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High-stakes tests are widely used as measurement tools to make inferences 

about test takers’ proficiency, achievement, competence or knowledge. The stakes 

may be directly related to test performance, such as obtaining a high-school diploma, 

being granted a professional license or certificate, etc. Indirect stakes may include 

state accountability where test results are partially included in course grades and also 

tied to resource allocations for schools and school districts. Whether direct or 

indirect, high stakes can create an incentive for test cheating, which, in turn, severely 

jeopardizes the accuracy and validity of the inferences being made. Testing agencies 

and other stakeholders therefore endeavor to prevent or at least minimize the 

opportunities for test cheating by including multiple, spiraled test forms, minimizing 

item exposure, proctoring, and a variety of other preventive methods. However, even 

the best test prevention methods cannot totally eliminate cheating. For example, even 

if exposure is minimized, there is still some chance for a highly motivated group of 

examinees to collaborate to gain prior access to the exposed test items. Cheating 

detection methods, therefore, are developed as a complement to monitor and identify 

test cheating, afterward.  

There is a fairly strong research base of statistical cheating detection methods. 

However, many existing statistical cheating detection methods are in applied settings.  

This dissertation proposes a novel statistical cheating detection model, called the 

Deterministic, Gated Item Response Theory Model (DGIRTM). As its name implies, 
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the DGIRTM uses a statistical gating mechanism to decompose observed item 

performance as a gated mixture of a true- proficiency function and a response 

function due to cheating. The gating mechanism and specific choice of parameters in 

the model further allow estimation of a statistical cheating effect at the level of 

individual examinees or groups (e.g., individual suspected of collaborating). 

Extensive simulation research was carried out to demonstrate the DGIRTM’s 

characteristics and power to detect cheating. These studies rather clearly show that 

this new model may significantly improve our capability to sensitively detect and 

proactively respond to instances of test cheating.
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2B2BCHAPTER I 

3B3BINTRODUCTION 

High-stakes tests are widely used in education, professional certification and 

licensure, employment, and other settings. Most tests are employed to make 

inferences about test takers’ proficiency, achievement, competence or knowledge. The 

stakes may be direct or indirect. For example, direct high stakes testing might link test 

scores to a set of standards and cut scores for obtaining a high-school diploma, being 

granted a professional license or certificate, etc.. Other examinations such as the 

Graduate Record Examination, the Test of English as a Second Language, and the 

ACT Assessment, are used for college entrance and/or placement, where scores take 

on a very competitive flavor. Indirect stakes may include state accountability where 

test results are partially included in course grades but also tied to financial resource 

allocations for teachers, schools, and school districts. Whether direct or indirect, the 

high stakes can create an obvious incentive for test cheating. In turn, cheating 

severely jeopardizes the accuracy and validity of the inferences being made by a wide 

variety of stake-holders, including other students, parents, schools, policymakers, 

teachers, testing organizations (Cizek, 1999)

Ideally, test cheating should be prevented from happening altogether or the 

cheaters otherwise definitively identified so that appropriate inferences can be made 

which differentiate test takers on the knowledge and skills of interest, rather than 

access to illicitly acquired test materials and/or a propensity to cheat. Detection of test 

cheating is really independent of the policies that guide actions or sanctions applied to 
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cheaters. For example, in cases of individual cheating beyond the shadow of 

reasonable doubt, a sanction of disbarment from the test for a period of years may be 

imposed. When widespread cheating is evident, a remedial action may be to cancel all 

scores and require every examinee to retest.  

To some extent, test cheating can be prevented by reducing the possibility for 

cheaters to gain prior access to the test materials, or by reducing the likelihood that 

they will have access to memorized materials or other sources (Luecht, 1998; Cizek, 

1999). Obvious preventive measures include administrating multiple test forms with 

unique items, increasing the size of item bank and frequently updating items in the 

bank in computer-based test (CBT) environment, or otherwise obfuscating the items 

by any variety of scrambling strategies. Unfortunately, the implied strategy of adding 

test forms to reduce exposure has serious cost implications in terms of printing and 

logistics, and updating or otherwise increasing the size of item banks has both 

significant operational cost and technical psychometric calibration implications.  

Test cheating can also be examined on a post hoc basis—that is, during or 

sometime after the test administration— where the goal is to detect by observational 

methods or various statistical indices those individuals who are likely to have cheated. 

