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Abstract: 

Let Comt,q denote the variety of finite monoids that satisfy the equations xy = yx and x
t
 = x

t+q
 . The variety 

Com1,1 is the variety of finite semilattices also denoted by J1. In this paper, we consider the product variety 

J1*Comt,q generated by all semidirect products of the form M * N with M   J1 and N   Comt,q . We give a 

complete sequence of equations for J1 * Comt,q implying complete sequences of equations for J1 * (Com  A), 

J1 * (Com  G) and J1 * Com, where Com denotes the variety of finite commutative monoids, A the variety of 

finite aperiodic monoids and G the variety of finite groups. 

 

Article: 

1. Introduction 

Let Comt,q denote the variety of finite monoids that satisfy the equations xy = yx and x
t
 = x

t+q
. The variety 

Com1,1 is the variety of finite semilattices also denoted by J1. In this paper, we give an equational 

characterization of the product variety J1 * Comt,q generated by all semidirect products of the form M * N with 

M   J1 and N   Comt,q. Our results imply a complete sequence of equations for J1 * (Com  A), J1 *(Com  G) 

and J1 *Com, where Com denotes the variety of finite commutative monoids, A the variety of finite aperiodic 

monoids and G the variety of finite groups. 

 

Pin [12] has shown that the variety J1 * Com1,1 is defined by the equations xux = xux
2
 and xuyvxy = xuyvyx. 

Irastorza [7] has given equations of the particular products J1 * Com0,q and has shown that, although the two 

varieties J1 and Com0,2 are defined by finite sequences of equations, their product is not. Almeida [1] has given 

an equational characterization of the variety of finite monoids generated by all semidirect products of i finite 

semilattices and has shown that it is defined by a finite sequence of equations if and only if i = 1 or 2. Ash [2] 

has shown that the variety J1 * G = Inv is defined by the equation x
w
y

w
 = y

w
x

w
, that is, J1 * G is the variety 

generated by the inverse semigroups. 

 

Our results follow from versions of techniques used in particular by Blanchet-Sadri [3], Brzozowski and Simon 

[4] and Pin [11, 12]. 

 

1.1. Definitions and notations 

Let M and N be monoids. We say that M divides N and write M   N if M is a morphic image of a submonoid of 

N . Note that the divisibility relation is transitive. An M-variety V is a family of finite monoids that satisfies the 

following two conditions: 

 

  If N   V  and M   N , then M   V . 

 

  If M, N   V , then M   N   V. 
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Some examples of M -varieties follow. 

 

           The trivial M-variety, consisting of the trivial monoid, is denoted by I. 

 

  The M-variety, consisting of all finite monoids, is denoted by M. 

 

  The M-variety, consisting of all finite groups, is denoted by G and is defined by the equation x
w
 = 1. 

 

  The M -variety, consisting of all finite commutative monoids (respectively groups), is denoted by Com 

(respectively Gcom) and is defined by the equation xy = yx (respectively by the equations xy = yx and x
w
 

= 1). 

 

Given M-varieties V and W, we denote by V   W the least M-variety containing both V and W. 

 

In this paper, we consider the M-variety Comt,q defined by the pair of equations xy = yx and x
t 
= x

t+q
 where t, q 

are integers and t ≥ 0, q ≥ 1. We get the following M -varieties (among others). 

 

  The M-variety Com0,1 is the trivial M-variety I. 

 

  The M-variety Com1,1 is the family of finite commutative and idempotent monoids (called semilattices). 

 

  The M-variety Com  A is  t≥0Comt,1  

 

  The M-variety Com0,q is generated by the cyclic group Zq of order q and is also denoted by (Zq). 

 

  The M-variety Gcom = Com  G is  q≥1Com0,q. 

 

 The M -variety Comt,q is generated by the cyclic monoid Zt,q of index t and period q, that is, Zt,q = {1, a, 

a
2
 … , a

t+q-1
} with a

t 
= a

t+q
. The monoid Zt,q is isomorphic with a submonoid of Zt,1   Zq. Since further Zt,1   

Zt,q and Zq   Zt,q, it follows that Comt,q = Comt,1   Com0,q  

 

 The M-variety Com is  t,qComt,q or Vt≥0Comt,1    q>1Como,q. 

 

2. Preliminaries 

We refer the reader to [5, 8, 10] for terms not explicitly defined here.  

 

2.1. Varieties V*W 
Let M and N be monoids. It is convenient to write M additively, without however assuming that M is 

commutative. In particular, we denote by 0 (respectively 1) the unit element in M (respectively N). A left action 

of N on M is a function (n, m)   n • m from N   M into M satisfying the following conditions 

 
for all m, m′   M and n, n′   N . Given a left action of N on M,  we define the semidirect product M * N as 

follows. The elements of M * N are pairs (m, n) with m   M and n   N . Multiplication is given by the formula 

 

(m,n)(m′, n′) = (m + n • m′, nn′) . 

