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Abstract

Energy plays a fundamental role in both manufacturing and services, and natural gas is quickly
becoming a key energy source worldwide. Facilitating this emergence is the expanding network
of ocean-going vessels that enable the matching of natural gas supply and demand on a global
scale by transporting it in the form of liquefied natural gas (LNG) for eventual regasification
at its destination. Until very recently only one type of technology has been available for trans-
porting and regasifying LNG: Conventional LNG vessels and land based LNG regasification. It
is now possible to transport and regasify LNG onboard special LNG vessels. Companies such
as Excelerate Energy and Höegh LNG are currently developing LNG supply chains based on
this new technology. Motivated by this recent development we engaged executives at Exceler-
ate Energy to develop and apply to data an integrated analytic framework to compare these
incumbent and emerging technologies. Our analysis brings to light basic principles delineating
when to deploy each technology and how to configure the emerging technology. Some of our
findings challenge conventional wisdom on the role to be played by the emerging technology;
others provide answers to open questions faced by companies currently engaged in the commer-
cial deployment of this technology. In addition, our integrated analytic framework has potential
relevance for the evaluation of new technologies beyond this specific application.

1. Introduction

Energy is fundamental to any manufacturing and service activity, and natural gas is rapidly acquir-

ing a prominent role as a source of energy worldwide (Geman 2005, Chapter 10). But, due to local

imbalances, matching the supply of and the demand for natural gas requires its transportation from

locations with excess supply to locations with excess demand. Over short distances, natural gas

transportation is done by pipelines; over longer distances, natural gas is transported in the form of

liquefied natural gas (LNG) by ocean-going vessels (Tusiani and Shearer 2007). This LNG industry

is currently developing on a global scale (EIA 2003, Jensen 2003).

LNG must be regasified before it can be consumed as natural gas. Until very recently, there

existed only one type of LNG regasification technology. In this incumbent technology (onshore

terminal-based regasification, see Figure 1(a)), LNG is regasified into natural gas at a land based
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(a) Incumbent technology: Onshore terminal
based regasification.

(b) Emerging technology: Onboard regasification.

Figure 1: LNG regasification technologies.

terminal, which receives it from vessels (LNG carrier-LNGC) that transport LNG produced at

liquefaction plants (Tusiani and Shearer 2007, Flower 1998). In contrast, new regasification tech-

nology (onboard regasification) has recently been developed that allows special LNG vessels (LNG

regasification vessel-LNGRV) to regasify LNG onboard such a ship at an offshore location, see

Figure 1(b). In this system, when an LNGRV arrives at an offshore deepwater port, it connects

to a submerged unloading buoy. The LNG is then vaporized onboard the LNGRV and delivered

to shore through a subsea pipeline1. In other words, LNGRV (the new technology) integrates the

transportation, storage and regasifation tasks, as opposed to the incumbent process architecture in

Figure 1(a), which decomposes these tasks. The primary advantage of the new technology is that

it does not require the construction of a costly land based terminal. Its main disadvantage is its

reduced task modularity relative to the incumbent technology. Hence, an onboard regasification

facility is relatively cheap and fast to build, but features slower unloading of vessels compared to a

land based terminal2.

The new technology is currently being commercially deployed by companies such as Exceler-

ate Energy and Höegh LNG. Companies investing in the development of new LNG supply chains

(Jensen 2003) face the challenge of selecting between the incumbent and emerging LNG regasifi-

cation technologies. This is complex, because these technologies can be deployed using different

configurations of the underlying LNG transportation and regasification processes. These process

configurations are characterized by different operational and financial performance, which in turn

affect the process configuration choice. Capturing these interactions requires detailed modeling of

the processing network operations.
1A glossary explaining the abbreviations used in this paper can be found in online appendix A.
2Online appendix B provides more details on LNG and regasification technologies.
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Figure 2: Technology selection dimensions (we use the indicators in italics in our application).

Our objective in this paper is to conduct an analysis of the selection problem between these

two technologies. To do so, we engaged executives at Excelerate Energy to develop and apply

to data an analytic framework for this technology selection problem. Figure 2 illustrates the

main elements of our framework: Process configuration and operational and financial performance.

Process configuration includes the choice of a process architecture and the capacity levels of its

resources. In particular, the process architecture determines the organization of the tasks within a

process: decomposed, sequenced or integrated tasks (von Hippel 1990). For a given architecture,

modularity measures task independence. Interdependence between tasks decreases as modularity

increases (Baldwin and Clark 2000, Gomes and Joglekar 2008). Operational performance refers to

the measurable efficiency indicators of a given process configuration, such as throughput, quality,

production cycle time, and utilization. Financial performance measures the financial aspect of a

given process configuration using indicators, such as net present value (NPV), return on investment,

and cost. In this study, we use throughput and NPV as the indicators of the operational and finan-

cial performance since they are the most relevant to our LNG application. The three dimensions

of process configuration, operational performance and financial performance are often intertwined.

Senior executives faced with technology selection choices are sensitive to these dependencies.

The methodologies deployed in our study capture the key features of the emerging and incum-

bent LNG regasification technologies. We utilize closed queueing network (CQN) and simulation

analysis to calculate the operational performance of alternative process configurations for each
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technology, which we value financially using an NPV model. We then use optimization models

to select the capacity levels in a given architecture to minimize the present value of the costs in-

curred to sustain at least a given throughput requirement. Finally, we compute the NPV of the

given throughput requirement by subtracting this cost figure from the present value of its revenue

stream. This optimization step integrates the three components of our framework and allows us

to determine how they impact the technology choice. We apply our framework to data to study

how process configuration, and operational and financial performance affect technology selection

decisions. This leads to several contributions.

First, we compare the incumbent technology, which can be deployed only in one architectural

option, versus a basic architecture of the emerging technology. This comparison is complicated by

the fact that the two technologies display different capacity sizing features: number of ships for

the incumbent technology, and number of ships and number of unloading buoys for the emerging

technology. Our analysis brings to light a characterization of when each technology is preferred over

the other, depending on two critical factors: The throughput and the time to revenue advantage

of the onboard technology (TRAOT). This latter effect arises from the fact that the emerging

technology may start to earn revenue earlier than the incumbent technology, due to its faster

installation time. One notable insight is that contrary to the prevailing wisdom (Jensen 2003, Smith

et al. 2004), the less modular, emerging technology can outperform the more modular, incumbent

technology in situations of high throughput requirement, provided that TRAOT is sufficiently

high. We ascribe this seemingly counterintuitive result to the fact that the current literature and

practice have apparently overlooked the possibility of sizing the capacity of the emerging technology

by employing multiple unloading buoys 3. This finding (1) shows that process configuration choices

may affect new technology selection decisions, sometimes in unexpected ways, that is, increasing

modularity is not always preferable when one considers its net benefit; and (2) challenges the LNG

industry to think differently about the emerging onboard technology.