For example, if a test taker is observed by a proctor to have been looking at a 

neighbor’s answer sheet, we would have observational evidence of cheating. If the 

examinee performs statistically better on that section of the examination where the 

“cheating” was observed than on other sections of the test, we would have
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corroborating statistical evidence. It needs to be recognized that cheating detection, at 

best, is largely a matter of building a compelling case of evidence. 

Because of the practical limitations of preventive cheating methods—for example, 

having sufficient unique items and test forms to allow secure testing with minimum 

exposure over a three-month period—reliable post hoc test cheating detection 

methods are gaining popularity in the testing industry. Most of the cheating detection 

methods are statistical in nature. Examples include gain-score statistics where 

significantly large, observed score gains over testing events, testing days, or across 

sections of examination might serve as a “trigger” for addition investigation. The 

obvious limitation here is that there needs to be sufficient data to form a baseline for 

comparison and multiple scoring events to provide within-person comparisons.  

Other cheating detection methods rely on patterns of responses—especially incorrect 

responses (e.g., longest matched string of identical incorrect responses, incorrect 

response matches for item options having low conditional probabilities of 

selection)—where statistical flags indicate extremely unlikely selections (e.g., Frary, 

1977; Cizek, 1999; Wollack, 2006). Most of these types of cheating detection indices 

have the limitation of requiring plausible source data for the comparisons. In cases 

such as computerized adaptive testing (CAT), where different examinees are 

administered different items, it is almost impossible to identify a plausible source, 

rendering almost useless most of the copying indices. 
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Other detection methods make rather strong assumptions which can be logically 

and easily violated in real settings. For example, Segall’s (2002) cheating detection 

model assumes that every cheater correctly answers the subject items with 100 

percent certainty. The reality is that even the best cheaters, especially those who 

otherwise do not have the requisite knowledge and skills to perform well on their own, 

have possibly incomplete representations of the answers. When this assumption is 

wrong, it can be shown to reduce the detection power of the statistic.   

Still other methods are potentially flawed by methodology design considerations.  

For example, various person fit indices (Nering, 1997) tend to lose some statistical 

power to detect test cheating when a large proportion of the examinee population is 

involved in collaboration or other types of cheating. Also, because these types of fit 

indices merely suggest aberrant response patterns, proving that some illicit and 

perhaps even unknown cheating behavior is the primary cause of the pattern may be 

difficult. 

Segall (2002) stated, “What is lacking from existing psychometric methods is an 

accurate procedure for measuring the level and severity of test-compromise from 

operational test data collected in on-demand testing programs.”(p.165). In large part, 

this limitation stems from a lack of conditioning data (e.g., no plausible way of 

identifying potential sources of the cheating, or having insufficient connectivity in the 

data to isolate particular gain scores or aberrant response patterns). Most 

organizations involved in high-stakes testing are fairly certain that test cheating or 
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compromise—usually by item over-exposure and memorization—now widely occurs 

especially when many of the same items and test forms must be exposed to 

accommodate on-demand computer-based testing (CBT). Most of the exposure risks, 

in turn, stem from the seating capacity and scheduling limitations of CBT (Luecht, 

2005; Drasgow, Luecht, and Bennett, 2006). The simple fact is that the existing 

statistical cheating detection methods cannot efficiently detect all but the most 

obvious types of test cheating or compromise under many of the practical constraints 

of CBT.  

The Deterministic, Gated Item Response Theory Model (DGIRTM) proposed in 

this dissertation avoids the limitations of insufficient conditioning variables by using 

each examinee’s own pattern of responses as the basis of comparison. In that sense, 

the DGIRTM shares something with person fit indices (e.g., Meijer, 1996; Nering, 

1997). However, the DGIRTM also introduces an empirically known item exposure 

variable that helps logically infer a source of the aberrant responding, and additional 

assumptions about the directionality (i.e., cheaters tends to have a higher level of 

probability to correctly answer the items on which have been cheated than their 

original level determined by the real proficiency) of the response probability that 

jointly improve the detection power of the statistic. Most appealing is that that 

DGIRTM is capable of directly estimating the magnitude of the effect due to cheating 

and allows for independent estimation of the examinees’ true proficiency, without the 

influence of cheating. This effect can be aggregated across groups or populations for 
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other purposes (i.e., to approximate the cost of cheating for a group of collaborators or 

to assess whether some exposure risk threshold has been reached for an item bank).  

