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ABSTRACT 

Pharmacogenomics and personalized medicine promise to improve 

health care for chronically ill patients by increasing drug 

effectiveness and minimizing side effects of drug therapy. There 

may also be substantial savings realized by eliminating costs 

associated with failed treatment. Since these issues are not 

adequately explored across disease areas, the overall economic 

impact of personalized medicine remains uncertain. Using asthma 

as illustration, this paper describes a new framework for 

analyzing the potential value of using a pharmacogenomic 

diagnostic test in clinical practice. 
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Broadly considered, personalized medicine is the use of 

molecular markers to guide the diagnosis and treatment of 

disease toward the characteristics of individual patients. It 

derives from the idea that an apparently indistinct disease seen 

in a population reflects a group of distinct molecular disorders 

in individuals, generating inter-patient variability in disease 

progression and treatment response. [1-3] Individual variation 

accounts for a wide range of medical and economic consequences, 

from inefficiencies in drug discovery and development to 

ineffectiveness of drug treatment to drug-induced morbidity and 

mortality. Addressing these consequences via personalized 

medicine could benefit patients, and impact health care 

providers and payers, and the pharmaceutical industry. [4-6]  

The techniques of personalized medicine — including molecular 

diagnostics, pharmacogenomics, and targeted therapies — provide 

a direct link between pathogenic molecular mechanisms and 

clinical symptoms. When appropriate markers are known, 

diagnostic tests allow precise diagnosis and dosing, prediction 

of disease progression, prediction of treatment response and 

prediction of adverse drug reactions for individual patients. 

Pharmacogenomic markers, probably the most widely discussed 

molecular markers, would use genomic information to 

individualize disease diagnosis and treatment. Throughout this 

paper, we use the term pharmacogenomics to refer broadly to the 
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relationship between gene variation and drug effect. Though 

sometimes used interchangeably, pharmacogenetics has been most 

often used  in the research literature in connection with 

variation in drug metabolizing enzymes. (See Bailey or Evans) 

Pharmacogenomics promises safer and more effective drug 

treatment, biomarkers to guide drug discovery at its earliest 

stages, and a context for prioritizing future advances in 

medical treatment on the basis of the relative safety, efficacy, 

or dosing regimens of existing and potential therapies. [7-10] 

There may also be substantial savings realized by eliminating 

costs associated with failed treatment. But pharmacogenomics 

presents many challenges to our health care, drug development, 

medical education, regulatory, and social systems. [11] The 

potential costs are also numerous — more expensive drugs, 

threats to patient insurability, reduced drug revenue, increased 

regulatory complexity, reduced physician independence, and 

threats to personal privacy. Since these issues are not 

adequately explored across disease areas, the overall economic 

impact of personalized medicine remains uncertain. 

Economic analyses of pharmacogenomics have focused on cost 

effectiveness and cost benefit. Typically the data for these 

kinds of analyses in health care come from population-based 

studies, such as randomized controlled trials or cohort studies. 

[12] But for most indications, a pharmacogenomic intervention 
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has not yet been developed, so a population-based study 

comparing interventions is impossible. University of Washington 

researchers developed a set of cost-effectiveness criteria for 

considering specific disease, drug, and genetic test 

combinations. [13] A cost impact analysis from ATKearney 

predicted that total revenues for current blockbuster drugs in 

the cholesterol-lowering and arthritis markets would decline, 

that pharmacogenomics would reduce potential revenues for drugs 

that show only reduced side effects but no improved efficacy 

over existing technology, and that, depending on the indication, 

overall market size could increase using pharmacogenomics to 

address currently unmet medical needs. [14]  

Currently absent in the debate emerging around 

pharmacogenomics is a framework for evaluating its benefits that 

is robust and sensitive to all its potential advantages. A 

modified cost offset analysis could demonstrate whether 

pharmacogenomics would prove worthwhile in economic terms. A 

cost offset is recognized if greater utilization of one aspect 

of health care, say pharmaceuticals, reduces the use of other 

types of health care. Although cost offset studies are rarely 

able to take account explicitly for treatment response, in the 

United States they have proven of interest to payers to make 

decisions about coverage. [15, 16] Were it possible through a 

diagnostic test to identify who would not respond to a given 
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therapy, the costs of non-response could be eliminated for many 

patients and reduced for the population as a whole—thereby 

generating a cost-offset relative to treatment costs in the 

absence of such a test. Key variables determining this potential 

cost offset are the sensitivity of the test, cost of the test, 

effectiveness of personalized treatments, and the relative costs 

of responders and non-responders. 