Second, we evaluate whether these conclusions may be affected by deploying the emerging

technology under alternative architectural options. Specifically, we measure the relative merits of

different ship-to-ship transshipment architectures when using the new technology. Transshipment

increases the degree of modularity of an LNG system by partially decoupling LNG transportation

from its storage and regasification, at the expense of introducing an additional operational activity
3Among two existing offshore deepwater ports, Gulf Gateway consists of a single buoy and subsea pipeline structure

and Northeast Gateway consists of a dual buoy and single subsea pipeline structure. Although Northeast Gateway
has a dual-buoy design, only one vessel can unload its LNG cargo at a time: Its dual-buoy structure is designed with
the purpose of mooring two vessels at the same time to maintain continuous gas flow, instead of unloading two vessels
simultaneously.
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(the ship-to-ship LNG transfer). Moreover, transshipment can reduce the capital investment costs

by allowing the use of LNGCs in transportation instead of more expensive LNGRVs. Thus, its

overall benefit is unclear. Our analysis finds that transshipment is unlikely to be beneficial, and

when it is, its benefits are likely to be small, due to the reduction in throughput caused by the

additional operational activity. This finding confirms our earlier characterization of the comparison

between the incumbent and the new technologies, and it qualitatively reinforces our results on the

net benefit of modularity. It also provides an answer to the architecture and fleet structure choice

challenge currently faced by managers in the LNG industry (Bryngelson 2007).

Third, we complement our analysis by studying the potential impact of our use of stochastic

models of throughput on our conclusions. This impact is unclear as the incumbent and the emerg-

ing technologies differ in their process configurations, so that their operational activities exhibit

different levels of processing time variability. Despite these differences, we find that deterministic

models appear to be adequate to support technology selection decisions. However, they may be

inadequate in supporting capacity sizing decisions for a given technology, especially for the emerg-

ing technology. This insight is particularly important for managers involved in the management of

LNG supply chains that employ the emerging technology; that is, we alert these managers to the

potential error (capacity, and hence NPV shortfall) that may result from overlooking stochastic

variability in the relevant processing times.

While our focus in this study is on a specific segment of the LNG industry, our analytic frame-

work has potential applications for a broader class of technology selection problems. It may be used

to evaluate other technology innovations in the LNG industry, such as floating LNG production

(Chazan 2009, Tusiani and Shearer 2007, Ch. 5) rather than regasification. It may also be used

to compare technologies in other industries; for example in settings where one type is cheaper and

requires a shorter time to install, but can sustain a lower production rate; while the other type is

more expensive and requires a longer time to install, but offers a higher throughput. Companies

often face such tradeoffs when developing new technologies, both in manufacturing and service in-

dustries. One example occurs in emerging markets: A company can typically start manufacturing

in the short run by using cheaper and labor intensive operations at a lower production rate, or can

enter the market with a more expensive automated system that sustains a higher production rate.

Such companies face technology decisions as we consider here.

The remainder of this paper is organized as follows: We review the related literature in §2.

Section 3 presents our analytic framework that integrates the technology comparison dimensions

illustrated in Figure 1. We present the application of our analytic framework and the insights
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it generates on the issues we investigate in §4. We conclude in §5 by discussing further research

avenues. An online appendix provides supporting material.

2. Related Literature

Energy has long been an active area of research in both operations management and operations re-

search. Durrer and Slater (1977) review the operations research literature that deals with petroleum

and natural gas production. More recently, Smith and McCardle (1998) consider the problem of

valuing oil properties as real options (Dixit and Pindyck 1994, Trigeorgis 1996), and Smith and

McCardle (1999) discuss lessons learned in evaluating oil and gas investments in practice. Hahn

and Dyer (2008) value an oil and gas switching option that arises in the production of these com-

modities. Secomandi (2009b) studies the optimal management of commodity storage assets as real

options and discusses an application to natural gas storage, a topic also explored by Carmona and

Ludkovski (2007), Chen and Forsyth (2007), Boogert and de Jong (2008), and Thompson et al.

(2009). Lai et al. (2009) benchmark practice-based natural gas storage valuation heuristics. Seco-

mandi (2009a) investigates the pricing of natural gas pipeline capacity from various perspectives,

including the real option approach. Enders et al. (2010) study the interaction between technology

and extraction scaling real options in natural gas production. Our work adds to this literature by

considering a novel technology selection problem in the LNG industry.

Closer to the industrial domain that we study, Kaplan et al. (1972), Koenigsberg and Lam

(1976), and Koenigsberg and Meyers (1980) model the shipping stage of an LNG supply chain. In

this paper we use the model of Koenigsberg and Lam (1976) to evaluate the throughput of some

configurations of the technologies that we study, but we also develop original models to evaluate

alternative configurations of the emerging technology. Lai et al. (2010) develop a real option model

to value downstream LNG storage when LNG is regasified using our incumbent LNG regasification

technology. In contrast, we focus on the comparison of this incumbent and the emerging LNG

regasification technologies. Abadie and Chamorro (2009) use Monte Carlo simulation to value

natural gas investments, including an LNG plant, and Özelkana et al. (2009) use a deterministic

optimization model to analyze the design of LNG terminals. Rodŕıguez (2008) develops a real

option model to value delivery flexibility in long-term LNG contracts. None of these authors study

the technology selection problem that we analyze.

Our analysis brings to light managerial insights into the drivers of this technology selection

problem, providing guidance for executives making such technology decisions. Thus, our work is also

related to the operations management literature concerned with establishing principles for guiding

6



managerial decisions (Fisher 2007, Graves and Jordan 1995). Within this literature, researchers

study technology selection from different perspectives. Krishnan and Bhattacharya (2002) analyze

the relation between product design flexibility and technology selection. Fuchs and Kirchain (2009)

study the impact of production location on technology choice. Van Mieghem (2003) reviews several

papers that deal with capacity management, focusing on the selection between dedicated and flexible

technologies by using stochastic capacity portfolio investment models. In contrast, we study the

impact of process configuration and operational and financial performance on technology selection,

by using an integrated evaluation framework.

Our process configuration definition comprises process architecture and capacity sizing. Hen-

derson and Clark (1990) define architectural innovation as those innovations that change the archi-

tecture of a large system without changing its components. One stream of research on architectural

innovation focuses on process architecture (reviewed by Smith and Morrow 1999, Browning and Ra-

masesh 2007), that is, the process activities, their mutual relationships, as well as their relationships

with external processes. An essential decision when structuring a process architecture is how to

decompose a large process network into smaller elements. The models developed in the process in-

novation literature to guide this decision emphasize the benefits of increasing modularity. However,

modularity does not come for free, as recognized by Baldwin and Clark (2000), who state that in

deciding how much modularity to pursue, the value of increased modularity needs to be compared

to its costs: Increasing modularity may increase investment cost, as well as capacity installation

and processing times in a processing network as in our specific application. Our paper adds to

the growing body of process innovation and technology management (Gaimon 2008) research by

quantifying the net benefit of modularity that arises in the context of different technology/process

configuration choices in a specific application. In particular, we bring to light conditions under

which less modular architectures are more profitable than more modular architectures. We show

that the operational drawbacks of decreasing modularity in designing a processing network can be

mitigated by adjusting the resource capacities.

3. Analytic Framework

In this section we describe our analytic framework, illustrated in Figure 3, which integrates the

technology comparison dimensions depicted in Figure 2: Process configuration and operational and

financial performance. We first discuss the process configuration options considered for an LNG
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Figure 3: Analytic framework.

network4. Then, we explain the queueing and simulation models used for calculating the throughput

(operational performance) of a given LNG process configuration, as well as the NPV model used to

value the financial performance of a given process configuration. In the last step of our approach, we

optimize the capacity level corresponding to a given technology and architecture option to minimize

the present value of the costs incurred to sustain a given throughput requirement. We obtain the

NPV of the given throughput requirement by reducing the present value of its revenue stream by

this cost figure. We describe each of these steps in detail below.

