
Algorithms for Approximate K-Covering of Strings 

 

By: Lili Zhang and F. Blanchet-Sadri  

 

L. Zhang and F. Blanchet-Sadri, Algorithms for Approximate k-Covering of Strings. International Journal of 

Foundations of Computer Science, Vol. 16, No. 6, 2005, pp 1231-1251.  

 

***Reprinted with permission. No further reproduction is authorized without written permission from 

World Scientific Publishing. This version of the document is not the version of record. Figures and/or 

pictures may be missing from this format of the document.*** 

 

Made available courtesy of World Scientific Publishing: http://dx.doi.org/10.1142/S0129054105003789  

 

Abstract: 

Computing approximate patterns in strings or sequences has important applications in DNA sequence analysis, 

data compression, musical text analysis, and so on. In this paper, we introduce approximate k-covers and study 

them under various commonly used distance measures. We propose the following problem: "Given a string x of 

length n, a set U of m strings of length k, and a distance measure, compute the minimum number t such that U is 

a set of approximate k-covers for x with distance t". To solve this problem, we present three algorithms with 

time complexity O(km(n - k)), O(mn
2
) and O(mn

2
) under Hamming, Levenshtein and edit distance, respectively. 

A World Wide Web server interface has been established at http://www.uncg.edu/mat/kcover/ for automated 

use of the programs. 

 

Keywords: Strings; k-Covers; Approximate k-covers; Distance measures; String algorithms; Dynamic 

programming. 

 

Article: 

1. Introduction 

A string v is called a cover of a string x if x can be constructed by concatenating or overlapping copies of v, so 

that every position of x lies within an occurrence of v. For example, TCAT is a cover of TCATTCATCAT. This 

notion was introduced by Apostolico et al. in [3]. There, the shortest cover problem or the problem of 

computing the shortest cover of a given string x of length n was considered and an O(n) time algorithm was 

described for this problem. Other linear time algorithms followed that improve on their result: In [4], Breslauer 

gives an on-line algorithm for the shortest cover problem thus computing the shortest cover of every prefix of x; 

In [10, 11], Moore and Smyth give an algorithm for the all covers problem or the problem of computing all the 

covers of x; Finally, in [9], Li and Smyth extend this result considerably by computing on-line all the covers of 

every prefix of x. PRAM (parallel random access machine) algorithms have also been developed for the shortest 

cover [5] and all covers [6] problems. Iliopoulos and Park gave an optimal O(log log n) time algorithm for the 

shortest cover and all covers problems [6]. Apostolico and Ehrenfeucht considered yet another problem related 

to covers [2]. 

 

Given a string x, a set V of strings is called a set of covers for x (or V covers x) if x can be constructed by 

concatenating or overlapping strings in V. For example, the set {CTA, CTAC} covers CTACCTACTA. In 

addition, if each string in V has length k, then V is a set of k-covers for x. In [7], Iliopoulos and Smyth give an 

0(n
2
(n - k)) time on-line algorithm for computing a minimum set of k-covers for a given string of length n. 

 

A natural extension of the above problems is to allow errors when computing patterns. In some applications, 

specifically DNA sequence analysis, it becomes necessary to recognize u as an occurrence of v if the difference 

or distance between u and v is bounded by a certain threshold. Several definitions of distance have been 

proposed like the Hamming, Levenshtein and edit distances. In [1], Agius et al. give polynomial time algorithms 

to solve problems related to approximate covers according to these and other definitions of distance extending 

previous work by Sim et al. [15] (other results on approximate patterns in strings appear in [8, 13]). 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=3440
http://libres.uncg.edu/ir/uncg/clist.aspx?id=565
http://www.uncg.edu/mat/kcover
http://dx.doi.org/10.1142/S0129054105003789


 

In this paper, we introduce the notion of a set of approximate k-covers. To our knowledge, no results are known 

about these approximate patterns. In Section 2, as a foundation for approximate k-covering, we discuss 

Iliopoulos and Smyth's algorithm for k-covering. In Section 3, we suggest the following problem: "Given a 

string x, a set U of strings of length k, and a distance measure, compute the minimum number t such that U is a 

set of approximate k-covers for x with distance t" . In Sections 4, 5 and 6, we give polynomial time algorithms 

to solve this problem under Hamming, Levenshtein and edit distance, respectively. 

 

First, we review some basic concepts on strings. Let Σ be a nonempty finite set, or an alphabet. A string (or 

word) x over Σ is a finite concatenation of characters from E. The length of x, or the number of characters in x, 

is denoted by |x|. A string of length n is sometimes called an n-string. For any string x and i ≤ j, x[i..j] is the 

substring of x of length j - i + 1 that starts at position i and ends at position j (x is called a superstring of x[i..j]). 

In particular, x[1..j] is the prefix of x that ends at position j and is the suffix of x that begins at position i. The 

substring x[i..j] is the empty string if i > j (the empty string is denoted by ∈). For example, ACAAACC is a 

string over the alphabet {A, C}, CAA is a substring, ACAA is a prefix, and CC is a suffix. The set of all strings 

over Σ is denoted by Σ*, and the cardinality of a subset X of Σ* by ||X|| 

 

2. Algorithm for k-Covering 

In this section, we present Iliopoulos and Smyth's O(n
2
(n - k)) time on-line algorithm for computing a minimum 

set of k-covers for all prefixes of a given string x of length n [7]. Here we provide details on how to compute the 

cardinality of a minimum set of k-covers for x, and how to compute at least one such set. Lemma 1 below gives 

the reason for not computing all the minimum sets (there may be an exponential number of them). 

