−1
1 u
ε

)
,
(
ck−1

1 uc2
ε

))
. In either case, we then also add

((
ck1u

′ci1
ε

)
,(

ε
cq−i1 z

))
(0≤ i≤ q),

((
ε
ci1z

)
,
(

ε
ci+1

1 z

))
(0≤ i < k),

((
ε
z

)
,
(
tx
ε

))
,
((

tx
ε

)
,
(
ε
z

))
,
((

ε
ci1z

)
,
(
ck−i1 t
ε

))
(0≤ i≤ k),

((
ci1tx
ε

)
,
(
ci+1

1 tx
ε

))
(0≤ i < k), and

((
ci1tx
ε

)
,
(

ε
ck−i1 y

))
(0≤ i≤ k).

Second, assume that q > k. Add
((

ck−1
1 u
ε

)
,
(
ck−1

1 uc2
ε

))
,
((

ck1u
′ci1
ε

)
,
(
ck1u

′ci1c2
ε

))
(0 ≤ i <

q− k), and
((

ck1u
′ci1
ε

)
,
(

ε
cq−i1 z

))
(q− k ≤ i ≤ q). Also add

((
ε
ci1z

)
,
(

ε
ci+1

1 z

))
(0 ≤ i < k),((

ε
z

)
,
(
tx
ε

))
,
((

tx
ε

)
,
(
ε
z

))
,
((

ε
ci1z

)
,
(
ck−i1 t
ε

))
(0 ≤ i ≤ k),

((
ci1tx
ε

)
,
(
ci+1

1 tx
ε

))
(0 ≤ i < k), and((

ci1tx
ε

)
,
(

ε
ck−i1 y

))
(0≤ i≤ k).

Now, assume that c3 = wic2. Here u = t′z and c1 = ztx = t′zx = zxt′ = xz′′t′ =
t′xz′′. If t = t′, then ztx = txz′′ = xz′′t and these equalities cannot hold simulta-

neously by Lemma 1.5(1). Otherwise, t ≠ t′ and t �∈ Prefix(C) \ {ε}. trying to build a

path from open to close, the edge
((

u
ε

)
,
(
ε
x

))
together with Figure 2.3 are added to

Figure 2.2. We now discuss the other edges added.

First, assume that q = k. Add
((

ck−1
1 u
ε

)
,
(
ck−1

1 uc2
ε

))
and

((
ck1u

′ci1
ε

)
,
(

ε
cq−i1 z

))
(0≤ i≤ q).

Second, assume that q > k. Add
((

ck−1
1 u
ε

)
,
(
ck−1

1 uc2
ε

))
,
((

ck1u
′ci1
ε

)
,
(
ck1u

′ci1c2
ε

))
(0 ≤ i <

q−k), and
((

ck1u
′ci1
ε

)
,
(

ε
cq−i1 z

))
(q−k≤ i≤ q).

Theorem 2.3. Let C , u, v , and z be defined as described above. If z is a prefix of v
but not a prefix of u, then C is UD.

Proof. Here c3 = ck1u′cq1z = ck1zcq
′

1 z′ and |cq′1 z′| = |cq1u|. The latter and the fact

that |u|< |c1| imply that q ≥ q′. Note that u is not a prefix of z, u′ is a suffix of z′ in

case c3 =wic1, and u is a suffix of z′ in case c3 =wic2. Trying to build a path from

open to close, the edge
((

u
ε

)
,
(
ε
x

))
together with Figure 2.3 are added to Figure 2.2. We

now discuss the other edges added (if any).

NOTE ON DECIPHERABILITY OF THREE-WORD CODES 499

First, assume that q < k−1. In this case, no more edges are added.

Second, assume that q = k−1. We have |cq′1 z′| = |ck−1
1 u| and add

((
ck−1

1 u
ε

)
,
(
ε
ck1z

))
along with

(
ε
ck1z

) (
ε

ck1zc1

)
···

(
ε

ck1zc
q′−1
1

) (
ε

ck1zc
q′
1

)

Figure 2.4

In case c3 = wic2, we have cq
′

1 z′ = ck−1
1 u (q′ = k− 1 and z′ = u) and also add((

ε
ck1zc

q′−i
1

)
,
(
ci1u
ε

))
(0≤ i < k).

