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Abstract: 

Partial words are finite sequences over a finite alphabet A that may contain a number of “do not know” symbols 

denoted by ◊’s. Setting   = A ∪ {◊},   
  denotes the set of all partial words over A. In this paper, we investigate 

the border correlation function β:   
  → {a, b}  that specifies which conjugates (cyclic shifts) of a given partial 

word w of length n are bordered, that is, β (w) = c0c1 ... cn−1 where ci = a or ci = b according to whether the ith 

cyclic shift σ
i
(w) of w is unbordered or bordered. A partial word w is bordered if a proper prefix x1 of w is 

compatible with a proper suffix x2 of w, in which case any partial word x containing both x1 and x2 is called a 

border of w. In addition to β, we investigate an extension β’:   
  → ℕ  that maps a partial word w of length n to 

m0m1...mn−1 where mi is the length of a shortest border of σ
i
(w). Our results extend those of Harju and Nowotka.  

 

Keywords: Combinatorics on words; Partial words; Border correlations 

 

Article: 

1 Introduction 

The study of border correlations of words was begun by Harju and Nowotka, who defined the border correlation 

function and explored some of its properties in the case of binary full words [6]. A word is said to be bordered if 

one of its (nontrivial) prefixes is equal to one of its suffixes, and the border correlation function indicates which 

conjugates, or cyclic shifts, of a word are bordered. We extend their findings to include binary partial words, as 

well as full and partial words over larger alphabets. 

 

If a partial word contains a factor of the form c1x1c2x2c3, where c1, c2, and c3 are pairwise-compatible letters and 

x1 and x2 are compatible partial words, then we say that it contains an overlap. In [6], Harju and Nowotka 

examine the relationship between the border correlation of a primitive full word and the existence of overlap- 

free conjugates. We discuss a set of exceptions to their result for nonprimitive full words. Furthermore, we 

show that there exist only finitely many partial words such that no conjugates are overlap-free, and these can all 

be classified as exceptional in the aforementioned sense. 

 

An upper bound on the number of distinct border correlations of binary full words of a given length has been 

calculated, and we extend this bound to include binary partial words and words over larger alphabets. We also 

refine the border correlation so that it specifies the length of a shortest border of each conjugate as opposed to 

simply indicating the existence of a border, and we establish a connection between the palindromicity of the 

image of a word under this function and of the word itself. Finally, we examine critical factorizations of partial 

words as it relates to the borderedness of their conjugates. 

 

2 Preliminaries 

In this section, we recall the definitions of fundamental terms that will be used in this paper. 
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2.1 Words and Partial Words 

We begin by presenting an overview of the basic concepts relating to words and partial words. 

 

Let A be a finite, nonempty set of symbols, called an alphabet. Each element a of A is referred to as a letter, and 

a sequence of letters is called a word over A. Given a word w, the number of letters in the sequence represents 

the length of w, and is denoted by |w|. The empty word, denoted ε, is the unique word of length zero. We will 

indicate the number of occurrences of a letter a ∈ A appearing in a word w by |w|a. The set of distinct letters in w 

is denoted α(w). 

 

For any alphabet A, the set of all words over A is denoted A . It is a monoid under the associative binary 

operation defined by concatenation of words, with ε serving as the identity element, and it is a free monoid over 

A. Similarly, the set of all nonempty words over A is denoted A
+
. It is a semigroup under the operation of 

concatenation, and is a free semigroup over A. We denote by A
n
 the set of all words of length n over A. 

 

The ith-power of a word w is defined recursively as 

 

 
 

A word of length n over the alphabet A is defined by a total function w: {0,..., n − 1} → A and is usually 

represented as w = a0a1 ... an−1 with ai ∈ A. 

 

A partial word of length n over A will be defined by a partial function w: {0,..., n − 1} → A. For each i such 

that 0 ≤ i < n, we say that i is in the domain of w, denoted D(w), if w(i) is defined. Otherwise, we say that i is in 

the hole set of w, denoted H(w). A word, or full word, is a partial word with an empty hole set. A strictly partial 

word is a partial word with a nonempty hole set. 

 

Given a partial word w, the companion of w, denoted   , is the total function   :{0,..., n − 1} → A ∪ {◊} 

defined by 

 

 
 

where ◊ is a new symbol which is not in the alphabet A, and which acts as a “do not know” symbol. The set of 

all partial words over A is denoted   
 , where    = A ∪ {◊}. The set of all partial words of length n over A is 

denoted   
 . Because the map w ↦    is bijective, we can extend our definitions of concatenation and powers to 

partial words intuitively. 

 

A partial word u is a factor of a partial word w if there exist (possibly empty) partial words x, y such that w = 

xuy. We say that u is a prefix of w, denoted u ≤ w, if x = ε. Similarly, we say that u is a suffix of w if y = ε. A 

factorization of a partial word w is a sequence of partial words w0, w1,..., wi such that w = w0w1...wi. 

 

Partial words u and v are equal if |u| = |v| and D(u) = D(v), and u(i) = v(i) for all i ∈ D(u). If |u| = |v|, D(u) ⊂ 

D(v), and u(i) = v(i) for all i ∈ D(u), then u is said to be contained in v, denoted u ⊂ v. We say u and v are 

compatible, denoted u ↑ ↑ v, if there exists a partial word w such that u ⊂ w and v ⊂ w. We note that u ↑ ↑ v 

implies v ↑ u. Given partial words u and v such that u ↑ v, the least upper bound of u and v is the partial word u 

∨ v, where u ⊂ u ∨ v and v ⊂ u ∨ v, and D(u ∨ v) = D(u) ∪  D(v). 

