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Abstract: 

C.K. Brain documented two interesting patterns in the Pleistocene faunas of Swartkrans Cave, South Africa: (1) 

The earliest depositional units, Members 1 and 2, preserve high numbers of hominid fossils, while the numbers 

drop sharply in the more recent Member 3. (2) Burned bone specimens, which seem to have been altered in fires 

tended by hominids, appear for the first time in Member 3. It was suggested that mastery of fire provided a 

―shift in the balance of power‖, allowing hominids to carry out activities in the cave for the first time 

unmolested by predators. A lack of butchered bones in Members 1 and 2 and their presence in Member 3 

provided support for the hypothesis. However, we have now identified butchered bones in all three units. 

Further, our findings reveal a lack of variability in butchery patterns through time at Swartkrans; in all cases 

hominids appear to have been proficient carcass foragers. The real ―shift‖ at Swartkrans does not appear to be 

one of eventual hominid dominance over carnivores, but rather one of a predominance of leopards at 

Swartkrans in Member 1 times to the alternating presence of leopards and hyenas in Members 2 and 3. 

Consistent leopard presence in Member 1 seems to have discouraged hominid activity in the vicinity of the 

cave. In contrast, by the time Members 2 and 3 were forming hominids may have temporarily used the cave, 

taking advantage of those periods of carnivore absence. 
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Article: 

Swartkrans is one of the most paleoanthropologically important of a number of dolomitic cave sites located in 

the Sterkfontein Valley (Gauteng Province, South Africa). Nearly 60 years of research at Swartkrans has 

revealed the synchrony and sympatry of Australopithecus robustus and Homo erectus (e.g., Broom and 

Robinson, 1949, 1950, 1952; Clarke et al., 1970) and has yielded abundant archaeological evidence of the 

behavior of these hominids. Lithic artifacts and traces of a bone tool culture are known throughout the cave‘s 

earliest Pleistocene geological sequence, Members 1–3 of the Swartkrans Formation (e.g., Brain, 1985, 1989, 

1993a,b; Brain and Shipman, 1993; Brain et al., 1988; Clark, 1993; Egeland et al., 2004; Field, 1999; Pickering 

et al., 2004a,b, 2005a,b, in press).
1
 Abundant tooth marks and measures of skeletal element frequency indicate 

that a majority of hominid and other primate remains from Members 1 and 2, the earliest stratigraphic units of 

the site, were deposited in the cave as prey of carnivores (e.g., Brain, 1970, 1981, 1993a; Carlson and Pickering, 

2003; Pickering and Carlson, 2002; White, 1988). In addition, the absolute number of hominid fossils (as 

measured by the number of identified specimens, NISP) drops dramatically between Members 1 and 2 and the 

more recently deposited Member 3 assemblage (Brain, 1981, 1993a). Further, based on the estimates of 

minimum number of individuals (MNI), hominids comprise only 5% of the total number of mammals recovered 

from Member 3. This is compared to their 20% and 16% representation, respectively, in Members 1 and 2 

(Brain, 1993a). 

 

This decline in hominid numbers suggested to Brain (1981, 1993a) that a major change in hominid behavioral 

capabilities took place over time at the site. No longer was hominid presence at the site indicated primarily by 
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the remains of the unfortunate victims of carnivore predation. Rather, evidence of hominid presence takes a 

more prominently archaeological form in Member 3. Brain (1993a) thus argued for a ―shift in the balance of 

power‖ between hominids and carnivores, with the former actually being able to utilize space in the cave, 

unmolested by the latter, for carrying out activities. Based on comparison of the archaeology between Members 

1–3, this dramatic shift did not seem to be predicated on innovation in stone tool technology. Each of the three 

lithic assemblages is attributed to the Developed Oldowan or Early Acheulean and is indistinguishable 

technologically from the others (Clark, 1993; Field, 1999; Kuman, 2003). Instead, Brain (1993a,c; Brain and 

Sillen 1988) pointed to 270 burned bone specimens recovered from Member 3 to explain the shift. These are 

argued to have resulted from the first hominid control of fire at the site (and in the world; see also Bellomo, 

1994 for claims of similarly ancient fire control at Koobi Fora, Kenya), and it was this crucial advance that led 

to hominid primacy over carnivores at Swartkrans.
2 

 

Concurrent with the dramatic technological progression represented by domestication of fire, Brain (1993a) 

documented the presence of 16 butchered bones in the Member 3 fauna. Pickering et al. (2004a,b, 2005a,b, in 

press), in their analysis of the Member 3 limb bone shaft subassemblage,
3
 increased the total number of 

butchered specimens (including those that are cutmarked and hammerstone per-cussed) to 163. Taken together, 

Brain (1993a, 263) concluded: ―The presence of bones, including four burnt ones, bearing [butchery] 

marks...suggests that hominids were using stone tools for the removal of meat from bones while sitting round 

their camp-fires [in the cave].‖ Based on the combined available data, it seemed that the relationship of 

hominids to the cave had shifted radically by Member 3 times. No longer was Swartkrans a constantly 

dangerous place in which hominids entered at their own risk, many of whom fell to predation because of their 

unguarded boldness. The cave went from the exclusive domain of large carnivores to a place in which 

hominids, with the protection afforded by their control of fire, could linger in its mouth for extended periods of 

time and carry out activities, including carcass butchery. 

 

Several archaeologically testable predictions derive from this hypothesis. First, it was expected that Member 3 

would yield a relatively ―undisturbed‖ lithic assemblage created by the primary flaking activities of hominids 

using the cave as temporary shelter. This is in contrast to the incomplete assemblages that would be predicted in 

Members 1 and 2, which assumedly accumulated through periodic capture of surface materials through 

slopewash and hillside erosion, when hominids were not occupying the cave. These predictions are not met at 

Swartkrans; Field (1999) found that all three members yielded incomplete assemblages based her model of a 

primary flaking area and those of others (e.g., Schick, 1987; Kuman et al., 2005). 