Third, assume that q = k and c3 =wic2. We have cq
′

1 z′ = ck1u (q′ = k and z′ =u) and

|z|≠ |u| here. If |z|< |u|, then u′ = zt and u= tz for some t ≠ ε. The latter together

with the equality ck1u′c
k
1z = ck1zck1u yield that c1 = tzx = xzt = zxt and therefore z

is a prefix of u, a contradiction. If |z| > |u|, put z = u′cp1 t′ = tu where t′ ≠ ε and c1

is not a prefix of t nor t′. To simplify the notation, whenever |t′|< |c1|, put x|t′| = x′.
From the equality ck1u′c

k
1z = ck1zck1u, it follows that ck1u′c

p
1 t′ = cp1 t′ck1u.

• If p > k, we contradict the fact that c1 is not a prefix of z.

• If p < k, then |t′| < |c1| or we contradict the fact that c1 is not a prefix of t′ (t′

is a prefix of c1 here). If |t′| < |u|, put u = t′r1 = r ′1t′ and u′ = t′′r ′1. We then have

c1 = t′r1x = r ′1t′x = xt′′r ′1 = r1xt′′ and r1 = r ′1. Then t′ ≠ t′′ and we have t′r1x =
r1xt′′ = xt′′r1, which cannot hold simultaneously by Lemma 1.5(1). If |t′| = |u|, then

t′ = u and, when k−p = 1, C is not SD (c1c3 = c3
2). When k−p > 1, we get u = u′,

a contradiction. So we have |t′| > |u| and put t′ = ur1 = r ′1u. Then c1 = ur1x′ =
r ′1ux′ = r1x′u′ = x′u′r ′1 and r1 = r ′1. Consequently, ur1x′ = r1x′u′ = x′u′r1, which

cannot hold simultaneously by Lemma 1.5(1).

• If p = k then from the equality ck1u′c
p
1 t′ = cp1 t′ck1u it follows that u′ck1t′ = t′ck1u.

Here, clearly |t′|≠ |u|. If |t′|< |u|, put u′ = t′r1 and u= r1t′ = t′′r ′1 where |t′| = |t′′|.
This then yields that c1 = r1t′x = t′′r ′1x = xt′r1 = t′xr1 and t′ = t′′. So we have

r1 ≠ r ′1 and r1t′x = t′xr1 = t′r ′1x. Using Lemma 1.6 and the fact that t′xr1 = xt′r1,

we conclude thatu=u′, a contradiction. Thus |t′|> |u| and put t′ =u′cp1
1 t

′
1 = t1u for

some t1 and t′1 where t′1 ≠ ε and c1 is not a prefix of t1 nor t′1. From the equalityu′ck1t′ =
t′ck1u, it follows that ck1u′c

p1
1 t

′
1 = cp1

1 t
′
1c
k
1u and we continue as above, comparing p1

to k. Since c3 is finite, we must reach t′i = u′cpi+1
1 t′i+1 = ti+1u where t′i+1 ≠ ε and c1

is not a prefix of ti+1 nor t′i+1, and consequently we get the equality ck1u′c
pi+1
1 t′i+1 =

cpi+1
1 t′i+1c

k
1u. Then we have pi+1 > k, pi+1 < k, or pi+1 = k, and |t′i+1| ≤ |u|. In all cases

we reach the same types of contradictions as previously stated.

Fourth, assume that q > k and c3 = wic2. Since |cq1u| = cq
′

1 z′, it follows that c2

is a suffix of cq
′

1 z′ and we put c3 = ck1u′cq1z = ck1zcq
′

1 z′ = ck1zsck1u where |s| = |cq−k1 |.
Clearly, |z| ≠ |u| here. If |z| < |u|, put u′ = zt and u = tz for some t ≠ ε.
The latter together with the equality ck1u′c

q
1z = ck1zsc

k
1u yield that c1 = tzx =

xzt = zxt, which contradicts the fact that z is not a prefix of u. If |z| > |u|,

500 F. BLANCHET-SADRI AND T. HOWELL

put z =u′cp1 t′ = tu where t′ ≠ ε and c1 is not a prefix of t nor t′. To simplify the nota-