A strong period of a partial word w is a positive integer p such that w(i) = w(j) whenever i, j ∈ D(w) and i ≡ j 

mod p. A weak period of w is a positive integer p such that w(i) = w(p + i) whenever i, p + i ∈ D(w). We denote 

the minimal strong period of w by p(w), and the minimal weak period of w by p'(w). 



 

2.2 Border Correlations 

We call a nonempty partial word w unbordered if no nonempty partial words x, u, v exist such that w ⊂ xu and 

w ⊂ vx (here x, u, v can be chosen to be full words). If such partial words exist, we say w is bordered and we 

call x a border of w. Notice that a border may be overlapping or nonoverlapping (see Figs. 1 and 2). If w = x1u 

= vx2 where x1 ⊂ x and x2 ⊂ x, then we say that x is an overlapping border of w if |x| > |u|. Otherwise, x is called 

a nonoverlapping border. A border x of w is called minimal if |x| > |y| implies that y is not a border of w (we 

also say that x is a shortest border of w). 

 

 
 

Let σ :   
  →   

 ,where σ(ε) = ε and σ(cw) = wc for all w ∈   
  and c ∈   , be the shift function of partial words. 

The partial words w and u are said to be conjugates, denoted w ∼ u, if w = σk(u) for some k ≥ 0. Two conjugates 

w and u are called consecutive if σ(w) = u or σ(u) = w. It is easy to check that conjugacy is an equivalence 

relation, and we let [w] = {u | w ∼ ∼ u} denote the conjugacy class of w. We define the border correlation 

function β :   
  →   

  as follows: Let w ∈   
 be a partial word of length n, and let 

 

     
                        

                       
  

 

Then β(w) := c0c1 ... cn−1, and β(ε) := ε. 

 

A partial word w is called primitive if there does not exist a partial word u such that w ⊂ uk for k ≥ 2 (here u can 

be chosen to be a full word). A word w ∈ A  that is primitive and minimal among its conjugates with respect to 

some lexicographic ordering of A is called a Lyndon word. It has been shown that Lyndon words are necessarily 

unbordered [8]. 

 

A partial word w is said to contain an overlap if it has a factor of the form c1x1c2x2c3 where c1, c2, c3 ∈    are 

pairwise compatible, and x1, x2 ∈   
  are compatible (here one must assume “pairwise,” i.e. also c1 and c3 must 

be compatible; otherwise the case is trivial with c2 = ◊). If no such factor exists, we say that w is overlap-free. 

Furthermore, w is cyclically overlap-free if none of its conjugates contains an overlap. 

 

Given a partial word w, we say that w contains a square if it has a factor of the form u1u2, where u1, u2 ∈   
  and 

u1 ↑ u2. A partial word containing no such factor is said to be square-free, and if none of its conjugates contains 

a square, it is said to be cyclically square-free. 

 

We will work mostly with words over a binary alphabet, so unless otherwise specified, we will assume that A = 

{a, b}. Given a partial word w of length n over the binary alphabet A, the complement of w, denoted w̄ , is 

defined by w̄  = w(0) w(1)  ... w(n−1)  ,where ā  = b, b̄  = a, and ◊̄  = ◊. 



3 Cyclical Overlap-Freeness 

There exists a fundamental connection between cyclical overlap-freeness and the number of unbordered 

conjugates of a word. We begin this section by exploring this connection in the case of full words. It will later 

be shown that for partial words the situation is complicated very little, because there exist in fact only finitely-

many cyclically overlap-free words that contain holes. 

 

The results of this section are based in large part upon a reformulation of a theorem of Harju and Nowotka [6, 

Theorem 5]. It states that, given a primitive word w of length greater than three, every other conjugate of w is 

unbordered if and only if w is cyclically overlap-free. The proof of Theorem 5 of [6] assumes that w has at least 

one unbordered conjugate (as stated in the proof) which is equivalent to assuming that w is primitive (by 

considering Lyndon words). We proceed by showing the remaining case for nonprimitive words. 

 

Example 3.1 Consider the word w = abaaba. It can be easily verified that all the conjugates of w are overlap-

free. However, because w is nonprimitive, we have β(w) = bbbbbb, and hence it is not the case that every other 

conjugate of w is unbordered. 

 

The above example suggests a way in which one might characterize the nonprimitive case. 

 

Definition 3.1 A word w ∈ A  is an exceptional cyclically overlap-free word if there exists a primitive cyclically 

overlap-free word v such that w = vv. 

 

Such words will also be cyclically overlap-free. Moreover, if w is nonprimitive, then all conjugates of w are also 

nonprimitive, so β(w) = b
|w|

. Thus, we note that all exceptional cyclically overlap-free words will violate the 

stated result. Another basic observation is that if w = vv is an exceptional cyclically overlap-free word, then v 

must be nonexceptional, since if v = uu for any word u, then w = uuuu contains an overlap. 