Furthermore, the DGIRTM is designed to address test cheating or compromise caused 

by item over-exposure, item memorization, item preview, or internet collaboration. 

Given some initial research with the model’s consistency and, accuracy of detection, 

and the apparent practical utility of information provided by this model, it seems to be 

a promising tool for practitioners to detect test cheating by either individuals or 

groups.  

Specifically, the merits of the DGIRTM are addressed in this dissertation using 

simulation studies. The studies obviously do not “prove” the value of the model, since 

none of the data are real. However, the simulation studies do help answer two 

fundamental research questions relative to the DGIRTM. First, how accurately and 

efficiently can the parameters of the DGIRTM be estimated? This question involves 

the feasibility of postulating a rather mathematically complex “mixture” IRT model.  

A Markov Chain Monte Carlo (MCMC) estimator is introduced that appears to 

function as expected to estimate all of the parameters of the DGIRTM. Second, how 

does the DGIRTM perform in terms of its sensitivityFF

1
FF and specificityFF

2
FF? 

Chapter 2 reviews some of the salient literature on test cheating and provides a 

taxonomy of some of the existing of statistical cheating detection methods. Chapter 3 

includes a detailed introduction to the DGIRTM by including its philosophy and 

                                                              
1  Sensitivity: the proportion of true cheaters who are correctly identified as cheaters by the model 
2 Specificity: the proportion of true non-cheaters who are correctly classified as non-cheaters by the model 
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origin, a detailed explanation on its parameters, the MCMC estimation algorithm and 

other relevant conceptual features of the model. This chapter further lays out the 

details of an intensive simulation study designed to illustrate the reliability and 

detection power of the DGIRTM under a variety of design conditions (e.g., the 

composition of cheating population, the number of cheaters, the number of items 

being cheated and the different degree of cheating on each cheated items, cheating 

effectiveness). Chapter 4 summarizes the results of this simulation research. Chapter 5 

includes a discussion of the significance of the findings, limitations of the model and 

this research, and future research directions.
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4B4BCHAPTER II 

5BLITERATURE REVIEW 

In this chapter, the definition, consequence and causes of test cheating are 

introduced, followed by a discussion on the necessity of diverse methodologies to 

prevent and detect test cheating. Next, three categories of existing test cheating 

detection methods (copying indices, person-fit indices and cheating model) are 

reviewed, including a discussion of the methodological design considerations, as well 

as the strengths and weaknesses of each method.   

13B12BUnderstanding Test Cheating 

Tests and other assessments often have evaluative purposes that create “stakes” 

for the individual test-taker/candidate or other consumers of the scores. Simply stated, 

the examination stakes for an individual or group might provide an incentive to cheat.  

For example, if a college scholarship is awarded for any student who achieves a 

particular test score, the financial incentive should be obvious. That is not to say that 

all students cheat, given the incentive, merely that there usually needs to be some type 

of incentive or motivation to cheat—even if that incentive is related to social standing 

among one’s peers or some other less-direct motivation. 

Cizek (1999) provided one of the first comprehensive treatments of test cheating. 

As he pointed out, educators, policymakers, schools, parents, teachers, employers or 
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students make their judgments, evaluations and inferences primarily based on the 

results derived by tests. Depending on the stakes, any of these groups could be 

directly or indirectly involved in and/or affect by cheating. For example, test scores 

have been used as an indicator of teaching quality and educational program efficiency 

in the federal No Child Left Behind (NCLB) program, as well as for other 

accountability-related purposes. Given the financial resources and potential sanctions 

tied to NCLB and state accountability, individual schools or entire districts are not 

immune from the incentive to possibly cheat in subtle or not-so-subtle ways. Nor are 

these constituencies immune from the effects of cheating, especially if resources are 

allocated or policies enacted on the basis of data that may contain sizeable numbers of 

test cheaters. Separate from accountability purposes, parents might decide whether to 

send their children to a school or college using that institutions prior, average test 

scores as important indicators of teaching quality or college preparedness training.  

