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Abstract: 

The design of efficient physical databases is a complex activity involving the consideration of a large number of 

factors. Because of the complexity, mathematical programming approaches seeking to optimize the physical 

database have to make many simplifying assumptions; therefore, their applicability is limited. Further, the 

database designer may want to experiment with design preferences and features not considered by the 

mathematical optimization approaches. In order to effectively design the physical database, this article describes 

an interactive DSS tool, which aides the database designer in this task. The database design is accomplished in 

the context of a high-level abstract model which is capable of being implemented in a variety of DBMSs and 

file systems. Because of this generic nature of the abstract model, the utility of the DSS tool is enhanced. The 

interactive tool not only lets the designer experiment with his own designs, but also provides several heuristic 

optimization procedures to enable the generation of many good designs. The heuristic designs may be used for 

final physical database design as well as for further experimentation. The paper also includes examples of how 

the physical design selected using the abstract model and the interactive tool may be implemented on several 

DBMSs and file systems. 

 

Article: 

1. INTRODUCTION 

Database design is a challenging and complex activity involving two phases: logical design and physical design. 

Logical design involves the development of a logical data structure (LDS) for the task domain; and physical 

design is concerned with developing storage structures for placing data on secondary storage, given a specific 

LDS. In this paper, we focus on the physical design task and assume that the LDS is given to us based on prior 

design activity (as in Figure 1, adapted from [5]). Prior works have generally dealt with and developed 

design/optimization models for specific aspects of physical database design. These works include: index 

selection [1, 14, 17], file structuring and models of file organization [18, 30], and record segmentation and 

structuring [15, 17, 23, 24]. Some of these models are reviewed in [29]. Quoting from [19]: "While the attention 

to individual design problems results in elegant solutions, it is quite plausible that those individual solutions will 

have to be perturbed when the total database is put together." 
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Researchers have attempted to optimize the total physical database design using mathematical programming 

approaches, but only with limited success. For example, mathematical programming based optimization is 

described for hierarchical databases in [28] and network (DBTG/CODASYL) databases in [12, 19, 31]. 

Optimization algorithms for a general physical database (i.e., one not specifically tied to any particular logical 

model based system) are de-scribed in [21, 25]. However, all of these algorithms make several simplifying 

assumptions in order to keep the formulation clean and tractable, thus again perturbing the final optimal 

solution. To quote from [7]: "Traditional mathematical optimization techniques have not been successfully 

applied to the global solution of the physical database design problem." As a consequence, several researchers 

have presented heuristic and interactive procedures for physical database design, e.g., such procedures are 

described for network systems in [11, 20] and for general physical database design in [6, 7]. Some of 

these heuristics offer guidelines for design (as in [6]), while others actually try to optimize the design (as in [11, 

20]). Note that heuristics cannot guarantee optimality; they only attempt to optimize; however, in this paper, we 

call it heuristic optimization. 

 

In this paper, we describe an interactive decision support system (DSS) tool for physical database design. The 

DSS tool, implemented as an integrated software composed of several computer programs, also includes 

heuristic optimization. The major distinction of our work from prior works is that the model used for physical 

database design is a generic one, and as such can be used on different types of database management systems 

(DBMSs). The DSS in conjunction with the model helps the designer make important high level decisions about 

physical database design, which can be useful for hierarchical, network, relational databases as well as 

nondatabase file environments (e.g., file-management and COSOL-based systems). The high level decisions 

include: the number of physical files, their contents, interfile clustering, and general mechanisms for 

representing relationships. 

 

Our work complements the work on file optimization problems cited in earlier references, i.e., once the high-

level decisions are made, then the details of the individual file organizations can be decided based on prior 

models or based on the constraints/options of the implementing DBMS. Of special relevance to our work is the 

work reported by researchers in [6, 7]. In these works, a DSS methodology is described where file organization 

problems are first created, using an abstract and generic design model similar to the one described in this paper.  