 

In order to verify that we have entirely characterized the nonprimitive case, we re-examine the lemmas that 

Harju and Nowotka utilized in their proof, all of which are due to Thue [9]. All three lemmas use the Thue-

Morse morphism τ : A  → → A , defined by τ(a) = ab and τ(b) = ba. 

 

Lemma 3.1 Let w ∈ A . Then w has an overlap if and only if τ(w) has an overlap.  

 

Proof This is taken care by Thue [9] (see also Berstel [1] or Lothaire [7]).  

 

Lemma 3.2 Let w ∈ A  be a cyclically overlap-free word. Then |w| = 2
j
 or |w| = 3 × 2

j
 for some j ≥ 0. 

 

Proof Since the case of nonexceptional cyclically overlap-free words has been proven by Thue [9], we will only 

consider here the exceptional case. Let us consider w to be an exceptional cyclically overlap-free word. Thus, 

there exists a nonexceptional cyclically overlap-free word v such that w = vv, and hence, |w| = 2 × |v|. The 

statement for the exceptional case thus follows from the nonexceptional case.  

 

Lemma 3.3 Let w ∈ A  and |w| ≥ 4. If w is cyclically overlap-free and w is not a conjugate of either abbabb or 

aabaab, then either w or σ (w) has a factorization in terms of ab and ba. 

 

Proof This lemma follows from Thue’s result on primitive words. Indeed, if vn with n ≥ 2 is cyclically overlap-

free then n = 2 and so is the primitive word v. Assume a is a prefix of v. Thue’s argument says that v = τ
k
(ab), or 

v = τ
k
(aab), or v = τ

k
(abb) for some k. Therefore if v is not in {ab, ba}

+
 then k = 0, and this leaves v = aab and v 

= abb.  

 

Harju and Nowotka’s result can be reformulated as stated in the following theorem (the proof is practically the 

same as the proof of the original result and is therefore omitted). 



Theorem 3.1 Let w ∈ A  and |w| ≥ 4. Then w is a nonexceptional cyclically overlap-free word if and only if β 

(w) = (ab)
k
 or β(w) = (ba)

k
, where k = 

   

 
. 

 

Theorem 3.1 and the preceding lemmas consider only the case of full words. However, the next proposition 

shows that there are very few strictly partial words that are cyclically overlap-free. 

 

Proposition 3.1 The only cyclically overlap-free partial words of length at least three containing holes are the 

elements of [aba◊ba], [bba◊ba], [◊ba], and [◊ba◊ba], and their complements. 

 

Proof The notion of overlap-freeness is only well-defined for partial words of length at least 3, so we will not 

consider partial words of shorter length. We first note that if a hole is preceded and succeeded by the same 

letter, e.g. a◊a, then there is immediately an overlap. So, we will only consider partial words containing as a 

factor a◊b (considering partial words containing b◊a will simply yield the complements of these). Furthermore, 

we note that ba◊ba must be a factor of the word (if it is long enough). We will now build possible cyclically 

overlap-free partial words by adding letters to the left of ba◊ba and eliminating those that force an overlap. 

 

We consider the three possible characters that could appear immediately to the left of ba◊ba. In fact, it is easily 

verified that none create an overlap, so we consider the possible characters that could appear immediately to the 

left of either aba◊ba, ◊ba◊ba, or bba◊ba. In all three cases, any of the three possible characters that could be 

appended creates an overlap in the resulting partial word. Figure 3 summarizes this process (dotted connections 

indicate possibilities that create an overlap). 

 

Thus, we have verified that the only overlap-free strictly partial words are the following: aba◊, aba◊b, aba◊ba, 

◊ba◊, ◊ba◊b, ◊ba◊ba, bba◊, bba◊b, bba◊ba, ba◊, ba◊b, ba◊ba, a◊b, a◊ba, and ◊ba, as well as the complements 

of these (note that any shorter-length partial words are too short to be considered). 

 

 
 

However, not all of the above partial words are cyclically overlap-free. In fact, one can check that the partial 

words aba◊, aba◊b, ◊ba◊, ◊ba◊b, bba◊, bba◊b, ba◊ba, and a◊ba all have conjugates that contain an overlap. 

The other six possibilities (namely aba◊ba, ◊ba◊ba, bba◊ba, ba◊, a◊b, and ◊ba) can all easily be verified to be 

cyclically overlap-free. Hence, the elements of the conjugacy classes [aba◊ba], [bba◊ba], [◊ba], and [◊ba◊ba] 

(and their complements) are the only cyclically overlap-free strictly partial words.  

 

For all of the above cyclically overlap-free strictly partial words w, we have β(w) = bn , where n = |w|. 

Furthermore, we notice that if |w| ≥ 4, then there exists an exceptional cyclically overlap-free full word v such 

that w ↑ v. Definition 3.2 adapts the definition of exceptional cyclically overlap-free words in a way that allows 

us to generalize Theorem 3.1 to partial words. 

 

Definition 3.2 A partial word w ∈   
  is an exceptional cyclically overlap-free partial word if w is cyclically 

overlap-free and there exists an exceptional cyclically overlap-free full word v such that w ↑ ↑ v. 

 

Corollary 3.1 Let w ∈   
  and |w| ≥ 4. Then w is a nonexceptional cyclically overlap-free partial word if and 

only if β(w) = (ab)
k
 or β(w) = (ba)

k
, where k = 

   

 
. 