This paper presents an analytical framework for considering 

many of the tradeoffs that may arise when a diagnostic test is 

used to predict drug response. We offer an empirical test of 

these ideas, using patients with asthma to illustrate the 

framework. These results could potentially guide future economic 

evaluation of new diagnostic tests based on advances in 

pharmacogenomics. Importantly, they may also influence biomarker 

discovery strategies to ensure consistency between market 

priorities and the future stream of product introductions. 

 

DATA and METHODS 

We used retrospective claims data to define our study 

population and calculate total health care costs on a per-

patient annualized basis. Our data were derived from the 

MarketScan claims and encounter databases for 1995–2000. 

MarketScan is the largest set of databases of its kind, 

containing detailed descriptions of inpatient and outpatient 
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medical care services for persons who are covered in over 160 

large corporate-sponsored healthcare plans (approximately 2.8 

million covered lives in 2000). The analytic file contains 

patients with fee-for-service health plans and those with 

partially- or fully-capitated plans. Because data on costs were 

not available for the capitated plans, the value of patients’ 

service utilization under the capitated plan was priced and 

imputed using average payments per procedure, from the 

MarketScan FFS inpatient and outpatient claims, further 

stratified by region and year.  

Our framework determines the economic consequences of 

implementing pharmacogenomics in the clinic using a diagnostic 

test to predict drug response. Using retrospective claims data 

for asthma patients, we calculated the cost offset realized by 

predicting the likelihood of response to an alternative existing 

treatment using a hypothetical pharmacogenomic test. Because the 

diagnostic test is hypothetical, the alternative treatment 

remains undefined. This illustrates that our framework is 

general and could be applied to other indications where 

diagnostic tests for personalizing treatment regimens have not 

been developed.   

We employed “risk analysis” as our analytic approach to 

compare the health care costs of an observed treatment protocol 

(Base Case) with those in a hypothetical treatment protocol 
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including a pharmacogenomic test for drug efficacy (Test Case). 

The difference between the overall costs of the Base Case, where 

non-responding patients continue to suffer their symptoms 

despite treatment, and the Test Case, where a pharmacogenomics 

test helps identify an appropriate treatment, is the cost offset 

realized as a result of using the test.  

Individuals between the ages of 4 and 64 with evidence of 

asthma were selected from the intersection of the claims, 

encounter, enrollment, and pharmaceutical data files. We defined 

evidence of asthma as follows:   

• At least two outpatient claims with primary or secondary 

diagnoses of asthma; or At least one emergency room claim 

with primary diagnosis of asthma, and a drug transaction 

for an asthma drug 90 days prior or 7 days following 

emergency room claim; or At least one inpatient claim with 

primary diagnosis of asthma; or 

• A secondary diagnosis of asthma and a primary diagnosis of 

respiratory infection in the same claim. 

We included only patients with evidence of outpatient 

prescription drug coverage and evidence of continuous plan 

enrollment during the pre-study (12 months) and follow-up 

periods (24 months), a total of 36 months. We followed subjects’ 

resource utilization for twenty-four months after their index 
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date (the date on which these inclusion criteria are met). We 

excluded patients with a diagnosis of chronic obstructive 

pulmonary disease (COPD), or with one or more diagnosis or 

procedure codes indicating pregnancy or delivery.  

In our analysis, total health care costs are actual 

payments to providers for all health services, including 

inpatient hospitalizations, outpatient services and filled 

prescriptions, whether or not directly related to asthma. Thus, 

our results are relatively insensitive to diagnostic coding 

mistakes or discrepancies. 

The population of Base Case patients was subdivided into 

responders and non-responders using a binary measure of 

medication complexity as a proxy for whether the asthmatic 

responded to treatment over the study period. Asthmatics with a 

high level of medical complexity were designated Non-responders 

and were defined as patients with at least three different 

pharmaceutical prescriptions or with at least one asthma 

emergency room (ER) visit or hospitalization over the first 12 

months of the study period. All other asthmatics were 

categorized as Responders, or asthmatics with a low level of 

medical complexity. 