 

Expanding on these results from lithic analysis, we evaluate here the ―shift in the balance of power‖ hypothesis 

using new zooarchaeological and taphonomic data generated on the limb bone shaft samples from all three 

Early Pleistocene members at Swartkrans. Our results also indicate that the hypothesis, as outlined above, needs 

to be modified. Specifically, we investigated the following predictions that emanate from the hypothesis: (1) the 

anatomical patterning of hominid butchery might take a different form in Member 3 compared to Members 1 

and 2; (2) traces of hominid butchery (i.e., cutmarks and hammerstone percussion damage) should be more 

frequent in Member 3 than in Members 1 and 2; (3) traces of carnivore feeding in the cave (i.e., tooth marks) 

should be less frequent in Member 3 than in Members 1 and 2. Our results show just slight differences between 

members with regard to these predictions. Further, in contrast to that expected by the ―shift in the balance of 

power‖ hypothesis, the one noteworthy change we document in taphonomic patterns is between Member 1 

versus 2 and 3, rather than between Members 1 and 2 versus 3. This change is from a near-exclusive leopard 

signal in Member 1 to a combination of leopard and hyena signals in Members 2 and 3. The specific scenario of 

local hominid ascendancy through the use of fire at Swartkrans is equivocal in light of these conclusions. The 

findings do not, however, diminish the wider importance of Swartkrans in preserving persuasive evidence of the 

earliest control of fire by hominids. The profound impact of that technological advance in human evolution is 

evident and we argue that Swartkrans should be drawn back into serious discussions of the topic. 

 

 

 



Materials and methods 

Systematic zooarchaeological analyses of the complete limb bone shaft samples from Swartkrans Members 1, 2 

and 3 (1979–1986 excavations) were conducted (Table 1). Limb bone shaft fragments were chosen as the 

analytical sample because most current, actualistic models of hominid carcass use focus in large part on limb 

elements (e.g., Blumenschine, 1988, 1995; Blumenschine and Marean, 1993; Blumenschine and Selvaggio, 

1988; Capaldo, 1995, 1997, 1998; Cleghorn and Marean, in press; Dominguez-Rodrigo, 1999a,b, 2002; Marean 

and Cleghorn, 2003; Marean et al., 1992, 2004; Pickering et al., 2003; Selvaggio, 1994, 1998; Selvaggio and 

Wilder, 2001). The reasons for this focus are articulated most explicitly in the work of Marean and Cleghorn 

(2003, 15), in which they demonstrate that limb bones are high survival elements, ―defined by the presence of 

thick cortical bone portions lacking cancellous bone.‖ In particular, limb bone midshaft fragments will be 

relatively abundant in most archaeofaunas of interest; because of their high bone mineral density and low nutri-

tional yields (i.e., they lack grease-laden trabeculae), they survive relatively well the rigors of density-mediated 

destruction throughout the biostratinomic and diagenetic phases of faunal assemblage formation (reviewed in 

Pickering et al., 2003; Marean and Cleghorn, 2003; Marean et al., 2004). Second, this set of high survival 

elements are ―sufficiently diverse and behaviorally sensitive to allow [zooarchaeologists] to ask interesting 

foraging theory questions.‖ (Marean and Cleghorn, 2003, 39). For instance, the upper (humerus and femur) and 

intermediate (radioulna and tibia) limb bones of ungulates bear significant amounts of overlying musculature 

and have large medullary chambers, while the lower limb bones (metapodials) are relatively meatless with small 

marrow cavities (Fig. 1). The variable representation of these elements in a faunal assemblage created by a 

biotic actor has the potential to inform about the foraging behaviors that were involved in producing it (e.g., 

hunting/ aggressive scavenging or early carcass access as indicated by a predominance of meat-bearing upper 

and intermediate elements versus passive scavenging or late carcass access as indicated by an abundance of 

metapodials; see discussions in Bunn, 1991, 2001; Dominguez-Rodrigo, 1997, 1999a,b, 2002; Dominguez-

Rodrigo and Pickering, 2003; Pickering and Dominguez-Rodrigo, 2006). 

      
 

Sampling 

We isolated two sub-samples for in-depth analyses from the limb bone shaft sample of each member. The first 

sample in each case is referred to as Analytical Set I and is comprised of every specimen ≥ 5 cm in maximum 

dimension plus every specimen <5 cm in maximum dimension that also preserves prehistoric bone surface 

modifications. Each Analytical Set I is considered ―unadjusted‖, in the sense that it is not comparable to 

modern, actualistically derived samples of human butchered and carnivore ravaged bones (see discussion 



below). It does, however, provide ―maximum‖ information on the frequency and distribution of hominid and 

carnivore bone surface modifications. NISP totals for Analytical Sets I are presented in Table 1. 

 

In addition to Analytical Sets I, we created adjusted samples, Analytical Sets II. The process used to create 

Analytical Sets II was conceived to make these sets, more so than the Analytical Sets I, comparable to 

actualistic samples that model the carcass-focused interactions of hominids and carnivores (see also, 

Blumenschine, 1995, 33–39). In each case, Analytical Set II was assembled by beginning with the original 

subassemblage of all limb bone specimens ≥ 2 cm in maximum dimension. It is important to stress that in 

contrast to Analytical Sets I, even specimens that bear bone surface damage but are <2 cm were excluded from 

Analytical Sets II. This is because the actualistic control samples (i.e., Blumenschine, 1988, 1995; 

Blumenschine and Selvaggio, 1988; Capaldo, 1995, 1997, 1998; Selvaggio, 1994, 1998) do not consider 

specimens <2 cm in maximum dimension. All specimens ≥ 5 cm were identified as specifically as possible. The 

most specific level of identification we achieved for many specimens was to skeletal element (humerus, 

radioulna, metacarpal, femur, tibia, metatarsal). We were able to categorize other specimens not identifiable to 

skeletal element to a limb segment, as an upper (humerus or femur), intermediate (radioulna or tibia) or lower 

(metapodials) limb fragment (Dominguez-Rodrigo, 1997, 1999a; Barba and Dominguez-Rodrigo, 2005). 