tion, whenever |t′| < |c1|, put x|t′| = x′. From the equality ck1u′c
q
1z = ck1zsck1u, it fol-

lows that cq1u′c
p
1 t′ = cp1 t′sck1u. Add

((
ck−1

1 u
ε

)
,
(
ck−1

1 uc2
ε

))
,
((

ck1u
′cq−k1
ε

)
,
(
ε
ck1z

))
, Figure 2.4,

and
((

ck1u
′ci1
ε

)
,
(
ck1u

′ci1c2
ε

))
(0 ≤ i < q − k) along with

((
ck1u

′cq−k−1
1 c2
ε

)
,
(
ck1u

′cq1u′
ε

))
and

Figure 2.5:

(
ck1u

′cq1u′
ε

) (
ck1u

′cq1u′c1
ε

) ··· (
ck1u

′cq1u′c
p−1
1

ε

) (
ck1u

′cq1u′c
p
1

ε

)

Figure 2.5

• If p > q, then we contradict the fact that c1 is not a prefix of z.

• If p < q, then |t′|< |c1| or we contradict the fact that c1 is not a prefix of t′ (t′ is a

prefix of c1 here). If |t′|> |u|, put t′ =ur1 = r ′1u. Then c1 =ur1x′ = r ′1ux′ = r1x′u′ =
x′u′r ′1 and r1 = r ′1. So ur1x′ = r1x′u′ = x′u′r1, which cannot hold simultaneously

by Lemma 1.5(1). If |t′| = |u|, then t′ =u and it follows from the equality cq1u′c
p
1u=

cp1usc
k
1u that cq−p1 u′cp1 = usck1 . Here if k−p > 1, we get u = u′, a contradiction. If

k−p ≤ 1 then C is not SD (c1c3 = c2c
q−k
1 c2c

p−k+1
1 c2). If |t′| < |u|, put u = t′r1 =

r ′1t′ and u′ = t′′r ′1. We then have c1 = t′r1x = r ′1t′x = xt′′r ′1 = t′xr ′1 = r ′1xt′′. In

case k > p, from the equality cq1u′c
p
1 t′ = cp1 t′sck1u, it follows that cq−p1 t′′ = t′sck−p1 .

Consequently, we also have c1 = r1xt′′ and r1 = r ′1. Then t′ ≠ t′′ and t′r1x = r1xt′′ =
xt′′r1, which cannot hold simultaneously by Lemma 1.5(1). So we have p ≥ k, r1 ≠ r ′1,

and xz = cp+1
1 t′ �∈ Prefix(C) \ {ε}. Note that q′ = 0 here or we have r1 = r ′1. Also,

xt′ �∈ Prefix(C)\{ε} or we get t′ = t′′, which leads to a contradiction by Lemma 1.6.

Add ((
ck1u′c

q
1u′c

p−i
1

ε

)
,
(
ε
ci1t′

))
(0≤ i≤ k) along with

((
ck1u′c

q
1u′c

i
1

ε

)
,
(
ck1u′c

q
1u′c

i
1c2

ε

))
(0≤ i < p−k)

(2.1)

and
((

ck1u
′cq−k−1

1 c2
ε

)
,
(
ck1u

′cq1u′c
k−1
1 u

ε

))
.

• If p = q, from the equality cq1u′c
p
1 t′ = cp1 t′sck1u, it follows that u′cq1 t′ = t′sck1u.

Clearly, |t′|≠ |u|, and if |t′|< |u|,then put u′ = t′r1 and u= r1t′ = t′′r ′1 where |t′| =
|t′′|. We then have r1t′x = t′′r ′1x = xt′r1 = t′xr1 and t′ = t′′. Consequently, r1 ≠ r ′1
and we get r1t′x = t′xr1 = t′r ′1x. Using Lemma 1.6 and the fact that xt′r1 = t′xr1,

we reach a contradiction with the fact that u ≠ u′. So we have |t′| > |u| and put

t′ = u′cp1
1 t

′
1 = t1u, where t′1 ≠ ε and c1 is not a prefix of t1 nor t′1. From the equality

u′cq1 t′ = t′sck1u, it follows that cq1u′c
p1
1 t

′
1 = cp1

1 t
′
1sc

k
1u and we continue as above,

comparing p1 with q. Since c3 is finite, we must reach the equality t′i = u′cpi+1
1 t′i+1 =

t′i+1u where t′i+1 ≠ ε and c1 is not a prefix of ti+1 nor t′i+1, and consequently we get

the equality cq1u′c
pi+1
1 t′i+1 = cpi+1

1 t′i+1sc
k
1u. Then one of the following must occur:

(1) pi+1 > q, thus yielding the same type of contradiction as above;

(2) pi+1 < q and |t′i+1| ≥ |u|, thus yielding the same types of contradiction as above;

NOTE ON DECIPHERABILITY OF THREE-WORD CODES 501

(3) pi+1 < q, |t′i+1|< |u|, and pi+1 < k, thus yielding the same type of contradiction

as above;

(4) pi+1 < q, |t′i+1|< |u|, and pi+1 ≥ k, in which case we add

((
ck1u′

(
cq1u′

)i+2cpi+1−j
1

ε

)
,
(

ε
cj1t

′
i+1

))
(0≤ j ≤ k),

((
ck1u′

(
cq1u′

)i+2cj1
ε

)
,
(
ck1u′

(
cq1u′

)i+2cj1c2

ε

)) (
0≤ j < pi+1−k

)
,

((
ck1u′

(
cq1u′

)i+1cq−k−1
1 c2

ε

))
,
((
ck1u′

(
cq1u′

)i+2ck−1
1 u

ε

))
;

(2.2)

(5) pi+1 = q and |t′i+1| ≤ |u|, thus yielding the same types of contradiction as above.

Last, assume that q ≥ k and c3 = wic1. In this case, add
((

ck−1
1 u
ε

)
,
(
ck−1

1 uc2
ε

))
,((

ck1u
′cq−k1
ε

)
,
(
ε
ck1z

))
, and Figure 2.4. Also, add the edges

((
ck1u

′ci1
ε

)
,
(
ck1u

′ci1c2
ε

))
(0 ≤ i <

q−k).
If |z|< |u| put u′ = zt′ = t′z and u= z′′t′′ where |t′| = |t′′|, z ≠ z′′, and t′, t′′ ≠ ε.

Then we have c1 = xzt′ = xt′z = z′′t′′x = t′′xz. Here, if t′ = t′′ we have the equalities

z′′t′x = t′xz = xzt′, which cannot hold by Lemma 1.5(1). So t′ ≠ t′′ and we add((
ck−1

1 uc2
ε

)
,
(
ε
xz

))
whenever q = k and

((
ck1u

′cq−k−1
1 c2
ε

)
,
(
ε
xz

))
whenever q > k. Note that

here q′ = 0 nor we contradict the fact that t′ ≠ t′′.
If |z| = |u| then z =u′ and C is not SD (c1c3 = c2c

q−k
1 c2c1).

If |z| > |u| put z = u′cp1 t′ = tu′ where c1 is not a prefix of t or t′, and t′ ≠ ε
(otherwise, c1c3 = c1ck1u′c

q
1u′c

p
1 = c2c

q−k
1 c2c

p+1
1). To simplify the notation, whenever

|t′|< |c1|, put x|t′| = x′. Then we have c3 = ck1u′cq1z = ck1zcq
′

1 z′ = ck1zsc1, where |s| =
|cq−1

1 u| and it follows that cq1u′c
p
1 t′ = cp1 t′sc1. Here, we add

((
ck−1

1 uc2
ε

)
,
(
ck1u

′cq1u′
ε

))
if

q = k, and
((

ck1u
′cq−k−1

1 c2
ε

)
,
(
ck1u

′cq1u′
ε

))
if q > k. In either case, also add Figure 2.5.

• If p > q, then we contradict the fact that c1 is not a prefix of z.

• If p < q, then |t′| < |c1| or we contradict the fact that c1 is not a prefix of

t′(t′ is a prefix of c1here). Clearly, |t′| ≠ |u| or we contradict the fact that u ≠ u′.
If |t′| > |u|, put t′ = ur1 = r ′1u′ and c1 = ur1x′ = r ′1u′x′ = r1x′u′ = x′r ′1u′ = ux′r ′1.

