By: Lili Zhang and F. Blanchet-Sadri
L. Zhang and F. Blanchet-Sadri, Algorithms for Approximate k-Covering of Strings. International Journal of Foundations of Computer Science, Vol. 16, No. 6, 2005, pp 1231-1251.
Reprinted with permission. No further reproduction is authorized without written permission from World Scientific Publishing. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.

Made available courtesy of World Scientific Publishing: http://dx.doi.org/10.1142/S0129054105003789

Abstract

: Computing approximate patterns in strings or sequences has important applications in DNA sequence analysis, data compression, musical text analysis, and so on. In this paper, we introduce approximate k-covers and study them under various commonly used distance measures. We propose the following problem: "Given a string x of length n, a set U of m strings of length k, and a distance measure, compute the minimum number t such that U is a set of approximate k-covers for x with distance $t^{\prime \prime}$. To solve this problem, we present three algorithms with time complexity $O(k m(n-k)), O\left(m n^{2}\right)$ and $O\left(m n^{2}\right)$ under Hamming, Levenshtein and edit distance, respectively. A World Wide Web server interface has been established at http://www.uncg.edu/mat/kcover/ for automated use of the programs.

Keywords: Strings; k-Covers; Approximate k-covers; Distance measures; String algorithms; Dynamic programming.

Article:

1. Introduction

A string v is called a cover of a string x if x can be constructed by concatenating or overlapping copies of v, so that every position of x lies within an occurrence of v. For example, TCAT is a cover of TCATTCATCAT. This notion was introduced by Apostolico et al. in [3]. There, the shortest cover problem or the problem of computing the shortest cover of a given string x of length n was considered and an $O(n)$ time algorithm was described for this problem. Other linear time algorithms followed that improve on their result: In [4], Breslauer gives an on-line algorithm for the shortest cover problem thus computing the shortest cover of every prefix of x; In [10, 11], Moore and Smyth give an algorithm for the all covers problem or the problem of computing all the covers of x; Finally, in [9], Li and Smyth extend this result considerably by computing on-line all the covers of every prefix of x. PRAM (parallel random access machine) algorithms have also been developed for the shortest cover [5] and all covers [6] problems. Iliopoulos and Park gave an optimal $O(\log \log n)$ time algorithm for the shortest cover and all covers problems [6]. Apostolico and Ehrenfeucht considered yet another problem related to covers [2].

Given a string x, a set V of strings is called a set of covers for x (or V covers x) if x can be constructed by concatenating or overlapping strings in V. For example, the set \{CTA, CTAC\} covers CTACCTACTA. In addition, if each string in V has length k, then V is a set of k-covers for x. In [7], Iliopoulos and Smyth give an $O\left(n^{2}(n-k)\right)$ time on-line algorithm for computing a minimum set of k-covers for a given string of length n.

A natural extension of the above problems is to allow errors when computing patterns. In some applications, specifically DNA sequence analysis, it becomes necessary to recognize u as an occurrence of v if the difference or distance between u and v is bounded by a certain threshold. Several definitions of distance have been proposed like the Hamming, Levenshtein and edit distances. In [1], Agius et al. give polynomial time algorithms to solve problems related to approximate covers according to these and other definitions of distance extending previous work by Sim et al. [15] (other results on approximate patterns in strings appear in [8, 13]).

In this paper, we introduce the notion of a set of approximate k-covers. To our knowledge, no results are known about these approximate patterns. In Section 2, as a foundation for approximate k-covering, we discuss Iliopoulos and Smyth's algorithm for k-covering. In Section 3, we suggest the following problem: "Given a string x, a set U of strings of length k, and a distance measure, compute the minimum number t such that U is a set of approximate k-covers for x with distance $t^{\prime \prime}$. In Sections 4, 5 and 6, we give polynomial time algorithms to solve this problem under Hamming, Levenshtein and edit distance, respectively.

First, we review some basic concepts on strings. Let Σ be a nonempty finite set, or an alphabet. A string (or word) x over Σ is a finite concatenation of characters from E . The length of x, or the number of characters in x, is denoted by $|x|$. A string of length n is sometimes called an n-string. For any string x and $\mathrm{i} \leq j, x[i . . j]$ is the substring of x of length $j-i+1$ that starts at position i and ends at position $j(x$ is called a superstring of $x[i . . j])$. In particular, $x[1 . . j]$ is the prefix of x that ends at position j and is the suffix of x that begins at position i. The substring $x[i . . j]$ is the empty string if $i>j$ (the empty string is denoted by \in). For example, ACAAACC is a string over the alphabet $\{\mathrm{A}, \mathrm{C}\}$, CAA is a substring, ACAA is a prefix, and CC is a suffix. The set of all strings over Σ is denoted by Σ^{*}, and the cardinality of a subset X of Σ^{*} by $\|X\|$

2. Algorithm for k-Covering

In this section, we present Iliopoulos and Smyth's $O\left(n^{2}(n-k)\right)$ time on-line algorithm for computing a minimum set of k-covers for all prefixes of a given string x of length n [7]. Here we provide details on how to compute the cardinality of a minimum set of k-covers for x, and how to compute at least one such set. Lemma 1 below gives the reason for not computing all the minimum sets (there may be an exponential number of them).

First, we define the notion of a minimum set of k-covers.
Definition 1 ([7]) Given a string x and a positive integer k satisfying $k<j x l$, a set V of k-strings is called a set of k-covers for x if V covers x. Moreover, V is called minimum if $\|V\|$ is a minimum.

For example, both $\{$ ACA, CAG, GTT $\}$ and $\{A C A, G T T\}$ are sets of 3-covers for ACACAGTT with the latter one being a minimum set.

The following are some basic facts about the minimum sets of k-covers for a string x of length n :
Fact $\mathbf{1 ([7])}$ The strings $x[1 . . k]$ and $x[n-k+1 . . n]$ are both elements of every minimum set of k-covers for x.
Fact 2([7]) The cardinality of a minimum set of k-covers for x is at most $\lfloor n / k\rfloor$. Indeed, the set

$$
\{x[i k+1 . . i k+k] \mathrm{I} i=0,1, \ldots,[n / k]-1\} \cup\{x[n-k+1 . . n]\}
$$

covers x.
Fact 3([7]) A minimum set of k-covers for x is not necessarily unique. (For example, both \{AAC, ACC, TTG\} and $\{\mathrm{AAC}, \mathrm{CCT}, \mathrm{TTG}\}$ are minimum sets of 3-covers for AACCTTG.)

It follows from the next lemma that the number of minimum sets of k-covers for a string of length n may be exponential in n.

Lemma 1 ([7]) Let x be a string of length n whose symbols are all distinct, that is, for every pair of positions i, i^{\prime} in $x, x[i]=x\left[i^{\prime}\right]$ if and only if $i=i^{\prime}$. Put $n=h k-j$ where h, j are integers satisfying $h>2$ and $0<j<k$. If $N_{j, h}$ denotes the number of distinct minimum sets of k-covers for x, then
(a) $N_{j, h}=\sum_{0 \leq i \leq j} N_{t, h-1}$ for every $h \geq 3$, and
(b) $N_{j, h} \in \theta\left((j+1)^{h-1}\right)$.