 

 



4 Properties of β-Images 

Harju and Nowotka calculated an upper bound for the number of distinct β-images of full binary words of a 

given length n. Using Theorem 3.1 and several observations based on Harju and Nowotka’s work, we can 

extend this to characterize the set of β-images for partial words over binary and larger alphabets. This section is 

devoted to exploring this characterization. 

 

4.1 Partial Words over a Binary Alphabet 

The following lemma provides some properties of β β-images of partial words, expanding a result on full words 

in [6]. 

 

Lemma 4.1 Let w ∈   
  of length n ≥ 4.  

1. If w is primitive, then |β (w)|a ≥ 1. 

2. For each i ∈ {0, 1,..., n− 1}, σ
i
(w) or σ

i+1
(w) is bordered, or w ∈ [ab

n−1
] or w ∈ [ba

n−1
].  

 

Proof For claim 1, if w is primitive with H(w) = ∅, it is shown in [6] that |β(w)|a ≥ 2 since, with respect to a 

lexicographic ordering of A and its reverse ordering, w has two Lyndon conjugates that are necessarily 

unbordered. If H(w) ≠ ∅, however, we have words of the form w = a
n−4

◊bab, with n ≥ 6, yielding β(w) = ab
n−1

. 

Claim 2 follows directly from the claim in [6] for full words.  

 

Harju and Nowotka have calculated an upper bound on the number of distinct β-images of full words of length 

n by characterizing the β-images that occur. The set β(A
n
) may contain β-images of the form b

n
, in the case 

where every conjugate is bordered; those with at least two nonconsecutive a’s; and the special β-image β(w) = 

aab
n−2

 for w ∈ [ab
n−1

] or w ∈ [ba
n−1

]. However, by Lemma 3.2, it cannot contain β-images of the form      
 

  or 

     
 

 unless n = 2
j
 or 3 × × 2

j
 for some j. For words of lengths 1 ≤ ≤ n ≤ ≤ 30, β (A β (An) was found to contain 

all such β-images, and the bound 

 

 
 

where Fn is the nth Fibonacci number with F0 = 1 and F1 = 1 and Fn = Fn−1 + Fn−2 for all n > 1, and where m = 

0 or 2 (specified in Theorem 4.1, below), is tight except for n = 12. We have extended this bound for partial 

words such that β(  
 ) also contains β-images with exactly one a, adding exactly one conjugacy class of β-

images. 

 

Theorem 4.1 For all n > 2 

 

 
 

where m = 2 if n is even and n ∉ {2
j
, 3 × 2

j
 | j ≥ 0}, and m = 0 otherwise. 

 

Proof (1) is extended from the equation for full words presented in [6]. Using this with claim 1 of Lemma 4.1, 

we may include β-images with exactly one unbordered conjugate. 

 

For (2), we again extend the bound for full words in [6] by n, the size of the conjugacy class of β-images where 

|β(w)|a = 1 for words of length n.  

 

Table 1 illustrates how ||β(  
 )|| and the bounds are related. For partial words of length n, where 2 ≤ n ≤ 5, 

||β(  
 )|| = ||β(  )||, so we observe that the original bound in [6] holds for partial words of a small enough length, 



since there does not exist any partial word w with n < 6 such that β (w) ∈ [ab
n−1

]. However, the extended bound 

for partial words is again tight for words of length 5 < n < 19, excluding length 12. In the case where n = 12, 

there does not exist a word w such that β(w) ∈ [abababbababb], so the bound exceeds the actual size of β(  
  ) 

by the size of this conjugacy class. The reason for this is unclear. 

 

 
 

Harju and Nowotka prove that full words may have at most ⌊
   

 
⌋ unbordered conjugates. For partial words with 

||H(w)|| ≥ |1 of even length greater than 5, it is impossible to reach this maximum. 

 

Remark 4.1 Let w ∈   
  with |w| = 2k for k ≥ 3 and ||H(w)|| ≥ 1. Then w can have at most k − 1 unbordered 

conjugates. 

 

Indeed, consider the conjugate σ
i
 (w) such that a0 = ◊ where σ

i
 (w) = a0a1 ... an−1. Here, both σ

i
 (w) and σ

i+1
 (w) 

are bordered, and by statement 2 of Lemma 4.1 we know that no consecutive conjugates can be unbordered, so 

w can have at most k − 1 unbordered conjugates. This remark follows from Corollary 3.1, since no partial words 

with at least one hole are nonexceptionally cyclically overlap-free. 

 

However, if w is of odd length, the maximum number of unbordered conjugates of w is not ⌊
   

 
⌋ − 1, as one 

might expect. For example, given the partial word w = ◊abbaababbabaabba, β(w) = b    ⌊
   

 
⌋
, so w has ⌊

   

 
⌋ 

unbordered conjugates. This is the shortest length for which a β-image of this form exists for strictly partial 

words. 

 

4.2 Partial Words over Arbitrary Alphabets 

We begin this section with a study of full words. 

 

Let A be an alphabet of arbitrary size. We can use the notion of Lyndon conjugates to find a lower bound for the 

number of unbordered conjugates a word may have. 

 

Remark 4.2 If w is a primitive full word such that ||α(w)|| ≥ n, then |β(w)|a ≥ ≥ n. 