 

The multiplication in M * N is associative. Thus M * N is a monoid with (0,1) as unit element. 



We consider the set MN   N where M
N
 is for the set of all functions f : N → N. The wreath product is then M   

N with multiplication defined by the formula 

 

(f, n)(g, n′) = (h, nn′) 

 

with h   M
N
 given by n"h = n"f + (n"n)g. The associativity of the multiplication in M   N may be verified by a 

simple computation. If we define the left action of N on M
N
 by setting n"(n • g) = (n"n)g for all g   M

N
 and all 

n"   N, we find that h = f + n • g and thus the wreath product M   N is a semidirect product M
N 

* N. Conversely, 

we can show that any semidirect product M * N is isomorphic to a submonoid of M   N . 

 

Given M-varieties V and W, we denote by V * W the M-variety generated by all semidirect products M * N 

with M   V, N   W and with any left action of N on M. This is equivalent to the M-variety generated by all 

wreath products M   N with M   V and N   W. The semidirect product V * W is associative. 

 

We end this section with some terminology and well-known results related to equational descriptions of M-

varieties. 

 

2.2. Varieties defined by equations 

Let Σ* be the free monoid generated by the infinite sequence of letters x1, x2, .... Given u, v   Σ* and given a 

monoid M we say that M satisfies the equation u = v (or that the equation u = v holds in M) if u  = v  for every 

morphism   : Σ* → M of monoids. For a fixed pair (u, v), let V(u, v) be the family of all monoids satisfying the 

equation u = v. The family V(u, v) is an M -variety. 

 

Given a sequence of pairs (ui, vi)   Σ*   Σ*, i ≥ 1, we may consider the two M –varieties 

 

V′ =   V(ui, vi) 
                                                                                     i≥1 

V′′ =     V(ui, vi) . 
                                                                                  j≥1i ≥j 

 

A monoid M is in V′ if it satisfies all the equations ui = vi . We say that V′ is defined by the equations ui = vi, i ≥ 

1. A monoid M is in V′′ if it satisfies the equations ui = vi for all i sufficiently large. We say that V′′ is 

ultimately defined by the equations ui = vi, i ≥ 1. Every non-empty M -variety V is ultimately defined by a 

sequence of equations and every M -variety generated by a single monoid is equational [6]. 

 

In this paper, we are interested in the problem of determining equations of M -varieties of the form V * W 

knowing equations on V and W. Very little is known about this problem because it is not possible to adapt the 

results of varieties of groups [9]. 

 

3. A congruence description of J1 * Comt,q 

If A is a finite alphabet, then A
+
 denotes the free semigroup on A, that is, the set of all strings (or words) made 

from letters of A. If an empty word (denoted by 1) is adjoined, we obtain A*, the free monoid on A. A language 

in a free monoid A* is any subset of A*. The syntactic monoid of L, denoted M(L), is the quotient of A* by the 

syntactic congruence ~L defined by u~Lv if and only if for all x , y   A*, xuy   L if and only if xvy   L. 

 

We write |u|a for the number of times the letter a appears in the word u   A*, and we write ua for the set of 

letters in u. For any t ≥ 0, q ≥ 1, we define on A* the congruence ~t,q by u~t,qv if and only if for all a   A, |u|a = 

|v|a or |u|a , |v|a ≥ t and |u|a   |v|a (mod q). Note the following special cases. 

 

  For all u, v,   A* , u~0,1v. 

 

  u~1,1v if and only if ua = va. 



  u~t,1v if and only if for all a   A, |u|a = |v|a or |u|a , |v|a ≥ t. 

 

  u~0,qv if and only if for all a   A, |u|a   |v|a (mod q). 

 

Also note that ~t,q   ~t′, q′ if and only if t' ≤ t and q' divides q. 

 

Unless otherwise specified, any congruence we discuss has finite index and every non-free monoid is finite. 

 

Lemma 3.1 ([10]). The syntactic monoid of a language L   A* belongs to Comt,q if and only if L is in the 

boolean closure of the languages 

 

{u   A* | |u|a = i} 

u   A* | |u|a   j (mod q)} 

 

for all 0 ≤ i ≤ t, 0 ≤ j ≤ q and a   A. In terms of congruences, the syntactic monoid of a language L   A* 

belongs to Comt,q if and only if L is a union of classes modulo ~t,q.  

 

The previous lemma describes languages L satisfying M(L)   Comt,q. For languages L satisfying M(L)   J1 * 

Comt,q, we have the following lemma. 

 

Lemma 3.2 ([10]). The syntactic monoid of a language L   A* belongs to J1 * Comt,q if and only if L is in the 

boolean closure of the languages of the form K or KaA* satisfying M(K)   Comt,q and a   A.  