Specimens that remained unidentified after these steps were then simply entered into the database as limb bone 

shaft fragments. Due to time constraints, no specimen 2– <5 cm was identified beyond the level of limb bone 

shaft fragment; however, it is worth noting that a significant portion of these fragments are probably identifiable 

to skeletal part and will be considered in future analyses. 

 

Next, processes of diagenetic fragmentation and cortical surface degradation not operant in the modern 

comparative samples had to be controlled in the production of Analytical Sets II. The Swartkrans samples were 

obtained from deposits comprising two important variables: a wide array of lithological components, from fine-

grained particles to gravel and large rock fragments; and great depths of sedimentation (Brain, 1993b). The 

thickness of the deposits combined with their down-sloping morphologies resulted in significant pressure (static 

loading) on in situ bones, fracturing many of them after loss of their original organic content (=dry breakage). 

All specimens ≥ 5 cm were coded individually for breakage and surface preservation.
4
 However, because of the 

large sizes of the three assemblages, we were forced to adjust for these factors for specimens 2– <5 cm through 

a sampling procedure, rather than examining every specimen in this size range. This procedure is summarized 

below, using the Member 3 assemblage as a specific example: 

 

1. Starting from the initial NISP of 8352, we sampled randomly 1009 specimens between 2 and <5 cm. 

 

2. Within the new sample of 1009, we calculated the percentage of specimens with good cortical surface 

preservation (48.3%) and green (35.0%) versus dry (65.0%) breakage planes. 

 

3. Next we applied these percentages from the sample back to the starting NISP of 8352. Starting with the 

projection of well-preserved specimens, this is 8352 x 0.483 = 4034. 

 

4. Adjusting for dry breakage was accomplished by multiplying 4034 by the projected percentage of dry-

broken specimens (4034 x 0.65 = 2622). 

 

5. In order to reach a NISP estimate adjusted for green breakage, however, we first considered that the dry-bro-

ken NISP (2622) is inflated by the fact that each originally deposited bone was broken into at least two pieces, 

at least doubling the dry-broken NISP. Thus, the most conservative approach divides the dry-broken NISP by 

two (2622/2 = 1311). That estimate was then added to the green-broken NISP (4034 x 0.35 = 1412), resulting in 

a new NISP of 2723 of well-preserved and green-broken pieces. 

 

Because all specimens ≥ 5 cm were already coded individually for surface preservation and breakage, there was 

no need to follow the sampling procedure outlined above for specimens in this larger size range. Instead, to 

complete the construction of Analytical Set II for Member 3, we simply added the ―adjusted NISP‖ for 2–<5 cm 



specimens (2723) to the 428 specimens from Member 3 that are ≥ 5cm and display good cortical surfaces and 

green breaks. The resulting grand total of well-preserved, green-broken specimens is 3151, the final NISP for 

the Member 3 Analytical Set II. 

 

Animal body size 

In each Analytical Set, each specimen was assigned to an animal body size group, following the size class 

system constructed for bovids by Brain (1974, 1981). For some analyses, individual body size groups were 

combined into two broad categories: small (corresponding to Brain‘s Size Class 1 plus 2); large (the combined 

remains of Size Class 3 and larger). 

 

Bone surface modifications 

Identification of bone surface modifications was undertaken using criteria and methods reviewed by Blumens-

chine et al. (1996). Each specimen was inspected under a strong oblique light source with the aid of at least 10x 

magnification as recommended by several analysts (e.g., Bunn, 1981, 1991; Bunn and Kroll, 1986; 

Blumenschine, 1995; Blumenschine and Marean, 1993; Blumenschine and Selvaggio, 1988; Blumenschine et 

al., 1996). During examination of each specimen, the bone surface was continuously repositioned in relation to 

the light source in order to discern modifications of any appreciable depth. Although other classes of bone 

surface modification (e.g., ―random‖ striae, rodent gnaw marks, burning, alteration by gastric acids) were 

observed and noted, we systematically recorded only stone tool cutmarks and hammerstone percussion marks 

and carnivore tooth marks. 

 

Several researchers have stressed the potential of various abiotic processes to mimic hominid-imparted bone 

surface damage, complicating inferential associations of particular marks and hominid butchery activity (e.g., 

Behrensmeyer et al., 1986, 1989; Fiorillo, 1989; Oliver, 1989; Shipman and Rose, 1983). Thus, all specimens 

asserted to preserve hominid-imparted damage were subsequently examined by each researcher, and only after a 

unanimous decision was a specimen accepted and recorded as preserving the appropriate surface modification. 

Although time-consuming, this procedure was ultimately necessary for secure determinations. A prominent 

presence of abiotically derived linear striae (closely resembling stone tool cut-marks) was indicated by our 

many hours of experience with the curated collection and corroborated by observations of the sedimentary 

matrix from which the assemblage derives. As mentioned above, the Swartkrans deposits are complex karstic 

coluvia, consisting of materials ranging from clays to large angular clasts, which certainly held the potential to 

create abundant polish, abrasion and cutmark mimics on the recovered fossils. Thus, a configurational approach 

to butchery mark identification, in which we considered anatomical placement as well as mark morphology, 

was absolutely necessary in this archaeofauna (see Binford, 1981; Dominguez-Rodrigo et al., 2005; Pickering et 

al., 2000). 