 

First, we define the notion of a minimum set of k-covers. 

Definition 1 ([7]) Given a string x and a positive integer k satisfying k < jxl, a set V of k-strings is called a set 

of k-covers for x if V covers x. Moreover, V is called minimum if ||V|| is a minimum. 

 

For example, both {ACA, CAG, GTT} and {ACA, GTT} are sets of 3-covers for ACACAGTT with the latter 

one being a minimum set. 

 

The following are some basic facts about the minimum sets of k-covers for a string x of length n: 

 

Fact 1([7]) The strings x[1..k] and x[n - k + 1..n] are both elements of every minimum set of k-covers for x. 

 

Fact 2([7]) The cardinality of a minimum set of k-covers for x is at most ⌊n/k⌋. Indeed, the set 

 

{x[ik + 1..ik + k] I i = 0,1, ..., ⌊n/k⌋ - 1} ∪ {x[n - k + 1..n]}  

 

covers x. 

 

Fact 3([7]) A minimum set of k-covers for x is not necessarily unique. (For example, both {AAC, ACC, TTG} 

and {AAC, CCT, TTG} are minimum sets of 3-covers for AACCTTG.) 

 

It follows from the next lemma that the number of minimum sets of k-covers for a string of length n may be 

exponential in n. 

 

Lemma 1 ([7]) Let x be a string of length n whose symbols are all distinct, that is, for every pair of positions i, 

i' in x, x[i] = x[i'] if and only if i = i'. Put n = hk — j where h,j are integers satisfying h > 2 and 0 < j < k. If Nj,h 

denotes the number of distinct minimum sets of k-covers for x, then 

 

(a) Nj,h = ∑0≤i≤j Nt,h-1 for every h ≥ 3, and 



 

(b) Nj,h ∈ θ((j +1)
h-1

). 

 

We now outline our version of Iliopoulos and Smyth's algorithm which works iteratively computing the 

cardinalities of minimum sets of k-covers for all prefixes of a given string x. Initially, the algorithm uses the 

idea from Fact 1 in order to compute the cardinalities of minimum sets of k-covers for the prefixes x[1..k + 1], 

x[1..k + 2], , x[1..2k] of x. For k < i ≤ 2k, if x[1..k] = x[i - k +1..i] then the minimum set of k-covers for x[1..i] is 

{x[1..k]} and the cardinality is 1; otherwise, the minimum set of k-covers for x[1..i] is {x[1..k], x[i - k +1..]} and 

the cardinality is 2. For i > 2k, the algorithm uses the idea that every minimum set of k-covers for x[1..i +1] 

depends only on the minimum sets computed for the previous k positions, that is, the minimum sets of k-covers 

for x[1..i], x[1..i - 1], , x[1..i - k + 1]. 

 

The following lemmas provide the other main ideas for the algorithm. 
 

Lemma 2 ([7]) For i ≥ 2k, let Vi,1, Vi,2… be the distinct minimum sets of k-covers for x[1..i]. Put ci = ||Vi,1|| = 

||Vi,2|| = ... Then 

 

ci+l = mini-k<j≤i, every h||Vj,h ∪{x[i - k + 2..i +0]}||. 

 

Lemma 3 ([7]) For i > 2k, every minimum set Vi+1,h is a superset of some minimum set Vj,h, with i - k < j ≤ i. 

Indeed, there exist i - k < j ≤ i and h' such that 

 

Vi+1,h = Vj,h’ ∪ {x[i - k + 2..i + 1]}. 

 

Lemma 4 ([7]) For i ≥ 2k, suppose that Vi+1,h ⊇ Vi,h’ for some i - k < j ≤ i and some h'. Then ci+1 = cj if x[i - k + 

2..i + 1] ∈ Vj,h’; ci+1 = cj + 1 otherwise. 

 

As observed before, for i > 2k, there exist i - k < j ≤ i and h' such that Vi + 1,h = Vi,h‘ ∪ {x[i — k + 2..i + 1]}. This 

could be the basis for an algorithm to compute all the minimum sets of k-covers for x[1..i + 1]. However, by 

Lemma 1, the number of such minimum sets for any value of j may be exponential in j, leading to an inefficient 

algorithm. To achieve efficiency, the following data structures are used: 

 

 An integer array c 

c[i], where k < i ≤ n, records the cardinality of every minimum set of k-covers for x[1..i]. 

 A 2-dimensional Boolean array A 

A[i, j], where k < i ≤ n and k ≤ j ≤ i, records TRUE if the k-string x[j - k + 1..j] is an element of at least 

one of the minimum sets for x[1..i]; A[i, j] records FALSE otherwise. 

 A global integer array L 

L[i], where k ≤ i ≤ n, records the minimum integer j distinct from i such that x[i - k + 1..i] = x[j - k +1..j] 

if such j exists; L[i] records i otherwise. 

 A Boolean array MARK 

MARK [i'], where k ≤ i - k < i’ ≤ i < n, records TRUE if there exists j' such that A[i', j'] = TRUE and x[j' 

– k + 1..j’] = x[i - k + 2..i + 1]; MARK [i’] records FALSE otherwise. 

 

Algorithm k-Covering  

The algorithm consists of three steps. 