Then ux′r ′1 = x′r ′1u′ = r ′1u′x′, which cannot hold simultaneously by Lemma 1.5(1).

If |t′| < |u|, put u = t′r1 = r ′′1 t′′′ and u′ = r ′1t′ = t′′r ′1 where |t′| = |t′′′|. Then we

have c1 = t′r1x = xr ′1t′ = t′xr ′1 = r1xt′ = xt′′r ′1 = r ′′1 t′′′x and r1 = r ′′1 . Here, if

t′ = t′′, then r1 ≠ r ′1 and we have t′r1x = r1xt′ = xt′r ′1, which cannot hold simultane-

ously by Lemma 1.5(2). So we assume that t′ ≠ t′′; and if r1 = r ′1, then the equalities

t′xr1 = xr1t′ = xt′′r1 together with Lemma 1.6 and the fact that xr1t′ = r1xt′ yield

a contradiction with the fact that u ≠ u′. Also, if t′ = t′′′ then xt′ = t′x = xt′′ and

t′ = t′′, a contradiction. So we have t′ ≠ t′′, t′ ≠ t′′′, r1 ≠ r ′1, and xz = cp+1
1 t′. Here,

note that q′ ≤ q−p−1 or we contradict the fact that t′ ≠ t′′. Thus |z′| = |cq−q′1 u|> |u|,
r1 is a prefix of z′, and u′ cannot be a prefix of z′.

502 F. BLANCHET-SADRI AND T. HOWELL

In the case where q = k, we add((
ck−1

1 uc2

ε

)
,
(
ε
xz

))
,
((
ck1u′c

q
1u′c

i
1

ε

)
,
(

ε
cp−i1 t′

))
(0≤ i≤ p). (2.3)

In the case where q > k and p < k, add
((

ck1u
′cq−k−1

1 c2
ε

)
,
(
ε
xz

))
with (2.3). The edge

((
ε

ck1zc
i
1

)
,
(

ε
ck1zc

i
1c2

))
(2.4)

is added in case 0≤ i < q′ −k, or i= q′ −k and u is a prefix of z′.

In the case where q > k and p ≥ k, in addition to (2.1) and
((

ck1u
′cq−k−1

1 c2
ε

)
,(

ck1u
′cq1u′c

k−1
1 u

ε

))
, add

((
ck1u

′cq1u′c
p−i
1

ε

)
,
(
ε
ci1t′
))
(0 ≤ i ≤ k). Also, (2.4) is added in case

0≤ i < q′ −k, or i= q′ −k and u is a prefix of z′.
In all cases, also add

((
ε
ci1t′
)
,
(

ε
ci+1

1 t′
))
(0 ≤ i < k) and

((
ε
ci1t′
)
,
(
ck−i1 r1
ε

))
(0 ≤ i ≤ k)

as well as
((

ε
t′
)
,
(
r1x
ε

))
,
((

r1x
ε

)
,
(
ε
t′
))

, and
((

ci1r1x
ε

)
,
(
ci+1

1 r1x
ε

))
(0 ≤ i < k− 1). In the

case where |t′′′| > |x|, put t′′′ = xs and t′ = sx = xs′. It follows from the equality

t′xr ′1 = xt′′r ′1 that t′′ = s′x and consequently, s ≠ s′. Add
((

ck−1
1 r1x
ε

)
,
(
ck1r1x
ε

))
along

with
((

ci1r1x
ε

)
,
(

ε
ck−i1 s

))
(0≤ i≤ k).