We simulated total healthcare costs under a variety of 

conditions, including test cost, test sensitivity, and the 

probability of treatment response. We randomly selected patients 
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without replacement based on the probability of response to 

treatment parameter (hereafter called “Sample A”). We used a 

“seed value” to retain the same randomly selected patients 

across iterations of the simulation. Based on the test 

sensitivity parameter, we randomly selected Non-responders from 

Sample A who would become Responders (hereafter called “Sample 

B”). Then to estimate the cost of being a Responder for each of 

the selected Non-responders, we randomly selected a Responder 

patient from the Base Case and assigned that patient’s cost to 

the patient in Sample B. The cost of the test was added to the 

total healthcare costs for all non-responders in Sample A. We 

then compared these simulated costs (hereafter called “Test 

Case” costs) to the Base Case costs. Seven hundred variants of 

the simulation were run, examining 10 values of test 

sensitivity, 14 values of test cost, and 5 values of probability 

of treatment response (i.e., 700=10x14x5). 

The range of test costs we modeled was derived from data 

provided by  the Molecular Diagnostic Testing Unit at a major 

teaching hospital in Boston. The reported costs, which 

represented a range of charges for genetic tests that are 

currently used in the hospital, across all disease categories, 

varied from $135 to $1850. In the simulation, we extended the 

range to $100 to $2100 to account for possible economies of 
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scale and the potential for more costly technological advances 

in the future. 

The test sensitivity parameter determined the probability that 

Non-responders from the Base Case would become Responders in the 

Test Case. In our simulation, we iterated the value of this 

parameter from 0.1 to 1.0 in 0.1 increments to determine a model 

for the effect of this parameter on treatment costs using the 

test. Test specificity was not modeled in our algorithm since it 

does not impact the transition of Non-responders to Responders, 

and thus, under our hypothesis, it would not affect the 

difference in overall health care costs. 

The probability of treatment response parameter determined the 

distribution of Responders and Non-responders in each simulation 

and was iterated in 0.10 increments beginning with the special 

case of the observed value of 0.667. We reasoned that the 

probability of treatment response could be higher than the 

response rate determined by the medical complexity analysis. 

We compared the Base Case and Test Case costs, and used T-

tests to evaluate the significance of the differences.  

 

Results 

 

We identified 28,324 asthmatics in the sample. The mean costs 

for all asthmatics over the study period were $3,805. Using 
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medical complexity, we classified 66.7% as Responders and 33.3% 

as Non-responders, giving the observed 0.667 probability of 

treatment response. As expected, Non-responders had higher 

health care costs than Responders, with annualized mean costs of 

$5,132 and $3,140 per patient, respectively. The typical 

Responder in our sample experienced a 0.6% chance of an asthma-

related emergency room visit, and a 0.4% chance of an asthma-

related hospitalization during the 24-month study period. On the 

other hand, the typical Non-responder in our sample had an 8.7% 

chance of visiting the ER for asthma, and a 5.8% chance of being 

hospitalized for asthma, during the same period.  These 

estimates are consistent with those from other recent studies of 

asthma costs using patient claims data. For example, Birnbaum et 

al. found that annual per-capita employer expenditures for 

asthmatic patients were 2.5 times higher than patients without 

asthma claims ($5,385 versus $2,121, respectively). [17]  

Exhibit One shows the simulated mean cost savings for varying 

levels of test sensitivity, test cost, and treatment 

effectiveness. These selected results characterize the cost 

differential (Base Case – Test Case) and how it varies with test 

sensitivity and test cost and probability of treatment response. 

With low test costs, low diagnostic test sensitivity between 

0.3-0.4 yielded positive cost savings. For diagnostic tests 

costing more than $1,050, however, no cost-savings occur 
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regardless of the sensitivity of the test, or the effectiveness 

of the treatment. For all probabilities of treatment response 

examined, the cost savings increases with decreasing test cost 

and increasing test sensitivity. 

Under the most favorable circumstances, with a test 

sensitivity of 100 percent and $100 test cost, using the 

pharmacogenomic test could result in cost savings of $410 per 

person per year even if use of the test did not result in any 

additional gain in treatment effectiveness. It seems likely, 

however, that the use of a pharmacogenomic test would also 

result in some additional gains in treatment effectiveness, even 

in the absence of new therapies, by directing patients to 

treatments to which they would be more likely to respond. The 

cost savings associated with incremental improvements in the 

effectiveness of therapies, when coupled with a diagnostic test, 

are also shown in Exhibit 1. It is apparent that the sensitivity 

of the diagnostic test influences the magnitude of potential 

cost savings more than improvements in the effectiveness of 

treatments. However, potential cost savings are also sensitive 

to the cost of the test. 