3.1 Process Configuration Choices

Figure 3 lists the technology/architecture options that we study: Incumbent onshore-terminal tech-

nology based system (option A), emerging onboard technology based system without transshipment

(option B), onboard system with fixed-point transshipment (option B1) and onboard system with

no-wait transshipment (option B2).
4We determined the specific attributes of each configuration option in collaboration with the managers of Excel-

erate Energy, a company that is currently operating both LNGCs and LNGRVs, and developing and managing LNG
projects with and without transshipment based on the new onboard technology.
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We illustrate the LNG chains based on options A and B in Figure 4. In these systems, ships

load LNG at the loading port (liquefaction plant), transit to the unloading facility (the onshore

terminal in option A and the deepwater port in option B), unload their cargos, and transit back to

the loading port. In option A, the decoupled transportation, storage and regasification tasks (as

explained in §1) offer high modularity, as listed in Figure 3. On the other hand, in option B, use

of the LNGRVs (special vessels) integrates these three tasks, which decreases modularity.

(a) Option A:Incumbent onshore terminal based regasi-
fication.

(b) Option B: Emerging onboard regasification without
transshipment.

Figure 4: Technology/Architecture options A and B.

Figure 5 displays the LNG chains that feature transshipment based architectures with the

emerging onboard technology (options B1 and B2 in Figure 3). These architectures use two types

of ships: LNGCs and LNGRVs. LNGCs deliver LNG cargos from the loading port to the trans-

shipment location (TL), then transfer their cargos onto LNGRVs that are used in shuttle service

between the TL and the unloading deepwater port. Transshipment allows partial decoupling of

transportation from the storage and regasifications tasks. Thus, options B1 and B2 are character-

ized as having medium level of modularity in Figure 3. With fixed-point transshipment (option

B1), transshipment occurs at a predetermined point located upstream of the deepwater port, either

in the open ocean or in a protected environment. Transshipment occurs between an LNGRV and

an LNGC, if they are at the TL at the same time; otherwise a ship that is at the TL must wait

until the arrival of a ship of the other type. With no-wait transshipment (option B2), we assume

that ships keep sailing until they meet, instead of waiting at the fixed TL for the arrival of a ship

of the other type.

3.2 Operational and Financial Performance Models

We now describe the models we use for calculating the throughput and NPV of the configuration

choices explained in §3.1.
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Figure 5: Transshipment based configuration of the emerging onboard technology (Options B1 and
B2).

Onshore-Terminal and Onboard Systems without Transshipment - Options A and B.

Following Koenigsberg and Lam (1976), Koenigsberg and Meyers (1980), and Wang (2008) we

model the systems corresponding to options A and B as CQNs. Figure 6 represents the process

flow in the corresponding CQNs. We model the loading and unloading processes as first-come-

first-serve (FCFS) exponential queues, and the transit processes as ample-server (AS) stations with

service time distributions having rational Laplace transforms. Under these assumptions, each CQN

has a closed product-form stationary distribution (Baskett et al. 1975).

Let I be the total number of blocks (four blocks in Figure 6). We denote the number of ships

in block i as ni. The state of the shipping system is the array n = (ni, i = 1, . . . , I), and satisfies∑I
i=1 ni = N , where N is the total number of vessels. Let λi and µi be the arrival rate and service

rate of block i, respectively. Denote π(n) as the steady state probability that the system is in state

n. Following Baskett et al. (1975), π(n) = Γ
∏I
i=1 γi(λi, µi, ni), where Γ is a normalizing constant

chosen to make these probabilities sum to 1 and γi(·) is computed as follows:

γi(λi, µi, ni) :=

{
(λi
µi

)ni , If block i is FCFS,
1
ni!

(λi
µi

)ni , If block i is AS.
(1)

In an onboard technology based system, there can be multiple unloading buoys/subsea-pipelines

at the unloading port to enable unloading multiple vessels at the same time. In this case, station 1

(the unloading port in Figure 6) has multiple servers (buoys/subsea-pipelines), and γ1(λ1, µ1, n1)
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Figure 6: Process flow for options A and B.

becomes γ1(λ1, µ1, n1)(1/
∏n1
a=1 x(a)), where x(a) is the rate of service at station 1 when there are

a vessels at this station relative to the service rate when there is only one vessel at this station,

a = 1. If there are k servers at station 1, then

x(a) :=
{
a, 1 ≤ a ≤ k,
k, a > k.

Let N denote all the possible states of the system. Also denote by N ′ the set of states in which

at least one ship is loading, i.e., N ′ := {n ∈ N : n3 > 0}. Then the throughput rate is:

X = Cµ3

∑
n∈N ′

π(n), (2)

where C is the cargo size of a ship.

The only difference between the onshore terminal (option A) and onboard technology (option

B) based systems is the service rate of the unloading block, µ1; due to onboard regasification, an

LNGRV unloads its cargo at a slower rate than an LNGC.

Fixed-point Transshipment Based Onboard System - Option B1. We consider a fixed-

point transshipment configuration as a closed fork/join queueing network as depicted in Figure 7.

One can think of this system as two conjoined CQNs that are coupled via the transshipment block.

Transshipment occurs between an LNGRV and an LNGC if they are at the TL at the same time;

otherwise a ship that is at the TL must wait until the arrival of a ship of the other type.
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Figure 7: Process flow for option B1.

We analyze the transshipment network depicted in Figure 7 as a continuous time Markov

process. Once again, we denote by µi the service rate of station i, i = 1, . . . , 7. Let N1 and

N2 denote the number of LNGRVs and LNGCs in the system, and W1(t) and W2(t) the number

of ships in the buffer queues Q1 and Q2, respectively, at time t. Because transshipment occurs

between an LNGRV and an LNGC as they appear at the TL, it is not possible for both buffers Q1

and Q2 to be non-empty. For this reason we denote the number of ships waiting for transshipment

at time t using the one dimensional random variable W (t) := W1(t) −W2(t); W (t) takes values

in {−N2, . . . ,−1, 0, 1, . . . , N1}. For example, W (t) = −3 means that 3 LNGCs are waiting for

transshipment at Q2 and no LNGRV is present at Q1 for transshipment. There is no ship of either

type waiting for transshipment if W (t) = 0.

We define ni(t) as the number of ships at station i in Figure 7 at time t, with the excep-

tion that n3(t) denotes the number of ship pairs that are transshipping; n3(t) can take values in

{0, 1, . . . ,min(N1, N2)}. For i ∈ {1, 2, 4}, ni(t) can take values in {0, . . . , N1}, and for i ∈ {5, 6, 7},

ni(t) can take values in {0, . . . , N2}. The state of the transshipment system in Figure 7 is character-

ized by the six dimensional array m := (W,n1, n2, n3, n5, n6). We find the probability distribution

that the system is in state m by modeling it as a continuous time Markov chain.

Let M denote all the possible states of the system:

M := {(W,n1, n2, n3, n5, n6) :
∑3

i=1 ni ≤ N1 and n3 + n5 + n6 + |W | ≤ N2 ∀ W ≤ 0;∑3
i=1 ni +W ≤ N1 and n3 + n5 + n6 ≤ N2 ∀ W > 0}
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Figure 8: Flow chart of the simulation model of the no-wait transshipment based onboard system.

where we exploit the fact that the number of ships in stations 1 to 4 and buffer Q1 must sum up

to N1, and the number of ships in stations 3, 5, 6, 7 and buffer Q2 must sum up to N2. For each

state m ∈ M, let π(m) be the steady state probability that the continuous time Markov chain is

in state m; π(m) can be computed by solving the global balance equations for all states m ∈ M

simultaneously with the condition that these probabilities sum up to 1 (see online appendix C).