 

Step 1: For k < i ≤ 2k, initialize c[i] with 1 if x[i - k + 1..i] x[1..k], and with 

2 otherwise. For k < i ≤ 2k and k ≤ j ≤ i, initialize A[i, j] with TRUE if j = k or j = i, and with FALSE 

otherwise. 

 



Step 2: For k ≤ i ≤ n, compute the minimum integer j such that k ≤ j ≤ n, j ≠ i, and x[i — k +1..i] = x[j — k 

+1..j]. If such j is found, set L[i] = j; otherwise, set L[i] = i. 

 

Step 3: For 2k ≤ i < n, compute c[i + 1] and A[i +1, --]. 

 

 For i - k < j ≤ i, use array L (from Step 2) to compute MARK[j]. If L[i + 1] ≤ j, then MARK[j] = TRUE; 

otherwise, MARK[j] = FALSE. In the process, compute c[i + 1] according to the formula: 

 

 
 

 Using Fact 1, set A[i + 1,i + 1] = TRUE. Now, there exists at least one value of j, i - k < j ≤ i, 

satisfying Eq. (1). Denote such j by i'. For k ≤  j' ≤ i, if  A[i', j'] TRUE, then set A[i +1,j’], = 

TRUE; otherwise, set A[i + 1, j'] = FALSE. 

 

When all computations are done, Algorithm k-Covering returns c. 

 

Note: For k < i ≤ n, in order to compute a minimum set of k-covers for x[1..i], pick up c[i] entries in row i of A 

that are TRUE: say, A[i, j1],…,A[i,jc[i]] where k ≤ ji < ••• < jc[i] < i. If the set 

 

Vi = {x[j1 - k +1..j1],...,x[jc[i] – k +1..jc[i]} 

 
is of cardinality c[i] and covers x, then 14 is as desired. 

 

We now express the algorithm in pseudo programming language code. 

 

Algorithm k-Covering 

input: string x of length n and positive integer k ≤ n 

 

output: cardinality of a minimum set of k-covers (as well as a minimum set of k-covers) for every prefix of x 

 

// Step 1: Initialize c and A 

 

for I ← k +1 to 2k do 

if x[i - k + 1..i] = x[1..k] then c[i] ← 1 

else c[i] ← 2 

for j ← i do 

if j = k or j = i then A[i,j] ← TRUE  

else A[i, j] ← FALSE 

 

// Step 2: Compute L  

 

for I ← k to n do 

L[i] ← i 

flag ← 0 

for j ← k to n do 

if flag 0 and j ≠ i and x[i - k + 1..i] x[j - k + 1..j] then 

L[i] ← j 

flag ← 1 

 

// Step 3: Compute c and A 



for i ← 2k to n - 1 do 

c[i +1] ← ∞ 

for j ← i - k + 1 to i do 

if L[i + 1] ≤ j then MARK[j] ← TRUE  

if c[i + 1] > c[j] then c[i + 1] 4— c[j]  

else MARK[j] ← FALSE 

if c[i + 1] > c[j] + 1 then c[i + 1] <— c[j] +1  

A[i + 1, i + 1] 4— TRUE 

for j' k to i do 

if (MARK[i'] = TRUE and c[i + 1] = c[i']) or  

(MARK[i'] = FALSE and c[i +1] = c[i'] +1) then 

if A[i', j'] = TRUE then A[i +1, j'] 4— TRUE  

else A[i +1, j'] 4- FALSE 

return c 

 

Theorem 1 Algorithm k-Covering computes in O(k(n — k)
2
) time a minimum set of k-covers for every prefix of 

a given string of length n. 

 

We now illustrate the algorithm with the following example. 

 

Example 1 Given the string x = TCATCATCTCAT of length 12 and the positive integer k = 4, Algorithm k-

Covering computes the cardinality of minimum sets of 4-covers for x as c[12] = 2, and computes such a 

minimum set of 4-covers as {TCAT, CATC} for instance. 

 

3. Approximate k-Covering 

In some applications, it becomes necessary to recognize the string u as an occurence of the string v if the 

distance between u and v is bounded by a certain threshold. There are several well-known distance measures 

which focus on transforming u into v by a series of operations on individual characters, each operation having 

cost 1. The distance δ(u, v) between u and v is then the minimum cost to transform u into v. For the Levenshtein 

distance, the allowed operations are insertion of a character into u, the deletion of a character from u, or the 

substitution of a character in u with a character in v; For the Hamming distance, insertions and deletions are not 

allowed; And for the edit distance, substitutions are not allowed. It also becomes necessary to relax the 

conditions of a set V of k-covers for a given string x and to recognize U as an occurrence of V if U is a set of 

approximate k-covers for x with distance t. We state this idea more precisely in the following definition. 

 

Definition 2 Let t be a nonnegative integer and δ be a distance measure. Given a string x and a positive integer 

k satisfying k ≤ |x| a set U of k-strings is called a set of approximate k-covers for x with distance t if there exists 

a (multi)set V such that the following conditions hold: 

 The (multi)set V corresponds to a sequence of substrings of x, v1, v2, ..., where v1 starts at position i1 of x, v2 

starts at position i2 of x, . . . with 1 ≤ i1 ≤ i2 ≤ • • • and with V covering x. 

 For every u ∈ U, there exists v ∈ V such that δ(u, v) ≤ t. 

 For every v ∈ V, there exists u ∈ U such that δ(u, v) ≤ t. 

 

The set V is said to be generated by U. Moreover, if u ∈ U, v ∈ V and δ(u, v) ≤ t, then v is said to be generated 

by u or u is called a generator for v. 