In subsequent steps of their methodology, specifics of each file organization (e.g., access paths, record 

segmentation) are decided based on optimization algorithms and heuristics. Their DSS offers extensive help in 

deciding the details of the file organization, but is rudimentary in terms of deciding which file organizations are 

to be considered in the first place. Some heuristics are offered in [6]; but these are guidelines based on logical 

data structure alone, and there is no attempt at optimization in selecting file organizations (except enumeration 

based on the guidelines). In fact, the authors in [6] state that their guidelines should be overridden depending on 

characteristics of the retrieval activity. It has been shown in [26] that the characteristics of the retrieval activities 

are very important in deter-mining the physical database design. The DSS described in this paper includes 

heuristics which try to optimize the overall high-level design based on all relevant characteristics of the design 

problem. 

 

The organization of the paper is as follows. In the next section, we describe the generic physical design model 

used in this paper. After that, we describe the essential features of the computer aided design procedure (i.e., the 

DSS). This section includes inputs for the software, use of heuristics, and experimentation with the tool. 

Following that and before concluding the paper, we give examples of how designs produced using the generic 

design model and the interactive tool may be implemented on network, hierarchical, and file systems. 

 

2. A GENERIC MODEL FOR PHYSICAL DATABASE DESIGN 

Generic physical design models for (single) file design have been proposed, in increasing degree of 

comprehensiveness, in [18], in [30], and in [32], respectively. The file design model of [31] was extended in [3] 

for physical database design. In addition, there are models and concepts [2, 5, 21, 23, 29] which are, per se, for 

the entire physical database design or significant parts of it (i.e., without building on file design models). In this 

paper, we have used an abstract and generic physical design model based on some well-recognized principles 



that emerge from the current models. These models suggest two fundamental principles for representing a 

relationship between two entities. The first principle is well known: Indicate a relationship between two entities 

by storing appropriate pointers in the entities' instances. The pointers may be in the form of linked lists or 

inverted lists or some combination. (Note further that the pointers may be direct or symbolic.) The second 

principle for indicating a relationship is the concept of clustering/aggregation in which all related instances of 

one entity that are related to an instance of a second entity are clustered with or near the second entity instance. 

The two concepts yield substantially different physical designs. Our generic model (similar to the model in [5, 

6, 7]) captures the spirit of the two concepts and allows for five ways of physically representing two entities X 

and Y and the relationship between them: 

 

a. Create two record types X and Y with X having pointers to Y. 

 

b. Create two record types X and Y with Y having pointers to X. 

 

c. Create two record types X and Y with both pointing to each other. 

 

d. Create one record type X which will aggregate (cluster) Y instances. Aggregating in the abstract model is 

actualized by making the related Y instances part of the X record. 

 

e. Create one record type Y that will aggregate the X instances. 

 

Note that the pointers may be all symbolic or all direct. Also the model allows limited replication if an entity, 

with an indegree greater than 1, aggregates its related entity. It is worthwhile to note that this model has strong 

parallels even in commercial DBMSs. For example, hierarchical and network systems incorporate the concepts 

of pointers and aggregations. Aggregation is supported in IMS by permitting hierarchical segments in the same 

data set, and in network systems by storing MEMBER record types in OWNER area VIA SET and NEAR 

OWNER. Relational systems do not allow aggregation at a logical level; however, substantial efficiencies may 

be achieved by its use at a physical level as reported in [8, 13] In fact many relational systems are now 

beginning to support clustering (e.g., SQL- and INGRES-based systems and RBASE). 

 

The total number of physical designs, using the abstract model, explode exponentially when the number of 

entities and relationships in the LDS gets large. For example, with 10 entities in the LDS, there could be over a 

million design possibilities and with 20 entities, over a trillion design possibilities. Fortunately, we could curtail 

many of these options at the front end. We found in the many experiments that were conducted with the DSS 

that although the optimal design is sensitive to the aggregation and pointer options, it is not very sensitive to a 

specific pointer option. Thus one of the three pointer options can be preselected for each related pair of entities, 

using judgment, guidelines, or analysis. The analysis is based on a pairwise consideration of related entities.  

Cost equations were developed for the three pointer options for each related entity pair (cost equations not 

reported here), and based on that a pointer option was preselected. This pairwise analysis is also a key to one of 

the heuristics, to be discussed later. Even with one pointer option and two aggregation options for each entity 

pair, the problem is still large (e.g., a 10-entity LDS may have over 10,000 physical designs and a 20-entity 

LDS may have over 100 million designs). 

