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Abstract: 

Savings in the number of page accesses due to batching on sequential, tree-structured, and random files are well 

known and have been reported in the literature. This paper asserts that substantial savings can also be obtained 

in database organizations by batching the requests for records (in queries), and also by batching intermediate 

processing requests while traversing the database. A simple database having two interrelated files is used to 

demonstrate such savings. For the simple database, three variations on batching are reported and compared with 

the case of unbatched requests. New mathematical expressions have been developed for the batched cases as 

well as for the unbatched case, and the savings are demonstrated with some example problems. As an extension, 

larger databases will enjoy even greater savings due to batching. The paper also discusses several strategies for 

applying the batching approach to current databases, and the advantages of emerging very large main memories 

for the batching approach. 

 

Article: 

1. INTRODUCTION 

Several file structures and access paths are used to satisfy user queries from a database. Some models for file 

organization and database organization along with the accompanying access paths have been presented in [2, 

10, 15, 18]. In addition several researchers have proposed and developed tools for selection of access paths to 

satisfy user queries [1, 3, 8, 9, 11, 17]. 

 

An overall strategy to satisfy user queries is to batch the requests for records from a file or a database. The 

desirability of batching queries is well known, as it reduces the total number of page (block) accesses from 

secondary memory. The cost savings due to batching have been theoretically and empirically demonstrated in 

[2, 13, 16]. Further direct expressions for batched searching of sequential and hierarchical files are reported in 

[13, 16]; and expressions for batched searching of random files are reported in [5, 14, 19, 20]. 

 

Just as batching yields significant savings in block accesses in file organizations, it has the potential of further 

savings in database organizations. The savings can be substantial, as they will be cumulative across several files 

in the database. This paper develops mathematical expressions for page accesses due to batching in database 

systems and then demonstrates savings due to batching. This demonstration is made for a simple database 

containing two interrelated files. Larger databases will enjoy greater savings which is also established in the 

paper. 

 

The remainder of the paper is organized as follows. Section 2 presents characteristics of the database considered 

in the paper. Different combinations (called cases, later) of batching and "unbatching" are included in the paper. 

The typical query considered is one which requires traversing records from one file to the second file of the 

two-file database. Section 3 develops expressions when there is no batching in the first file, and Section 4 

develops expressions when batching is also allowed in the first file. Section 5 reports and discusses results of 

experimental comparison of blocks accessed in the various cases. In this section, the savings in the different 

cases of batching are reported for several values of database parameters. Section 6 discusses the overall 
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applicability and relevance of the batching approach in today's databases. Technology supporting the batching 

concept is identified, and alternative ways of supporting batching or limited batching are discussed. Section 7 

concludes the paper. 

 

2. A SIMPLE DATABASE 

Consider two entity classes E1 and E2 having N1 and N2 instances respectively. Let the two entity classes be 

related by a relationship with degrees R1 and R2, i.e., each instance of E1 is related to R1 instances of E2 and each 

instance of E2 is related to R2 instances of E1 (see Figure 1). Note that R1 is called the outdegree of E1 and the 

indegree of E2, and by the same token R2 is called the outdegree of E2 and the indegree of E1. 

 

We consider two cases: first where R2 =1 and R1 >1 (i.e. a 1: M relationship), and second where both R2, R1 >1 

(i.e. an M: N relationship). An example of the first case is a department-employee relationship; an example of 

the second case is an employee-project relationship. Note that R1 and R2 need not be constants; there might be 

some variation in them for specific instances of E1 and E2. We assume R1 and R2 to be average outdegrees.
1
 

 

 
Let the database be physically represented as two interrelated files F1 and F2. File F1 contains N1 records 

corresponding to E1's instances, and file F2 contains N2 records corresponding to E2's instances. To indicate the 

relationship between the records of files and F2 let there be pointers in each F1 record to related F2 records and 

(if necessary) pointers in each F2 record to related F1 records. We are not concerned here with the details of 

pointer arrangement. Further, let file F1 be organized in M1 pages (blocks) with a blocking factor of P1 = N1/M1, 

and file F2 be organized in M2 pages with a blocking factor of P2. Such a physical design is available in many 

commercial DBMSs (e.g. IMS and DBTG based systems) as well as postulated in physical design models [2, 

10]. 