 

We now express this last lemma in terms of congruences. Let A*/~t,q be the set of classes modulo ~t,q and let σt,q 

: A* → (A*/~
,
t,q   A)* be the function defined by 

 

1σt,q = 1 

(a1 … ai)σt,q = ([1]~t,qa1)([a1]~t,q , a2) … ([a1 … ai-1]~t,q , ai) . 

 

In Eilenberg's terminology, this function is a sequential function realized by the sequential machine  t,q = 

(A
*
/~t,q , A, δt,q , λt,q , [1]~t,q) where A is an alphabet, A*/~t,q is the set of states and [1]~t,q the initial state. The 

transition function δt,q and the output function λt,q are pictured in the following diagram, where w   A* and a   

A. 

a/([w]~t,q ,a) 

[w]~t,q →→→→→→[wa]~t,q . 

 

Thus, if the machine is in state [w]~t,q and reads an a, it moves to state [wa]~t,q and prints the letter ([w]~t,q a). 

 

On A*, we define an equivalence relation  t,q by u  t,qv if uσt,qα = vσt,qα and u ~t,qv. The equivalence  t,q is in 

fact a congruence and  t,q   ~t,q. 

 

Lemma 3.3. The syntactic monoid of a language L   A* belongs to J1 * Comt,q if and only if L is a union of 

classes modulo  t,q . As a consequence, for any alphabet A, the monoid A*/  t,q belongs to J1 * Comt,q. 

 

Proof. Assume that M(L)   J1 * Comt,q. By Lemma 3.2, we may assume that L = K or KaA* with M(K)   

Comt,q and a   A. If L = K, then by Lemma 3.1, K is a union of classes modulo ~t,q and the result follows since 

 t,q   ~t,q. If L = KaA* , we show that L is a union of classes modulo  t,q. Let u  t,qv with u   L. Then u = 

u1au2 for some u1   K and u2   A*. Hence ([u1]~t,q a) is a letter of uσt,q and also a letter of vσt,q since uσt,qα = 

vσt,qα. Therefore, there exist v1, v2   A* such that v1 ~t,qu1 and v = v1av2. Since K is a union of classes modulo, 

~t,q , u1 ~t,qv1 and u1   K imply v1   K and hence v   KaA*. 

 



Conversely, the transition monoid M(σt,q) of the automaton (A*/ ~t,q , A, δt,q) is in Comt,q. To see this, let a, b   

A and w   A. We have δt,q([w]~t,q , ab) = δt,q([w]~t,q , ba) and δt,q([w]~t,q , a
t
) = δt,q([w]~t,q , a

t+q
). Hence M(σt,q) 

satisfies xy = yx and x
t
 = x

t+q
. Now, let α : (A*/~t,q   A)* → (A*/~t,q   A)*/~1,1 be the canonical morphism. The 

monoid (A*/~t,q   A)*/~1,1 is in J1. If L is a union of classes modulo  t,q , then there exists a subset X of (A*/~t,q 

  A)*/~1,1 such that L = Xα
-1    

   . It follows that M(L) divides M(Xα
-1

) M(σt,q) [10]. Since the language Xα
-1

 is 

recognized by (A*/~t,q   A)*/~1,1 the monoid M(Xα
-1

) is also in J1. We therefore conclude that M(L)   J1 * 

Comt,q. 

 

Let π : A* → A*/ t,q be the canonical morphism. The monoid A*/ t,q  divides the direct product of all syntactic 

monoids of the form M(([w]≈t,q )π
-1

) where w   A*. But ([w]≈t,q )π
-1

 is a class modulo ≈t,q and hence   

M(([w]≈t,q)π
-1

 ) belongs to J1 * Comt,q . Therefore, A*/≈t,q   J1 * Comt,q 

 

In the next section, we give equations for the product J1 * Comt,q . If two words u and v form an equation u = v 

for that product, then u ≈t,q v. 

 

4. An equational description of J1*Comt,q 

In this section, we give an equational description of J1 * Comt,q . In order to do this, we use a theorem on graphs 

due to Simon. 

 

A directed graph   is given by two sets V and E where E   V   V. The elements of V are called the vertices of 

  while the elements of E are called the edges of  . For each edge e = (v1, v2)   E, the vertices v1 and v2 are 

called the start and the end vertices of  . The edges  l and  2 are called consecutive if the end vertex of  1 is the 

start vertex of  2. A sequence p =  1 …  i is a path if  j and  j+1 are consecutive for all 1 ≤ j < i. The integer i is 

called the length of the path. Clearly each edge is a path of length 1. The start vertex of p is the start vertex of  l 

and the end vertex of p is the end vertex of  i. If the start vertex of p, say v, is the end vertex of p, then p is 

called a loop about v. If p =  1 …  i and p' =   
 …   

  are consecutive paths (that is, if  i and   
  are consecutive), 

then pp' =  1 …  i  
  …  

  is a path. An equivalence relation   on the set of all paths in a directed graph is called 

a congruence if it satisfies the following two conditions: 

 

  If p   p′, then p and p′ are coterminal (that is, the start vertex of p is the start vertex of p′ , and the end 

vertex of p is the end vergex of p′). 