LetM′ denote the set of states in which there is at least one LNGC at the loading port (station

5), i.e., M′ := {(W,n1, n2, n3, n5, n6) ∈M : n5 > 0}. Then, the throughput rate of the system is

XT = Cµ5

∑
m∈M′

π(m). (3)

No-wait Transshipment Based Onboard System - Option B2. We calculate the throughput

of the no-wait transshipment system by Monte Carlo simulation. Figure 8 displays the flow chart

of our model. An entity representing an LNGRV or an entity representing an LNGC flow into a

match block immediately after they leave the unloading deepwater port and the liquefaction plant,

respectively. When an entity arrives at the match block, it is placed in one of two associated queues,

one for each vessel type. Entities remain in their respective queues until a match occurs. We record

this waiting time in the match block queue to obtain the distance traveled by the matching vessel

before the match occurs.

Once a match exists, one entity from each queue is released. After the vessels leave the match

block, they flow into a batch block to form a single entity representing the paired vessels that will
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transship. Batched entities are delayed in the transit-to-meet block for the remaining time required

to meet, which is equal to half the difference between the one way transit time and the previously

recorded time waited in the match block. Then, the batched entity is delayed in the transshipment

block for the time required by the ship-to-ship LNG transfer. When this transfer is completed,

the batched entity is separated into its component entities in the separate block. Upon leaving the

separate block, the entities representing the LNGRV and the LNGC are delayed in their respective

transit blocks for the time required for sailing from the location where transshipment is performed

to the deepwater port and the liquefaction plant, respectively.

We use the ARENA simulation software to calculate the throughput, selecting the simulation

run times and number of replications such that the throughput rate becomes insensitive to the

simulation length and the half-width of a 95% confidence interval is at most 0.5% of the mean.

NPV model. We use the throughput levels calculated above to obtain the NPV generated by

each process configuration option. We calculate the NPV as the present value of the revenue

generated during a given time horizon minus the operational and capital investment costs incurred

during the project lifetime. Assuming that the capital investment costs are incurred at time zero,

we discount the cash flows over time using a constant annual risk-free rate; that is, we use a risk

neutral valuation approach (Smith 2005, Luenberger 1998, Ch. 13). In order to calculate the

revenue, we use New York Mercantile Exchange (NYMEX) natural gas futures prices. Since we

value the revenue stream using futures prices, using a risk neutral valuation approach is appropriate.

Moreover, since the futures prices capture the current market view of future supply and demand

conditions, this approach implicitly takes into account uncertainty in future demand. In addition,

we also assume that any regasified LNG can be sold on the natural gas spot market at the prevailing

market price at the time of regasification. That is, the amount of natural gas that is vaporized and

pumped into the local natural gas pipeline system does not affect the natural gas price. Given the

size of the U.S. natural gas market, this is a reasonable assumption.

3.3 Optimization of the Capacity Levels of Each Technology Architecture Op-
tion

We optimize the capacity levels of each technology architecture option to minimize the present

value of the costs associated with sustaining at least a given throughput requirement. Subtracting

this cost figure from the present value of the revenue stream of the given throughput requirement

yields its NPV. For the incumbent technology this simply amounts to choosing the smallest number

of ships such that this throughput constraint is satisfied.
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For the emerging technology, optimization is more involved. In an onboard technology based

LNG chain without transshipment, there can be multiple unloading buoys/subsea-pipelines at the

deepwater port to enable unloading of multiple vessels at the same time. Thus, a given throughput

requirement can be sustained by multiple combinations of buoys and vessels. For every fleet size, we

evaluate all the combinations obtained by increasing the number of unloading buoys from one up to

the point when an additional buoy does not increase throughput. Then, among these configuration

options, we pick the one that minimizes the present value of the costs incurred to sustain at least

the given throughput requirement.

For the transshipment based configurations, for a given fleet size-unloading buoy combination,

we also evaluate all the possible fleet structure options, that is, the number of LNGC and LNGRV

combinations. Among these configuration options, we pick the one that minimizes the present value

of the relevant costs and is feasible, and compute the NPV accordingly.

Notice that the design of the fixed-point transshipment based network described in §3.1 also

involves the selection of the transshipment location, which affects the system’s throughput. For

a given capacity level (number of buoys, LNGRVs and LNGCs), we approximate the optimal

transshipment location to maximize the system’s throughput by solving a deterministic version of

the network. To do so, we first decouple the network in Figure 7 into two independent loops: Loop

1 (stations 1, 2, 3 and 4) and loop 2 (stations 5, 6, 3 and 7), where LNGRVs and LNGCs are

respectively in service. Such a decomposition is possible due to our deterministic assumption and

the fact that at optimality the networks will be perfectly coordinated.

The throughput of loop 1 can be calculated as follows. Let u and τ be the travel times between

the unloading deepwater port and the transshipment location, and the unloading deepwater port

and the loading port, respectively. The parameter ci represents the capacity of station i = 1, 3. The

function ci(u) represents the capacity of station i = 2, 4. For the FCFS station 1, c1 = kµ1, where k

is the number of unloading servers (buoys) and µ1 is the service rate of station 1; for the AS transit

stations (2 and 4), ci(u) = N1/u; and for the AS transshipment station 3, c3 = N1µ3. The capacity

of loop 1 is R1(u) := min(c1, c2(u), c3, c4(u)). Let D1(u) denote the demand rate of the LNGRVs

in the system: D1(u) := N1/(2u+ 1/µ1 + 1/µ3). The throughput of loop 1 is the minimum of the

bottleneck capacity and the demand rate: X1(u) = min(R1(u), D1(u)). The throughput of loop

2, X2(u), can be calculated in an analogous manner. That is, X2(u) = min(R2(u), D2(u)) where

R2(u) := min(c5, c6(u), c3, c7(u)) and D2(u) := N2/(2(τ − u) + 1/µ5 + 1/µ3). Then the throughput

of the deterministic transshipment based network is the minimum of those of loop 1 and loop 2:

XT
d (u) = min(X1(u), X2(u)). (4)
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Our goal is to find a transshipment location that maximizes the deterministic transshipment

based network’s throughput XT
d (u). This problem can be equivalently formulated as finding an

optimal solution to the following problem:

max
u

XT
d (u)

s.t. 0 ≤ u ≤ τ,

where the constraint states that the transshipment location should be between the unloading deep-

water port and the loading liquefaction port. A value u that maximizes XT
d (u), denoted by u∗, can

be found as follows.

For all feasible u values, 0 ≤ u ≤ τ , since c2(u) = c4(u) > D1(u) and c6(u) = c7(u) > D2(u),

equation (4) reduces to

XT
d (u) = min(kµ1, N1µ3, D1(u), µ5, N2µ3, D2(u)).

Define RT := min(kµ1, N1µ3, µ5, N2µ3) and DT (u) := min(D1(u), D2(u)). With these defini-

tions, our problem can be equivalently formulated as

max
u

min(RT , DT (u))

s.t. 0 ≤ u ≤ τ.

Because D1(u) and D2(u) are strictly decreasing and increasing functions of u, respectively, the

unconstrained u value that maximizes DT (u), denoted by u′, should satisfy D1(u′) = D2(u′):

u′ =
(2τ + 1

µ5
+ 1

µ3
)N1 − ( 1

µ1
+ 1

µ3
)N2

2(N1 +N2)
.