 

Further, let there be a query which requests K records from file F1 and also (some of) the records of file F2 

which are related to these K records of file (For example, the query may ask for some information about certain 

departments and about employees who work in those departments.) 

 

For the simple database and the given query, we derive several expressions in the unbatched mode and the 

batched mode. For convenience and ease of presentation, the results are divided into two sections: one where 

there is no batching in the first target file F1 , and the other where batching is used in F1. We assume throughout 

that direct access paths are available on both files for accessing individual records, which is fairly common in 

commercial DBMSs. It is straightforward to extend these results to sequential search of files. 

 

3. NO BATCHING IN FILE F1 

With no batching in file F1, the K records of file F1 are individually retrieved by direct access. Each record 

retrieval requires one page access, so the total number of page accesses of file F1 is K. Each record of file F1 is 

related to R1 records of file F2. Therefore R1 records from file F2 have to be retrieved K times, once for each of 

the file F1 records. 

 

Two cases arise. Each time, the R1 records from file F2 can be retrieved individually or can be retrieved 

collectively as a batch. It perhaps makes more sense to batch these, as they will most likely be required at the 

same time. (However, applications may not batch them, if each of the records requires substantial subsequent 

processing.) In any case, if they are retrieved individually, then the number of page accesses is R1 each time. 

Since R1 records have to be retrieved K times, the number of total page (block) accesses B(u,u) are given by the 

following expression: 



 
(Note that in our notation, B refers to blocks and it has two arguments. The first argument is for the first file F1, 

and the second is for the second file F2. The argument value can be u or b, implying unbatching or batching in 

that particular file.) 

 

The first term in the expression represents page accesses of file F1 and the second term represents page accesses 

of file F2. 

 

In the second case, the R1 records of file F2 are retrieved as a batch. As is known, blocking will pay off in a 

reduced number of page accesses when the blocking factor is high [13, 14, 19]. The number of pages accessed 

for randomly retrieving k records from a file with n records blocked into m blocks is a function of k, n, and m, 

i.e. F(k, n, m). Different exact and approximate expressions have been developed for this function [5, 14, 19, 

20]. We use the expression in [14], as it has been demonstrated to be an overall better estimator than other 

approximate estimators and computationally more efficient than the exact expressions. According to [14], 

 
Since R1 records have to be searched K times, the number of total page accesses B(u, b) is given by 

 
 

4. BATCHING IN FILE F1 

The K records from file F1 may be collectively retrieved as a batch. The number of page accesses of file F1 is 

then F(K, N1, M1). Once all K records of file F1 have been retrieved, then all pointers from the K records of file 

F1 to the file-F2 records are available in main memory. Only unique pointers from file F1 to file F2 need to be 

considered, as only the unique records will have to be brought into main memory. This is so because once a 

record is brought into main memory, it stays there until the whole batch is processed. As is assumed in all past 

works [5, 14, 19, 20], we assume that the main memory/buffer space is large enough to accommodate the 

complete batch of records. Note that batching still pays off when the memory is limited, as shown in [12]; 

although not to its fullest extent. We discuss more completely the implications of main memory sizes in section 

6 of this paper. 

 

Let 

 

L= the number of unique records of file F2 that are related to K records of file F1. 

 

An expression needs to be developed for L. Expressions for L, and consequently for the number of pages 

accessed, are heavily dependent on the indegree of entity E1 (or file F1). Two cases arise: one that the 

relationship between entities E1 and E2 (or equivalently, files F1 and F2) is 1: M or 1:1, and the other that the 

relationship is M : N. 

 

4.1. RELATIONSHIP BETWEEN ENTITIES IS 1: M OR 1:1 

The relationship between files F1 and F2 is such that each record of F1 is related to one or more records of file 

F2 ; however, each record of file F2 is related to exactly one record of file F1. If such is the case, then each 

record in file F1 is related to unique records in file F2. Consequently all pointers in file F1 are also unique. 