 

 

Discussion 
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More than 30 years ago, Lewis Thomas, in his collection of 

“Notes of a Biology Watcher” from the New England Journal of 

Medicine, insightfully described the differences between what he 

called, “halfway technology” and the “genuine technology of 

medicine.” He noted that new therapies based on a solid 

understanding of the underlying scientific mechanisms would make 

clinical decisions about treatment much easier. Thomas may well 

have correctly predicted that the “genuine technology of 

medicine” would come when new therapies would be based on a full 

understanding of scientific mechanism. He may not have realized 

how many new and different kinds of questions would be raised, 

as a result of the changes in the way treatment selection 

decisions and future R&D investment decisions are made. 

Nevertheless, he was writing — at least in part — about 

pharmacogenomics. 

We found that personalizing therapy through the use of a 

diagnostic test would result in a cost offset from the 

perspective of payers when the test is sensitive and the cost of 

performing the test is relatively modest. From a societal 

perspective, the benefits of personalized medicine are 

potentially much greater than those demonstrated in this paper. 

This underestimate of benefits results largely because the 

analysis of medical costs does not include the indirect benefits 

that accrue to payers, employers and society when patients make 
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more rapid recovery from illness and resume productive lives. 

For example, Weiss et al. estimated that direct medical costs 

comprise approximately 58 percent of the estimated societal 

costs, with costs resulting from productivity loss accounting 

for the remaining portion. [18] Other societal costs include 

those associated with absences from school, quality of life, and 

caregiver burden [19-22]. 

The economic benefits that accrue from personalized medicine 

would be realized as cost offsets from avoided costs of 

treatment non-response, including unnecessary medication costs 

and potential adverse reaction treatment costs. In addition to 

prioritizing the economic viability of diagnostics aimed at 

multiple personalized medicine approaches such as dosing, side 

effects, or treatment response, the analytical framework 

developed here has the potential to guide the target profile of 

future drug discovery efforts. 

Further Considerations The availability of a test for drug 

responders adds a layer of complexity to a set of similar 

decisions that are already commonplace. A key policy question 

will be whether the costs of treatment failure could be offset 

by the costs of diagnostic testing when a new diagnostic becomes 

available. 
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We now extend the results described above by offering a set of 

illustrative calculations to examine the tradeoffs between 

diagnostic testing costs and costs arising from the failure of 

the initial therapy selection. We analyze the following 

situation: Current practices for many diseases, including 

asthma, call for patients to be initially treated with a first 

line therapy. If they fail to respond, alternative therapies are 

selected until a suitable one is identified. Suppose there is a 

diagnostic test that can report the likely response of a given 

patient to alternative existing therapies. In reality, there may 

be a number of possible therapies from which to choose, and it 

would actually require layers of testing to narrow the field to 

the ideal drug. For simplicity, we are considering only one 

therapeutic alternative and one diagnostic test with 90% 

sensitivity and 100% specificity for 1000 patients. 

Exhibit 2 presents the results of these calculations. Choosing 

to administer the diagnostic test to newly diagnosed patients at 

the outset incurs the cost of testing a large population but 

avoids the cost of non-response to the initial therapy. Testing 

only patients not responding to the initial therapy after six 

months would reduce testing costs by limiting the size of the 

population tested, but would incur greater costs of therapy as a 

result of treatment failures. 
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Columns C and D of table 2 present the three-year cumulative 

(without discounting) costs or cost savings associated with the 

two alternative strategies — test all early or test a sub-

population later? Results of the calculations suggest that, when 

considering alternate existing therapies of comparable expense, 

testing all patients early on makes the most sense unless the 

test is costly or not sensitive.  

A dimension of personalized medicine not directly considered 

in this paper is the pairing of diagnostic testing with novel 

treatments targeted specifically to individuals whom the tests 

identify as appropriate candidates. Novel treatments such as 

biologics, treatments based on recombinant DNA, etc., are 

increasingly providing treatment options for patients who are 

unresponsive to conventional therapies, or who have conditions 

for which no treatment previously existed. Often, however, such 

novel treatments are very expensive. The results in Exhibit 2 

show that testing could even be valuable if the novel 

therapeutic is significantly more expensive. 