• If p = q, then it follows from cq1u′c
p
1 t′ = cp1 t′sc1 that u′cq1 t′ = t′sc1. Here, if |t′| =

|u|, then t′ =u′ and C is not SD (c1c3 = c2c
q−k
1 c2c

q−k
1 c2c1). If |t′|< |u| then put u′ =

t′r1 = r1t′ and u = t′′r ′1, where |t′| = |t′′|. So we have c1 = xt′r1 = xr1t′ = t′′r ′1x =
r ′1xt′. If t′ = t′′, then r1 ≠ r ′1 and we get t′r ′1x = r ′1xt′ = xt′r1, which cannot hold si-

multaneously by Lemma 1.5(2). So we assume that t′ ≠ t′′, and if r1 = r ′1 then t′′r1x =
r1xt′ = xt′r1, which cannot hold by Lemma 1.5(1). Thus t′ ≠ t′′, r1 ≠ r ′1, and xz =
xu′cq1 t′ = cq+1

1 t′ �∈ prefix(C)\{ε}. Note that here q′ = 0 or we contradict the fact that

r1 ≠ r ′1. When q = k, we add
((

ck−1
1 uc2
ε

)
,
(
ck1u

′ck1u′c
k−1
1 u

ε

))
as well as

((
ck1u

′ck1u′c
k−1
1 u

ε

)
,
(
ε
xt′
))

and
((

ck1u
′ck1u′
ε

)
,
(
ε
ck1 t′

))
. When q > k, add (2.1) and

((
ck1u

′cq−k−1
1 c2
ε

)
,
(
ck1u

′cq1u′c
k−1
1 u

ε

))
along

with
((

ck1u
′cq1u′c

q−k−1
1 c2

ε

)
,
(
ε
xt′
))

and
((

ck1u
′cq1u′c

q−k
1

ε

)
,
(
ε
ck1 t′

))
. If |t′| > |u|, put t′ =

u′cp1
1 t

′
1 = t1u′, where c1 is not a prefix of t1 nor t′1, and t′1 ≠ ε (otherwise, c1c3 =

c1ck1u′(c
q
1u′)2c

p1
1 = (c2c

q−k
1)2c2c

p1+1
1). From the equalityu′cq1 t′ = t′sc1, it follows that

cq1u′c
p1
1 t

′
1 = cp1

1 t
′
1sc1 and we continue as above, comparing p1 to q. Since c3 is finite,

we must reach t′i = u′cpi+1
1 t′i+1 = ti+1u′ where c1 is not a prefix of ti+1 or t′i+1, and

t′i+1 ≠ ε (otherwise, c1c3 = c1ck1u′(c
q
1u′)i+2cpi+1

1 = (c2c
q−k
1)i+2c2c

pi+1+1
1), and conse-

quently we get the equality cq1u′c
pi+1
1 t′i+1 = cpi+1

1 t′i+1sc1. Then one of the following

occurs:

(1) pi+1 > q, in which case we reach the same type of contradiction as above;

(2) pi+1 < q and |t′i+1| ≥ |u|, in which case we reach the same type of contradictions

as above;

(3) pi+1 < q and |t′i+1| < |u|, in which case we put u = t′i+tri+2 = r ′′i+2t
′′′
i+1 and

u′ = r ′i+2t
′
i+1 = t′′i+1r

′
i+2 where |t′i+1| = |t′′′i+1|. As above, we have t′i+1 ≠ t

′′
i+1, t′i+1 ≠

t′′′i+1, ri+2 ≠ r ′i+2, and xz = cpi+1+1
1 t′i+1 �∈ prefix(C)\{ε}. Also, q′ ≤ q−pi+1−1,

|z′| = |cq−q′1 u| > |u|, ri+2 is a prefix of z′, and u′ cannot be a prefix of z′.

NOTE ON DECIPHERABILITY OF THREE-WORD CODES 503

Add
((

ck1u
′(cq1u′)i+2cj1

ε

)
,
(ε
c
Pi+1−j
1 t′i+1

))
(0≤ j ≤ pi+1) whenever q = k, or q > k, and

pi+1 < k. Whenever q > k and pi+1 ≥ k, add

((
ck1u′

(
cq1u′

)i+1cq−k−1
1 c2

ε

)
,
(
ck1u′

(
cq1u′

)i+2ck−1
1 u

ε

))
,

((
ck1u′

(
cq1u′

)i+2cj1
ε

)
,
(
ck1u′

(
cq1u′

)i+2cj1c2

ε

))
,
(
0≤ j < pi+1−k

)
,

(2.5)