 



With this remark we can show that no full word may contain exactly one unbordered conjugate, generalizing 

Harju and Nowotka’s result for words over a binary alphabet. 

 

Remark 4.3 Let w be a primitive full word of length greater than one over an arbitrary alphabet. Then |β(w)|a > 

1. 

 

As with a binary alphabet, by allowing holes we observe that one conjugacy class of β-images, those with 

exactly one a, is added to the set β(A
n
) for an alphabet of arbitrary size. Furthermore, by extending our binary 

alphabet by just one letter, we find that our β-population grows significantly. Words over larger alphabets may 

have many consecutive unbordered conjugates. Remarkably, we observe that some words are cyclically 

unbordered. To avoid borders in an entire conjugacy class, it is necessary to construct a word that is cyclically 

square-free. In the following lemma and theorem, we describe the lengths and alphabets for which these words 

are possible. 

 

Lemma 4.2 Let w be a partial word of length n over an alphabet A. Then β (w) = a
n
 (and hence w is a full 

word) if and only if w is cyclically square-free. 

 

Proof To prove the forward implication, we assume w is not cyclically square-free. Then there exists a 

conjugate σ
i
(w) = u1u2v for some partial words u1, u2, v such that u1 ↑ u2. If j = i + |u1|, then σ σ

j
(w) = u2 vu1. 

Since σ
j
(w) is bordered, |β(w)|b > 0. 

 

We prove the reverse implication by contradiction. Assume w is a cyclically square-free partial word such that 

β(w) ≠ a
n
. Hence, one of its conjugates, say σ

i
 (w), is bordered. Since a hole creates a square in a word, we also 

assume w has an empty hole set, so the minimal border of σ
i
 (w) must be nonoverlapping. Let σ

i
 (w) = uvu for 

words u, v where v is possibly empty. Let j = i + |uv|. Then σ
j
 (w) = uuv, which contains a square and therefore 

leads to a contradiction. 

 

Theorem 4.2 Let A be an alphabet. 

 If ||A|| = 3, then for all n ∉ {5, 7, 9,10,14,17}, a
n
 ∈ β(A

n
). 

 If ||A|| > 3, then for all n ≥ 1, a
n
 ∈ β(A

n
). 

 

Proof From [5], we know that over a ternary alphabet, cyclically square-free words exist for all lengths except 

5, 7, 9, 10, 14 and 17. For all other lengths, there exist cyclically square-free ternary words. By Lemma 4.2, the  

β-image of any such word is a
n
. 

 

For larger alphabets, if n ∉ {5, 7, 9, 10, 14, 17}, the statement follows from above. If n ∈ {5, 7, 9, 14, 17}, there 

exists a ternary word w of length n − 1 that is cyclically square-free. For any letter d that does not appear in w, 

wd is a cyclically square-free word of length n over a quaternary alphabet. If n = 10, we can explicitly show the 

existence of cyclically square-free words over a quaternary alphabet (for example, w = abacabcacd). Any 

alphabets of larger size contain all words over a quaternary alphabet, hence the statement hold for larger 

alphabets as well. 

 

Since β-images are full words over a binary alphabet, a clear upper bound on the number of distinct β-images of 

words of length n is 2
n
. However, by Theorem 4.2, we can tighten this bound. 

 

Proposition 4.1 Let A be an alphabet of size greater than 2. Then 

 

 
 



where m = 1 if  ||A|| = 3 and n ∈ {5, 7, 9, 10, 14, 17}, and m = 0 otherwise. 

 

Proof By Remark 4.3, we know that full words cannot contain exactly one unbordered conjugate, so we subtract 

the size of the conjugacy class of β-images with exactly one a from the bound for full words. Furthermore, by 

Theorem 4.2, neither full words nor partial words of length n ∈ {5, 7, 9, 10, 14, 17} over a ternary alphabet may 

have β-images of the form a
n
, so we subtract 1 from both bounds for these cases. 

 

Table 2 below gives ||β(  
 n~)|| for words over alphabets of different sizes and lengths 1 < n < 13. We observe 

that the bound given in Proposition 4.1 is tight for lengths 5 < n ≤ 12 and conjecture that it is tight for all greater 

lengths. 

 

 
 

4.3 The Refined Border Correlation Function 

 

We extend the border correlation function for partial words to β' :   
  → ℕ*

 over a binary alphabet A, defined 

such that for all 0 < i < n, a word w of length n is mapped to m0m1...mn-1 where mi is the length of a shortest 

border of σ
i
 (w) if it is bordered and mi is 0 if it is unbordered. The function β' for full words is introduced in [6], 

and it is shown to be injective up to complementary words; that is, a single β'-image is shared only by a word 

and its complement. 

 

Lemma 4.3 Let u and v̄  be two full words such that β'(u) = β'(v). Then either u = v or u = v̄ . 

 

Since w and w̄  map to one distinct β'-image, ||β'(A
n
)|| = 2

n-1
, which is significantly larger than the upper bound 

of ||β (An)||11, which was calculated in Sect. 4.1. There also exists a relationship between β'(w) and β'(rev(w)), 

the image of the reverse of w. 

 

Lemma 4.4 Let β'(w) = m0m1 ... mn-1 fora word w of length n. Then β'(rev(w)) = m0 rev(m1...mn-1). 