We now outline our version of Iliopoulos and Smyth's algorithm which works iteratively computing the cardinalities of minimum sets of k-covers for all prefixes of a given string x. Initially, the algorithm uses the idea from Fact 1 in order to compute the cardinalities of minimum sets of k-covers for the prefixes $x[1 . . k+1]$, $x[1 . . k+2],, x[1 . .2 k]$ of x. For $k<i \leq 2 k$, if $x[1 . . k]=x[i-k+1 . . i]$ then the minimum set of k-covers for $x[1 . . i]$ is $\{x[1 . . k]\}$ and the cardinality is 1 ; otherwise, the minimum set of k-covers for $x[1 . . i]$ is $\{\mathrm{x}[1 . . \mathrm{k}], x[i-k+1 .]$.$\} and$ the cardinality is 2 . For $i>2 k$, the algorithm uses the idea that every minimum set of k-covers for $x[1 . . i+1]$ depends only on the minimum sets computed for the previous k positions, that is, the minimum sets of k -covers for $x[1 . . i], x[1 . . i-1],, x[1 . i-k+1]$.

The following lemmas provide the other main ideas for the algorithm.
Lemma 2 ([7]) For $i \geq 2 k$, let $V_{i, 1}, V_{i, 2} \ldots$ be the distinct minimum sets of k-covers for $x[1 . . i]$. Put $c_{i}=\left\|V_{i, 1}\right\|=$ $\left\|V_{i, 2}\right\|=\quad$... Then

$$
c_{i+l}=\min _{i-k<j \leq i}, \text { every } h\left\|V_{j, h} \cup\{x[i-k+2 . . i+0]\}\right\| .
$$

Lemma 3 ([7]) For $i>2 k$, every minimum set $V_{i+1, h}$ is a superset of some minimum set $V_{j, h}$, with $i-k<j \leq i$. Indeed, there exist $i-k<j \leq i$ and h^{\prime} such that

$$
V_{i+1, h}=V_{j, h^{\prime}} \cup\{x[i-k+2 . . i+1]\} .
$$

Lemma 4 ([7]) For $i \geq 2 k$, suppose that $V_{i+1, h} \supseteq V_{i, h^{\prime}}$ for some $i-k<j \leq i$ and some h^{\prime}. Then $c_{i+1}=c_{j}$ if $x[i-k+$ $2 . . i+1] \in V_{j, h} ; c_{i+1}=c_{j}+1$ otherwise.

As observed before, for $i>2 k$, there exist $i-k<j \leq i$ and h^{\prime} such that $V_{i+1, h}=V_{i, h} \cup\{x[i-k+2 . i+1]\}$. This could be the basis for an algorithm to compute all the minimum sets of k-covers for $x[1 . . i+1]$. However, by Lemma 1 , the number of such minimum sets for any value of j may be exponential in j, leading to an inefficient algorithm. To achieve efficiency, the following data structures are used:

- An integer array c
$c[i]$, where $k<i \leq \mathrm{n}$, records the cardinality of every minimum set of k -covers for $x[1 . . i]$.
- A 2-dimensional Boolean array A
$A[i, j]$, where $k<i \leq n$ and $k \leq j \leq i$, records TRUE if the k-string $x[j-k+1 . . j]$ is an element of at least one of the minimum sets for $x[1 . . i] ; A[i, j]$ records FALSE otherwise.
- A global integer array L
$L[i]$, where $k \leq i \leq n$, records the minimum integer j distinct from i such that $x[i-k+1 . . i]=x[j-k+1 . . j]$ if such j exists; $L[i]$ records i otherwise.
- A Boolean array MARK

MARK [i^{\prime}], where $k \leq i-k<i^{\prime} \leq i<n$, records TRUE if there exists j^{\prime} such that $A\left[i^{\prime}, j^{\prime}\right]=$ TRUE and $x\left[j^{\prime}\right.$ $\left.-k+1 . . j{ }^{\prime}\right]=x[i-k+2 . . i+1]$; MARK [i '] records FALSE otherwise.

Algorithm k-Covering

The algorithm consists of three steps.
Step 1: For $k<i \leq 2 k$, initialize $c[i]$ with 1 if $x[i-k+1 . . i] x[1 . . k]$, and with
2 otherwise. For $k<i \leq 2 k$ and $k \leq j \leq i$, initialize $A[i, j]$ with TRUE if $j=k$ or $j=i$, and with FALSE otherwise.

Step 2: For $k \leq i \leq n$, compute the minimum integer j such that $k \leq j \leq n, j \neq i$, and $x[i-k+1 . i]=x[j-k$ $+1 . . j]$. If such j is found, set $L[i]=j$; otherwise, set $L[i]=i$.

Step 3: For $2 k \leq i<n$, compute $c[i+1]$ and $A[i+1,--]$.

- For $i-k<j \leq i$, use array L (from Step 2) to compute MARK[j]. If $L[i+l] \leq j$, then MARK[$[j=$ TRUE; otherwise, $\operatorname{MARK}[j]=$ FALSE. In the process, compute $c[i+1]$ according to the formula:

$$
\begin{equation*}
c[i+1]=\min _{i-k<j \leq i}(c[j] i f M A R K[j]=T R U E, c[j]+1 \text { otherwise }) \tag{1}
\end{equation*}
$$

- Using Fact 1, set $A[i+1, i+1]=$ TRUE. Now, there exists at least one value of $j, i-k<j \leq i$, satisfying Eq. (1). Denote such j by i^{\prime}. For $k \leq j^{\prime} \leq i$, if $A\left[i^{\prime}, j^{\prime}\right]$ TRUE, then set $A[i+1, j ’]$, $=$ TRUE; otherwise, set $A\left[i+1, j^{\prime}\right]=$ FALSE.

When all computations are done, Algorithm k-Covering returns c.
Note: For $k<i \leq n$, in order to compute a minimum set of k-covers for $x[1 . . i]$, pick up $c[i]$ entries in row i of A that are TRUE: say, $A\left[i, j_{1}\right], \ldots, A\left[i, j_{c i i]}\right]$ where $k \leq j_{i}<\cdots<j_{c i]}<i$. If the set

$$
V_{i}=\left\{x\left[j_{1}-k+1 . . j_{1}\right], \ldots, x\left[j_{c[i]}-k+1 . . j_{c[i]}\right\}\right.
$$

is of cardinality $c[i]$ and covers x, then 14 is as desired.
We now express the algorithm in pseudo programming language code.

```
Algorithm \(k\)-Covering
input: string \(x\) of length \(n\) and positive integer \(k \leq n\)
```

output: cardinality of a minimum set of k-covers (as well as a minimum set of k-covers) for every prefix of x
// Step 1: Initialize c and A

```
for \(\mathrm{I} \leftarrow k+1\) to \(2 k\) do
    if \(x[i-k+1 . . i]=x[1 . . k]\) then \(c[i] \leftarrow 1\)
    else \(c[i] \leftarrow 2\)
    for \(j \leftarrow i\) do
        if \(j=k\) or \(j=i\) then \(A[i, j] \leftarrow\) TRUE
        else \(A[i, j] \leftarrow\) FALSE
```