and
((

ck1u
′(cq1u′)i+2c

p
i+1−j

1
ε

)
,
(

ε
cj1t

′
i+1

))
(0 ≤ j ≤ k). In all cases, we also include((

ε
cj1t

′
i+1

)
,
(

ε
cj+1

1 t′i+1

))
(0≤ j < k),

((
ε

cj1t
′
i+1

)
,
(
ck−j1 ri+2

ε

))
(0≤ j ≤ k),

((
ε
t′i+1

)
,
(
ri+2x
ε

))
,((

ri+2x
ε

)
,
(
ε
t′i+1

))
, and

((
cj1ri+2x

ε

)
,
(
cj+1

1 ri+2x
ε

))
(0 ≤ j < k− 1), In the case where

q > k, add
((

ε
ck1zc

j
1

)
,
(

ε
ck1zc

j
1c2

))
whenever 0 ≤ j < q′ −k, or j = q′ −k and u is

a prefix of z′. In the case where |t′′′i+1| > |x|, put t′′′i+1 = xsi+1, t′i+1 = si+1x =
xs′i+1, and t′′i+1 = s′i+1x where si+1 ≠ s′i+1. Add

((
ck−1

1 ri+2x
ε

)
,
(
ck1ri+2x

ε

))
along with((

cj1ri+2x
ε

)
,
(

ε
ck−j1 si+1

))
(0≤ j ≤ k);

(4) pi+1 = q and |t′i+1| = |u|, in which case we reach the same type of contradiction

as above;

(5) pi+1 = q and |t′i+1|< |u|, in which case, when q = k, we add

(((
ck1u′

)i+1ck−1
1 uc2

ε

)
,
((
ck1u′

)i+3ck−1
1 u

ε

))
,
(((

ck1u′
)i+3

ε

)
,
(

ε
ck1t

′
i+1

))
, (2.6)

and
(((

ck1u
′
)i+3

ck−1
1 u

ε

)
,
(

ε
xt′i+1

))
. Whenever q > k, we add

((
ck1u′

(
cq1u′

)i+1cq−k−1
1 c2

ε

)
,
(
ck1u′

(
cq1u′

)i+2ck−1
1 u

ε

))
,

((
ck1u′

(
cq1u′

)i+2cj1
ε

)
,
(
ck1u′

(
cq1u′

)i+2cj1c2

ε

))
,
(
0≤ j < q−k),

((
ck1u′

(
cq1u′

)i+2cq−k1

ε

)
,
(

ε
ck1t

′
i+1

))
,
((
ck1u′

(
cq1u′

)i+2cq−k−1
1 c2

ε

)
,
(

ε
xt′i+1

))
.

(2.7)

Acknowledgments. This material is based upon work supported by the National

Science Foundation (NSF) under Grant No. CCR-9700228. We thank the referees of a

preliminary version of this note for their very valuable comments and suggestions.

References

[1] A. Apostolico and R. Giancarlo, Pattern matching machine implementation of a fast test
for unique decipherability, Inform. Process. Lett. 18 (1984), no. 3, 155–158.

504 F. BLANCHET-SADRI AND T. HOWELL

[2] F. Blanchet-Sadri, On unique, multiset, and set decipherability of three-word codes, IEEE
Trans. Inform. Theory 47 (2001), no. 5, 1745–1757.

[3] F. Guzmán, A complete list of small proper MSD and SD codes, in preparation.
[4] , Decipherability of codes, J. Pure Appl. Algebra 141 (1999), no. 1, 13–35.
[5] T. Head and A. Weber, Deciding multiset decipherability, IEEE Trans. Inform. Theory 41

(1995), no. 1, 291–297.
[6] A. Hoffmann, A test on unique decipherability, MFCS 84, Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 1984, pp. 50–63.
[7] A. Lempel, On multiset decipherable codes, IEEE Trans. Inform. Theory 32 (1986), no. 5,

714–716.
[8] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and Its Applications,

vol. 17, Addison-Wesley, 1983.
[9] M. Rodeh, A fast test for unique decipherability based on suffix trees, IEEE Trans. Inform.

Theory 28 (1982), 648–651.

F. Blanchet-Sadri and T. Howell: Department of Mathematical Sciences, University

of North Carolina, P.O. Box 26170, Greensboro, NC 27402-6170, USA

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

• Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

• Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

• Implementation aspects: decision support systems,
expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