 

Proof Let β'(rev(w)) = m'0m'1 ... m'n-1. We begin by noting that for all w ∈ A
*
, the length of the shortest border of 

w is equal to the length of the shortest border of rev(w). Thus, m0 = m'0. A forward cyclic shift of rev(w) and a 

backward cyclic shift of w yield words that are reverses of each other, i.e., σ
i
(rev(w)) = rev(σ

-i
(w)). Since these 

words are reverses, the lengths of their respective shortest borders are equal, so mi = m'n-i for all i such that 0 < i 

< n.  

 

Interesting properties arise when we consider palindromes, words w such that w = rev(w). 

 



Proposition 4.2 Let w be a full word of odd length n. Then w is a palindrome if and only if β'(  
 

 
 
(w)) is a 

palindrome. 

 

Proof For the forward implication, let w be a palindrome. So w = rev(w), which implies that β β'(w) = 

β'(rev(w)). Let β'(w) = m0m1 ... mn-1. By Lemma 4.4, we know that mi = mn-i for all i such that 0 < i < n. Thus 

β'(rev(w)) = β'(w) = m0u rev(u) for some u ∈ ℕ*
. So   

 

 
 
(β'(w)) = um0rev(u) = β'(  

 

 
 
(w)), which is a 

palindrome. 

 

For the reverse implication, let v =   
 

 
 
(w) and suppose β'(v) is a palindrome so that β'(v) = umrev(u). 

Therefore,   
 

 
 
(β'(v)) = β'(  

 

 
 
(v)) = m rev(u)u. Since v =   

 

 
 
(w), we have   

 

 
 
(v) =   

 

 
 
(  

 

 
 
(w)) = w. So β'(w) 

= m rev(u)u. By Lemma 4.4, β'(rev(w)) = m rev(rev(u)u) = m rev(u)u. Thus β'(w) = β'(rev(w)), and by Lemma 

4.3 this implies that either w = rev(w) or w = rev(w)  . However, the latter leads to a contradiction since |w| is 

odd. Thus we have w = rev(w), so w is a palindrome. 

 

Proposition 4.3 Let w be a full word of even length n. 

1. If β'(w) is a palindrome, then   
 

 
   

(w) 
 

 (w) is a palindrome. 

2. If w is a palindrome, then both β'( 
 

 (w)) β'(  
 

 
   

(w)) and β'( 
 

 (w)   
 

 
   

(w)) are palindromes. 

 

Proof For the first statement, suppose that β'(w) is a palindrome; that is, β'(w) = u rev(u) for some u ∈ ℕ . Then 

 
 

  (β'(w)) = β'( 
 

 (w)) = rev(u)u. Let u = m0m1...mk, so β'( 
 

 (w)) = mkmk−1...m0m0...mk−1mk. By Lemma 4.4, this 

implies β'(rev( 
 

 (w))) = mkmkmk−1...m0m0...mk−1, so β'( 
 

 (w)) = σ(β'(rev( 
 

 (w)))). This is equivalent to 

β'(σ(rev( 
 

 (w)))). From our proof of Lemma 4.4 we know that σ
i
(rev(w)) = rev(σ

−i
(w)), so 

 

 
 

Therefore, by Lemma 4.3, β'( 
 

 (w))  = β'(rev( 
 

 
   

(w))) implies that either  
 

 (w) = rev ( 
 

 
   

 (w)) or  
 

 (w) = 

rev(σ^(n/2  -1) (w))  . However, the latter case presents a contradiction. To see this, let  
 

 (w) = c0c1...cn−1. 

Then  
 

 
   

(w) = cn−1c0...cn−2, so rev( 
 

 
   

 (w)) = cn−2...c0cn−1. Hence, if  
 

 
 
 (w) = rev (σ^(n/2  -1) (w))  , we 

have that the final letters of  
 

 (w) and rev (σ^(n/2  -1) (w))  are equal, so cn−1 = 1nc , which is a contradiction. 

Thus, we may conclude that  
 

 (w) =rev( 
 

 
   

(w)), and  
 

 
   

(w)  
 

 (w) is a palindrome. 

 

For the first half of the second statement, suppose that w is a palindrome. Then w = rev(w), so β'(w) =  

β'(rev(w)). By the same reasoning as the corresponding case for odd lengths, we let β'(w) = m0m1...mn−1 so mi = 

mn−i for all i such that 0 < i < n. In this case, however, the word m1m2...mn−1 is of odd length, so we can let β'(w) 

= β'(rev(w)) = m0u  

 
 rev(u) for some u ∈ ℕ . Consequently,  

 

 (β'(w)) = β'( 
 

 (w)) =   

 
 rev(u)m0u and 

 
 

 
   

(β'(w)) = β'( 
 

 
   

(w)) = rev(u)m0u  

 
. Since   

 
 rev(u)m0u = rev(rev(u)m0u  

 
), this allows us to conclude 

that the concatenation β'( 
 

 (w))β'( 
 

 
   

(w)) is a palindrome. 

 

For the second half of the second statement, again w is a palindrome, so w = u rev(u) for some u ∈ A . Then 

 
 

 (w) = rev(u)u. Let u = c0c1...ck, so  
 

 (w)  
 

 
   

(w) = ck...c0c0...ckck−1...c0c0...ckck. We have that the nth cyclic 

shift of this word is ck−1...c0c0...ckckck...c0c0...ck, and the (n − 1)th cyclic shift is ckck−1...c0c0...ckckck...c0c0...ck−1 . 