// Step 2: Compute L

```
for \(I \leftarrow k\) to \(n\) do
    \(L[i] \leftarrow i\)
    flag \(\leftarrow \mathbf{0}\)
    for \(j \leftarrow k\) to \(n\) do
        if flag 0 and \(j \neq i\) and \(x[i-k+1 . . i] x[j-k+1 . . j]\) then
        \(L[i] \leftarrow j\)
        flag \(\leftarrow 1\)
```

```
for \(i \leftarrow 2 k\) to \(\mathrm{n}-1\) do
    \(c[i+1] \leftarrow \infty\)
    for \(j \leftarrow i-k+1\) to \(i\) do
        if \(L[i+1] \leq j\) then MARK \([j] \leftarrow\) TRUE
            if \(c[i+1]>c[j]\) then \(\mathrm{c}[i+1] 4-c[j]\)
        else MARK \([j] \leftarrow\) FALSE
            if \(c[i+1]>c[j]+1\) then \(c[i+1]<-c[j]+1\)
    \(A[i+1, i+1] 4-\) TRUE
        for \(j^{\prime} k\) to \(i\) do
            if (MARK \(\left[i^{\prime}\right]=\) TRUE and \(\left.c[i+1]=c[i]\right)\) or
                (MARK \(\left[i^{\prime}\right]=\) FALSE and \(\left.c[i+1]=\mathrm{c}\left[i^{\prime}\right]+1\right)\) then
                if \(\mathrm{A}\left[i^{\prime}, j^{\prime}\right]=\) TRUE then \(\mathrm{A}\left[i+1, j^{\prime}\right] 4-\) TRUE
                else \(\mathrm{A}\left[i+1, j^{\prime}\right] 4\) - FALSE
return \(c\)
```

Theorem 1 Algorithm k-Covering computes in $O\left(k(n-k)^{2}\right)$ time a minimum set of k-covers for every prefix of a given string of length n.

We now illustrate the algorithm with the following example.
Example 1 Given the string $x=$ TCATCATCTCAT of length 12 and the positive integer $k=4$, Algorithm k Covering computes the cardinality of minimum sets of 4 -covers for x as $c[12]=2$, and computes such a minimum set of 4 -covers as $\{$ TCAT, CATC $\}$ for instance.

3. Approximate k-Covering

In some applications, it becomes necessary to recognize the string u as an occurence of the string v if the distance between u and v is bounded by a certain threshold. There are several well-known distance measures which focus on transforming u into v by a series of operations on individual characters, each operation having cost 1 . The distance $\delta(u, v)$ between u and v is then the minimum cost to transform u into v. For the Levenshtein distance, the allowed operations are insertion of a character into u, the deletion of a character from u, or the substitution of a character in u with a character in v; For the Hamming distance, insertions and deletions are not allowed; And for the edit distance, substitutions are not allowed. It also becomes necessary to relax the conditions of a set V of k-covers for a given string x and to recognize U as an occurrence of V if U is a set of approximate k-covers for x with distance t. We state this idea more precisely in the following definition.

Definition 2 Let t be a nonnegative integer and δ be a distance measure. Given a string x and a positive integer k satisfying $k \leq|x|$ a set U of k-strings is called a set of approximate k-covers for x with distance t if there exists a (multi)set V such that the following conditions hold:

- The (multi)set V corresponds to a sequence of substrings of x, v_{1}, v_{2}, \ldots, where v_{1} starts at position i_{1} of x, v_{2} starts at position i_{2} of x, \ldots with $1 \leq i_{1} \leq \mathrm{i}_{2} \leq \cdots$ and with V covering x.
- For every $u \in U$, there exists $v \in V$ such that $\delta(u, v) \leq t$.
- For every $v \in V$, there exists $u \in U$ such that $\delta(u, v) \leq t$.

The set V is said to be generated by U. Moreover, if $u \in U, v \in \mathrm{~V}$ and $\delta(u, v) \leq t$, then v is said to be generated by u or u is called a generator for v.

In the next three sections we consider the following problem under Hamming, Levenshtein and edit distances: "Given a string x of length n, a set U of m strings of length k, and a distance measure, compute the minimum number t such that U is a set of approximate k-covers for x with distance $t^{\prime \prime}$. We classify our problem into three versions: the Hamming distance version (Problem t_{h} and $O(k m(n-k))$ time Algorithm t_{h} described in Section 4), the Levenshtein distance version (Problem t_{l} and $O\left(m n^{2}\right)$ time Algorithm t_{l} described in Section 5), and the edit
distance version (Problem t_{e} and $O\left(m n^{2}\right)$ time Algorithm t_{e} described in Section 6). For a preview, we illustrate the different outputs with the following example. In the layouts, an insertion operation is indicated by the -symbol.

Example 2 Given the string $x=$ TGCAGTCCC and the set U \{CCA, TCC,
CTC\}, the minimum number t such that U is a set of approximate 3-covers for x with distance t will be computed as:

1. Using Hamming distance, $t=1$ and a possible layout (with cover set $V=\{$ TGC, GCA, GTC, CCC $\}$) is as follows:

2. Using Levenshtein distance, $t=1$ and a possible layout (with cover set $V=\{\mathrm{TGC}, \mathrm{GCA}, \mathrm{GTC}, \mathrm{TCCC}\})$ is as follows:

$$
\begin{array}{ccccccccc}
\mathrm{T} & \mathrm{G} & \mathrm{C} & \mathrm{~A} & \mathrm{G} & \mathrm{~T} & \mathrm{C} & \mathrm{C} & \mathrm{C} \\
\mathrm{~T} & \mathrm{C} & \mathrm{C} & & & & & & \\
& \mathrm{C} & \mathrm{C} & \mathrm{~A} & & & & & \\
& & & & & \mathrm{C} & \mathrm{~T} & \mathrm{C} & \\
& \mathrm{~T} & \mathrm{C} & \mathrm{C} & -
\end{array}
$$

3. Using edit distance, $t=2$ and a possible layout (with cover set $V=\{\mathrm{TGC}, \mathrm{GCA}, \mathrm{GTC}, \mathrm{TCCC}\}$) is as follows:

$$
\begin{array}{ccccccccccc}
\mathrm{T} & \mathrm{G} & & \mathrm{C} & \mathrm{~A} & \mathrm{G} & & \mathrm{~T} & \mathrm{C} & \mathrm{C} & \mathrm{C} \\
\mathrm{~T} & - & \mathrm{C} & \mathrm{C} & & & & & & & \\
& - & \mathrm{C} & \mathrm{C} & \mathrm{~A} & & & & & & \\
& & & & & & \mathrm{C} & \mathrm{~T} & \mathrm{C} & & \\
& & & \mathrm{C} & \mathrm{C} & \mathrm{C} & -
\end{array}
$$

4. Algorithm under Hamming Distance

In this section, we define distance as Hamming distance, which counts the number of mismatches between two strings of same length. We present an $O(k m(n-k))$ time algorithm for solving Problem t_{h}. As the definition of distance is specified, we can make Definition 2 more appropriate. Indeed, V is a (multi)set of k-covers for the string x.