 

With one pointer option and two aggregation options, a physical design can be fully specified by indicating the 

aggregations alone. A short-form notation can then be used to represent a physical design. In the short-form, 

only the "aggregator" or "absorber" entity (also called "physical parent") of each entity is named. A root entity 

does not have a physical parent; so its parent is numbered 0. Table 1 shows some designs for the six-entity LDS 

of Figure 1. 

 

Note that the first design in Table 1 has all entities stored in their own independent files (of course, with 

appropriate pointers to indicate relation-ships). This is a design strategy used by many designers. We call it the 

flat-file design. 



 
3. THE COMPUTER-AIDED DESIGN METHODOLOGY 

The design methodology is a series of interactions with the decision support system (DSS) tool. The DSS tool is 

an integrated software, composed of several computer programs. The four main components of the DSS 

software are the following: 

 

A. Simulation. The simulation component accepts the problem definition (i.e., the logical data structure, the 

activities to take place on the database, the computer system characteristics, and a physical database design 

specification as per the physical design model) and simulates the physical database design as well as the 

necessary accesses in order to satisfy the activities' requirements. The essential outputs from the simulation are 

the storage cost required for the physical design and the access cost for satisfying the activities (measured in 

page accesses from secondary memory). A flow diagram of the simulation component is shown in Figure 2; 

details are contained in [25]. 

 

B. Heuristics. Although the database designer may experiment with different physical designs, a set of 

heuristics is available in the DSS in pursuit of very good (many times close to optimal) physical designs. 

Heuristic procedures are known for providing good solutions [10, 33]; such procedures are reported in [15, 17] 

for specific database problems. Two types of heuristics (actually five heuristics in all) are included in the DSS. 

The first type of heuristic (called FWI) uses a greedy forward-inclusion procedure for design optimization. It 

essentially works like this: Select an arbitrary design (e.g., the flat-file design) as the starting incumbent 

solution. Look at solutions near the incumbent and make the solution with the most improvement as the new 

incumbent. Reiter-ate the procedure until the incumbent solution can no longer be improved. The second type of 

heuristic (called PWG) is computationally less intensive and breaks down the complexity by initially doing a 

pairwise analysis of related entities. The pairwise information is then used again in a greedy manner by the 

heuristic. Details of the two types of heuristics are available in [25, 27]. Briefly, the FWI heuristic produced the 

optimal solution in 85% of the test cases, while the PWG heuristic produced the optimal solution in 80% of the 

cases. 

 

C. Exhaustive enumeration. The DSS tool offers an option of enumerating all feasible physical design solutions 

and prioritizing them by their cost effectiveness. The physical designs are enumerated in a brute force manner 

and then costed by the simulator. Note that this is a practical option for only relatively small databases (say, 

with less than 10 entities in the LDS), as with larger databases the enumeration becomes computationally 

infeasible. (This is precisely the reason for the DSS to have heuristic analysis and "what-if' capabilities.) 

 

D. Pairwise analysis of entities. A pairwise analysis of related entities is conducted primarily for establishing 

pointer directions among related entity pairs. A secondary purpose of the pairwise analysis is to aid in the initial 

analysis required in the second type of heuristic (as discussed earlier). In the pairwise analysis, the software 

examines only the queries focusing on each entity pair and computes relative measures of costs for the three 

pointer options as well as the two clustering options. These costs become the basis for selecting the proper 

pointer directions. The selected pointer option cost and the two clustering option costs are used in pruning many 

of the alternative solution branches in the second type of heuristic. Many cost equations were developed for the 

pairwise analysis and are reported in [25]. 

 



Having described the main components of the software, we now go on to describe in detail the various 

interactions a designer may have with the DSS. Figure 3 shows an example of the overall interaction with the 

DSS, for the LDS of Figure 1; details are in subsequent figures. 

 

 



 
 

3.1. LEVEL OF DETAIL 

The user of the system has control over the amount of detail to receive from the interaction. Potentially, the 

amount of information can be over-whelming; so two levels of detail are provided in the presentation of 

information (question 1 and question 2 in Figure 3). 