 

Since each file F1 record has R1 pointers to file F2 and there are K target records in file F1, the total number of 

unique pointers from file F1 to file F2 are KR1. The unique pointers lead to unique records in file F2 ; thus 

 

L = KR1.                         (4) 

 



If these records are individually retrieved, then 

 
where the subscript on B indicates that the relationship between files F1 and F2 is 1 : M (or 1:1). If the L records 

in file F2 are retrieved as a batch, then 

 
Note that the value of L in Equations (5) and (6) is given by Equation (4). 

 

4.2. RELATIONSHIP BETWEEN ENTITIES IS M:N 

In this case, each instance of E1 (or record of F1) is related to several instances of E2 (or records of F2); similarly 

each instance of E2 is related to several instances of E1. The following discussion is made in terms of entities, to 

allow wide applicability. However, the discussion is equally applicable to the two files of the database, as in the 

current implementation the files correspond exactly to the entities. 

 

In an M : N relationship, several E1 instances may be related to the same E2 instances and vice versa. Thus if we 

used L = KR1 as the number of E2 instances related to the K instances of E1 , several of these instances will be 

the same or nonunique. However, we are interested in the number of unique E2 instances (L) that are related to 

K (unique) instances of E1. The expression for L in the M : N case is developed from the following assumptions: 

 

ASSUMPTION A. All instances of E1 fully exhaust all instances of E2 via the relationship (i.e. the property of 

complete coverage or exhaustibility). 

 

ASSUMPTION B. For each instance of E1, the R1 related instances of E2 are uniformly distributed over all of 

the N2 instances of E2. This assumption of uniform distribution is a common one in database organizations [13, 

14, 19]. 

 

Implicit in the second assumption is the assumption of sampling with replacement. In sampling with 

replacement, any instance of E1 can hit (i.e. be related to) any instance of E2 ; thus it is possible for different 

instances of E1 to hit the same instance of E2. 

 

Consider the second assumption. Then, with any instance of entity E1, the probability of relating to or "hitting" 

an instance of E2 is 

 
 

 



Since there are N2 instances of E2, the expected number of instances hit of entity E2, i.e. L is 

 
Note that the number of instances of E2 hit is binomially distributed with parameters N = N2 and p =1- (1- 

R1/N2)
K
. 

 

Evaluating from equation (7), 

 
 

The last expression indicates that when K= N1 and R1 is less than N2, then L is less than N2. In other words, all 

instances of entity E1 collectively do not address all instances of entity E2. This contradicts the exhaustibility 

assumption stated earlier. From Equation (7), for K = N1 , L will approach N2 only if R1 = N2 or if N1 is very 

large, neither of which may be true. Thus we have shown that: 

 

If the R1 instances of E2 related to one instance of E1 are uniformally distributed over all instances of E2 

(sampling with replacement), then a complete coverage of all instances of E2 is not possible with all instances 

of E1. 

 

To satisfy the "exhaustibility requirements," the sampling-with-replacement assumption has to be relaxed. In 

sampling without replacement, each instance of entity E1 will hit R1 unique instances of entity E2. This would 

work in 1: M relationships, but is not possible in M : N relationships, since there simply are not that many 

entity-E2 instances to hit on. Thus, in M : N relationships, some element of sampling with replacement is 

required out of necessity. The following assumption allows part sampling with replacement and part sampling 

without replacement, and also achieves the exhaustibility requirement. The assumption completely reverts to 

sampling without replacement for 1 : M relationships. 

 

NEW ASSUMPTION B. Let each instance of entity E1 hit N2/N1 distinct instances of entity E2 (sampling 

without replacement). The remaining R1 — N2 /N1 instances are uniformly distributed over the remaining N2 - 

N2 /N1 instances of entity E2 (sampling with replacement). 

 

Note that R1 has to be greater than or equal to N2 /N1 for exhaustibility. (R1 will equal N2/N1 in a 1: M 

relationship; then the assumption reverts completely to sampling without replacement.) Further, with this 

assumption, N1 instances of entity E1 will hit N1N2/N1 = N2 instances of entity E2 , thus meeting the 

exhaustibility requirement. 