 

  If p = p' , p" = p'" and p and p" are consecutive, then pp" = pip"' 

 

Lemma 4.1. (Simon [5]) Let   be the smallest congruence relation on the set of all paths in a directed graph 

satisfying p   p
2
 and pp'   p′p for any two loops p and p' about the same vertex. Then any two coterminal paths 

traversing the same set of edges (without regard to order and multiplicity) are  -equivalent.  

 

4.1. Equations on J1 * Comt,1 

We now define a finite sequence of equations for J1 * Comt,1 .  

 

Theorem 4.1.1. The M -variety J1 * Comt,1 is defined by the equation 

 

( 1 )  Xu1 ...xutx = xu1 ...xutx
2
 

 

together with all the equations of the form 

 

( 2 )  x1u1 ...x2tu2txy = x1u1 … x2tu2tyx 

 

where x1 , … ,  x2t is a list of t x's and t y's. 



Proof. If M   J1 and N   Comt,1, then M * N satisfies Equation (1) and all the equations of the form (2). To see 

this, if we replace x by (m, n)   M * N, y by (m', n′)   M * N and ui by (mi, ni)   M * N for 1 ≤ i ≤ 2t, then for 

some m"   M , 

 
 

Conversely, let  : A* → M be a surjective morphism. We also denote by   the (nuclear) congruence on A* 

associated with   and defined by u v if and only if u  = v . We prove that if the monoid M satisfies all the 

equations in the statement of the theorem, then M   J1 * Comt,1 . We do this by showing that ≈t,1     which 

implies M = A*/    A*/ ≈t,1 . But since A*/ ≈t,1 belongs to J1 * Comt,1 by Lemma 3.3, the membership of M in 

J1 * Comt,1 follows. 

 

In order to show that ≈t,1    , we define a directed graph   as follows: the set of vertices of   is A*/ ~t,1 and the 

set of edges is the set of 3-tuples of the form ([w]~t,1 , a,[wa]~t,1 ) where a   A. Thus   is just the graph 

associated to the sequential machine  t,1. To any path 

 

P = ([w0]~t,1 , a1 , [w1]~t,1 ) … ([wi-1]~t,1 , ai, [wi] ~t,1 ) 

 

of  , we associate the word    = a1 … ai of A*. Define a congruence relation   on the set of paths in   by p   p' 

if 

 

  p and p' are coterminal. 

 

 For all paths p" from the vertex [1]~t,1 to the start vertex of p and p', (  ′′  )  = (  ′′  ′) . 

 

Let p and p' be two loops about the same vertex [w]~t,1 , or 

 

p = ([w]~t,1 , a1, [wa1]~t,1 )… ([wa1 … ai-1]~t,1 , ai, [wa1 … ai]~t,1 ) 

 

p′ = ([w]~t,1 , b1, [wb1]~t,1 ) … ([wb1 … bj-1]~t,1 , bj, [wb1 … bj]~t,1 ) 

 

where wa1 … ai~t,1 w~t,1 wb1 … bj. We show the following two claims: 

 

Claim (1): p   p
2
, and 

 

Claim (2): pp'   p′p. 

 

Lemma 4.1 implies that any two coterminal paths traversing the same set of edges are  -equivalent. 

 

To any word u = a1 … ai of A*, we can associate the path 

 

pu = ([1]~t,1 , a1,[a1]~t,1 )([a1]~t,1 , a2, [a1a2]~t,1 ) … ([a1 … ai-1]~t,1 , ai, [a1 … ai]~t,1 ) . 



Intuitively, pu is the path obtained by reading u in the sequential machine  t,1. Now if u ≈t,1 v (and hence u ~t,1 

v), then uσt,1α = vσt,1α. Hence pu and pv are coterminal paths (with start vertex [1]~t,1 and end vertex [u]~t,1 = 

[v]~t,1 ) traversing the same set of edges. Hence, by Lemma 4.1, pu = pv and   u  =   v  Therefore, u  = v  and 

hence ≈t,1    . 

 

Let us now prove Claim (1) and Claim (2). It is easy to see that u~t,1 uv if and only if for all a   A, |v|a = 0 or |u|a 

≥ t, |uv|a > t. It then follows that for all a   A, |a1… ai|a = 0 or |w|a ≥ t, |wa1… ai|a > t, and also for all a   A, |b1 

… bj|a = 0 or |w|a ≥ t, |wb1 … bj|a > t. 