 

3.2. COMPUTER SYSTEM CHARACTERISTICS 

Characteristics of the computer system, where the physical database is to reside, are described next. The 

relevant characteristics are: page size in characters, direct pointer size, storage cost, and access cost (as shown 

in Figure 4). Note that the objective function can be altered by selecting appropriate values for storage and 

access costs. The user/designer has the option of specifying these directly to the DSS or storing them in a 

separate file. If stored in a file (as in the Figure 3 example), then the DSS would retrieve the file. 



 
3.3. PHYSICAL CHARACTERISTICS 

Certain physical characteristics of the environment are described next. First the user specifies whether the 

pointers are direct or symbolic. Second, a choice is allowed whether to make all pointers two-way between files, 

or let the system/user decide the best pointer directions. The system would decide pointer directions based on 

pairwise analysis of related entities. Next, the user specifies whether the access paths to files are random or 

sequential. Finally, the user specifies whether the buffers (memory) are extremely large or normal-sized. This 

last factor affects the query processing strategy. (Briefly, with very large buffers, many searches of a single file 

can be combined into one search. In this single search, all desired records from the file can be retrieved and 

stored in the buffer. Details are in [25, 27].) Note that the common selection for the last three factors are 

nonmandatory two-way pointers, random access path and normal buffer sizes. 

 
3.4. LOGICAL DATA STRUCTURE 

As before, the logical data structure may be entered directly or via a file. As shown in Figure 5, first the number 

of entities in the LDS is specified. Then, for each entity, the entity number, the number of entity instances, the 

length of entity instance, the length of its primary key, the entities with which it is related to, and the outdegree 

of each relationship are specified. 

 

3.5. LOGICAL DATA ACTIVITIES 

The logical data activities are defined next (Figure 6). For each activity, specification is made whether the 

activity is retrieval (query) or update. Following that, the frequency of the activity and the number of entities 

addressed by the activity are entered. Then the traversal path of the activity over the entities it addresses is 



specified. There is one line input for each entity addressed by the activity. This line contains the current entity 

in the traversal path, the prior entity in the traversal path, the preselection percent at the current entity and the 

postselection percent at the current entity. The preselection refers to accessing only selected instances of an 

entity and postselection refers to selecting among the already accessed instances. It is assumed and expected 

that the designer would be able to translate any query specification into the analytical form described here. 

At this point, the problem specification is complete. Now, the designer will interact with the DSS in pursuit of 

good physical designs. First, if pointer directions were to be analyzed by the system (see Section 3.3 above), 

then the pairwise analysis will be invoked, and will do the following. 

 

3.6. ESTABLISHING POINTER DIRECTIONS 

As stated earlier, the pairwise analysis component takes each entity pair (which is related by a relationship), 

looks at the queries focusing only on this pair and computes relative measures of costs for all three pointer 

options for the pair. The program will either automatically select the least cost option or would display the costs 

to the designer. The designer can then intelligently select a particular pointer option for each related entity pair. 

There may be other reasons in selecting a particular pointer option which the designer may want to use (e.g., in 

relational database design, the pointer is symbolic from the child entity to parent entity). In any case, in our 

many interactions, we found that a particular pointer option did not make a significant difference in the optimal 

physical design or total costs. This observation is also documented in [26]. 

 
3.7 HEURISTIC DESIGN SELECTION 

At this point, the designer is ready to experiment with the program and evaluate different physical design 

strategies. One option is to use one or more heuristics in search of good (close to optimal) physical designs. The 



designer has five heuristics available (see Figure 3). The last two are based on applying generic principles of 

heuristic optimization using an iterative greedy approach, where, at each iteration, the design offering the most 

improvement is selected. In the first three heuristics, a pairwise analysis of related entities is first conducted and 

that information is judiciously used in developing the heuristics. The third of the first three heuristics augments 

greedy principles with the pairwise entity information. Based on our experience, we recommend the use of the 

third heuristic (pairwise greedy, PWG) and the forward inclusion (FVVI) heuristic. As reported in [25, 27], the 

PWG heuristic, compared to FVVI heuristic, requires less computational effort at the expense of slightly 

reduced optimality. Briefly, the computational effort of the FWI heuristic was 30-100% greater than that of the 

PWG heuristic in the test cases. It is recommended to use the FWI heuristic for small to medium problems (say, 

with less than 30 entities) and the PWG heuristic for very large problems (greater than 30 entities). 