Define u∗ as

u∗ :=


u′, If 0 ≤ u′ ≤ τ ,
0, If u′ < 0,
τ, If u′ > τ.

(5)

If the deterministic transshipment network is demand constrained, that is, DT (u∗) < RT , then

u∗ is the unique optimum. Otherwise, there are multiple optimal solutions which always include

u∗, our chosen one. Although u∗ is provably optimal only for the deterministic network, by using

an exhaustive search, we find that it is also optimal for the stochastic network considered in all of

our numerical experiments reported in §4.3.
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Table 1: Units of measurement and conversion factors
bcf Billion Cubic Feet
cm Cubic Meter
bcf/d Billion Cubic Feet per Day
MMTPA Million Tons per Annum
MMBTU Million British Thermal Units
NM Nautical Mile
1 Knot = 1 NM per Hour
1 bcf = 1,100,000 MMBTU
1 MMTPA = 0.128 bcf/d
1 cm = 0.0000215 bcf

4. Application of the Analytic Framework

We apply our analytic framework by conducting a numerical study based on financial and opera-

tional data. Some of the parameter values used in our study are determined in concert with the

managers of Excelerate Energy. Others are taken from the existing LNG literature. Table 1 reports

the relevant units of measurement and conversion factors.

4.1 Numerical Values for the Relevant Parameters

We consider an integrated LNG chain with a 25 year lifetime, the length of a typical LNG project

(Flower 1998). Our LNG chain has one liquefaction facility and one regasification facility. With

the incumbent technology, we assume that the regasification terminal is located at Lake Charles,

Louisiana, which indeed hosts an onshore LNG terminal operated by Trunkline LNG. We also

assume that the offshore facility is located nearby; for example, the Gulf Gateway offshore deepwater

port operated by Excelerate Energy is located 100 miles off the Louisiana cost. We assume that

the liquefaction plant is located in Egypt, one of the major LNG exporters (Smith et al. 2004).

The distance between Egypt and Lake Charles is approximately 7,000 NMs.

We use the following parameters in our study.

Shipping: We consider a homogeneous ship cargo size of 3 bcf, which is common in the LNG

industry (Flower 1998). We assume a shipping speed of 19 knots (Cho et al. 2005, Flower 1998, p.

100). With this assumption, a one-way trip between the regasification facility and the liquefaction

plant takes approximately 15 days, on average.

Liquefaction Plant: Following Wang (2008), we consider the service time at the liquefaction

plant (loading port) to be exponentially distributed with mean 1 day. The service time is the time

required by a vessel for entering the loading port, loading 3 bcf of LNG, completing the required

paperwork, and leaving the port.
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Onshore Terminal: We assume that the regasification capacity of the conventional onshore

terminal is 2 bcf/d, which is consistent with the capacity of some of the onshore terminals in the

U.S., including Lake Charles. We set the service time at the onshore terminal (entering the port,

unloading 3 bcf of LNG into the storage tanks, completing the required paperwork, and leaving the

port) as exponentially distributed with mean 1 day (Koenigsberg and Lam 1976). Following Lane

(2008), we let the LNGC capital cost be $250M and the onshore terminal cost be $1.5B (M and B

denote million and billion, respectively).

The capital cost of an onshore terminal varies considerably depending on factors such as storage

and vaporization capacity, cost of real estate, geological structure, local labor and construction costs,

and marine environment (Tusiani and Shearer 2007). Thus, different cost figures are reported in

the literature. For instance, Smith et al. (2004) state that a 1 bcf/d regasification terminal costs

$0.5B, and EIA (2003) states that the cost of a terminal can range from $0.1B to $2B depending

on its regasification capacity. Therefore, we also conducted an analysis including the cost of the

onshore terminal as a function of its regasification capacity, consistent with these cost figures. We

found that our conclusions did not change from those with the fixed cost of $1.5B. Thus, the results

reported in §4.2 were obtained by fixing the terminal cost to be $1.5B for all throughput levels.

Tusiani and Shearer (2007) report that the construction time for an LNG terminal does not

generally vary with the size of the facility. Rather, it is determined by the construction schedule for

the storage tanks, the most time-consuming and expensive components of a terminal, and it may

take between 2 and 5 years. We assume that it takes 5 years to construct the onshore terminal,

but in §4.2 we explain how our conclusions change when reducing the construction time of this

terminal.

Deepwater Port: We assume that the LNG regasification rate of an LNGRV is 0.5 bcf/d (Energy

Bridge Fact Sheets 2008). We set the service time at the deepwater port (mooring, connecting with

submerged buoy, vaporizing 3 bcf of LNG, and leaving the port) as exponentially distributed with

mean 7 days (Lane 2008). We let the capital cost of an LNGRV be $275M (Lane 2008). We assume

that each buoy/subsea-pipeline structure (each server) at the deepwater port costs $70M, and that

it takes 1 year to construct the deepwater port (Gulf Gateway Fact Sheets 2008), independent of

the number of buoys in the deepwater port. The LNG transshipment service time is taken to be 2

days on average (Lane 2008), and is assumed to be exponentially distributed with this mean.

Operational Cost: This cost has three components: Liquefaction, shipping, and regasification

costs. Following Wang (2008), we assume that the liquefaction plant operating cost is $8M per

MMTPA. According to Lane (2008), the shipping cost is $47.851M per ship per year (this includes
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Figure 9: NYMEX natural gas futures prices.

fuel and crew costs). Finally, we take the regasification variable cost as $0.0285 per MMBTU with

a 1.69% fuel loss (Wang 2008).

Revenue: We use NYMEX natural gas futures prices as of 8/8/2008 (Figure 9) for calculating the

relevant revenue figures. For each trading day, NYMEX futures prices are available for maturities

of 148 months in the future. To estimate the futures prices for the months beyond the last available

maturity, we replicate the prices of the last 12 available months. We set the annual risk-free interest

rate as 1.7%, the three-month U.S. Treasury rate as of 8/8/2008.

4.2 Comparison of the Two Regasification Technologies (Option A vs B)

In this subsection we analyze under which conditions each regasification technology should be

adopted. We consider throughput requirements up to and including 2 bcf/d.

The dashed line in Figure 10 shows the difference between the present values of the total costs of

the onboard and onshore regasification systems; we obtain this difference by subtracting the capital

and operating costs of the onshore system from those of the onboard system5. The capital cost

is the investment required for building the unloading and regasification facilities, and the vessels.

The operating costs include the liquefaction, shipping, and regasification costs, as explained in §4.1.
5The jittery pattern of the cost difference line is caused by the integer-valued fleet size difference between the

onboard and onshore systems. The magnitude of each peak corresponds to the capital and operating cost of an
additional vessel required by the onboard system compared to the onshore system to sustain the throughput interval
in which the peak occurs. This fleet size difference also creates the jittery pattern of the NPV difference line in Figure
10.
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Figure 10: Technology comparison: The NPV and costs difference of the onboard and onshore-
terminal systems with high TRAOT.

The cost difference line in Figure 10 shows that for “low” throughput levels - less than 0.5 bcf/d -

the onboard technology’s cost is lower than that of the onshore technology, due to the lower capital

investment required to build the offshore deepwater port. But to sustain higher throughput levels,

the onboard technology system needs several unloading buoys and more vessels than the onshore

technology system, due to its lower unloading rate. The capital investment for multiple unloading

buoys and the capital and operating costs of the extra vessels diminish one of the onboard system’s

main competitive edges, the lower capital investment required by the deepwater port. Thus, the

total cost of the onboard system becomes significantly larger than that of the onshore system for

“high” throughput levels - more than 0.5 bcf/d. But what about NPV?