 

Proof of Claim (1). The condition p   p
2
 follows by showing that (w  )  = (w  2) . More precisely, 

 
 

Theorem 4.1 implies a complete sequence of equations for the M -variety J1 * (Com   A). Our preceding result 

generalizes a result of Pin. 

 

Theorem 4.1.2. ([12]) The M-variety J1 * J1 is defined by the equations xux = xux
2
 and xuyvxy = xuyvyx . 

 

Proof. By Theorem 4.1.1 and the fact that J1 * J1 = J1 * Com1,1 

 

4.2. Equations on J1 * Com0,q 

In this subsection, we define a sequence of equations for J1 * Com0,q. 

 

Let q ≥ 1 and r ≥ 1. Consider a circular list of at least 1 and at most q
r
 distinct strings of r q-ary digits such that 

consecutive strings d1 ... dr and   
  …   

   are so that there exists 1 ≤ i ≤ r satisfying  
    di + 1 (mod q) and   

 = 

dj for j   i, and such that the last string differs from the first string in the same manner. For example, 000, 001, 

011, 111, 101, 100, 110, 010 is such a circular list for q = 2 and r = 3 and is also called a Gray code of length 3. 

Such lists can be relabeled as follows: a string of r q-ary digits d1 ... dr is relabeled by xi if the following string in 

the list is d1 ... di-1  
 di+1 … dr where   

    di+1 (mod q). In the example above, 000, 001, 011, 111, 101, 100, 

110, 010 can be relabeled as x3, x2 , x1, x2, x3, x2, x1, x2. Let   
  denote the finite set of such relabeled lists. In the 

example above, x3, x2, x1, x2, x3, x2, x1 , x2 is a list in   
 . Note that every xj in a list in   

  occurs a multiple of q 

times in the list. We have   
      

      
   …. 

 

We can view the construction of a circular list of length q
r
 in   

  as a graph-theoretic problem. Let V( ) be the 

set {0,1, … , q - 1}
r
 of q-ary r -strings, and put an edge from v to v′ if v = d1 ... dr and v′ =   

  are so that there 



exists 1 ≤ i ≤ r satisfying   
    di + 1 d,+1 (mod q) and   

  = dj for j   i. A circular list of length q
r
 in   

  is, in 

effect, a Hamilton circuit of the graph  . 

 

Circular lists in   
  of length q

r
 always exist. To see this, we fix q and we use induction on r and consider the 

graph  r in which a Hamilton circuit corresponds to a circular list of length q
r 
in   

  , as described above.  

If r = 1, the list 0, 1,… , q - 1 is a circular list of length q which is relabeled as x1,… , x1 (q times) in   
  and 

corresponds to the Hamilton circuit 0,1, ... , q - 1,0 of the graph  1. Define the function pred from {0,1,… , q - 

1} into {0,1,… , q - 1} by pred(0) = q - 1 and pred(i) = i - 1 for i ≥ 1. Call pred(i) the predecessor of i. Let 

V( i) consist of (r +1)-strings with i in the 1
st
 digit and let E( i) consist of the edges of  r+1 connecting vertices 

in V( i). The function from  r+1 to  r which simply leaves off the first coordinate determines an isomorphism 

from  i onto  r From a Hamilton circuit for  r which looks like 0  ,… , (q - 1)  ,0   where    denotes the (r - 1)-

string 0 … 0, form a Hamilton circuit for  r+1 as follows. First, make q copies of the circular list 0  ,… , (q – 1)   

of length q
r
 called Copy(0), Copy(1), , Copy(q - 1). Copy(0) is just 0  ,…, (q - 1)   and Copy(i) is just Copy(i - 1) 

where the 1
st
 digit of each r-string in the list has been replaced by its predecessor. So Copy(1) looks like (q- 1)  , 

... ,(q – 2)  ,…,  and Copy(q -1) like 1  ,…,0  . Now, starting with the (r + 1)-string 00   in  0 follow Copy(0) in 

 0 until you reach 0(q - 1)  . Then take the edge from 0(q -1)   to 1(q - 1)   which exists. Then follow Copy(1) 

in  1 until you reach 1(q - 2)  . Then take the edge from 1(q - 2)   to 2(q - 2)  , … . After following Copy(q -1) 

in  q -1 until you reach (q - 1)0  , take the edge from (q - 1)0   to 00  , the starting point. Every vertex in  i will 

have been visited exactly once. 

 

Since V( r+1) =  i≥0 V( i), the path 

 

00  , …, 0(q -1)  , 1(q – 1)  , … , 1(q – 2)  , … , (q – 1)1  , … , (q – 1) 0  , 00   

 

is a Hamilton circuit of  r+1 and gives a circular list of length q
r+1

. 