 
The heuristics generate physical designs in short form. Each physical design is then evaluated for storage costs, 

access costs, and total costs, using the simulator in the program. The simulator determines storage requirements 

in a straightforward manner. For determining access costs, the simulator first has to determine the files 

containing the required data for each query and then it simulates the accessing of the files in order to obtain the 

total number of page accesses. If summary results are desired (by choosing the level of detail, earlier), then the 

final result will be a total cost for the heuristic design. If more details are asked for, then the details of each 



design, the storage requirements, and page accesses will be reported, as in Figure 7. The designer also has the 

option of not only getting the single best design, but also several good designs listed in rank order. 

 

3.8. EXPERIMENTATION WITH OWN DESIGNS 

The designer also has the option of coming up with his own physical designs and let the simulator evaluate 

them for their costs. These designs may be based on intuition, experience, and/or designs suggested by the many 

heuristics described earlier. The simulator offers the benefit of conducting sensitivity analysis and pretesting 

different designs before final implementation. For example, the designer may take one of the designs suggested 

by a heuristic and then make certain changes to incorporate his own wisdom or local constraints. The effects of 

these changes can then be readily analyzed. Each design can be specified in short-form, or in long-form (as in 

Fig. 8). Again, the simulator will evaluate each design, evaluate its feasibility, and present summary or detailed 

results, as requested. We anticipate that this iterative interface will be very useful for “what-if” type of 

sensitivity analysis. 

  
 

3.9. AUTOMATED EXHAUSTIVE ENUMERATION 

As was described earlier, the DSS also offers an option of enumerating all feasible physical design solutions. If 

this option is selected, then the software enumerates each physical design in a brute-force manner, determines if 

it is feasible, and, if feasible, computes the storage and access costs. It then displays the requested number of 

best designs in rank order (Figure 9). Although this option may be used for a small LDS (say, with less than 10 

entities), it is computationally infeasible for larger problems. As stated earlier, this is where the capabilities of 

the DSS (i.e., heuristic analysis and "what-if' sensitivity analysis) become especially useful. 

 

This completes the description of the iterative tool for the design of physical databases. Once again, this 

decision support system tool aides the designer in the physical database design process, provides heuristic 

optimization, allows "what-if' kind of experimentation, and includes exhaustive enumeration option for small-

sized problems. We now discuss how the designs and the high-level physical database decisions made using the 

tool may be incorporated in database and file systems. 



4. IMPLEMENTATION 

The purpose of implementation is to create the physical schema on commercial DBMSs on the basis of physical 

designs generated by the interactive tool described above. As stated earlier, the tool is based on an abstract 

physical design model. Many hierarchical systems, DBTG systems, some relational systems, and many file 

management systems do include the essential features of the abstract design model; thus the design generated 

using the iterative tool can be translated for many of these systems. Further, note that the methods of this paper 

may be used in the creation of the physical database or its reorganization. For reorganization, statistics must be 

kept on the usage of the data. Periodically, these statistics should be used to generate the heuristic design, and 

the performance degradation of the existing design from the heuristic design should be computed. The physical 

database should be reorganized when the cost of performance degradation exceeds the cost of reorganization. 

 

We describe implementation on network (DBTG) based systems, hierarchical systems (specifically IMS), and 

CONOL-based file systems. These systems generally include physical constructs in their logical models; so 

implementation can be largely shown by the schemas. Relational models allow only flat-files at a logical level. 

Clustering is now allowed in certain specific relational systems at the physical level, as was described earlier; 

however, the description of these specific relational products is outside the scope of this paper. 

 

4.1. IMPLEMENTATION ON A NETWORK SYSTEM 

Corresponding to the pointers in the abstract model, there are DBTG implementations with linked list of 

pointers from parent to children records, and owner pointers in children (as in IDMS), and also proposals for a 

pointer array in which owner record has an array of pointers to its members. The aggregation affect can be 

obtained by storing members of a set near the owner by using the location mode of VIA. Note that the DBTG 

model requires pointers even when the members are stored "near" the owner. Details of DBTG can be found in 

[4, 9, 22]. 