Given a string x of length n and a set $U=\left\{u_{1}, \ldots, u_{m}\right\}$ of strings of length k, the following are some basic facts about U being a set of approximate k-covers for x with distance t generating a (multi)set $V=\left\{v_{i}, \ldots, v_{m}{ }^{\prime}\right\}$ covering x :

Fact 4 A substring of x may have a multiplicity bigger than 1 in V. Moreover, v_{1} is a prefix of x, v_{m}, is a suffix of x, and v_{i} concatenates or overlaps with v_{i+1} for $1 \leq i<m^{\prime}$.

Fact 5 There may exist $1<i<i^{\prime}<m$ and $1<j^{\prime}<j<m^{\prime}$ such that u_{i} generates v_{j} and $u_{i^{\prime}}$ generates $v_{j^{\prime}}$. (Example 2(1) shows this fact.)

Fact 6 Every element in U must be used to generate at least one element in V, and every element in V is generated by at least one element in U. (In Example 2(1), CCA is used to generate both GCA and CCC.)

Fact 7 A (multi)set V of covers for x is not unique. (For example, if $x=$ TCATCATCT and $\mathrm{U}\{$ TCGT, ATCT $\}$, then U is a set of approximate 4 -covers for x with distance 1 . One of the cover sets is $V_{1 .}=\{$ TCAT, ATCA, ATCT $\}$ while the other is $V_{2}=\{$ TCAT, TCAT, ATCT $\}$. In general, there may be an exponential number of (multi)sets of covers for x.)

Fact 8 The strings $x[1 . . k]$ and $x[n-k 1 . . n]$ are both elements of V.
Based on Fact 8 and Definition 2, we get Fact 9:
Fact 9 If u_{i} is a generator for $x[1 . . k]$ and u_{j} is a generator for $x[n-k+1 . . n]$ for some $1 \leq i, j \leq m$, then $t \geq$ $\max \left(\delta\left(u_{i}, x[1 . . k]\right), \delta(u 3, x[n-k+1 . . n])\right)$.

The main ideas for the algorithm are clear: Fact 5 shows that it is not easy to figure out which element of U generates which element of V; Fact 8 states that the strings $x[1 . . k]$ and $x[n-k+1 . . n]$ are always in V; Further, Fact 9 implies that

$$
t \geq \max \left(\min _{1 \leq i \leq m} \delta\left(u_{i}, x[1 . . k]\right), \min _{1 \leq i \leq m} \delta\left(u_{i}, x[n-k+1 . . n]\right)\right)
$$

Therefore, the algorithm uses

$$
\begin{equation*}
d=\max \left(\min _{1 \leq i \leq m} \delta\left(u_{i}, x[1 \ldots k]\right), \min _{1 \leq i \leq m} \delta\left(u_{i}, x[n-k+1 . . n]\right)\right) \tag{2}
\end{equation*}
$$

as a yardstick to find the minimum number t and a (multi)set V satisfying Definition 2. Initially, the algorithm initializes d as in Eq.(2) and sets d as the comparing criterion to obtain a (multi)set V of pseudo-covers ${ }^{a}$ such that $\delta(u, v) \leq d$ for $\mathrm{u} \in U, v \in V$. Then the algorithm tests whether this (multi)set of pseudo-covers V generated by U satisfies Definition 2. In order to do this, using the idea from Fact 4 , the algorithm tests whether V covers x or not (this is done using Algorithm CoverTest), and also using the idea from Fact 6, the algorithm tests whether every element in U is used as a generator or not (this is done by using a Boolean array to mark every element in U that has been used). If the (multi)set of pseudo-covers V satisfies Definition 2, then the algorithm returns d as the minimum number t. Otherwise, the algorithm increases d by 1 , and repeats the previous tests until V is found.

To illustrate the ideas, let $x=$ CTTATTTAA and $U=\{$ CTTA, TTAA $\}$. After covering the prefix and the suffix of length 4 of x, we get

$$
\begin{array}{ccccccccc}
\mathrm{C} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & & & & & \\
& & & & & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A}
\end{array}
$$

and CoverTest returns FALSE since $x[5]$ is not covered. In this situation, d is increased by 1 and we obtain the following layout

$$
\begin{array}{ccccccccc}
\mathrm{C} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & & & & & \\
& & & & & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A}
\end{array}
$$

with CoverTest returning TRUE.

To achieve efficiency, the following variables and data structures are used:

- An integer n n is the length of x.
- An integer k
$k \leq n$ is the length of the elements in U.
- An integer m m is the cardinality of U.
- A 2-dimensional integer array D
$D[i, j]$, where $1 \leq i \leq m$ and $1 \leq j \leq n-k+1$, records the Hamming distance $\delta\left(u_{i}, x[j . . j+k-1]\right)$. The array D is called the distance table.
- A 2-dimensional Boolean array G $G[i, j]$, where $1 \leq i \leq m$ and $1 \leq j \leq n-k+1$, records TRUE if $D[i, j]=\delta\left(u_{i}, x[j . . j k-l]\right) \leq d$ where d is the comparing criterion initialized as in Eq.(2); $G[i, j]$ records FALSE otherwise. The array G is called the generator table.
- A global Boolean array V
$V[j]$, where $1 \leq j \leq n-k+1$, records TRUE if there exists i such that $1 \leq i \leq m$ and $G[i, j]=$ TRUE; $V[j]$ records FALSE otherwise. The array V is used for cover testing. It records the beginning of all the pseudo-covers produced by elements in U.
- A Boolean array MARK

MARK[i, where $1 \leq i \leq m$, records TRUE if u_{i} is used as a generator to construct x; MARK[$\left.i\right]$ records FALSE otherwise.

Algorithm t_{h}

The algorithm consists of three steps.
Step 1: For $1 \leq i \leq m$ and $l \leq j \leq n-k+1$, use Algorithm h-Distance to compute $D[i, j]$ which is the Hamming distance between 1.4 and $x[j . . j+k-1]$.

Step 2: Initialize d as in Eg.(2). For $1 \leq j \leq n-k+1$, initialize V[j] with FALSE. And for $1 \leq i \leq m$ and $1 \leq j \leq n$ $-k+1$, initialize $G[i, j]$ with FALSE and MARK[i] with FALSE.

Step 3: For $1 \leq i \leq m$ and $1 \leq j \leq n-k+1$, update $G[i, j], V[j]$ and MARK[i] with TRUE's if $D[i, j] \leq d$. If there exists $1 \leq i \leq m$ such that MARK[i] = FALSE or if there exist at least k consecutive entries in V recorded as FALSE (use Algorithm CoverTest to find out if the latter condition holds), then increase d by 1 and repeat to modify table G, array V, and array MARK; otherwise, Algorithm th returns d as the minimum t such that U is a set of approximate k-covers for x with distance t.