 

In the next three sections we consider the following problem under Hamming, Levenshtein and edit distances: 

"Given a string x of length n, a set U of m strings of length k, and a distance measure, compute the minimum 

number t such that U is a set of approximate k-covers for x with distance t". We classify our problem into three 

versions: the Hamming distance version (Problem th and O(km(n - k)) time Algorithm th described in Section 4), 

the Levenshtein distance version (Problem tl and O(mn
2
) time Algorithm tl described in Section 5), and the edit 



distance version (Problem te and O(mn
2
) time Algorithm te described in Section 6). For a preview, we illustrate 

the different outputs with the following example. In the layouts, an insertion operation is indicated by the -- 

symbol. 

 

Example 2 Given the string x = TGCAGTCCC and the set U {CCA, TCC, 

CTC}, the minimum number t such that U is a set of approximate 3-covers for x with distance t will be 

computed as: 

 

1. Using Hamming distance, t = 1 and a possible layout (with cover set V = {TGC, GCA, GTC, CCC}) is as 

follows: 

 

 
 

2. Using Levenshtein distance, t = 1 and a possible layout (with cover set V = {TGC, GCA, GTC, TCCC}) 

is as follows: 

 

 
 

3. Using edit distance, t = 2 and a possible layout (with cover set V = {TGC, GCA, GTC, TCCC}) is as 

follows: 

 

 
 

4. Algorithm under Hamming Distance 

In this section, we define distance as Hamming distance, which counts the number of mismatches between two 

strings of same length. We present an O(km(n - k)) time algorithm for solving Problem th. As the definition of 

distance is specified, we can make Definition 2 more appropriate. Indeed, V is a (multi)set of k-covers for the 

string x. 

 

Given a string x of length n and a set U = {u1,…,um} of strings of length k, the following are some basic facts 

about U being a set of approximate k-covers for x with distance t generating a (multi)set V = {vi,…, vm
,
} 

covering x: 

 

Fact 4 A substring of x may have a multiplicity bigger than 1 in V. Moreover, v1 is a prefix of x, vm’ is a suffix 

of x, and vi concatenates or overlaps with vi+1 for 1 ≤ i < m'. 

 

Fact 5 There may exist 1 < i < i’ < m and 1 < j' < j < m' such that ui generates vj and ui’ generates vj’. (Example 

2(1) shows this fact.) 

 



Fact 6 Every element in U must be used to generate at least one element in V, and every element in V is 

generated by at least one element in U. (In Example 2(1), CCA is used to generate both GCA and CCC.) 

 

Fact 7 A (multi)set V of covers for x is not unique. (For example, if x = TCATCATCT and U {TCGT, ATCT}, 

then U is a set of approximate 4-covers for x with distance 1. One of the cover sets is V1. = {TCAT, ATCA, 

ATCT} while the other is V2 = {TCAT, TCAT, ATCT}. In general, there may be an exponential number of 

(multi)sets of covers for x.) 

 

Fact 8 The strings x[1..k] and x[n - k 1..n] are both elements of V. 

 

Based on Fact 8 and Definition 2, we get Fact 9: 

 

Fact 9 If ui is a generator for x[1..k] and uj is a generator for x[n - k + 1..n] for some 1 ≤ i, j ≤ m, then t ≥ 

max(δ(ui, x[1..k]), δ(u3,x[n - k + 1..n])). 

 

The main ideas for the algorithm are clear: Fact 5 shows that it is not easy to figure out which element of U 

generates which element of V; Fact 8 states that the strings x[1..k] and x[n — k + 1..n] are always in V; Further, 

Fact 9 implies that 

 

 

 

Therefore, the algorithm uses 

 

 
 

as a yardstick to find the minimum number t and a (multi)set V satisfying Definition 2. Initially, the algorithm 

initializes d as in Eq.(2) and sets d as the comparing criterion to obtain a (multi)set V of pseudo-covers
a
 such 

that δ(u,v) ≤ d for u ∈ U, v ∈ V. Then the algorithm tests whether this (multi)set of pseudo-covers V generated 

by U satisfies Definition 2. In order to do this, using the idea from Fact 4, the algorithm tests whether V covers x 

or not (this is done using Algorithm CoverTest), and also using the idea from Fact 6, the algorithm tests whether 

every element in U is used as a generator or not (this is done by using a Boolean array to mark every element in 

U that has been used). If the (multi)set of pseudo-covers V satisfies Definition 2, then the algorithm returns d as 

the minimum number t. Otherwise, the algorithm increases d by 1, and repeats the previous tests until V is 

found. 

 

To illustrate the ideas, let x = CTTATTTAA and U = {CTTA, TTAA}. After covering the prefix and the suffix 

of length 4 of x, we get 

 

 
 

and CoverTest returns FALSE since x[5] is not covered. In this situation, d is increased by 1 and we obtain the 

following layout 

 

 

 

with CoverTest returning TRUE. 



 

To achieve efficiency, the following variables and data structures are used: 

 

 An integer n  

n is the length of x. 

 

 An integer k  

k ≤ n is the length of the elements in U. 

 

 An integer m  

m is the cardinality of U. 

 

 A 2-dimensional integer array D 

D[i, j], where 1 ≤ i ≤ m and 1 ≤ j ≤ n - k +1, records the Hamming distance δ(ui, x[j..j + k - 1]). The array 

D is called the distance table. 