 

Definition 4.2.1. Let q ≥ 1 and r ≥ 1.     
  is the finite sequence of all the equations of the form 

 

y1  
 
… yi  

 
yi+1 = (y1  

 
yi+1)

2 

 

where y1, … , yi, yi+1 is a list in   
 . 

 

 For example, the equation x = x
2
 where 

x = x3  
 x2  

 x1  
 x2  

 x3  
 x2  

 x1  
 x2 

 

belongs to the sequence     
 . 

 

The sequence     
  is equivalent to the equation x = x

2
. The sequence     

  is equivalent to the equation x  
 
… 

x    
 

x = (x  
 
… x    

 
x)

2
 which has as a particular instance the equation x

q
 = x

2q
. Every equation in the 

sequence     
  is also in the sequence     

    for r ≥ 1. 

 

Lemma 4.2.2. Let A be an alphabet of r letters where r ≥ 1. A monoid M generated by A belongs to J1 * Com0,q 

if and only if M satisfies the equation 

x
q
y

q
 = y

q
x

q
 

together with all the equations 

    
  

 

Proof. If M   J1 and N   Com0,q are monoids generated by an alphabet A of r letters where r ≥ 1, then M * N 

satisfies x
q
y

q
 = y

q
x

q
 and     

 . To see this, if we replace x by (m1, n1)   M * N and y by (m2, n2)   M * N, then x
q
 = 



= (m1, n1)
q
 = (m,1) and y

q
 = (m2, n2)

q
 = (m',1) for some m, m'   M since 1 = x

q
 holds in N. Therefore, M * N 

satisfies the equation x
q
y

q
 = y

q
x

q
, since x

q
y

q
 = (m, 1)(m′, 1) = (m + m', 1) = (m' + m, 1) = (m', 1)(m, 1) = y

q
x

q
. 

Now, let y1, …, yi, yi+1 be a list in   
 . If we replace yj by (mj, ni)   M * N for 1 ≤ j ≤ i +1 and   

 
 by (  

 ,1)   M * 

N for 1 ≤ j ≤ I, then for some m   M 

 
 

The proof of the converse is similar to that of Theorem 4.1.1 except that it deals with the congruences ~0,q and 

≈0,q instead of the congruences ~t,1 and ≈t,1. Let A be an alphabet of r letters where r ≥ 1. It is easy to see that u 

~0,q uv if and only if for all a   A, |v|a   (mod q). Using the same notation as in the proof of Theorem 4.1.1, it 

follows that |a1 … ai|a   0 (mod q) and |b1 … bj|a   0 (mod q) for all a   A. If A = {c1, …,cr}, strings over A 

like al ... ai and b1... bj can be viewed as loops in the graph  r ( r is explained at the beginning of this 

subsection). For instance, if q = 2, the string c3c2c1c2c3c2c1c2 over A = {c1,c2, c3} can be viewed as the loop 000, 

001, 011, 111, 101, 100, 110, 010, 000 in  3. A string u over A satisfying |u|a   0 (mod q) for all a   A, can be 

viewed as a loop about the r-string 0 ... 0 where the i
th

 digit in the r -strings is used to record the number 

(modulo q) of ci's in the string u. 

 

Claim 1. 

The condition p = p
2
 follows by showing that (w  )  = (w  2) . Here, we can show that (  )  = (  2)  (and 

therefore (  )  = (  q) ). The string    has the property P that "each of its letters occurs a multiple of q times". A 

string x over A with the property P can be factorized as follows: let x1 be the smallest nonempty prefix of x with 

the property P, let x2 be the smallest nonempty prefix of u\u1 with the property P,... . So x is the concatenation of 

factors with the property P. Factors in x are either of type (1), that is, a
q
 for some a   A, or of type (2), that is, 

y1z1 … ykzkyk+1 where y1, … , yk, yk+1     
  and where the z's have the property P. Since the z's have the property 

P, they can be factorized as above and the process can be repeated. The most elementary factors of type (2) look 

like y1  
 
 … yk  

 
yk+1 where y1, … , yk, yk+1     

   and where the z's are either empty or of type (1). In such 

situations, 

(y1  
 
… yk  

 
yk+1)  = 

((y1  
 
… yk  

 
yk+1)

2
)  (using an instance of     

 ) 

 

and therefore (y1  
 
… yk  

 
yk+1)  = ((y1  

 
…. yk  

 
yk+1)

q
) . The string (  )  can have subfactors of the form 

(  
 
…   

 
)  and in such situations, 

(  
 
…   

 
)  = 

(  
  

…   
  

)  (using x
q
 = x

2q
 which is an instance of     

 ) = 

((  
 
…   

 
)
2
)  (using x

q
y

q 
= y

q
x

q
 several times) 

 

and therefore, (  
 
…   

 
)  = ((  

 
…   

 
)
q
) . It is then easy to see that (  )  isof the form x  where x is the 

concatenation of factors of the form y
q
. And as above, (  )  = (  2) . 