 

With the new Assumption B, L can be derived in the following two parts: 

 

(i) Considering the "sampling without replacement" part of the assumption, the number of distinct instances 

of E2 hit with K instances of E1 is KN2/N1. 

 

In addition, more instances of the remaining N2 - KN2/N1 instances of E2 will be hit (due to the "sampling with 

replacement" part of the above assumption). This is addressed next. 

 

(ii) With the uniform-distribution assumption, with one instance of E1, the probability of hitting any of the 

remaining N2 - N2 / N1of E2 is given by 

 



 
 

Adding the entity-E2 instances hit from part (i) and part (ii), the total entity-E2 instances hit are seen to be 

 
Note that the first term in this expression is linear and deterministic, while the second term is a binomial 

variable with parameters n = N2 - KN2/ N1 and 

 
Evaluating from Equation (8), 

 

when K = 0, L = 0; 

 

when K = N1 ,  L = N2 ; 

 

when K =1, after much simplification, L = R1. 

 

Thus the expression in Equation (8) meets the stated requirements. Given the expression for L, the numbers of 

page accesses required to satisfy the query are written as 

 
 

The value of L in the above two equations is given by Equation (8). Equation (9) is for batching in file F1 and 

unbatching in file F2 ; and Equation (10) is for batching in both files. Note that Equations (9) and (10) are 

generalizations of Equations (5) and (6), as the value of L in Equation (8) is a generalization of the value of L in 

Equation (4). 

 

 



 
5. EXPERIMENTAL COMPARISON 

In order to gain an appreciation for the savings due to batching, the values of B(u,u), B(u,b), B(b, u)1: M,        

B(b, b)1 : M are reported in Table 1 for a 1: M relationship. In this database, file F1 has 300 records and file F2 

has 3000 records, and the relationship between F1 and F2 is 1 : 10. The same data for an M : N relationship, i.e. 

B(u,u), B(u,b), B(b,u)M : N , B(b,b)M : N , are reported in Table 2 for a database with file F1 having 300 records and 

file F2 having 120 records. The M : N relationship between files F1 and F2 is 10:4. All identical blocking factor 

is used for the two files. The B values are computed for blocking factors of 1, 5, 10, and 15, and K values of 1, 

2, 5, 10, 20, 50, and 100. The last three columns in Tables 1 and 2 show the percentage savings of B(u, b), B(b, 

u), and B(b, b) with respect to B(u, u). Some comments based on the data in the two tables are in order, and are 

made below: 

 

(A) Batching pays off only when the number of records to be retrieved from either file is more than one; the 

higher the number, the greater is the saving. The percentage savings of B(u, b), B(b, u), and B(b, b) are only 

modest for low values of
 
K and start increasing as K increases. However, even when K =1 (i.e. only one record 

retrieved from file F1), there are still some savings in the number of database accesses. This is because the 

number of related records  accessed from file F2 is still more than one (e.g. 10 in Table 1 and 4 in Table 2). 

 



 
(B) The advantages of batching are obtained only with high blocking factors. As is seen in Table 1, the 

savings are nil with a blocking factor of 1 and start multiplying with higher blocking factors. This is due to each 

page containing only one record when the blocking factor is one; consequently the same number of pages as the 

required number of records have to be retrieved  from the file to satisfy a query. Note that for an M : N 

relationship, as in Table 2, there are still savings with a blocking factor of one. This is because many of the 

required file-F2 records are nonunique and only unique records require new page accesses. 

 

(C) Comparing the data in Tables 1 and 2, it is clear that the savings due to batching are higher for 

databases with M : N relationships between files than for databases with 1 : M relationships. This is because, as 

indicated earlier, batching helps in two ways. In both 1 : M and M : N relationships, hatching helps with high 

blocking factors, as the same page may have several required records and that page has to be retrieved only 

once. Second, in files with M : N relationships, the records of one file related to a given number of records of 

another file may be replicated. Batching these nonunique records will require accessing only the unique records, 

which will generally be a smaller number. 