 

 A 2-dimensional Boolean array G 

G[i, j], where 1 ≤ i ≤ m and 1 ≤ j ≤ n - k + 1, records TRUE if D[i, j] = δ(ui,x[j..j k - 1]) ≤ d where d is 

the comparing criterion initialized as in Eq.(2); G[i, j] records FALSE otherwise. The array G is called 

the generator table. 

 

 A global Boolean array V 

V[j], where 1 ≤ j ≤ n - k + 1, records TRUE if there exists i such that 1 ≤ i ≤ m and G[i,j] = TRUE; V[j] 

records FALSE otherwise. The array V is used for cover testing. It records the beginning of all the 

pseudo-covers produced by elements in U. 

 

 A Boolean array MARK 

MARK[i], where 1 ≤ i ≤ m, records TRUE if ui is used as a generator to construct x; MARK[i] records 

FALSE otherwise. 

 

Algorithm th 

The algorithm consists of three steps. 

 

Step 1: For 1 ≤ i ≤ m and 1 ≤ j ≤ n - k + 1, use Algorithm h-Distance to compute D[i, j] which is the Hamming 

distance between 1.4 and x[j..j +k - 1]. 

 

Step 2: Initialize d as in Eg.(2). For 1 ≤ j ≤ n - k + 1, initialize V[j] with FALSE. And for 1 ≤ i ≤ m and 1 ≤ j ≤ n 

- k + 1, initialize G[i, j] with FALSE and MARK[i] with FALSE. 

 

Step 3: For 1 ≤ i ≤ m and 1 ≤ j ≤ n - k + 1, update G[i, j], V [j] and MARK[i] with TRUE's if D[i, j] ≤ d. If 

there exists 1 ≤ i ≤ m such that MARK[i] = FALSE or if there exist at least k consecutive entries in V 

recorded as FALSE (use Algorithm CoverTest to find out if the latter condition holds), then increase d by 1 

and repeat to modify table G, array V, and array MARK; otherwise, Algorithm th returns d as the 

minimum t such that U is a set of approximate k-covers for x with distance t. 

 

Note: In order to compute a layout for x with minimum distance, pick up entries in G that are TRUE: say, 

G[i1,.j1], … , G[ir,ir] where {i1,…,ir} = {1,...,m} and 1 ≤ ji < • • • < jr ≤ n — k +1. If the (multi)set 

 

V = {x[j1..j1+ k - 1],…,x[jr..jr + k - 1]} 

 

covers x, then V is as desired. In this case,     is a generator for x[js..js + k - 1] for all 1 ≤ s ≤ r. 



 

We now express Algorithm th in pseudo programming language code. 

 

Algorithm h-Distance 

input: strings u and v of length k 

 

output: Hamming distance between u and v  

 

dist ← 0 

for i ← 1 to k do 

if u[i] = v[i] then h ← 0 

else h ← 1 

dist ← dist + h 

return dist 

 

Algorithm CoverTest 

input: Boolean array V of size n - k + 1 

 

output: TRUE (if V covers x) or FALSE (otherwise) 

 

flag ← TRUE 

i ←1 

while i < n - k + 1 and flag = TRUE do j 

j ← i+ 1 

while V[j] = FALSE and j < n - k + 1 do  

j ← j + 1 

if V[j] =TRUE and j - i < k then  

i ← j 

else flag ← FALSE 

return flag 

 

Algorithm th 

input: string x and set U = {u1,…, um} of strings where 0 < |ul| = ••• = |um| ≤ |x| 

 

output: the minimum number t such that U is a set of approximate |u1|-covers for x with Hamming distance t 

 

n ← |x| 

k 
 
← |u1| 

 

// Step 1: Compute D 

for i ← 1 to m do 

for j ← 1 to n - k + 1 do 

D[i, j] ← h-Distance(ui,x[j..j + k - 1]) 

 

// Step 2: 

// Initialize d 

fmin ← min1≤ i ≤m D[i,1] 

lmin ← min1<i<m D[i,n - k + 1] 

d ← max( fmin, lmin) 

// Initialize G, V and MARK  

for j ← 1 to n — k +1 do 

V[j] ← FALSE 



for i ← 1 to m do 

G[i, j] ← FALSE  

MARK[i] ← FALSE 

 

// Step 3: Process 

find ← FALSE 

while find = FALSE do 

for j ← 1 to n - k + 1 do 

for i ← 1 to m do 

if D[i, j] ≤ d then 

G[i, j] ← TRUE and V[j] ← TRUE and MARK[i] ← TRUE 

if MARK[i] = TRUE for all 1 ≤ i ≤ m and CoverTest(V) = TRUE then find ←TRUE 

else d ← d +1 

t ← d 

return t 

 

Let us now determine the complexity of Algorithm th. 

 

Theorem 2 On input string x of length n and set U of m strings of length k, Algorithm th terminates with the 

minimum t such that U is a set of approximate k-covers for x with distance t. Moreover, Algorithm th solves 

Problem th in O(km(n - k)) time. 

Proof. Step 1 of Algorithm th has two nested loops. They do the computation of the distance table D by using 

Algorithm h-Distance that requires O(k) time for each entry. Thus, the total complexity of Step 1 is O(km(n - k)) 

time. The initialization in Step 2 requires O(m(n - k)) time. The dominant term in the time complexity of Step 3 

is the while loop which is executed at most k + 1 times since t should be less than or equal to k. This loop has 

two nested for loops: the first is executed n - k + 1 times, and the second m times. Also, the while loop calls 

Algorithm CoverTest which requires 0(n - k) time. Thus, the total complexity of Step 3 is 0(km(n - k)). Hence, 

the overall complexity of Algorithm th is 0(km(n - k)) time. 