The solid line in Figure 10 displays the difference between the NPVs generated by the two

systems; we obtain this difference by subtracting the NPV of the onshore system from the NPV of

the onboard system. We find that for all throughput levels, the onboard technology based system

generates significantly more NPV than the system based on the onshore terminal, although the

cost of the former system is much higher for high throughput levels. This result holds due to the

shorter time required for building an onboard regasification facility compared to onshore terminals

(recall that we assume it takes one year to complete the deepwater port and five years to construct

the onshore terminal). Thus, the onboard technology based system starts generating revenue four

years earlier. As shown in Figure 10, for high throughput requirements, although the total cost of
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Figure 11: Technology comparison: The TRAOT effect.

the onboard system is greater than that of the onshore-terminal system, the former system is more

profitable due to its advantage in its revenue generation timing, which we label TRAOT.

Of course, the NPV difference displayed in Figure 10 is specific to the parameters used in our

study. In practice, TRAOT is determined by operational parameters and market conditions, such

as the permitting process and facility construction time, availability of the vessels and LNG supply,

natural gas futures prices, and interest rates. For instance, it may take less than 5 years to build

the onshore terminal. Alternatively, due to idiosyncrasies in the LNG industry, building LNGRVs,

which use onboard regasification technology, may take more than the year we assumed. In this

case, the revenue generation of the onboard technology based system will be delayed until the

LNGRVs are completed. Moreover, due to economic downturns, the natural gas prices or interest

rates can decrease to levels lower than those that we use. In these cases, TRAOT would be smaller

than what displayed in Figure 10, so that the NPV difference would decrease as illustrated in

Figure 11, making the incumbent technology more profitable than the emerging technology for

high throughput requirements.

Our analysis reveals the existence of a frontier that partitions the throughput (operational

performance) and TRAOT (financial performance) space into two regions in which each of two

technologies dominates the other. In other words, by simultaneously considering these dimensions,

we derive conditions specifying when each technology should be adopted, as illustrated in Figure

12:
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Figure 12: Insights for regasification technology choices.

• If the throughput requirement is low, an onboard technology based system is always more

profitable than an onshore-terminal based system due to its lower capital investment cost.

• If the throughput requirement is high, the technology adoption choice depends on TRAOT.

Although the onboard system’s total cost is greater than that of the onshore-terminal system

for high throughput levels, the extra NPV obtained by the former system, thanks to its

potential to generate revenue earlier, may still make the onboard system more profitable.

The former finding is consistent with the literature (Jensen 2003, Smith et al. 2004). The latter

finding contrasts with those obtained by Jensen (2003) and Smith et al. (2004): These authors state

that the emerging onboard technology is well-suited for seasonal and occasional usage, that is, the

low throughput case; they also report that the incumbent onshore technology is more profitable than

the emerging onboard technology in the high throughput case. We demonstrate that the onboard

technology can also be preferred to sustain high throughput, provided the TRAOT advantage is

high. In other words, by neglecting the effect of TRAOT, the extant literature fails to identify

a situation (high TRAOT, high throughput) in which the onboard technology can dominate the

onshore technology.

Indeed, it is surprising that the less modular onboard technology, which features a longer time

for vessel unloading, may outperform the more modular onshore technology in a situation of high

throughput. The reason for this apparently counterintuitive result is that the extant literature
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Figure 13: Number of vessels required by the onboard systems with and without transshipment to
sustain a given throughput.

and practitioners have seemingly ignored the possibility of configuring the onboard technology

using multiple unloading buoys, as we model in this paper. This process configuration choice

overcomes the disadvantage of slower unloading rates of the onboard technology (or equivalently

the disadvantage of decreasing modularity) and together with higher TRAOT is able to outperform

the onshore technology at higher throughput requirements. Thus, our analysis challenges the LNG

industry to think differently about the emerging onboard technology.

4.3 The Benefit of LNG Transshipment with the Emerging Technology (Com-
paring options B, B1 and B2)

In this section, we compare options B, B1 and B2 to study the merit of ship-to-ship LNG transship-

ment, a configuration aspect in the deployment of the emerging onboard technology that companies

such as Excelerate Energy and Höegh LNG are currently exploring as a way to improve the prof-

itability of this technology. Transshipment allows a firm to configure a fleet of ships as a mix of

LNGCs and more expensive LNGRVs. Such a configuration can reduce capital investment cost and

partially decouple the transportation from storage and regasification (which increases modularity).

We examine the net benefit of transshipment in terms of improved profitability of an onboard tech-

nology based system, evaluating how our conclusions on technology selection presented in §4.2 may

be affected by alternative transhipment based architectures of the emerging onboard technology.

First, we investigate how transshipment (equivalently increasing modularity) can impact the
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Figure 14: NPV benefit of LNG transshipment.

operational performance of a system using new onboard technology. Figure 13 presents the number

of vessels needed to sustain a given throughput by systems with and without transshipment, serving

a deepwater port with one unloading buoy (our findings remain similar for systems with multiple

buoys). We find that the transshipment based systems (fixed-point and no-wait) may require more

vessels than the system without transshipment in order to sustain a given throughput level. This

is due to the additional time required for the ship-to-ship LNG transfer and the synchronization

of ships (the waiting time at the transshipment location) in the transshipment based systems. For

instance, Figure 13 shows that in order to supply 0.32 bcf/d, the system without transshipment

requires 5 ships, the no-wait transshipment system requires 6 ships, and the system with fixed-point

transshipment requires 7 ships. We also find that for a given fleet size, configuring the shipping

network as a no-wait instead of a fixed-point transshipment system may significantly increase LNG

throughput (up to 13.2%). However, even this system will never outperform the system without

transshipment in terms of throughput.

Having quantified the throughput loss due to transshipment, we measure the tradeoff between

the capital investment savings obtained by replacing expensive LNGRVs with less expensive LNGCs

and the cost of the throughput loss. Figure 14 displays the difference between the NPV of the

systems without and with transshipment; we consider a no-wait transshipment network since it

dominates the fixed-point transshipment network as shown above. We obtain this difference by

subtracting the NPV of the system with transshipment from the NPV of the system without
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transshipment. For most throughput levels, the latter system generates significantly more NPV

than the former system, as a system with transshipment typically requires more vessels than a

system without transshipment. The capital and operating costs of these extra vessels exceed the

savings brought about by using cheaper LNGCs in the transshipment network. For some throughput

levels, transshipment does pay off in terms of NPV, but this benefit is marginal.

Thus, our analysis suggests that LNG supply chains based on onboard regasification technology

should be developed, when possible, only using dedicated LNGRVs, rather than as a mixture of

these and conventional LNGCs. The use of transshipment should only be considered as a way to

circumvent capacity restrictions due to insufficient availability of LNGRVs in the market. This

finding provides an answer to the process architecture and fleet structure choice challenge faced

by LNG companies using or planning to use emerging onboard technology (Bryngelson 2007).

We show that if increasing modularity increases the processing time in a processing network (by

introducing additional tasks and/or increasing the interdependence within a module), the cost of

throughput loss should be justified against the benefits of modularity. Our analysis also reveals that

the insights on technology selection presented in §4.2 are not affected by the possibility of using the

transshipment architecture. In other words, we illustrate an example where process configuration

does not impact the technology selection decision.