These words are reverses of each other, so the lengths of their shortest borders are equal. Let v be the (n − 1)th 



cyclic shift, so rev(v) is the nth cyclic shift. Recall, again, that σ
i
 (rev(v)) = rev(σ

−i
 (v)), implying that the lengths 

of their shortest borders are equal. Notice that σ
i
 (rev(v)) = σ

n+i
 ( 

 

  (w) 
 

 
   

(w)), so the above equivalence 

implies that β'( 
 

 (w) 
 

 
  

(w)) is a palindrome.  
 

In the partial word case, we use a slightly modified definition of a palindrome, referring to a partial word w as a 

compatible-palindrome, denoted ↑-palindrome, if w ↑ rev(w). Because Lemma 4.4 holds for partial words as 

well, we are able to generalize our propositions as follows: 

 

Proposition 4.4 Let a partial word w be a  ↑-palindrome, and let v = w ∨ rev(w). 

 

1. If w is of odd length, then β'(  
 

 
 
(v)) is a palindrome. 

2. If w is of even length, then both β'( 
 

  (v))β'( 
 

 
  

(v)) and β'( 
 

 (v) 
 

 
  

 (v)) are palindromes. 

 

Proof If there are any holes in v, then they are located in symmetric positions. Hence, v = rev(v), so v is a 

palindrome in the same sense as full words. The proof of the statement is thus the same as that of the full word 

case. 

 

5 Critical Factorization and Borderedness of Partial Words 

Harju and Nowotka have presented a characterization of the relationship between borderedness and critical 

factorization of full words. We expand these to include partial words. We begin by recalling the definition of a 

critical factorization and the statement of the critical factorization theorem. 

 

A nonnegative integer q < |w| −1 is called a point and refers to the space between letters w(q) and w(q + 1). A 

local period of w at point q is a positive integer p such that there exist nonempty partial words u, v, x, y where w 

= uv, |u| = q + 1, |x | = |y| = p, x ↑ y and there exist partial words r and s such that one of the following conditions 

holds: 

 

1. u = rx and v = ys (internal square), 

2. x = ru and v = ys (left-external square), 

3. u = rx and y = vs (right-external square), 

4. x = ru and y = vs (left- and right-external square). 

 

In this case, we call x and y repetition words. The minimal local period of w at point q is denoted p(w, q). 

 

A factorization of a partial word w such that w = uv is called critical if the minimal local period of w at point i = 

| u | −| − 1 is equal to the minimal weak period of w, i.e. p(w, |u | −1) = p'(w). In this case, the point i is called a 

critical point. This definition is adapted from that of full words, where a factorization is critical if the minimal 

local period at point i is equal to the minimal strong period of a full word, w. The critical factorization theorem 

states that for all full words of length greater than one, there exists at least one critical factorization. Blanchet-

Sadri et al. have extended the critical factorization theorem to partial words, proving that there exists at least 

one critical factorization for all partial words meeting a specified set of conditions [4–6]. 

 

A point p, with 0 ≤  p < |w| is called an internal critical point of w if p + |w| is a critical point of www. 

 

Lemma 5.1 Let w be a partial word such that |w| = n and let u = σ
i
 (w) with 0 ≤ i < n. The point p is an internal 

critical point of w if and only if the point 

 

 
 



is an internal critical point of u. 
 

Proof We prove only the forward implication, as the reverse follows directly. Harju and Nowotka [6] have 

shown that for a full word w, if v = σ
j
(w) for some 0 ≤ j < n, then there exist full words x and z such that www = 

xvvz and |x| = j. Moreover, uuu = x'vvz' where |x'| = j − i if j ≥ i and |x'| = j + n − i otherwise. These results hold 

for the partial word case as well. 

 

Suppose p is an internal critical point of w. Let p'(w) = m, and let r0 and r1 be the shortest repetition words at 

point p + n in www. Clearly, www has a weak period of length n. If this is the minimal weak period, then |r0| = 

|r1| = n. In this case, as Harju and Nowotka have proven, we have that r0 = r1 is a conjugate of w, say σ
s
(w). In 

fact, by writing www = xr0r1z = xσ
s
(w)σ(w)σ

s
(w)z, then by the above we see that |x| = s, and hence, |xσ

s
(w)| = s + 

n. In order to have r0 and r1 be repetition words at point p + n, then, it must be the case that s = p + 1. Then uuu 

= x'σ
s
(w)σ

s
(w)z', where |x'| =s − i = p – i + 1 if p ≥ i and |x'| =s + n − i = p + n – i + 1 otherwise. This implies that 

|x'| = q + 1, and hence the point q is a critical point of uuu. So q is an internal critical point of u, completing the 

proof. 