 

We now illustrate Algorithm th with the following example. 

 

Example 3 Given the string x = GCATCATGTCTT of length 12 and the set U = {ACAT, ATCA, TCGT}, 

Algorithm th computes the minimum number t such that U is a set of approximate 4-covers for x with distance t 

as t = 2. A possible layout is 

 

5. Algorithm under Levenshtein Distance 

In this section, we define distance as Levenshtein distance. We give an O(mn
2
) time algorithm to solve Problem 

tl. The difference between Levenshtein distance and Hamming distance is that the tranformation restrictions are 

relaxed allowing substitutions, insertions and deletions. 

 

Given a string x and a set U = {u1, . , um} of k-strings, in addition to Facts 4-7 of Section 4, the following are 

some basic facts about U being a set of approximate k-covers for x with distance t generating a (multi)set V = 

{v1, , vm’,} covering x: 

 

Fact 10 The lengths of elements in V are not necessarily equal. (Example 2(2) shows this fact.) 

 



Based on Fact 6, we get Fact 11:  

 

Fact 11 The relation 

 

 

 

holds. 

 

The main ideas for the algorithm are as follows: Fact 10 implies that Facts 8-9 do not hold for Levenshtein 

distance since the lengths of v1 and vm’ are not known. However, Fact 11 gives a relation between t and the 

elements in U and V. Thus, instead of using Eq.(2) as the comparing criterion, the algorithm uses the following 

equation to initialize d: 

 

 
 

Distance computing is more complicated in the Levenshtein version than in the Hamming distance version since 

deletions and insertions are also allowed. Here we use Algorithm l-Distance explained in more details below. 
 
Cover length computing is also more complicated in the Levenshtein version than in the Hamming distance 

version since the lengths of elements in V may be different as stated in Fact 10. The algorithm computes in two 

steps all cover lengths |v| for v ∈ V. First, the algorithm uses Algorithm CoverLength to compute |v| without 

considering insertions at the beginning of u when transforming u into v. For example, 

 

 
 

ACGC through the deletion of a C generates the cover AGC of length 3; CGGC generates the cover CGAGC of 

length 5 through the insertion of an A; and AACT generates the cover AACT of length 4. However, x[9] is not 

covered. Second, the algorithm takes care of the insertions at the beginning of u. If positions x exist separating 

two consecutive pseudo-covers vi, and vi+1 generated by u and u' respectively, then a gap exists between vi and 

vi+1. In such situations where δ(u’, vi+1) < δ(u,ui), the algorithm uses insertion operations to minimize the gap. 

Every insertion makes the distance δ (u', vi+1) (or d') increase by 1. The algorith repeats this operation until d' 

equals d. While cover testing, if a gap still exist then the algorithm increases d by 1 and repeats to get rid of the 

gap. Referring the above example, we get 

 

 
 

The following variables and data structures are used: 

 

 An integer n  

n is the length of x. 

 

 An integer k  

k < n is the length of the elements in U. 

 



 An integer m   

m is the cardinality of U. 

 

 2-Dimensional global integer arrays D1,…,Dm 

For 1 ≤ h ≤ m, array Dh corresponds to the dynamic programming array of size (n+1) × (k +1) for computing 

the distance between x and uh according to Algorithm l-Distance. In particular, Dh[i,k] is the distance between 

a suffix of x[1..i] and uh. The arrays D1, , Dm are called the distance tables. 

 

 2-Dimensional global integer arrays L1,…, Lm 

For 1 ≤ h ≤ m, array Lh is of size (n + 1) × (k+ 3). The first k+ 1 columns of Lh correspond to the k + 1 

columns of the distance table Dh. The (k + 2)nd column of Lh is computed with Algorithm CoverLength. 

The last column of Lh records the number of insertions at the beginning of generator uh. The arrays L1,…, Lm 

are called the length tables. 

 

 A 2-dimensonal integer array G 

G[i, j], where 1 ≤ i ≤ m and 1 ≤ j ≤ n, records the cost for transforming ui into the suffix of x[1..j] 

generated by ui if that cost is smaller than or equal to d where d is the comparing criterion initialized as in 

Eq.(3); G[i, j] records -1 otherwise. The array G is called the generator table. 

 

 A global Boolean array M 

M[i], where 1 ≤ i ≤ n, records TRUE if x[i] has been covered by a pseudo-cover; M[i] records FALSE 

otherwise. 

 

Algorithm tl 

The algorithm consists of four steps. 

 

Step 1: For 1 ≤ h ≤ m, use Algorithm 1-Distance to compute table Dh for the Levenshtein distance between x 

and uh when spaces are not charged for at the beginning and end of uh. More precisely, for 0 ≤ i ≤ n and 0 

≤ j ≤ k, use Eq. (4) to compute Dh [i,j]. 

 

Step 2: For 1 ≤ h ≤ m, copy the columns of table Dh into the corresponding columns of table Lh, and initialize 

the last two columns of table Lh with zeros. Next, for 1 ≤ i ≤ n, use Algorithm CoverLength to compute 

Lh[i,k +1] which is the length of the suffix of x[1..i] generated by uh (call CoverLength(i,k, Dh)). To do this, 

the call CoverLength(i,k, Dh) starts at Dh[i,k] counting the number of arrows (↖ highest priority) and (↑ 

next priority) until Column 0 of Dh is hit. 