 

In addition to simply identifying the presence of carnivore tooth marks (including crenulation, punctures, 

notches, scores and pits), we followed a growing body of research aimed at identifying taxon-specific patterns 

of bone modification (Haynes, 1983; Selvaggio, 1994; Selvaggio and Wilder, 2001; Dominguez-Rodrigo and 

Piqueras, 2003; Pobiner and Blumenschine, 2003; Pickering et al., 2004b). In particular, Selvaggio (1994) and 

Dominguez-Rodrigo and Piqueras (2003) have presented comparative data on tooth pit, which appear as diffuse, 

roughly circular depressions on bone cortices (Blumenschine et al., 1996; Pickering and Wallis, 1997) and are 

created by the incidental contact of tooth cusps during normal feeding by carnivores. While data on tooth pits 

dimensions are available for several extant taxa of African carnivores, we decided the data on leopard and 

hyena tooth pits are the only relevant ones for our present comparative analyses. We made this determination 

because leopards and hyenas are the only taxa (for which modern data are available) that regularly create 

collections of bones in shelter sites (e.g., Brain, 1981).
5
 Except probably in the case of the genus Homotherium 

(e.g., Marean and Ehrhardt, 1995), it is still an open question whether extinct sabertooth cats generated bone 

accumulations at ―feeding sites‖. Future research will hopefully elucidate this issue. In the meantime, we simply 

state that our results are subject to revision should future data lead to convincing inferences of bone collecting 

by other sabertooth cats. We also note that sabertooth cat remains are extremely rare in the Swartkrans faunas. 

Less than a total of 10 specimens of Megantereon cultridens and Dinofelis sp. is known only from the Hanging 



Remnant and Member 3, while no remains at all of Homotherium have been recovered from the site (Brain, 

1981; Watson, 1993). 

 

 

 



As with butchery marks, an unanimous consensus was reached among all analysts before accepting a tooth 

mark as such. Each identified tooth pit was molded using Colténe© brand President Fast JET Light Body© 

polyvinylsiloxane. This step was taken both to avoid damaging fossils with caliper edges and to increase the 

clarity of pit borders for more accurate measurements (for more details see, Pickering et al., 2004b). Tooth pit 

length and breadth maxima (following Selvaggio, 1994; Domínguez-Rodrigo and Piqueras, 2003) were 

measured to the nearest 0.1 mm on these molds using high precision calipers. Each pit was measured twice and 

the mean used in analyses. Those pit molds too diffuse to allow a clear demarcation of pit borders were 

eliminated from the analysis. Tooth pit dimension data were normalized using log-transformation prior to 

comparative statistical analyses. 

 

Results and discussion 

Anatomical patterns of butchery marks: assessment of hominid carcass foraging capabilities 

Data on the anatomical locations of stone tool cut-marks, on both the intra-skeletal and intra-bone levels, are the 

most convincing and direct indications of the timing of hominid access to animal carcasses (e.g., Bunn, 1982; 

Bunn and Kroll, 1986; Domínguez-Rodrigo, 1997, 1999a, 2002; Domínguez-Rodrigo and Pickering, 2003; 

Pickering and Domínguez-Rodrigo, 2006). We believe the most behaviorally informative comparisons in our 

sample are between upper plus intermediate elements and metapodials. The upper and intermediate limb bones 

of ungulates are similar in being heavily muscled and possessing capacious medullary cavities that house 

abundant marrow, while metapodials lack overlying meat and have constricted marrow chambers (Fig. 1). From 

here, we refer to the former class of bones as ―meat-bearing‖. We are of the opinion that the presence of 

butchered meat-bearing limb bone midshaft specimens in an archaeofauna indicates early access by hominids to 

animal carcasses. The midshaft portion of meat-bearing limb bones is a region defleshed early in the feeding 

sequence of a carnivore that has primary access to a carcass. For example, Domínguez-Rodrigo (1999a) 

observed that meat-bearing limb bones from 28 ungulate carcasses displayed a paucity of adhering flesh after 

ravaging by lions; midshaft sections on upper limbs in this dataset displayed a complete lack of flesh scraps, 

while flesh scraps on the midshaft portions of intermediate limb bones were poorly represented after lion 

ravaging. Assuming that the prehistoric carnivores of Swartkrans operated similarly, there would be no reason 

for hominids to have imparted cutmarks on meat-bearing limb bone midshafts had they been relegated to 

scavenging passively (i.e., late access to carcasses) from the remains of picked-over carnivore kills (see, Bunn, 

2001; Domínguez-Rodrigo, 2002; Domínguez-Rodrigo and Pickering, 2003; Pickering and Domínguez-

Rodrigo, 2006). In fact, there would be good reason not to put a stone tool to an exposed, meatless portion of 

bone since doing so would simply dull the cutting edge of that tool (e.g., Bunn, 2001). Experimental butchery 

data corroborate the eloquent argument, based on logic, that cutmarks are unexpected on previously defleshed 

limb bone midshafts. For example, analyses of Domínguez-Rodrigo‘s (1997, 1999a) and Nilssen‘s (2000) large, 

modern datasets demonstrate convincingly that cutmarks from activities other than defleshing (i.e., skinning, 

disarticulation) almost never occur on meat-bearing limb bone midshafts. 

 

 



Based on the non-adjusted data (utilized in this analysis because of the small sample size), there are more 

butchered meat-bearing specimens than metapodials in the assemblages from all three Swartkrans members 

(Table 2). Butchered meat-bearing specimens comprise 91.7%, 65.4% and 71.4% of the total butchered samples 

(minus skeletally unidentifiable specimens) in Members 1–3, respectively (Fig. 2). The differences in 

percentages are not statistically significant (χ
2
 = 2.8, 2 df, p < 0.5), suggesting a similar degree of high 

competence in carcass acquisition abilities for Swartkrans hominids (i.e., early access to preferred, heavily 

muscled carcass parts) through the time span covered by Members 1–3. It thus seems unlikely that the possible 

control of fire during Member 3 times increased relative success in carcass foraging. Our data suggest instead 

that hominids were hunting and/or aggressively scavenging much earlier, at least as early as Member 1 times. 