4.4 The Potential Impact of Stochastic Modeling

In this subsection we quantify the potential impact on our conclusions of using our stochastic mod-

eling approach, based on exponentially distributed processing times, by replicating our analysis

using deterministic processing times. Specifically, we investigate the choices of capacity size, tech-

nology selection, and how to configure an onboard technology based system assuming all transit,

loading and unloading times are deterministic. The exponential and deterministic processing times

should be interpreted as two extreme cases. In reality, the variability in these processing times

typically falls somewhere in between 0 (the deterministic case) and 1 (the exponential case); see,

e.g., Koenigsberg and Lam (1976) and Kaplan et al. (1972). Below we refer to an exponential

stochastic model as simply a stochastic model.

Capacity Sizing. Figure 15(a) illustrates the optimal onboard system configuration (number

of buoys and vessels) computed by the deterministic and stochastic models as a function of the

throughput requirement. This figure shows that the capacity levels prescribed by the stochastic

model are higher than those obtained by the deterministic model for some throughput intervals,

a consequence of the congestion that arises in the stochastic model. Fleet sizes are often similar,
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(a) Optimal capacity configuration calculated by the
deterministic and stochastic models

(b) Target and estimated throughput levels

Figure 15: Impact of modeling approach on capacity sizing - Onboard system.

but the stochastic model typically suggests a higher number of unloading buoys. In order to

increase throughput, the stochastic model first chooses to install an additional buoy, since the

capital and operating cost of an additional vessel is much higher than the cost of an unloading

buoy. When adding an extra buoy can no longer increase the throughput, the model has to

add an extra ship. This increases the throughput dramatically, so the target throughput can

be met with fewer buoys (note that in Figure 15(a) when the number of buoys decreases, this

always coincides with an increase in fleet size). Figure 15(b) estimates the throughput levels of the

deterministic model’s recommendations using our stochastic model. The gap between the target

and estimated throughput levels can be as large as 17.29%. Even though these may be considered

pessimistic estimates of the throughput shortfalls associated with the deterministic model designs,

since processing times’ coefficient of variations are likely less than 1, Figure 15(b) suggests that

detailed stochastic analysis of a given onboard system design is likely to be important in practice

to support capacity sizing choices.

Figure 16 is analogous to Figure 15 and relates to the onshore system. Although the throughput

shortfall is still present and can be as large as 7.86%, it appears to be smaller than in the onboard

technology case for all the considered throughput levels, due to the shorter unloading times. Thus,

in the onshore case detailed stochastic analysis, while still advisable, is likely to be somewhat less

crucial than in the onboard case for aiding capacity sizing decisions.

Technology Selection. We next elaborate on the potential impact of stochastic modeling

on the estimated throughput cost and technology selection. Figure 17(a) depicts the costs of

throughput for the onshore and onboard systems calculated by the stochastic and deterministic
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(a) Fleet sizes calculated by the deterministic and
stochastic models

(b) Target and estimated throughput levels

Figure 16: Impact of modeling approach on capacity sizing - Onshore system.

models. Not surprisingly, the costs calculated by the deterministic model are lower than those

computed by the stochastic model for both technologies; this is due to the differences in the capacity

levels explained above. Likewise, the differences between the costs obtained by the deterministic

and stochastic models follow similar trends for both technologies. This is explained by the similarity

of the differences in the fleet sizes obtained by the deterministic and stochastic models shown in

Figures 15(a) and 16(a), and the fact that a buoy is much cheaper than a vessel.

Figure 17(b) displays the NPV and present values of the total cost differences between the

onboard and onshore systems calculated with deterministic models. This figure is very similar

to Figure 10, in which these differences are computed with stochastic models. Since the costs of

the designs obtained by the deterministic and stochastic models have similar patterns for both

technologies, the difference between the relevant costs and NPVs is not significantly affected by

stochastic versus deterministic modeling. As a result, the technology selection decision appears to

be robust with respect to how one models processing time variability in LNG shipping systems.

Benefit of Transshipment. As in §4.3, we analyze the benefit of transshipment for the on-

board technology with one unloading buoy, but now with deterministic models (again, our findings

remain similar for systems with multiple buoys). In this analysis, the deterministic model of the

transshipment based system consists of equations (4) and (5). Figure 18(a) illustrates the gap

between the target and estimated throughput levels when capacity choices are made using deter-

ministic models, but their throughput levels are evaluated with our stochastic models. When there

is a positive gap it is typically larger for the transshipment based system, because in such a system

vessels face additional sources of variability related to transshipment.

Figure 18(b) presents the difference between the NPVs of the onboard systems with and without
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(a) Throughput cost calculated by the deterministic
and stochastic models for onboard and onshore systems

(b) Technology comparison using deterministic mod-
els

Figure 17: Impact of modeling approach on technology selection.

transshipment obtained by the deterministic models. Compared to the stochastic case (see Figure

14), Figure 18(b) shows that the throughput intervals in which transshipment is beneficial are wider.

This occurs because the throughput estimates for deterministic and stochastic models are closer

for a system without transshipment than for a transshipment network. Nevertheless, the benefit

of transshipment remains marginal. Thus, whether one models stochastic variability is unlikely to

change our conclusions regarding the onboard technology configuration choice.

(a) Target and estimated throughput levels for the on-
board technology with and without transshipment

(b) Benefit of transshipment with deterministic
models

Figure 18: Impact of modeling approach on the configuration of the onboard system.

To sum up, our analysis reveals that although deterministic models are adequate to support the

technology and process architecture selection decisions, they may be inadequate to support capacity

sizing decisions: Deterministic models can lead to lower investments and missed opportunities since

they neglect the impact of process uncertainty. While it is obvious that a stochastic model of

throughput provides a lower estimate of the capacity of a processing network than that obtained
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by a deterministic model, which ignores congestion, we show that the difference in these estimates

is significantly higher for the onboard technology than the onshore technology. This insight is

relevant to LNG practitioners who, given their familiarity with the incumbent onshore technology,

may not want to deploy stochastic models to size emerging networks that use the new onboard

technology. Stated differently, we alert practitioners to the potential errors that may result from

overlooking stochastic variability in processing times that may lead to under investing in system

capacity leading to lower returns.

5. Conclusions

Motivated by current developments, we engaged executives at Excelerate Energy, a company that

is currently developing LNG supply chains based on the emerging LNG regasification technology,

to develop and apply to data an integrated analytic framework for technology selection in the LNG

industry. We analyze the impact of process configuration and operational and financial performance

on technology selection, identifying the conditions under which a specific regasification technology

and its configuration is appropriate for adoption. We also quantify the potential impact of model-

ing stochastic variability on the insights we derive. In addition, we measure the tradeoff between

the cost and benefits of increasing the modularity of the LNG processing network. We show how

the drawbacks of decreasing modularity can be mitigated through operational decisions. Some of

our insights attribute a different role to the emerging technology than currently envisioned; others

offer new perspectives on pressing issues encountered by those companies that are currently deploy-

ing this technology on a commercial scale. The application of our integrated analytic framework

provided novel guidelines to executives at Excelerate Energy for their strategic-level planning for

capital investments and operating decisions.