 

Step 3: First, initialize table G with —1's and array M with FALSE's. Second, initialize the comparing criterion 

d with d = max1≤h≤m(min1≤i≤n Dh[i,k]). 

 

Step 4: For 1 ≤ h ≤ m and 1 ≤ i ≤ n, compare Dh[i,k] with d. If Dh[i, k] ≤ d, then save the value Dh[i,k] in table G 

as G[h,i]. Then, compute the length l of the longest suffix of x[1..i] whose distance with uh is bounded by d, 

and update Lh[i,k + 2]. Next, update M[j] with TRUE for i - l < j ≤ i. If there exists 1 ≤ i ≤ n such that M[i] 

= FALSE, then x[i] is not covered and increase d by 1 repeating Step 4 to modify table G and array M. 

Otherwise, return d as the minimum number t such that U is a set of approximate k-covers for x with 

distance t. 

 

Note: In order to compute a layout for x with minimum distance, pick up entries 

in G that are not —1: say, G[i1,...,j1],…,G[ir,ir] where {i1,…,ir} = {1,…,m} and 

1 ≤ j1 < • • • < jr ≤ n. Put ls =    [js, k + 1] +    [js, k + 2] for all 1 ≤ s ≤ r 

(   [js, k + 2] is the number of insertions that can be added if needed at the beginning of    in the layout). If the 

(multi)set 



 

V = {x[j1 - l1 + 1.. j1],…,x[jr - lr +1..jr]} 

 

covers x, then V is as desired. In this case,     is a generator for x[js - ls + 1..js} for all 1 ≤ s ≤ r. 

 

The well-known paper by Needleman and Wunsch [12] is an important contribution for computing the distance 

between two strings x and u relative to a measure δ. Finding the best alignment between these two strings can be 

solved efficiently by dynamic programming. Let us now describe a variation of this basic algorithm that will 

ignore end spaces in u [14]. In order to do so, a D table of size (|x| + 1) × (|u| + 1) is used. We can initialize the 

first column with zeros, and by doing this we will be forgiving spaces before the beginning of u. Initially, D[i,0] 

= 0 for all 0 ≤ i ≤ |x|, and D[0,j] = D[0,j - 1] + 1 for all 1 ≤ j ≤ |u|  We can compute all the entries of the D table 

in O(|x| |u|) time by the following recurrence: 

 

 
 

where scoring function p[i, j] 0 if x[i] = u[j], and p[i, j] = 1 if x[i] ≠ u[j]. We can look for the minimum in the 

last column, and by doing this we will be forgiving spaces after the end of u. Algorithm l-Distance fills D as 

explained where for 0 ≤ i ≤ |x| and 0 ≤ j ≤ |u|, entry D[i, j] records the minimum cost of transforming a suffix of 

x[1..i] into u[1..j]. 

 

Algorithm l-Distance  

input: strings x and u 

 

output: Levenshtein distance between x and u when spaces are not charged for at the beginning of u and end of 

u 

 

n ← |x| 

k ← |u| 

 

for I ← 0 to n do 

D[i, 0] ← 0 

for j ← 0 to k do 

D[0, j] ← j 

for i ← 1 to n do 

for j ← 1 to k do 

D[i, j] ← min(D[i, j - 1] + 1, D[i - 1, j - 1] + p[i,j],D[i - 1, j] + 1)  

return min1<i<n D[i, k] 

 

We described Algorithm l-Distance which computes the distance table D for the Levenshtein distance between 

two strings x and u when spaces are ignored at either end of u. Here we describe Algorithm CoverLength which 

is recursive. Among other things, the call CoverLength |x|, |u|, D) constructs an optimal alignment between x 

and u which is given in a pair of vectors alignx and alignu that hold in the positions 1..len the aligned characters, 

which can be either spaces or symbols from the strings. The variables len, clen, alignx and alignu are treated as 

globals in the code. 

 

Algorithm CoverLength 

input: indices i, j, and table D given by Algorithm l-Distance 

 

output: alignment in alignx, alignu, length of the alignment in len, and length of the suffix of x[1..i] generated 

by u in clen 



 

if i = 0 or j = 0 then 

clen ← 0 

len ← 0 
 

// ↖ Substitution from u to x 

else if i > 0 and j > 0 and D[i, j] = D[i — 1, j — 1] + p[i, j] then 

CoverLength(i —1,j — 1, D) 

len ← len +1 

alignx [len] ← x[i] 

alignu[len] ← u[j] 

den ← den +1 

 

// ↑ Insertion from u to x 

else if i > 0 and j > 0 and D[i, j] = D[i — 1, j] + 1 then 

CoverLength(i - 1, j, D) 

len ← len + 1  

alignx[len] ← x[i]  

alignu[len] ← --  

den ← den + 1 

 

// ← Deletion from u to x 

else // has to be i > 0 and j > 0 and D[i, j] = D[i, j - 1] + 1 

CoverLength(i, j - 1, D) 

len ← len +1 

alignx[len] ← -- 

alignu[len] ← u[j] 

 

We now describe Algorithm tl in pseudo programming language code.  