Many state accountability systems also tie teacher raises or annual bonuses to test 

results or “growth” on state-sponsored assessments. There are extremely powerful 

incentives for teachers to demonstrate progress and those are the stakes. The point is 

that incentives or motivations to cheat, facilitate cheating, or simply ignore it, are not 

always limited to individual students or test takers. 

Most testing companies or agencies responsible for large-scale testing programs 

take a great care and dedicate extensive resources to ensuring the validity and 

accuracy of scores, decisions, and other proficiency-based interpretations made on the 
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basis of test performance. When performance reflects nefarious behaviors beyond the 

required innate intelligence and learned knowledge and skills measured by a 

particular assessment, the validity of that assessment is seriously threatened. 

Inferences about proficiency in the presence of even partial cheating are no longer 

accurate. In fact, the test results and evaluation of proficiency for the individuals or 

groups involved in cheating are actually misleading.  

The negative impact of test cheating tends to grow in proportion to two factors: (1) 

the extent of cheating (how many are cheating?) and (2) the severity (how much 

advantage is gained?). The impact of cheating may also be extensive, given the chain 

of events that follow. For example, suppose a small group of individuals cheat on a 

college entrance test and obtain test scores substantially above their true proficiency 

levels. A university admits those students. What is the impact? First, those students 

may have taken up admission slots and financial resources that should have gone to 

other, more deserving students. Second, if the test is indeed predictive of 

post-secondary school success, these same students are likely to require more 

remedial resources and may still fail the more strenuous courses or take longer to 

eventually graduate with mediocre grades, at best (unless, of course, they become 

career cheaters). 

Although the impact of test cheating is well-recognized, it remains a serious 

challenge uncover all types of test cheating, much less to develop proactive and 

reactive techniques for combating cheating. As Cizek (1999) explained, test cheating 
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can involve individuals as well as groups. The most obvious types of cheating involve 

using some “source”—other than innate intelligence and learned knowledge or skills 

measured by the test—to respond to test items. Cheating sources can include stolen 

answer sheets acquired from others, posted test questions and answers on a website, a 

telephone or text conversation with an outside source during the examination, or 

merely looking at somebody else’s responses. Cheating can also involve the 

acquisition and dissemination of test materials; for example, putting memorized test 

items from an active test form on a website, taking photos on online test questions 

with a mini-camera, etc.. Cheating can also occur when an outside source—other than 

the examinee(s)—intervenes to change responses. Individuals in the testing industry 

have many anecdotal stories about test administrators with some direct or indirect 

stakes in the examination results changing answers for certain students. It is 

interesting to note that, similar to popular crime scene investigation terminology, the 

phrase “test data forensics” is now being used to describe many of the investigative 

and analytical procedures used by testing agencies to explore the likelihood of 

cheating.   

In the 21th century, test cheating has become a high-tech endeavor. Recording 

equipment, such as micro-recorders, cell phones, button-sized still cameras, or digital 

capture software are all useful for facilitating test cheating. For example, a group of 

test takers might use tiny still cameras to photograph entire test booklets, and then sell 

those test items to others who post the items and likely answers on a pay-per-view 
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website. Examinees who do not have access to the website (i.e., who do not pay) are 

unfairly disadvantaged. Modern technology has therefore extended the boundaries of 

cheating from inside a particular test administration site (e.g., a proctored testing 

center) to anyone with access to an internet connection and a credit card number. This 

challenge of using the internet and is the world-wide boundaries greatly complicates 

the identification of sources of cheating as well as locating the recipients (cheaters). 

 A cheater does not really have any advantage or potential gain if (s)he never sees the 

test questions memorized or that the person otherwise had access to. In that regard, if 

we have sufficiently large item banks and sufficient numbers of test forms to keep the 

data moving in an apparent random or near random pattern, cheaters will not have any 

particular advantage because the test questions acquired from a particular source have 

only a very tiny likelihood of being seen. Unfortunately, in reality, two factors in the 

testing industry tend to limit the size of the item banks and the number of test forms, 

increasing the exposure of test items and forms to potential cheaters (Luecht, 1996, 