Limitations of Analysis Our analysis is subject to the 

limitations associated with the use of a retrospective, 

administrative database to infer episodes of illness and medical 

care. In particular, with respect to medications, we are able to 

determine that prescriptions were filled, but not whether the 
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patients actually complied with the regimen. This limitation may 

be particularly important in the asthma context, in which some 

of the medications are likely to be prescribed for use on an “as 

needed” basis. 

Policy Implications Sooner, rather than later, new drugs will 

begin to emerge as a result of the application of 

pharmacogenomics and other advances in biological sciences. Our 

increased understanding of the molecular basis of disease will 

likely yield efficiencies that will ultimately improve the 

quality of care and lower health-related costs.  However, in the 

process of integrating this new knowledge and its related 

technologies, there will be substantial value migration in 

health care that will require new models to assess value and 

evaluate the true contribution to patient care.  

Some of these drugs will prove to be highly effective, or much 

better tolerated than their predecessors, among certain members 

of a candidate pool that meet criteria that are identifiable 

with the help of a molecular marker. A diagnostic test, based on 

such a marker, will identify the patients who are the promising 

candidates.  A portion of those who would benefit from the new 

drug may also be successfully managed with existing, less costly 

treatments. This paradigm suggests the need to carefully 

consider alternative clinical policies that assess the 

appropriate timing and evaluate the cost effectiveness of the 
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diagnostic test. Additionally, as scientific advances promise to 

bring extraordinary changes to the practice of medicine, it will 

be critical to ensure that commercial, scientific, technological 

and clinical incentives be aligned in order to facilitate the 

stream of innovative new therapies that we anticipate will 

emerge from medical research, and to maintain reliable access 

for physicians and for their patients. Our approach provides a 

new tool for these considerations. Our results suggest that 

diagnostic tests in the context of personalized medicine would 

be valuable in a wide range of circumstances.  
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Exhibit 1 
 Selected simulation results, illustrating the value of pharmacogenomic 
testing in asthma treatment 
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**Based on N=9,444 non-responding asthmatics  
 

 
Test Cost 

Probability 
of Treatment 
Response 

Annualized Cost Savings ($)* 
Per Person at Various Levels of 

Test Sensitivity 
  Test Sensitivity 

  $100  1.0 0.9 0.5 0.1 

 0.667 
(observed) 410 358 192 6 

 0.70 452 393 198 2 

 0.80 483 468 254 21 

 0.90 588 515 283 48 

 1.0 635 588 320 36 

$350      

 0.667 
(observed) 326 275 109 -77 

 0.70 369 310 115 -81 

 0.80 399 384 171 -62 

 0.90 505 431 200 -35 

 1.0 551 505 237 -48 

 $700      

 0.667 
(observed) 210 158 -8 -194 

 0.70 252 193 -2 -197 

 0.80 283 268 54 -179 

 0.90 388 315 83 -152 

 1.0 435 388 120 -164 
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Exhibit 2 
Cost savings (in parentheses) or burdens of using a 
pharmacogenomic test for drug efficacy in 1000 patients. In 
Scenario 1, patients not responding to the first-line treatment 
after six months are tested to determine the drug they are most 
likely to respond to. In Scenario 2, all patients are tested. 
 
Test 
Cost 

Prob. Of 
Treatment 
Response 

Annualized 
Cost 
Offset 
(from 
Exhibit 1) 

A.  
Scenario 1 – 
1 year out 

B. Scenario 2 
– 1 year out 

C. Scenario 1 
– 3 years out 
without 
discount 

D. Scenario 2 
– 3 years out 
without 
discount 

$100 0.7 $393 ($12,516.67) $8300.00 ($104,216.67) ($175,100.00) 
0.9 $515 ($43,916.67) ($54,500.00) ($198,416.67) ($363,500.00) 

$350 0.7 $393 $70, 816.67 $258,300.00 ($20,883.33) $74,900.00 
0.9 $515 $39,416.67 $195,500.00 ($115,083.33) ($113,500.00) 

$700 0.7 $393 $187,483.33 $608,300.00 $95,783.33 $424,900.00 
0.9 $515 $135,333.33 $504,000.00 ($60,666.67) $112,000.00 
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