Note: In order to compute a layout for x with minimum distance, pick up entries in G that are TRUE: say, $G\left[i_{1}, . j_{1}\right], \ldots, G\left[i_{r}, i_{r}\right]$ where $\left\{i_{1}, \ldots, i_{r}\right\}=\{1, \ldots, m\}$ and $1 \leq j_{i}<\cdots<j_{r} \leq n-k+1$. If the (multi)set

$$
V=\left\{x\left[j_{1} . . j_{1}+k-l\right], \ldots, x\left[j_{r . .} j_{r}+k-l\right]\right\}
$$

covers x, then V is as desired. In this case, $u_{i_{a}}$ is a generator for $x\left[j_{s . .} j_{s}+k-1\right]$ for all $1 \leq s \leq r$.

We now express Algorithm t_{h} in pseudo programming language code.

```
Algorithm h-Distance
input: strings }u\mathrm{ and v}\mathrm{ of length }
```

output: Hamming distance between u and v

```
dist }\leftarrow
for }i\leftarrow1\mathrm{ to }k\mathrm{ do
    if }u[i]=v[i] then h\leftarrow
    else}h\leftarrow
    dist }\leftarrow\mathrm{ dist +h
return dist
```

```
Algorithm CoverTest
input: Boolean array \(V\) of size \(n-k+1\)
```

output: TRUE (if V covers x) or FALSE (otherwise)

```
flag \(\leftarrow\) TRUE
\(\mathrm{i} \leftarrow 1\)
while \(\mathrm{i}<\mathrm{n}-k+1\) and flag = TRUE do \(j\)
    \(j \leftarrow i+1\)
    while \(V[j]=\) FALSE and \(j<\mathrm{n}-k+1\) do
        \(j \leftarrow j+1\)
    if \(V[j]=\) TRUE and \(j-i<k\) then
        \(i \leftarrow j\)
    else flag \(\leftarrow\) FALSE
return flag
```

```
Algorithm \(t_{h}\)
input: string \(x\) and set \(U=\left\{u_{1}, \ldots, u_{m}\right\}\) of strings where \(0<\left|u_{1}\right|=\boldsymbol{\bullet \bullet}=\left|u_{m}\right| \leq|x|\)
```

output: the minimum number t such that U is a set of approximate $\left|u_{1}\right|$-covers for x with Hamming distance t
$\mathrm{n} \leftarrow|x|$
$k \leftarrow\left|u_{l}\right|$

```
// Step 1: Compute D
for }i\leftarrow1\mathrm{ to }m\mathrm{ do
    for }j\leftarrow1\mathrm{ to n-k+1 do
        D[i,j]\leftarrowh-Distance(ui,x[j..j + k-l])
```

// Step 2:
// Initialize d
$\mathrm{fmin} \leftarrow \min _{1 \leq \mathrm{i} \leq m} D[i, 1]$
$\operatorname{lmin} \leftarrow \min _{1<i<\mathrm{m}} D[i, n-k+1]$
$d \leftarrow \max ($ fmin, lmin $)$
// Initialize G, V and MARK
for $j \leftarrow 1$ to $n-k+l$ do
$V[j] \leftarrow$ FALSE

```
// Step 3: Process
find \(\leftarrow\) FALSE
while find = FALSE do
    for \(j \leftarrow 1\) to \(n-k+1\) do
        for \(\mathrm{i} \leftarrow 1\) to \(m\) do
            if \(D[i, j] \leq d\) then
            \(G[i, j] \leftarrow\) TRUE and \(V[j] \leftarrow\) TRUE and MARK \([\mathrm{i}] \leftarrow\) TRUE
            if MARK[ i\(]=\) TRUE for all \(1 \leq \mathrm{i} \leq \mathrm{m}\) and CoverTest \((\mathrm{V})=\) TRUE then find \(\leftarrow\) TRUE
else \(d \leftarrow d+1\)
\(t \leftarrow d\)
return \(t\)
```

Let us now determine the complexity of Algorithm t_{h}.
Theorem 2 On input string x of length n and set U of m strings of length k, Algorithm t_{h} terminates with the minimum t such that U is a set of approximate k-covers for x with distance t. Moreover, Algorithm t_{h} solves Problem t_{h} in $O(k m(n-k))$ time.
Proof. Step 1 of Algorithm t_{h} has two nested loops. They do the computation of the distance table D by using Algorithm h-Distance that requires $O(k)$ time for each entry. Thus, the total complexity of Step 1 is $O(k m(n-k))$ time. The initialization in Step 2 requires $O(m(n-k))$ time. The dominant term in the time complexity of Step 3 is the while loop which is executed at most $k+1$ times since t should be less than or equal to k. This loop has two nested for loops: the first is executed $n-k+1$ times, and the second m times. Also, the while loop calls Algorithm CoverTest which requires $O(n-k)$ time. Thus, the total complexity of Step 3 is $O(k m(n-k))$. Hence, the overall complexity of Algorithm t_{h} is $0(k m(n-k))$ time.

We now illustrate Algorithm t_{h} with the following example.
Example 3 Given the string $x=$ GCATCATGTCTT of length 12 and the set $U=\{$ ACAT, ATCA, TCGT $\}$, Algorithm t_{h} computes the minimum number t such that U is a set of approximate 4 -covers for x with distance t as $t=2$. A possible layout is

5. Algorithm under Levenshtein Distance

In this section, we define distance as Levenshtein distance. We give an $O\left(m n^{2}\right)$ time algorithm to solve Problem t_{l}. The difference between Levenshtein distance and Hamming distance is that the tranformation restrictions are relaxed allowing substitutions, insertions and deletions.

Given a string x and a set $U=\left\{u_{1}, ., u_{m}\right\}$ of k-strings, in addition to Facts 4-7 of Section 4, the following are some basic facts about U being a set of approximate k-covers for x with distance t generating a (multi)set $V=$ $\left\{v_{1}, v_{m},\right\}$ covering x :

Fact 10 The lengths of elements in V are not necessarily equal. (Example 2(2) shows this fact.)

Based on Fact 6, we get Fact 11:
Fact 11 The relation

$$
t \geq \max _{1 \leq i \leq m}\left(\min _{v \in V} \delta\left(u_{i}, v\right)\right)
$$

holds.
The main ideas for the algorithm are as follows: Fact 10 implies that Facts 8-9 do not hold for Levenshtein distance since the lengths of v_{1} and v_{m} are not known. However, Fact 11 gives a relation between t and the elements in U and V. Thus, instead of using Eq.(2) as the comparing criterion, the algorithm uses the following equation to initialize d :

$$
\begin{equation*}
d=\max _{1 \leq i \leq m}\left(\min _{v \in V} \delta\left(u_{i}, v\right)\right) \tag{3}
\end{equation*}
$$

Distance computing is more complicated in the Levenshtein version than in the Hamming distance version since deletions and insertions are also allowed. Here we use Algorithm l-Distance explained in more details below.