 
 

Frequencies of butchery and carnivore feeding damage: assessment of assemblage formation 

While the anatomical pattern of butchery damage points to little difference in hominid carcass foraging 

capabilities across time, overall frequencies of butchery damage are very low in all members, not even close to 

matching frequencies in experimentally butchered control samples (see note [1] in Table 3 legend). This is the 

case whether viewing the unadjusted data of Analytical Sets I (Table 2) or the adjusted data of Analytical Sets II 

(Table 3). Carnivore damage frequencies are also very low compared to modern actualistic samples (see note 

[1] in Table 3 legend). This is not surprising considering the depositional nature and time depth of the 

Swartkrans faunas: like most other South African cave assemblages, the Swartkrans assemblages were formed, 

at least in part, by secondarily deposited material derived from the cave‘s surface catchment. Over long periods 

of time it is likely that abiotic processes in addition to biotic actors not dealt with systematically in this study 

(e.g., rodents) contributed significantly to assemblage formation, deflating the measures of the relative con-

tributions of hominids and carnivores. In the final evaluation of our data, however, it is still fair to conjecture 

that Swartkrans was always a place of only moderate focused activity by both hominids and carnivores—a 

decidedly different notion of the cave than the textbook perception of an intensely dynamic micro-environment. 

 

Another interesting result is the trend of weakly increasing butchery mark and decreasing tooth mark 

frequencies through time at Swartkrans (Table 3). At first glance these results seem to support the ―shift in the 

balance of power‖ hypothesis, with the eventual near-eviction of carnivores by hominids by Member 3 times. 

However, deeper inspection of the data reveals that the variation is actually more nuanced. Only one of the 

differences in either type of frequency across members—butchery mark frequencies between Members 1 and 



3—is significant (Table 4). Similarly, differences in tooth mark frequencies approach significance only between 

Members 1 and 3. All this suggests that as hominid and carnivore relationships transformed over time, the 

change was probably more subtle than hominids simply becoming dominant over carnivores. We present 

carnivore tooth mark and other data in the next section that substantiate this view. 

     
 

Tooth mark dimensions and complementary taphonomic indicators: assessment of carnivore taxonomy and 

cave use through time 

Table 5 summarizes tooth pit dimensions for Swartkrans Members 1–3, while Fig. 3 provides graphic 

comparison of these dimensions with the modern tooth pit data on leopards and hyenas. Data are broken down 

by inferred body sizes of the animals from which tooth pitted specimens derived (small = Size Class 1 plus 2; 

large = Size Class 3 and larger). Considering the data collectively, one-way ANOVA indicates that the 

Swartkrans tooth pit lengths (F = 7.02, 2 df, p = 0.001) and breadths (F = 12.96, 2 df, p = 0.00) are significantly 

different between members. 

 

For all three members, the mean values for tooth pits on bones from small animals are less than those for pits 

typically created by hyenas but similar to those created by leopards. The same holds for tooth pits on large 

animal bones recovered from Member 1. Of course, hyenas can also create small, ―leopard-sized‖ pits, but the 

limited ranges of variation for the small animal bone samples from Members 1–3 and the large animal bone 

sample from Member 1 are more in line with populations of leopard-rather than hyena-generated pits (Fig. 3). 

Proposing that leopards were the primary collectors of the small animals in all three members is unsurprising 

given that such sized prey is typical of leopards (e.g., Brain, 1981). The more tenuous link suggested here is 

between leopards and the collection of larger animals in Member 1. We note, however, that leopards are known 

to occasionally kill Size Class 3 animals (e.g., Bailey, 1993; Bertram, 1982; Grobler and Wilson, 1972; Kruuk 

and Turner, 1967; Pienaar, 1969; de Ruiter and Berger, 2000; Schaller, 1972; Scott, 1985). That rare capture of 

large prey by leopards could account for the leopard-sized tooth pits on large animal specimens in Member 1, as 

well as for the relatively low frequency of tooth-marked specimens (10.6%; Table 2) in the total large animal 

bone sample from that member. Like other cats, leopards are primarily carcass defleshers rather than bone 

crushers and thus create minimally tooth-marked faunal accumulations (e.g., Dominguez-Rodrigo et al., in 

press). 

 

Frequencies of tooth-marked specimens within the total large animal bone samples from Members 2 (19.7%) 

and 3 (26.8%) are significantly higher than in Member 1 (Member 1 versus Member 2: χ
2
 = 8.4, 1 df, p < 0.01; 

Member 1 versus Member 3: χ
2
 = 34.7, 1 df, p < 0.001). These observations agree with a hypothesis that, in 

contrast to the large animal bone sample from Member 1, hyenas created the large animal bone subassemblages 



recovered from Members 2 and 3. In addition, tooth pit dimensions on large animal bones from Members 2 and 

Member 3 exceed those documented for leopards by several orders of magnitude. Although there are extensive 

ranges of variation evinced in the large animal bone pit samples from Members 2 and 3, it is the large maximum 

values for pit length and breadth and their correspondingly high means that are most important in leading to an 

inference that hyenas created these samples (Table 5). Simply said, leopards are not capable of creating pits of 

the great size (>2.2 mm) prevalent in the large animal bone samples from Members 2 and 3 (Dominguez-

Rodrigo and Piqueras, 2003). Any tooth pit longer or broader than 2.2 mm is very likely to have been created by 

a carnivore with more robust teeth and stronger jaws than possessed by a leopard. Of the species considered in 

this study (see above in methods section), hyenas are just such a carnivore. 