 

(D) The most savings are obtained when batching is used on both files. This strategy should be adopted 

whenever possible. However, this may not be possible given the users' requirements. For example, the requests 

for records of file F1 may come at different times, and users may want immediate action. Even if the K requests 



on file F1 may be unbatched, the related records in file F2 should still be batched to achieve some savings. It 

would be generally possible, within the programming constructs, to batch the related records in file F2 . 

 

(E) This example is for a simple database with only two interrelated files. Many real databases will contain 

several interrelated files. Batching would propagate similar savings for more complex queries involving 

retrieval of records from these several files. Especially for files having many M : N relationships, such savings 

would multiply. 

 

We now put our results in perspective, by discussing them in the wider context of technology and the 

constraints imposed by batching. 

 

6. DISCUSSION AND APPLICABILITY OF RESULTS 

A major implicit assumption made in prior works on batching [5, 13, 14, 16, 19, 20] as well as in ours is that the 

number of pages accessed into main memory is equal to the number of distinct pages on which the desired 

records are found. However, this will hold true for batched searching of random files only in two cases. First, if 

the desired records are searched in their physical page order, then a page which has been accessed once need not 

be accessed subsequently. If this requirement is met, then batching will naturally pay. (Note that this 

requirement is easily met in batched searching of sequential and hierarchical files.) However, this requirement 

may not be easily attainable in random files, as the physical ordering of the records will be randomized and the 

randomizing function may be system controlled and not easily available. 

 

If the above (first case) requirement is not met, then for batching to pay (i.e. the second case), the main 

memory/buffer sizes has to be large enough to accommodate all the required pages for a given query all at once. 

This will ensure that once a page has been retrieved into main memory, it will not have to be retrieved again. 

We discuss the implications of memory sizes below. 

 

(A) The main memory poses restrictions only when a lot of data have to be brought into it. 'Therefore, the 

batching approach merits consideration when the data requirements are not large. This is true for small 

databases and many ad hoc queries. Such queries generally address a very small fraction of records of the 

interrelated files. In such a case, the necessary records and pointers required would fit into the buffer spaces of 

current main memories. 

 

(B) The large main memory is required to take full advantage of batching. However, limited main memory 

will still offer batching advantages, although less than the full advantage. Two approaches are possible with 

limited main memory. One is to keep the batch size as it is; this will have the effect of generating additional 

page accesses, although there will still be savings com-pared to the unbatched case. These savings are 

documented in [12]. Another approach to study, which has potential for savings, is to split the batch into 

subbatches of smaller sizes. The size of the subbatch will depend on the memory size, and the subbatch will be 

processed all at once. 

 

(C) Main-memory sizes have been steadily increasing in the past years, and the future for very large main 

memories looks bright. The main-memory sizes are increasing at geometric rates (approximately by ten times 

every five years). For example, at the time of this writing, it is not uncommon to see personal computers with a 

million bytes of memory and mainframes with tens or hundreds of millions of bytes. Several recent papers [4, 6, 

7] have convincingly argued that main memories of gigabyte capacity are now feasible. Such large memories 

are even permitting exploration of main-memory prototype database systems [4]. With such large main 

memories, batching can be used successfully and the main memory will no longer be a bottleneck. While main-

memory databases may be distant for commercial application, batching may be used as an intermediate strategy 

to exploit the availability of large main memories. 

 

 

 



7. CONCLUSIONS 

Past research has recommended batching in a file organization as a means of reducing total number of 

secondary memory accesses. Similar savings can be obtained in a database organization where the potential for 

savings is even greater because of the multitude of interrelated files existing in the database. A simple database 

consisting of two interrelated files was used in this paper to demonstrate such savings. Several equations were 

developed for computing the total number of page accesses for various combinations of batched and un. batched 

records. Experimental data were generated for the various combinations, and the potential savings due to 

batching were reported. In larger databases, savings due to batching could be substantial, depending on the 

characteristics of the database, especially the relationships between the interrelated files of the database. 

Further, the availability of very large main memories makes the batching strategy more attractive. 

 

Notes: 

1 If R1 and R2 are average outdegrees, then the identity N1R1 = N2R2 must hold. 
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