Cover length computing is also more complicated in the Levenshtein version than in the Hamming distance version since the lengths of elements in V may be different as stated in Fact 10. The algorithm computes in two steps all cover lengths $|v|$ for $v \in V$. First, the algorithm uses Algorithm CoverLength to compute $|v|$ without considering insertions at the beginning of u when transforming u into v. For example,

A		G	C	C	G	A	G	C	C	A	A	C	T
A	C	G	C	C	G	-	G	C					
											A	A	C

ACGC through the deletion of a C generates the cover AGC of length 3; CGGC generates the cover CGAGC of length 5 through the insertion of an A; and AACT generates the cover AACT of length 4 . However, $x[9]$ is not covered. Second, the algorithm takes care of the insertions at the beginning of u. If positions x exist separating two consecutive pseudo-covers v_{i}, and v_{i+1} generated by u and u^{\prime} respectively, then a gap exists between vi and vi+1. In such situations where $\delta\left(u^{\prime}, v_{i+1}\right)<\delta\left(u, u_{i}\right)$, the algorithm uses insertion operations to minimize the gap. Every insertion makes the distance $\delta\left(u^{\prime}, \mathrm{v}_{i+1}\right)\left(\right.$ or $\left.d^{\prime}\right)$ increase by 1 . The algorith repeats this operation until d^{\prime} equals d. While cover testing, if a gap still exist then the algorithm increases d by 1 and repeats to get rid of the gap. Referring the above example, we get

$$
\begin{array}{cccccccccccccc}
\text { A } & & G & \text { C } & \text { C } & \text { G } & \text { A } & \text { G } & \text { C } & \text { C } & \text { A } & \text { A } & \text { C } & \text { T } \\
\text { A } & \text { C } & \text { G } & \text { C } & \text { C } & \text { G } & - & \text { G } & \text { C } & & & & & \\
& & & & & & & & & & &
\end{array}
$$

The following variables and data structures are used:

- An integer n
n is the length of x.
- An integer k
$k<n$ is the length of the elements in U.
- An integer m
m is the cardinality of U.
- 2-Dimensional global integer arrays D_{1}, \ldots, D_{m}

For $1 \leq h \leq m$, array D_{h} corresponds to the dynamic programming array of size $(n+1) \times(k+1)$ for computing the distance between x and u_{h} according to Algorithm l-Distance. In particular, $D_{h}[i, k]$ is the distance between a suffix of $x[1 . . i]$ and u_{h}. The arrays D_{1}, D_{m} are called the distance tables.

- 2-Dimensional global integer arrays L_{1}, \ldots, L_{m}

For $1 \leq h \leq m$, array L_{h} is of size $(n+1) \times(k+3)$. The first $k+1$ columns of L_{h} correspond to the $k+1$ columns of the distance table D_{h}. The $(k+2)$ nd column of L_{h} is computed with Algorithm CoverLength. The last column of L_{h} records the number of insertions at the beginning of generator u_{h}. The arrays L_{1}, \ldots, L_{m} are called the length tables.

- A 2-dimensonal integer array G
$G[i, j]$, where $1 \leq i \leq m$ and $1 \leq j \leq n$, records the cost for transforming u_{i} into the suffix of $x[1 . . j]$ generated by u_{i} if that cost is smaller than or equal to d where d is the comparing criterion initialized as in Eq.(3); $G[i, j]$ records -1 otherwise. The array G is called the generator table.
- A global Boolean array M
$M[i]$, where $1 \leq i \leq n$, records TRUE if $x[i]$ has been covered by a pseudo-cover; $M[i]$ records FALSE otherwise.

Algorithm t_{l}
 The algorithm consists of four steps.

Step 1: For $1 \leq h \leq m$, use Algorithm 1-Distance to compute table D_{h} for the Levenshtein distance between x and u_{h} when spaces are not charged for at the beginning and end of u_{h}. More precisely, for $0 \leq i \leq n$ and 0 $\leq j \leq k$, use Eq. (4) to compute $D_{h}[i, j]$.

Step 2: For $1 \leq h \leq m$, copy the columns of table D_{h} into the corresponding columns of table L_{h}, and initialize the last two columns of table L_{h} with zeros. Next, for $1 \leq i \leq n$, use Algorithm CoverLength to compute $L_{h}[i, k+1]$ which is the length of the suffix of $x[1 . . i]$ generated by u_{h} (call CoverLength $\left(i, k, D_{h}\right)$). To do this, the call CoverLength(i, k, D_{h}) starts at $D_{h}[i, k]$ counting the number of arrows (\checkmark highest priority) and (\uparrow next priority) until Column 0 of D_{h} is hit.

Step 3: First, initialize table G with - l's and array M with FALSE's. Second, initialize the comparing criterion d with $d=\max _{1 \leq h \leq m}\left(\min _{1 \leq i \leq n} D_{h}[i, k]\right)$.

Step 4: For $1 \leq h \leq m$ and $1 \leq i \leq n$, compare $D_{h}[i, k]$ with d. If $D_{h}[i, k] \leq d$, then save the value $D_{h}[i, k]$ in table G as $G[h, i]$. Then, compute the length l of the longest suffix of $x[1 . . i]$ whose distance with u_{h} is bounded by d, and update $L_{h}[i, k+2]$. Next, update $M[j]$ with TRUE for $i-l<j \leq i$. If there exists $1 \leq i \leq n$ such that $M[i]$ $=$ FALSE, then $x[i]$ is not covered and increase d by 1 repeating Step 4 to modify table G and array M. Otherwise, return d as the minimum number t such that U is a set of approximate k-covers for x with distance t.

Note: In order to compute a layout for x with minimum distance, pick up entries
in G that are not -1 : say, $G\left[i_{1}, \ldots, j_{1}\right], \ldots, G\left[i_{r}, i_{r}\right]$ where $\left\{i_{1}, \ldots, i_{r}\right\}=\{1, \ldots, m\}$ and
$1 \leq j_{1}<\cdots<j_{r} \leq n$. Put $l_{s}=L_{i_{s}}\left[j_{s}, k+1\right]+L_{i_{s}}\left[j_{s}, k+2\right]$ for all $1 \leq s \leq r$
($L_{i_{s}}\left[j_{s}, k+2\right]$ is the number of insertions that can be added if needed at the beginning of $u_{i_{s}}$ in the layout). If the (multi)set

$$
V=\left\{x\left[j_{1}-l_{1}+1 . . j_{1}\right], \ldots, x\left[j_{r}-l_{r}+1 . . j_{r}\right]\right\}
$$

covers x, then V is as desired. In this case, $u_{i_{s}}$ is a generator for $x\left[j_{s}-l_{s}+1 . . j_{s}\right\}$ for all $1 \leq s \leq r$.
The well-known paper by Needleman and Wunsch [12] is an important contribution for computing the distance between two strings x and u relative to a measure δ. Finding the best alignment between these two strings can be solved efficiently by dynamic programming. Let us now describe a variation of this basic algorithm that will ignore end spaces in u [14]. In order to do so, a D table of size $(|x|+1) \times(|u|+1)$ is used. We can initialize the first column with zeros, and by doing this we will be forgiving spaces before the beginning of u. Initially, $D[i, 0$] $=0$ for all $0 \leq \mathrm{i} \leq|x|$, and $D[0, j]=D[0, j-1]+1$ for all $1 \leq \mathrm{j} \leq|u|$ We can compute all the entries of the D table in $O(|x||u|)$ time by the following recurrence:

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i, j-1]+1 \tag{4}\\
D[i-1, j-1]+p[i, j] \\
D[i-1, j]+1
\end{array}\right.
$$

where scoring function $p[i, j] 0$ if $x[i]=u[j]$, and $p[i, j]=1$ if $x[i] \neq u[j]$. We can look for the minimum in the last column, and by doing this we will be forgiving spaces after the end of u. Algorithm l-Distance fills D as explained where for $0 \leq i \leq|x|$ and $0 \leq j \leq|u|$, entry $\mathrm{D}[i, j]$ records the minimum cost of transforming a suffix of $x[1 . . i]$ into $u[1 . . j]$.