 
Independent data are available to test the hypothesis that leopards were primarily responsible for small carcass 

collection in Swartkrans Members 1–3 but for large carcasses only in Member 1, with a shift to large carcass 

collection by hyenas in Members 2 and 3. Local ecological conditions impact the intensity with which any 

carnivore(s) ravages a carcass. For example, even hyenas show reduced levels of carcass ravaging when they 

experience low competition and/or a glut of edible biomass (Dominguez-Rodrigo and Organista, in press). 

However, all conditions being equal, the standard taphonomic prediction is that a hyena-generated bone 

assemblage will appear more intensely ravaged than one produced by a leopard. Hyenas possess astonishingly 

robust teeth, driven by powerfully thick jaw muscles (e.g., Ewer, 1973; Brain, 1981). Equipped with this 

impressive masticatory battery, they are able to demolish prey skeletons and gain access to the nutrient-rich 

marrow contained within bones. Indeed, hyenas were and are among the most effective mammalian destroyers 

of bone to ever have existed (Sutcliffe, 1970). This characteristic means that carcass destruction by hyenas is 

often more complete than that of other carnivores with lesser chewing capabilities. 

 

Applying this conventional wisdom, the Swartkrans Member 1 fauna should appear less ravaged than do the 

Member 2 and 3 assemblages, given the postulated predominant role of leopards in the formation of Member 1 

and hyenas in Members 2 and 3. Building on the work of others (e.g., Brain, 1967, 1981; Bunn, 1983; 

Blumenschine and Marean, 1993; Marean et al., 1992; Capaldo, 1995), Dominguez-Rodrigo and Organista (in 

press) have created three indices based on MNE estimates to measure ravaging intensity in a faunal assemblage 

(in each case, leopard-derived assemblages should resemble a non-ravaged assemblage more closely than does a 

hyena-derived one): 



(1) Axial bones (ribs and vertebrae, minus sacral and caudal vertebrae): limb bones—a non-ravaged carcass 

will show a higher frequency of axial bones than appendicular bones because of the higher numbers of the 

former in a complete carcass. 

 

(2) Femora: tibiae—a non-ravaged carcass will have a ratio of 1. Because femora are overall less dense than 

are tibiae (e.g., Lam et al., 1998), ratios progressively closer to zero should indicate a greater degrees of carcass 

ravaging. 

 

(3) Proximal humeri plus distal radii: distal humeri plus proximal radii—a non-ravaged carcass will show a 

ratio of 1. The proximal humerus and distal radius are among the least dense limb portions of ungulate 

forelimbs (e.g., Lam et al., 1998), and because of this these portions are predicted to be preferentially deleted by 

bone-consuming carnivores. The lower the number of these least dense portions, the greater the degree of 

ravaging. 

 
Table 6 summarizes that two of the ratio results (femora: tibiae and proximal humeri + distal radii: distal radii + 

proximal humeri) we derived from published sources meet the predictions of our hypothesis of primary carcass 

input by leopards in Member 1, with a turn-over to hyenas in Member 2 and 3 times. Inter-assemblage results 

for axial bones: limb bones ratios are less distinct. In any case, assessment of these ancillary results need to be 

tempered by the fact that the Swartkrans assemblages derive from decidedly different depositional contexts than 

do the Olduvai Bed I (Tanzania) archaeofaunas for which the ravaging indices were developed. In most cases, 

those latter assemblages are composed of predominantly green-broken bone fragments and were often 

recovered from single thin depositional horizons (Dominguez-Rodrigo and Organista, in press). The contention 

in these cases is that carnivore ravaging was the predominant process acting to delete less dense bones and bone 

portions from the accumulated assemblages. As discussed above, the Swartkrans faunas, in contrast, were 

recovered from great depths of deposit and accordingly display a high degree of dry breakage. In these cases, 

additional ―density mediated processes‖, including sediment compaction and rock fall, were also likely major 

contributing forces in removing less dense bones and bone portions from the accumulated assemblages. 

Fortunately, this aspect of the Swartkrans faunas does not impact the interpretations of tooth mark and body size 

data as put forth above. 

 

In summary, we infer the consistent presence of leopards throughout Members 1–3. Recovery of leopard 

remains from all three members (e.g., Watson, 1993) corroborates this inference. However, leopard food residue 

input seems to be largely limited to small carcasses by Member 2 and 3 times. It is unlikely that leopards and 

hyenas shared the cave during the formation of Members 2 and 3, suggesting serial occupation of the site by the 

two taxa. This conclusion can be interpreted variously, but we present below an interpretation that best matches 

the other lines of independent data presented in previous sections. 

 

Synthesis and conclusions 

Putting together the various pieces of evidence discussed above, we have formulated a model of hominid–

carnivore dynamics through time at Swartkrans Cave, which has implications for the ―shift in the balance of 

power‖ hypothesis. The six basic points of the model are as follows: 



(1) We agree with Brain (e.g., 1981, 1993a) that the majority of hominid skeletal remains recovered from 

Swartkrans Members 1–3 were deposited by feeding carnivores (who presumably also preyed upon those 

hominids). 

 

(2) The other type of hominid presence at Swartkrans that can be inferred from the paleoanthropological 

record is a behavioral one. Stone and bone tool assemblages are known from all three members (e.g., Brain and 

Shipman, 1993; Clark, 1993; Field, 1999), as well zooarchaeological remains, as documented in this paper. 

Judging from the small size of the artifactual samples and the paucity of butchered bones, that presence was, 

however, relatively ephemeral during the span of time each member was being deposited. 