 

Claim 2. 

The condition pp'   p′p follows by (    ′)  = (  ) (  ′)  = (  q) (  ′q)  = (  q  ′ q)  = (  ′q  )  = (  ′  )  (using 

x
q
y

q
 = y

q
x

q
 ). 

  

Theorem 4.2.3.The M-variety J1 * Com0,q is defined by the equation 

 

x
q
y

q
 = y

q
x

q
 



together with all the equations 

    
 , r ≥ 1 . 

Proof. By Lemma 4.2.2.  

Using Schützenberger's notation as explained in [10], we get the following theorem. 

 

Theorem 4.2.4. The M -variety J1 * (Com   G) is defined by the equation 

 

x
w
y

w
 = y

w
x

w
 

together with all the equations 

    
 , r ≥ 1. 

 

Proof. By Theorem 4.2.3. 

  

4.3. Equations on J1 * Comt,q 

In this subsection, we define a sequence of equations for J1 * Comt,q. Let us first define recursively what we 

mean by "x is of the form (*)". 

 

Definition 4.3.1. Let q ≥ 1 and r ≥ 1 be fixed. 

 

Basis. If there exists a list y1, … , yi, yi+1 in   
  and z1,... , zi (that may be empty) such that x = y1  

 
… yi  

 
yi+1,  

then we say that x is of the form (*). 

 

Recursive step. If there exists a list yl,…, yi, yi+1 in   
  and z1, … , zi (that may be empty or of the form (*)) 

such that x = y1  
 
 … yi  

 
yi+1, then we say that x is of the form (*). 

 

Closure. x is of the form (*) only if it can be obtained from the basis by a finite number of applications of the 

recursive step. 

 

Note that if x is of the form (*), it is built only from x1, … , xr , the variables that build the lists in   
 . Note also 

that if q = 1, x is of the form (*) if and only if x is one of x1, … , xr . 

 

Definition 4.3.2. Let t ≥ 0, q ≥ 1 and r ≥ 1.     
  is the sequence of all the equations of the form 

 

( 3 )  u1v1 … urtvrtx = u1v1 … urtvrtx
2
 

 

where x is of the form (*) and where u1,… , urt is a list of t x1 's, … , t xr’s, together with all the equations of the 

form 

 

( 4 )  u1v1 … urtvrtxy = u1v1 … urtvrtyx 

 

where x and y are of the form (*) and where u1, … urt is a list of t x1’s, … , t xr 's. 

 

Note that every equation in the sequence     
  is also in the sequence     

    for r ≥ 1. 

 

Theorem 4.3.3. The M-variety J1 * Comt,1 is defined by all the equations 

 

     
 , r≥ 1 . 

 

Proof.     
  is the finite sequence of all the equations of the form 

( 5 )  u1v1 … urtvrtx = u1v1 … urtvrtx
2
 



where x is one of x1,...,xr and where u1, … , urt is a list of t x1's,...,t xr 's, together with all the equations of the 

form 

( 6 )  u1v1 … urtvrtxy = u1v1 … urtvrtyx 

 

where x and y are among x1,...,xr and where u1,...,urt is a list of t x1 's, … ,t xr 's. We prove that the sequence     
 , 

r ≥ 1, is equivalent to the finite sequence of equations (described in Theorem 4.1) that define J1 * Comt, 1 . 

 

It is easy to see that Equation (1) is of the form (5) for r = 1 and all the equations of the form (2) are of the form 

(6) for r = 2. 

 

So there remains to show that all the equations of the form (5) and (6) are deducible from Equation (1) and all 

the equations of the form (2). To see this, let u1, … urt be a list of t x1 's, … , t xr 's and assume x = xi for some 1 

≤ i ≤ r. Then 

u1v1 … urtvrtxi = u1v1 … urtvrt  
  

 

(using Equation (1)) since xi occurs t times in u1v1 … urtvrt. Now, assume x = xi and y = xj for some 1 ≤ i, j ≤ r. 

Then 

u1v1 … urtvrtxixj = u1v1 … urtvrtxjxi 

 

 (using an instance of (2)) since xi and xj occur t times in u1v1 … urtvrt.  

 

Theorem 4.3.4. The M -variety J1 * Como,q is defined by all the equations 

    
  , r ≥ 1 

 

Proof.     
  is the sequence of all the equations of the form 

 

( 7 )  x = x
2
 

 

where x is of the form (*), together with all the equations of the form 

 

( 8 )  xy = yx 

 

where x and y are of the form (*). We prove that the sequence     
 , r ≥ 1 is equivalent to the equation x

q
y

q 
= 

y
q
x

q
 together with the sequence     

  , r ≥ 1. 