Algorithm l-Distance

input: strings x and u
output: Levenshtein distance between x and u when spaces are not charged for at the beginning of u and end of u
$n \leftarrow|x|$
$k \leftarrow|u|$

```
for \(I \leftarrow 0\) to \(n\) do
    \(D[i, 0] \leftarrow 0\)
for \(j \leftarrow 0\) to \(k\) do
    \(D[0, j] \leftarrow j\)
for \(i \leftarrow 1\) to \(n\) do
    for \(j \leftarrow 1\) to \(k\) do
        \(\boldsymbol{D}[i, j] \leftarrow \min (D[i, j-1]+1, D[i-1, j-1]+p[i, j], D[i-1, j]+1)\)
return \(\min _{1<i<n} D[i, k]\)
```

We described Algorithm l-Distance which computes the distance table D for the Levenshtein distance between two strings x and u when spaces are ignored at either end of u. Here we describe Algorithm CoverLength which is recursive. Among other things, the call CoverLength $|x|,|u|, D)$ constructs an optimal alignment between x and u which is given in a pair of vectors align $_{x}$ and align $_{u}$ that hold in the positions $1 . . l e n$ the aligned characters, which can be either spaces or symbols from the strings. The variables len, clen, align n_{x} and align $_{u}$ are treated as globals in the code.

Algorithm CoverLength
 input: indices i, j, and table D given by Algorithm l-Distance

output: alignment in align $_{x}$, align $_{u}$, length of the alignment in len, and length of the suffix of $x[1 . . i]$ generated by u in clen

```
if \(i=0\) or \(j=0\) then
    clen \(\leftarrow 0\)
    len \(\leftarrow 0\)
\(/ / \nwarrow\) Substitution from \(u\) to \(x\)
else if \(i>0\) and \(j>0\) and \(D[i, j]=D[i-1, j-1]+p[i, j]\) then
    CoverLength \((i-1, j-1, D)\)
    len \(\leftarrow\) len +1
    align \(_{x}[\) len \(] \leftarrow x[i]\)
    align \(_{u}[l e n] \leftarrow u[j]\)
    den \(\leftarrow\) den +1
// \(\uparrow\) Insertion from u to \(x\)
else if \(\mathrm{i}>0\) and \(j>0\) and \(D[i, j]=D[i-1, j]+1\) then
    CoverLength \((i-1, j, D)\)
    len \(\leftarrow\) len +1
    alignx \([l e n] \leftarrow x[i]\)
    alignu[len] \(\leftarrow--\)
    den \(\leftarrow d e n+1\)
\(/ / \leftarrow\) Deletion from u to \(x\)
else // has to be \(i>0\) and \(j>0\) and \(D[i, j]=D[i, j-1]+1\)
    CoverLength \((i, j-1, D)\)
    len \(\leftarrow l e n+1\)
    \(\operatorname{align}_{x}[\) len \(] \leftarrow--\)
    \(\operatorname{align}_{u}[l e n] \leftarrow u[j]\)
```

We now describe Algorithm t_{l} in pseudo programming language code.

Algorithm t_{l}

input: string x and set $U=\left\{u_{1}, \ldots, u_{m}\right\}$ of strings where $0<\left|u_{1}\right|=\cdots=\leq|x|$
output: the minimum number t such that U is a set of approximate $\left|u_{1}\right|$-covers for x with Levenshtein distance t

```
n\leftarrow|x|
k\leftarrow|\mp@subsup{u}{1}{}|
// Step 1: Compute D D,\ldots,D Dm
for }h\leftarrow1\mathrm{ to }m\mathrm{ do
    l-Distance(x, uh)
    for }i\leftarrow0\mathrm{ to }n\mathrm{ do
        for }j\leftarrow0\mathrm{ to }k\mathrm{ do
            Dh[i,j]}\leftarrowD[i,j
// Step 2: Compute L}\mp@subsup{L}{1}{},\ldots,\mp@subsup{L}{m}{
for }h\leftarrow1\mathrm{ to }m\mathrm{ do
    for }i\leftarrow0\mathrm{ to }n\mathrm{ do
        Lh}[i,k+1]\leftarrow
        L
        for }j\leftarrow0\mathrm{ to }k\mathrm{ do
```

 // Copy D computed by the call l-Distance \(\left(x, u_{h}\right)\) to \(D_{h}\)
 $L h[i, j] \leftarrow D h[i, i]$

```
for \(h \leftarrow 1\) to \(m\) do
    for \(i \leftarrow 1\) to \(n\) do
        CoverLength \(\left(i, k, D_{h}\right)\)
        // The length of the cover generated by \(u_{h}\) and ending at position \(i\) is
        // computed in clen
        \(L_{h}[i, k+1] \leftarrow\) clen
// Step 3:
// Initialize \(G\) and \(M\)
for \(j \leftarrow 1\) to \(n\) do
    \(M[j] \leftarrow\) FALSE
            for \(I \leftarrow 1\) to m do
            \(G[i, j] \leftarrow-1\)
// Initialize \(d\)
\(d \leftarrow \max _{1 \leq h \leq m}\left(\min _{1 \leq i \leq n} D_{h}[i, k]\right)\)
Step 4: Process
find \(\leftarrow\) FALSE
while find = FALSE do
    \(/ /\) Compute \(G\) and \(M\)
    for \(h \leftarrow 1\) to \(m\) do
        for \(i \leftarrow 1\) to \(n\) do
            temp \(\leftarrow D_{h}[i, k]\)
            if \(t e m p \leq \mathrm{d}\) and \(G[h, i]=-1\) then
            \(G[h, i] \leftarrow\) temp
            // Compute the length 1 of the longest cover ending at position
            // \(i\) and generated by \(u_{h}\)
            \(l \leftarrow L_{h}[i, k+1]+(d-\) temp \()\)
            // Update \(L_{h}\)
            if \(L h[i, k+1] \neq l\) then \(L h[i, k+2] d\)-temp
            // Update M
            for \(j \leftarrow i-l+1\) to \(i\) do
            \(M[j]<-\) TRUE
    // Cover test
    \(i \leftarrow 1\)
    cover \(\leftarrow\) TRUE
    while \(i \leq n\) and cover = TRUE do
        if \(M[i]=\) FALSE then cover <- FALSE
        else \(i \leftarrow i+1\)
    if cover \(=\) FALSE then \(d \leftarrow d+1\)
    else find \(\leftarrow\) TRUE
\(t \leftarrow d\)
return \(t\)
```

We now analyze the complexity of Algorithm t_{l}.
Theorem 3 On input string x of length n and set U of m strings of length k, Algorithm t_{l} terminates with the minimum t such that U is a set of approximate k-covers for x with distance t. Moreover, Algorithm t_{l} solves Problem t_{l} in $O\left(m n^{2}\right)$ time.