 

The heuristic design for the six-entity (Figure 1) LDS with a specific set of activities was (in short-form): 0 1 0 

2 2 O. We proved by exhaustive enumeration that this was also the optimal design. This design implies that the 

Employee entity be clustered by the Department entity and the Education and Assignment entities be clustered 

by the Employee entity. Further Department, Address, and Project are "root" entities: They are not clustered by 

any other entity. Figure 10 shows the DBTG schema required to represent the LDS as well as the key physical 

design characteristics. Some explanations of the schema follow. There are three separate areas corresponding to 

the root entities Department, Address, and Project. The sets are defined to indicate the appropriate relationships. 

The location modes of DEPT, ADDR, and PROJ permit one of two accesses: sequential or random by hashing. 

The location modes of EMPL, EDUC, and ASSN are VIA to achieve the desired clustering. Thus the abstract 

model, in its essence, can be implemented on network systems. 

 

4.2. IMPLEMENTATION ON A HIERARCHICAL SYSTEM HMS) 

Using IMS as a primary example of a hierarchical DBMS, the design of the abstract model can be largely 

achieved. The basic construct of IMS is a tree (hierarchy): both physical database descriptions (DBD) and 

logical database descriptions (LDB) are expressed as a collection of trees. The DBD is very similar to the 

abstract model in that the abstraction also calls for trees starting from the rooted entities. In DBD, the children 

segments are stored physically or logically next to the parent segments. The clustering can then be achieved by 

storing the children segments physically next to the parent segment. 

 

The optimal design considered before can be represented in IMS by defining three DBDs corresponding to the 

rooted entities Department, Ad-dress, and Project (Figure 11). Within Department, EMPL is the child of DEPT, 

and EDUC and ASSN are children of EMPL. Further, there are logical connections between DBDs to represent 

the remaining relationships. The users will work with LDBs (LDB can be made from several DBDs). In fact, 

many LDBs would have to be defined to satisfy all of the queries. 

 

 

 



4.3. IMPLEMENTATION ON COBOL-BASED FILE SYSTEM 

The designs produced using the abstract design model and the interactive tool can also be implemented in a 

traditional non-DBMS file system environment. We illustrate how COBOL, file applications may implement 

the physical design. (Note that such applications abound in DP industry.) For the optimal design considered 

earlier, there will be three files declared in the DATA DIVISION of a COBOL, program corresponding to the 

three rooted entities, i.e., DEPARTMENT, ADDRESS, and PROJECT. In order to implement clustering, the 

DEPARTMENT record will have the EMPLOYEE entity as a repeating group field (using the OCCURS 

clause). In turn, the EMPLOYEE field would have EDUCATION and ASSIGNMENT as repeating group 

fields. In order to show the relationships between the three files, pointers will be included as fields in the record 

definitions. Depending on the degree of relationships, the pointers will be singular or repeating group fields. 

Since physical addresses would not normally be known, the pointers will have to be symbolic. 

 

 



 
 

Note that in the nondatabase environment, the programmer will have to write his own "procedural" program for 

navigating through the multiple files and finding the related records from one file to another through the explicit 

use of pointers. Although the programming task in the non-DBMS environment may be harder, the same kind 

of efficiencies will be obtained by implementing the design obtained by using the DSS tool, as in the case of a 

DBMS implementation. 

 



 
5. SUMMARY 

Physical database design is a complex and demanding activity. As such, mathematical programming approaches 

to optimize the physical database have had only limited success. Moreover, the designer may have design 

preferences he may want to experiment with. In this paper, we have described an interactive DSS tool, which 

aides the database designer in the task of physical database design. The database design is accomplished in the 

context of a high-level abstract model which is capable of implementation in a variety of DBMSs. The 

interactive tool not only lets the designer experiment with his own designs, but also provides several heuristic 

procedures to enable the generation of many good designs. Another feature of the DSS tool is exhaustive 

enumeration of physical designs, which may be used for small problems. Finally, the paper demonstrates how 

the physical design selected using the abstract model and the interactive tool may be implemented on several 

systems. Examples on a network system, hierarchical system and file system were given. 
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