 

(3) We infer at least two reasons for this relatively ephemeral presence. First, each of the three faunal 

assemblages is very large, the frequency of its hominid-derived components ―swamped‖ by osseous con-

tributions from many other types of taphonomic agents and processes (e.g., Brain, 1981; Pickering, 1999). 

Second, except possibly in the case of Swartkrans Member 3 (see below), it is very unlikely that hominids ever 

actually spent considerable time in the caves of the Sterkfontein Valley. The form of many Pleistocene caves, 

with steeply vertical entrances, was unlikely to have been conducive to hominid occupation (e.g., Pickering, 

2002). As discussed above, taphonomic evidence also suggests that the caves were, in general, dangerous 

places, the haunts of large predators (e.g., Brain, 1981, 1993a). 

 

(4) That said, we recognize the great time depth represented by each geological member of the Swartkrans 

Formation. There is no consensus about sedimentation rates for infilling the South African caves (e.g., Brain, 

1993b; Partridge, 1978, 1985; McFadden et al., 1979; Tobias et al., 1993; Clarke and Tobias, 1995; McKee, 

1996; Tobias and Clarke, 1996), but it is possible that it took tens to hundreds of thousands of years to 

accumulate the average depositional thicknesses represented in each member at Swartkrans. That means that in 

addition to concurrent use of the cave by various taphonomic agents, it could have also been used serially 

during the formation of each member. This is certainly the case over much shorter, humanly observable spans 

of time in modern, African shelter sites (e.g., Mills, 1990). 

 

(5) Given the likelihood of serial use of Swartkrans, our admittedly crude (but currently best available) infer-

ence, based on tooth pit dimensions, is that leopards were the major carnivore to use the site as feeding lair 

during the entire depositional phase of Member 1. Modern behavioral observations (e.g., Corbett, 1954; Pienaar, 

1969; Altmann and Altmann, 1970; Saayman, 1971; Isbell, 1994; Boesch, 1991; Fay et al., 1995) and inferences 

of the fossil record (e.g., Brain, 1981, 1993a) agree that leopards are/were successful predators of primates of 

early hominid body size. Together, we believe that the consistent and dangerous presence of leopards for the 

duration of Member 1 times was more than sufficient to deter regular hominid activity in and around the cave. 

 

(6) Tooth pits of hyena dimension appear in the Member 2 and 3 faunas. A salient inference that arises from 

these data is that the orientation of the cave‘s entrance(s) may have changed from roughly vertical during 

Member 1 (which would have effectively limited hyena but not leopard access) to more horizontal in Members 

2 and 3. Other lines of evidence, including geomorphological reconstructions of a gently sloping gully for 

Member 3 (e.g., Brain, 1993b), support this inference. This means that the cave would have also been more 

conducive to hominid use at these times. More importantly, the irregular presence of leopards during the 

formation of Members 2 and 3 presented hominids with periods of relatively safe access to the cave. 

 

The trend of weakly increasing butchery mark and decreasing tooth mark frequencies through time at Swartk-

rans agrees with this model. Leopard predation was still a potential danger to hominids at various stages during 

which Members 2 and 3 were forming, but it was a less consistent one compared to its impact during Member 1 

times. Our taphonomic data seem to indicate that hominids took advantage of the lessening predation pressure 

as early as Member 2 times, when butchery mark frequencies began to rise, tooth mark frequencies lowered and 

hyenas appeared as major bone modifiers. These trends were amplified during the formation of Member 3, but 

their initiation in Member 2 is significant because there is no evidence of burned bones in that earlier-formed 

unit (Brain and Sillen, 1988; Brain, 1993c). The ―shift in the balance of power‖ hypothesis is partly predicated 



on the protection from predation afforded to hominids by their control of fire. In contradistinction, our data 

suggest that rather than a shift in the balance of power, contrasting taphonomic patterns throughout Swartkrans 

Member 1–3 might instead reflect opportunistic use of the cave by hominids when leopards vacated it 

periodically. Further, butchery mark data from all three members are consistent in suggesting early access to 

choice carcass parts by hominids, implying that control of fire had little impact on these capabilities as well. 

 

These specific inferences do not, of course, diminish the general importance of the control fire in human 

evolution. It was the advance that allowed early hominids to eventually render novel foods edible and to 

colonize new lands in high latitudes and at high altitudes previously too cold to occupy. We believe that 

Swartkrans still represents one of the best early contexts for investigating the emergence of this essential human 

technology. Three independent lines of evidence—histological, chemical and spatial (Brain and Sillen, 1988; 

Brain, 1993c; Sillen and Hoering, 1993)—converge to present a compelling case for hominid control of fire at 

Swartkrans. We do not mean to imply that the Swartkrans data are above critique, but it is frustrating that, for 

example, a heralded recent report on early fire fails to even comment on them (Goren-Inbar et al., 2004). 

 

It is our hope that a newly initiated round of fieldwork at Swartkrans will produce more data to clarify the fire 

issue and rectify dismissal of the site from some current discussions of this vital human technology. In that case, 

the clear challenge remaining will be to accommodate the sympatry of A. robustus and H. erectus at Swartkrans 

into scenarios of fire use, as it has been for other aspects of hominid behavioral ecology in the region (reviewed 

in Pickering, 2006). Conventional wisdom assigns authorship of the technology (e.g., artifacts) and its 

functional residues (e.g., butchery damage) preserved at Swartkrans to the more ―human-like‖ species H. 

erectus. But, unbiased consideration of the evidence can only lead to the conclusion that a choice is not yet 

possible. In view of our current inferential limitations, it is likely that discerning the party or parties responsible 

for fire will remain equally intractable. The conclusions reached in this study indicate that one or both of those 

parties was/were an adept procurer(s) of ungulate carcasses, gaining access to and exploiting the most nutritious 

components of those resources before potential competitors. It seems that the hominids in question were not, 

however, completely immune to the dangers presented by those potential competitors. In particular, taphonomic 

traces of carnivores are present in each of Members 1–3 faunas, implying that they were never completely 

evicted from the cave by hominids. Instead, it appears that the periodic absence of leopards during the 

formation of Members 2 and 3 was the rather mundane factor exploited by hominids in their gradually more fre-

quent use of the cave. 