Proof. For $1 \leq h \leq m$, Step 1 does the computation of the distance table D_{h} using Algorithm l-Distance. The call l-Distance $\left(x, u_{h}\right)$ requires $O(k n)$ time and thus, the complexity of Step 1 is $O(k m n)$ time.

For $1 \leq h \leq m$, Step 2 does the computation of the first $k+2$ columns of the length table L_{h} along with the initialization of its last column. Among other things, for $1 \leq i \leq n$, the call CoverLength $\left(i, k, D_{h}\right)$ does the construction of the alignment between $x[1 . . i]$ and uh (given the already filled array D_{h}) in time O (len), where len is the size of the alignment, which is $O(i+k)$. The call CoverLength $\left(i, k, D_{h}\right)$ also computes in clen the length of the cover generated by u_{h} and ending at position i of x. This computation also requires $O(i+k)$ time. Thus, the total complexity of Step 2 is $O\left(m n^{2}\right)$ time.

The initializations of G, M and d in Step 3 take $O(m n)$ time. The while loop in Step 4 is executed at most $k+1$ times. Each pass through the loop updates G and M in $O(m n)$ time, and also tests for the covering of x in $O(n)$ time. Thus, the total complexity of Step 4 is $O(\mathrm{kmn})$. Therefore, the total complexity of Algorithm t_{l} is $O\left(m n^{2}\right)$ time.

We end this section with the following example.
Example 4 Given the string $x=$ CTGTCAACT of length 9 and the set $U=\{$ ACT, CTT, AAC\}, Algorithm t_{l} computes the minimum number t such that U is a set of approximate 3-covers for x with distance t as $t=1$. A possible layout is as follows:

$$
\begin{array}{lllllllll}
\mathrm{C} & \mathrm{~T} & \mathrm{G} & \mathrm{~T} & \mathrm{C} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{~T} \\
\mathrm{C} & \mathrm{~T} & - & \mathrm{T} & & & & & \\
& & & & - & \mathrm{A} & \mathrm{~A} & \mathrm{C} & \\
& & & & & & \mathrm{~A} & \mathrm{C} & \mathrm{~T}
\end{array}
$$

6. Algorithm under Edit Distance

In edit distance, the operations allowed are insertions and deletions; substitutions are not allowed. Algorithm t_{l} can be used to solve Problem t_{e} by disabling substitution operations. Indeed, we modify the scoring function in Algorithm l-Distance as follows: if $x[i]=u[j]$, let $p[i, j]=0$; and if $x[i] \neq u[j]$, let $p[i, j]=+\infty$.

The complexity of Algorithm t_{e} is stated in the next theorem.
Theorem 4 On input string x of length n and set U of m strings of length k, Algorithm t_{e} terminates with the minimum t such that U is a set of approximate k-covers for x with distance t. Moreover, Algorithm t_{e} solves Problem te in $O\left(m n^{2}\right)$ time.

We illustrate Algorithm t_{e} with the following example.
Example 5 Given the string $x=$ GCATCATGTCTT of length 12 and the set $U=\{$ ACAT, ATCA, TCGT $\}$, Algorithm t_{e} computes the minimum number t such that U is a set of approximate 4-covers for x with distance t as $t=2$. A possible layout is as follows:

The Hamming, Levenshtein and edit distances can be generalized by using a penalty matrix. Such a matrix specifies the substitution cost for each pair of characters and the insertion/deletion cost for each character. The simplest matrix assumes costs of g_{1} for the substitutions and costs of g_{2} for the insertions/deletions. Algorithm t_{1} can easily be generalized by using for instance Eq.(5) described as follows:

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i, j-1]+g_{2} \tag{5}\\
D[i-1, j-1]+p[i, j] \\
D[i-1, j]+g_{2} .
\end{array}\right.
$$

where scoring function $p[i, j]=0$ if $x[i]=u[j]$, and $p[i, j]=g_{1}$ if $x[i] \neq u[j]$.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CCF0207673. We thank the referee of a preliminary version of this paper for his/her very valuable comments and suggestions.

References:

1. P. Agius, F. Blanchet-Sadri, Ajay Chriscoe and Liem Mai, "Approximate patterns in strings," Preprint (2004) (http://www.uncg.edu/mat/pattern/).
2. Apostolico and A. Ehrenfeucht, "Efficient detection of quasiperiodicities in strings," Theoret. Comput. Sci. 119 (1993) 247-265.
3. Apostolico, M. Farach and C. S. Iliopoulos, "Optimal superprimitivity testing for strings," Inform. Process. Lett. 39 (1991) 17-20.
4. D. Breslauer, "An on-line string superprimitivity test," Inform. Process. Lett. 44 (1992) 345-347.
5. D. Breslauer, "Testing string superprimitivity in parallel," Inform. Process. Lett. 49 (1994) 235-241.
6. S. Iliopoulos and K. Park, "An optimal O(log $\log n)$-time algorithm for parallel superprimitivity testing," J. Korea Inform. Sci. Soc. 21 (1994) 1400-1404.
7. S. Iliopoulos and W. F. Smyth, "On-line algorithms for k-covering," Proc. 9th Australasian Workshop on Combinatorial Algorithms, Perth, WA, 1998, pp. 97-106.
8. G. M. Landau, J. P. Schmidt and D. Sokol, "An algorithm for approximate tandem repeats," J. Comp. Biol. 8 (2001) 1-18.
9. Y. Li and W. F. Smyth, "Computing the cover array in linear time," Algorithmica 32 (2002) 95-106.
10. Moore and W. F. Smyth, "An optimal algorithm to compute all the covers of a string," Inform. Process. Lett. 50 (1994) 239-246.
11. Moore and W. F. Smyth, "Correction to: An optimal algorithm to compute all the covers of a string," Inform. Process. Lett. 54 (1995) 101-103.
12. S. B. Needleman and C. D. Wunsch, "A general method applicable to the search for similarities in the amino acid sequence of two proteins," J. Mol. Biol. 48 (1970) 443-453.
13. J. P. Schmidt, "All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings," SIAM J. Comput. 27 (1998) 972-992.
14. J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology (PWS Publishing Company, Boston, 1997).
15. J. S. Sim, C. S. Iliopoulos, K. Park and W. F. Smyth, "Approximate periods of strings," Theoret. Comput. Sci. 262 (2001) 557-568.

Notes:

a (Multi)set of pseudo-covers: A (multi)set V that is generated by U, but unproved to cover x is called a (multi)set of pseudo-covers for x.