 

It is easy to see that the equation xq = x
2q

 is of the form (7) for r = 1 and hence deducible from     
  (take x = 

(x1)
q
 to get (x1)

q
 = x = x

2
 = ((x1)

q
)
2
 = (x1)

2q
). The equation x

q
y

q
 = y

q
x

q 
is of the form (8) for r = 2 and hence 

deducible from     
  (take x = (x1)

q
 and y = (x2)

q
 to get (x1)q(x2)

q
 = xy = yx = (x2)

q
(x1)

q
). Now, let y1,… , yi, yi+1 

be a list in   
 . We have 

 
 

So the equation y1  
 
 ...yi  

 
yi+1 = (y1  

 
… yi  

 
yi+1)

2
 in     

  is deducible from     
 , r ≥ 1. 



So there remains to show that all the equations of the form (7) and (8) are deducible from the equation x
q
y

q
 = 

y
q
x

q
 and all the equations     

 ,r ≥ 1. To see this, let x be of the form (*) for some r. Then x = x
2
 (using an 

instance of     
 ). Now, let x and y be of the form (*) for some r. Then 

 

xy = (y1  
 
 … yi  

 
yi+1)(  

 (  
 )

q
 …   

 (  
 )

q    
 ) 

 

for some y1, … , yi, yi+1 and   
 , … ,   

 ,     
  in   

  and where the z's and the z’s are either empty or of the 

form (*). But the latter is equal to 

(yi  
 
 … yi  

 
yi+1)

2
(  

 (  
 )

q
 …   

 (  
 )

q    
 )

2 

 

using instances of     
  and hence to 

(y1  
 
 … yi  

 
yi+1)

2
(  

 (  
 )

q
 …   

 (  
 )

q
 …   

 (  
 )

q    
 )

q
 . 

 

But using the equation x
q
y

q
 = y

q
x

q
, the latter becomes 

(  
 (  

 )
q
 …   

 (  
 )

q    
 )

q
 = (y1  

 
… yi  

 
yj+1)

q 

 

which is equal to yx. 

 

Theorem 4.3.5. The M -variety J1 * Comt,q is defined by all the equations 

 

    
  , r ≥ 1 . 

 

Proof.Let A be an alphabet of r letters where r ≥ 1. We show that a monoid generated by A belongs to J1 * 

Comt,q if and only if it satisfies all the equations of the form (3) and all the equations of the form (4) in     
 . 

 

If M   J1 and N   Comt,q are monoids generated by A, then M * N satisfies all the equations of the form (3) and 

all the equations of the form (4) in     
 . We show that M * N satisfies all the equations of the form (3) in     

  

(the proof is similar for the equations of the form (4) in     
 ). 

 

Consider 

 

( 9 )  u1v1 … urtvrt(y1  
 
 … yi  

 
yi+1) = urtvrt(y1  

 
 … yi  

 
yi+1)

2 

 

where yi, … yi, yi+1 is a list in   
 , where the z 's are either empty or of the form (*) and where u1 , … , urt is a list 

of t x1's,...,t xr's. By replacing xj by ni   N for 1 ≤ j ≤ r and vj by   
    N for 1 ≤ j ≤ rt in both sides of (9), we get 

(n1)
t
 … (nr)

t  
 …    

  since xy = yx and x
t
 = x

t+q
 hold in N, every variable in the list u1, … , urt , is one of x1,...,xr 

and occurs t times in u1, … , urt , every variable in the list y1, … , yi, yi+1 is one of x1,... , xr and occurs a multiple 

of q times in y1, … , yi, yi+1, and also every variable in   
 
 is one of x1,... , xr and occurs a multiple of q times in 

  
 
. Now, by replacing u1v1 ...urtvrt by (m, n) and y1  

 
 … yi  

 
yi+1 by (m', n') for some m, m'   M and n,n'   N, we 

get 

 



It follows that M * N satisfies the equation 

 

u1v1 … urtvrt(y1  
 
 … yi  

 
yi+1) = u1v1 … urtvrt(y1  

 
 … yi  

 
yi+1)

2
 . 

 

The proof of the converse is similar to that of Lemma 4.2.2 except that it deals with the congruences ~t,q and ≈t,q 

instead of the congruences ~t, 1 and ≈t, 1. It is easy to see that u ~t,q uv if and only if, for all a   A, |v|a = 0 or 

|u|a ≥ t and |v|a   0 (mod q). It then follows that for all a   A, |a1 … ai|a = 0 or |w|a ≥ t, |a1 … ai|a   0 (mod q), 

and also for all a   A, |b1 … bj|a  = 0 or |w|a ≥ t , |b1 … bj|a   0 (mod q). The rest of the proof imitates that of 

Lemma 4.2.2. 

  

Theorem 4.3.6. The M-variety J1 * Com is defined by all the equations 

 

    
  , r ≥ 1 . 

 

Proof. By Theorem 4.3.5.  
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