 

Notes: 
1 

Currently, there are five recognized geological members in the Swartkrans Formation, with Members 1–3 

preserving fossil and archaeological materials that derive from the Early Stone Age (ESA) (Brain, 1993b). 

Member 1 is further subdivided into the Lower Bank and Hanging Remnant infills. The cave‘s stratigraphy is 

extremely complex, having formed through a number of cycles of deposition and erosion. Swartkrans lacks 

volcanic material, so its members have been difficult to date absolutely; however, a recent electron spin 

resonance date of 1.6 Myr old for the Hanging Remnant of Member 1 (Curnoe et al., 2001) corresponds broadly 

with age estimates based on biostratigraphy. The most recent taxonomic analyses of the Swartkrans bovids and 

primates conclude that the three members cannot be differentiated chronometrically, and each is estimated to be 

between c. 1.8 and 1.4 or 1.0 Myr old (e.g., Brain, 1993a; Delson, 1988; Vrba, 1982). However, a combination 

of studies on sedimentology, stratigraphy and faunal seriation and archaeology suggest that the units are discrete 

and time successive, with the Member 1 Lower Bank representing the first of the four infills, followed by the 

Hanging Remnant, Member 2 and, most recently, Member 3 (Brain, 1993a,b; McKee et al., 1995). Our analyses 

exclude Hanging Remnant materials because, in contrast to the Lower Bank and Members 2 and 3 samples 

(Brain, 1993b), they were collected with relatively uncontrolled excavation. 
2
 While two burned bones are also known from Member 2, ―[i]t is expected that occasional lightening-induced 

fires would have swept through the grassland at the cave‘s entrance and could have ignited logs and branches 

lying there, which in turn may have heated pieces of bone on the cave floor [during Member 2 times]‖ (Brain, 

1993c, 238). In contrast, the Member 3 burned bone specimens were recovered from a 6 m deep profile, 

throughout a laterally restricted area, which was a gully during Member 3 times. Referring to just one of the 



excavation units in Member 3, as an example, ―burnt bones occur in 23 excavation spits, each 10 cm deep, 

indicating that the bones were heated in frequently recurring fires during the deposition period of this 

stratigraphic unit, which may have spanned several thousand years. The spatial distribution of the burnt bones 

suggests strongly that the fires occurred within the confines of the gulley, which was beneath a dolomite roof 

and had an inclined entrance towards the southeast‖ (Brain, 1993c, 240). Finally, chemical and histological 

studies of these fossils suggest that they were heated in fires that reached temperatures equivalent to those 

measured in fires created and tended by modern humans (Brain and Sillen, 1988; Sillen and Hoering, 1993). 
3
 Limb bone shaft specimens are defined here as pieces from ungulate humeri, radioulnae, metacarpals, femora, 

tibiae and metatarsals that preserve less than their complete, original diaphyseal circumferences and do not 

possess their articular ends (modified from Pickering, 1999; see also Pickering et al., 2003).
 

4
 For assessment of cortical surface preservation, each fossil specimen was assigned to a subaerial weathering 

stage (Behrensmeyer, 1978). In addition, our observations suggest that bone surface preservation on specimens 

from Swartkrans was also affected by various diagenetic processes, including water action, manganese 

formation and soil leaching. Thus, to account for overall surface condition, a subjective score of poor, moderate 

or good was assigned to each specimen (e.g., Pickering, 1999; Pickering et al., 2000). This is a qualitative 

assessment used to convey the relative ―fidelity‖ of current bone surfaces for continuing to preserve prehistoric 

bone surface modifications. Distinguishing green- from dry-broken fracture edges is relatively simple. Green 

fractures occur on bone before loss of its organic fraction and are associated with smooth release surfaces and 

possess fracture angles (i.e., the ―angle formed by the fracture surface [of a broken bone and its] cortical 

surface‖ [Villa and Mathieu, 1991, 34]) <85° or >95° (Pickering et al., 2005a). In contrast, dry fractures occur 

after loss of a bone‘s organic content and are characterized by fracture angles closer to 90°.
 

5
 Using tooth pit dimensions to identify its carnivore creator is still a relatively unrefined analytical technique; it 

is not yet possible to allocate a pit to a particular species or even genus. Instead, pit dimensions can discriminate 

between three groups of carnivores based on jaw and tooth size and strength. Larger-bodied carnivores (group 

1: hyenas and lions), with more robust dentitions and greater masticatory power can generate larger tooth pits 

on cortical bone surfaces than can intermediate (group 2: dogs, leopards and cheetahs) and smaller (group 3: 

jackals) carnivores. Most of the tooth pits created by carnivores in each group (95%) can be understood within a 

certain size range, defined by a mean and a 95% confidence interval. In this context, it is opportune that hyenas 

and leopards occupy distinct groups and that lions, cheetahs and jackals can all be eliminated from 

consideration in the context of Swartkrans, since none are known to accumulate bones in caves. In addition, 

experimental work has also revealed that whereas group 1 carnivores can create the entire known size range of 

pits, from very small to very large, for group 2 and 3 carnivores tooth pit sizes reach maximum thresholds. 

More specifically, leopards have never been reported to create pits >2.2 mm on dense cortical bone—well under 

the mean size for hyena-created tooth pits (Dominguez-Rodrigo and Piqueras, 2003). Differentiating among 

carnivore groups is thus relatively reliable when using a large number of tooth pits and considering their entire 

size range.
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