Our work could be extended in several directions. In this paper, we focus on technology innova-

tions in the regasification and transportation of LNG. Increased global LNG demand has also led to

several technology innovations in the upstream portion of LNG supply chains; for example, floating

offshore liquefaction facilities (FOLFs). Companies that are seeking alternatives to conventional

onshore natural gas liquefaction plants have expressed growing interest in FOLFs (Chazan 2009,

Tusiani and Shearer 2007, Ch. 5). These facilities can offer greater flexibility and lower cost and

capacity installation time compared to onshore liquefaction plants (Loo 2009). One could adapt

our integrated analytic framework to study the selection of technology for natural gas liquefaction.

We find that increasing modularity can require additional capital investment, and capacity

installation and processing time. We study the tradeoff between these three factors and the benefits
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supplied by increasing modularity in the context of the LNG industry. In general settings there

can be additional drawbacks and advantages associated with modularity that need to be identified.

One could extend our integrated analytic approach to other domains by enriching it with these

additional facets. One could then use our approach to understand the impact of modularity on

other processing networks, such as new product development processes, and identify the conditions

under which increasing modularity, without additional qualifications, can be used as a general

prescription.

We analyze the profit of an integrated LNG chain. However, LNG chains may include multiple

parties that manage different stages of the chain, such as LNG producers, shippers, and merchants,

who may have conflicting objectives. Our models of different LNG process architecture and/or

technology alternatives could be extended to include the perspectives of different parties within a

game-theoretic framework. These models could be used to analyze the impact of ownership and

contract terms on the architecture and technology choice within an LNG supply chain.
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Online Appendix

A. Glossary

AS: Ample server.

CQN: Closed queueing network.

FCFS: First come first serve.

FOLF: Floating offshore liquefaction facility.

LNG: Liquefied natural gas.

LNGC: Conventional LNG carrier.

LNGRV: LNG regasification vessel.

NPV: Net present value.

Option A: LNG network architecture using onshore-terminal regasification technology (see Figure

4(a)).

Option B: LNG network architecture using onboard regasification technology without transship-

ment (see Figure 4(b)).

Option B1: LNG network architecture using onboard regasification technology with fixed-point

transshipment (see Figure 5).

Option B2: LNG network architecture using onboard regasification technology with no-wait trans-

shipment (see Figure 5).

TL: Transshipment location.

TRAOT: Time-to-revenue advantage of onboard technology.

B. LNG and Regasification Technologies

The journey of LNG begins when natural gas, extracted from underground reservoirs, is sent to

a liquefaction facility through a pipeline. At the liquefaction plant, the natural gas is cooled to

minus 260 degrees Fahrenheit transforming it into LNG. LNG takes 600 times less space than

natural gas, which makes it feasible to transport it over long distances. LNG vessels load LNG at

the liquefaction facility and transport it to regasification terminals at remote demand locations.

At these import terminals, LNG is warmed back to natural gas, and finally pumped into pipelines

and sent to market.

There are two types of LNG import (regasification) terminals: onshore and offshore-onboard.

At an onshore terminal an LNGC unloads its LNG cargo to the storage tanks of the terminal as
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depicted in Figure 1(a). LNG in the storage tanks is then regasified by the regasification unit

and pumped into the local natural gas pipeline. At an offshore deepwater terminal (Figure 1(b)),

LNG is regasified onboard specialized LNGRVs that connect directly a pipeline. The primary

difference between onshore terminals and the offshore-onboard system is the regasification process:

At a deepwater port, regasification is done onboard by an LNGRV, whereas at an onshore terminal

LNG is regasified by the terminal.

As of October 2009, two offshore-onboard LNG import facilities operate in the U.S., the Gulf

Gateway and Northeast Gateway facilities, complementing nine onshore-terminal facilities (FERC

2009). Gulf Gateway is located 100 miles off the Louisiana Cost and has been operational since

2005. Northeast Gateway is located 13 miles off the Boston coast and has been operational since

2007. Both terminals were developed by Excelerate Energy using the onboard LNG regasification

and delivery technology called Energy Bridge.

C. Balance Equations for Fixed-point Transshipment based On-
board System Model

We partition the state spaceM into subsets according to the type of ship waiting for transshipment:

M− is the set of states where W < 0 (at least one LNGC is waiting for transshipment at Q2),M0

is the set of states where W = 0 (no ship is waiting for transshipment) andM+ is the set of states

where W > 0 (at least one LNGRV is waiting for transshipment at Q1). Then, letting I{·} the

indicator function, the balance equation for each state m ∈M can be formulated as

∀ m ∈M−,

π(W,n1, n2, n3, n5, n6)[I{n1 > 0}µ1 + n2µ2 + n3µ3 + (N1 − n1 − n2 − n3)µ4 + I{n5 > 0}µ5

+n6µ6 + (N2 − n3 − n5 − n6 +W )µ7]

= π(W,n1 + 1, n2 − 1, n3, n5, n6)µ1 + π(W − 1, n1, n2 + 1, n3 − 1, n5, n6)(n2 + 1)µ2

+π(W,n1, n2, n3 + 1, n5, n6)(n3 + 1)µ3 + π(W,n1 − 1, n2, n3, n5, n6)(N1 − n1 + 1− n2 − n3)µ4

+π(W,n1, n2, n3, n5 + 1, n6 − 1)µ5 + π(W + 1, n1, n2, n3, n5, n6 + 1)(n6 + 1)µ6

+π(W,n1, n2, n3, n5 − 1, n6)(N2 − n3 − n5 + 1− n6 +W )µ7;

OA-2



∀ m ∈M0,

π(0, n1, n2, n3, n5, n6)[I{n1 > 0}µ1 + n2µ2 + n3µ3 + (N1 − n1 − n2 − n3)µ4 + I{n5 > 0}µ5

+n6µ6 + (N2 − n3 − n5 − n6)µ7]

= π(0, n1 + 1, n2 − 1, n3, n5, n6)µ1 + π(−1, n1, n2 + 1, n3 − 1, n5, n6)(n2 + 1)µ2

+π(0, n1, n2, n3 + 1, n5, n6)(n3 + 1)µ3 + π(0, n1 − 1, n2, n3, n5, n6)(N1 − n1 + 1− n2 − n3)µ4

+π(0, n1, n2, n3, n5 + 1, n6 − 1)µ5 + π(1, n1, n2, n3 − 1, n5, n6 + 1)(n6 + 1)µ6

+π(0, n1, n2, n3, n5 − 1, n6)(N2 − n3 − n5 + 1− n6)µ7;

∀ m ∈M+,

π(W,n1, n2, n3, n5, n6)[I{n1 > 0}µ1 + n2µ2 + n3µ3 + (N1 − n1 − n2 − n3 −W )µ4 + I{n5 > 0}µ5

+n6µ6 + (N2 − n3 − n5 − n6)µ7]

= π(W,n1 + 1, n2 − 1, n3, n5, n6)µ1 + π(W − 1, n1, n2 + 1, n3, n5, n6)(n2 + 1)µ2

+π(W,n1, n2, n3 + 1, n5, n6)(n3 + 1)µ3 + π(W,n1 − 1, n2, n3, n5, n6)(N1 − n1 + 1− n2 − n3 −W )µ4

+π(W,n1, n2, n3, n5 + 1, n6 − 1)µ5 + π(W + 1, n1, n2, n3 − 1, n5, n6 + 1)(n6 + 1)µ6

+π(W,n1, n2, n3, n5 − 1, n6)(N2 − n3 − n5 + 1− n6)µ7.

The steady state probabilities, π(m), can be computed by solving the balance equations for all

states m ∈M simultaneously with the condition that these probabilities sum up to 1.
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