 

Algorithm tl 

input: string x and set U = {u1,…,um} of strings where 0 < |u1| = • • • = ≤ |x| 

 

output: the minimum number t such that U is a set of approximate |u1|-covers for x with Levenshtein distance t  

 

n ← |x| 

k ← |u1| 

 

// Step 1: Compute D1,…,Dm 

for h ← 1 to m do 

l-Distance(x, uh) 

for i ← 0 to n do 

for j ← 0 to k do 

// Copy D computed by the call l-Distance(x, uh) to Dh  

Dh[i,j] ← D[i,j] 

 

// Step 2: Compute L1,…,Lm 

for h ← 1 to m do 

for i ← 0 to n do 

Lh[i, k + 1] ← 0  

Lh[i, k + 2] ← 0  

for j ← 0 to k do 



Lh[i,j] ← Dh[i,i] 

for h ← 1 to m do 

for i ← 1 to n do 

CoverLength(i, k, Dh) 

// The length of the cover generated by uh and ending at position i is  

// computed in clen 

Lh[i, k + 1] ← clen 

 

 // Step 3:  

// Initialize G and M 

for j ← 1 to n do 

M[j] ← FALSE 

for I ← 1 to m do  

G[i,j] ← -1  

// Initialize d 

d ← max1≤h≤m(min1≤i≤n Dh[i, k]) 

 

Step 4: Process 

find ← FALSE 

while find = FALSE do  

// Compute G and M  

for h ← 1 to m do 

for i ← 1 to n do  

temp ← Dh[i , k] 

if temp ≤ d and G[h, i] = -1 then 

G[h, i] ← temp 

// Compute the length 1 of the longest cover ending at position 

// i and generated by uh 

l ← Lh[i, k + 1] + (d - temp) 

// Update Lh 

if Lh[i, k + 1] ≠ l then Lh[i, k + 2] d-temp 

// Update M 

for j ← i - l +1 to i do 

M[j] <— TRUE 

// Cover test 

i ← 1 

cover ← TRUE 

while i ≤ n and cover = TRUE do 

if M[i] = FALSE then cover <— FALSE  

else i ← i + 1 

if cover = FALSE then d ← d + 1  

else find ← TRUE 

t ← d 

return t 

 

We now analyze the complexity of Algorithm tl. 

 

Theorem 3 On input string x of length n and set U of m strings of length k, Algorithm tl terminates with the 

minimum t such that U is a set of approximate k-covers for x with distance t. Moreover, Algorithm tl solves 

Problem tl in O(mn
2
) time. 

 



Proof. For 1 ≤ h ≤ m, Step 1 does the computation of the distance table Dh using Algorithm l-Distance. The call 

l-Distance(x, uh) requires O(kn) time and thus, the complexity of Step 1 is O(kmn) time. 

 

For 1 ≤ h ≤ m, Step 2 does the computation of the first k + 2 columns of the length table Lh along with the 

initialization of its last column. Among other things, for 1 ≤ i ≤ n, the call CoverLength(i, k, Dh) does the 

construction of the alignment between x[1..i] and uh (given the already filled array Dh) in time O(len), where 

len is the size of the alignment, which is O(i + k). The call CoverLength(i, k, Dh) also computes in clen the 

length of the cover generated by uh and ending at position i of x. This computation also requires O(i + k) time. 

Thus, the total complexity of Step 2 is O(mn
2
) time. 

 

The initializations of G, M and d in Step 3 take O(mn) time. The while loop in Step 4 is executed at most k + 1 

times. Each pass through the loop updates G and M in O(mn) time, and also tests for the covering of x in O(n) 

time. Thus, the total complexity of Step 4 is O(kmn). Therefore, the total complexity of Algorithm tl is O(mn
2
) 

time.  

 

We end this section with the following example. 

 

Example 4 Given the string x = CTGTCAACT of length 9 and the set U = {ACT,  

CTT, AAC}, Algorithm tl computes the minimum number t such that U is a set of  

approximate 3-covers for x with distance t as t = 1. A possible layout is as follows:  

 

 
 

6. Algorithm under Edit Distance 

In edit distance, the operations allowed are insertions and deletions; substitutions are not allowed. Algorithm tl 

can be used to solve Problem te by disabling substitution operations. Indeed, we modify the scoring function in 

Algorithm l-Distance as follows: if x[i] = u[j], let p[i, j] = 0; and if x[i] ≠ u[j], let p[i, j] = + ∞. 

 

The complexity of Algorithm te is stated in the next theorem. 

 

Theorem 4 On input string x of length n and set U of m strings of length k, Algorithm te terminates with the 

minimum t such that U is a set of approximate k-covers for x with distance t. Moreover, Algorithm te solves 

Problem te in O(mn
2
) time. 

 

We illustrate Algorithm te with the following example. 

Example 5 Given the string x = GCATCATGTCTT of length 12 and the set U = {ACAT, ATCA, TCGT}, 

Algorithm te computes the minimum number t such that U is a set of approximate 4-covers for x with distance t 

as t = 2. A possible layout is as follows: 

 

 

 

The Hamming, Levenshtein and edit distances can be generalized by using a penalty matrix. Such a matrix 

specifies the substitution cost for each pair of characters and the insertion/deletion cost for each character. The 

simplest matrix assumes costs of g1 for the substitutions and costs of g2 for the insertions/deletions. Algorithm t1 

can easily be generalized by using for instance Eq.(5) described as follows: 
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Notes: 

a (Multi)set of pseudo-covers: A (multi)set V that is generated by U, but unproved to cover x is called a 

(multi)set of pseudo-covers for x. 
 