 

However, unlike the case of full words studied by Harju and Nowotka, the partial word www may have a 

minimal weak period of length shorter than n. Let p'(w) = m < n and let r0 and r1 be the shortest repetition 

words at point p + n in www. By definition, |r0| = |r1| = m. Suppose that we form a complete conjugate of w, say  

σ
s
 (w), by looking at the letters that appear to the left of r0 and to the right of r1 in www. Then we will have σ

s
 

(w) = ur0 = r1y, and from above we see that www = xur0r1yz = xσ
s
(w)σ

s
(w)z, where |x| = s. Again, this forces that 

s = p + 1. Then uuu =x'ur0r1yz', where |x'| =s – i = p – i + 1 if p ≥ i and |x'| = s + n – i = p + n − i + 1 otherwise. 

Hence, by the same reasoning as above, r0 and r1 are the shortest repetition words at point q + n in uuu, so q is 

an internal critical point of u. 

 

The following theorem clarifies the relationship between internal critical points and borderedness. Note that if 

p'(www) = n, then the statement “the length of a shortest border of σ σ
p+1

(w) is q” means that σ σ
p+1

(w) is 

unbordered. 

 

Theorem 5.1 Let w be a partial word of length n such that p'(www) = q and let 0 ≤ p < n. Then p is an internal 

critical point of w if and only if the length of a shortest border of σ
p+1

(w) is q. 

 

Proof Assume p is an internal critical point of w. Then www = xur0r1yz, where |x| = p + 1, σ
p
+

1
(w) = ur0 = r1y, 

and r0 and r1 are the shortest repetition words at point p + n of www. Because σ
p+1

(w) = ur0 = r1y and r0 ↑ r1 

(there exists r such that r0 ⊂ r and r1 ⊂ r), it is clear that σ
p+1

(w) has a border r of length |r0| = |r1| = q. 

Furthermore, r is necessarily unbordered, so there can be no shorter border of σ
p+1

(w). 

 

Now assume that the length of a shortest border of v = σ
p+1

(w) is q. Then v = ur0 = r1y for some partial words u, 

r0, r1, y such that |r0| = |r1| = q, r0 ↑ r1, and r0 ⊂ r and r1 ⊂ r for some r. We have www = xvvz = xur0r1yz with |x| 

= p + 1 and r0 and r1 are repetition words of www at point p + n. Moreover, since r is unbordered, r0 and r1 are 

the shortest repetition words at this point. Thus, |r0| = |r1| = q = p'(www), so p is an internal critical point of 

www. 

 

In calculating the minimal weak period of www, it is not necessary to check all possible lengths. The following 

algorithm gives a decision procedure for determining p'(www). 

 

Algorithm 5.1 Given a partial word w of length n: 

Step 1: Find β(w). If β(w) ≠ b
n
, then output p'(www) = n. Otherwise, go to Step 2. 

Step 2: For each i such that 0 ≤ i < n, determine the lengths of all borders of σ
i
(w). 

Step 3: Find the smallest m such that every conjugate of w has a border of length m. Output p'(www) = m. 

 

Proposition 5.1 Given input partial word w of length n, Algorithm 5.1 outputs p'(www). 



Proof In order to prove the correctness of Algorithm 5.1, let us suppose that www has a weak period of length 

m. 

 

We prove by contradiction that every conjugate of w must have a border of length m. Let i be an integer such 

that 0 ≤ i < n, and assume that σ
i
(w) does not have a border of length m. This implies that σ

i
(w) = u0vu1, where 

|u0| = |u1| = m and u0 ↑/  u1. However, recall that www = xσ
i
(w)σ(w)σ

i
(w)z = xu0vu1u0vu1z, which contains the 

factor u1u0. Since |u1| = |u0| = m and www has a weak period of length m, it must be the case that u1 ↑ u0. Since u0 

↑/  u1, this is a contradiction. 

 

We show, in addition, that it is impossible for every conjugate of w to have a border of length k < m. Again, for 

the sake of a contradiction, we assume that there exists an integer k < m such that every conjugate of w has a 

border of length k. Consider the conjugate σ
k
(w) = u1vu0, where |u0| = |u1| = k and u0 ↑ u1. This gives us that w = 

u0u1v and u0 ↑ u1. Since every conjugate of w is a factor of www, we can conclude by the same reasoning that 

every length-k factor of www is compatible with the next length-k factor, and hence, www has a weak period of 

length k. However, this contradicts our assumption that m is the minimal weak period of www.  

 

Example 5.1 Let w = bba◊b◊a. We first determine that β(w) β(w) = bbbbbbb. In the following table, we list all 

conjugates of w and the lengths of all borders of each conjugate. 

 

 
 

Every conjugate of w has a border of length 3 and one of length 4. Choosing the smallest of these numbers, we 

find that p'(www) = 3. 

 

6 Conclusion 

 

There appears to be a relationship between borderedness and periodicity that remains largely unexplored. The 

ternary correlation of a partial word w is a ternary vector v such that | v | = | w |, v0 = 1, and for all i such that 0 

< i < n: 

 

 
 

We expect a correspondence between this vector and the image of a word under the refined border correlation 

function. 

 

Although we have investigated properties of β β'-images of binary words, we note that the function will no 

longer be injective up to complements when the alphabet size is greater than two, so many of the properties that 

we have discussed will not hold. Also, while we have given an upper bound on the number of distinct  β β- and 

β'-images of binary partial words of a given length, one could also explore the population distribution of these 

images, i.e., the number of words that share a given border correlation. 
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0452020. We thank the referees of a preliminary version of this paper for their very valuable comments and 

suggestions. A World Wide Web server interface has been established at 
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