2005). The first factor is test administration seat capacity. Since the advent of 

large-scale, group testing in World War II, many educational and professional 

certification and licensure testing agencies have held large-scale testing events in 

auditoriums, classrooms, and any other available spaces. Proctoring is provided at the 

testing sites and, by testing on only one or two dates each year, extreme exposure is 

limited. In these situations, it is possible to use a smaller number of test forms and 

random spiraling of the forms to individuals to limit the exposure of potential cheaters 
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to examination materialsFF

3
FF. However, given the pressures of modernization, many 

testing agencies are now considering and, in some cases, forces by economics and 

political pressures to adopt computer-based testing (CBT). CBT requires a “computer 

seat” for each examination and, given the limitations of most secure CBT providers, 

the large-scale testing events of the past are no longer possible. Instead, the tests may 

be offered 24-7, 365 days per year, or during discrete testing windows, ranging from a 

week to several months. The longer the window or testing period is, the greater will 

be the exposure of available test materials (Luecht, 1996, 2005).   

The second factor is the cost of producing items and associated test materials. 

Professionally developed items reportedly cost between $300 and $1,500 each to 

design, pilot, calibrate, and eventually use on operational test forms (Luecht, personal 

communication). If, for example, we determined that we needed ten times as many 

items to support CBT administrations within four discrete windows each year, with 

uniform exposures per window, the cost of test production would correspondingly 

increase by a factor of ten. There are few apparent economical benefits of scaling up 

production. And, furthermore, generating test items is not the same as stamping out 

parts on a manufacturing assembly line. Test developers at most testing agencies 

would be hard pressed to suddenly be capable of generating ten times as many high 

quality items, not to mention the experimental pilots/try outs and sampling design 

issues related to item calibration for use in scoring (Luecht, 1996; Stocking, Ward & 

                                                              
3Agencies involved in national (U.S.) and international testing still must contend with testing across time zones 
and even across the international date line. 
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Potenza, 1996; Segall, 2002; Luecht, 2005). Due to these types of practical cost 

limitations, many test agencies are therefore forced to expose smaller-than-desired 

item pools over greater periods of time, making it possible for “examinee 

collaboration networks” to systematically acquire and disseminate the test questions 

to potential cheaters (Luecht,1996). 

Testing organizations endeavor to prevent test cheating through the test 

development and administration process by imposing strict security regulations, 

training of their employees, and monitoring of people and materials using various 

quality control mechanisms and cross-checks. Yet, test cheating can never be totally 

prevented, with certainty, despite the best security and quality control. One effective 

way of preventing cheating is to control the environment through standardization, 

including limiting what the examinees can bring into the testing environment, as well 

as using proctors and electronic surveillance measures. Trained human proctors have 

been effectively used for decades to observe and monitor test takers while they are 

taking a test, and can provide direct testimony and evidence of cheating such as overt 

copying or accessing an unauthorized source. However, even the most astute proctors 

are limited by what they can observe. For example, most proctors would be unable to 

see a tiny receiver embedded in an examinee’s ear canal or notice carefully executed 

text messaging on a small cell phone. Proctoring also depends on human judgment 

and is subject to all of the limitations of subjectivity. If a proctor chooses to ignore 

certain types of minor cheating activities, the potential cheating goes unreported. If 
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the proctor is overly strict in his/her interpretation, false accusations could arise, 

raising into question the legitimacy of the proctoring. Or, if the proctor or his/her 

supervisor chooses to confront suspects, other innocent students might be upset and 

nervous and unable to focus on their tests (Cizek, 1999).   

Statistical cheating detection methods provide a more reactive way to catch 

cheaters after the fact. Most statistical cheating detection methods are objective, as 

well as being cost/ time-efficient. Three categories of statistical test cheating detection 

methods (copying indices, cheating detection model and person fit indices) are 

reviewed in the following sections, with discussions of their strengths and 

weaknesses.  

14B13BReview on Existing Statistical Cheating Detection Methods 

Angoff (1974) and Frary (1977) were two of the first researchers to investigate 

and publish works on the detection of test cheating. However, extensive research on 

cheating—especially research conducted by the major testing companies and other 

agencies involved in operational testing—has often not been published for the simple 

reason of security. That is, if statistical detection methods are published and widely 

disseminated, copiers may discover ways to reduce the effectiveness of those 

techniques. Cizek (1999) can be credited with opening up this topic to more 

wide-spread dialogue and research interest with the publication of his book, Cheating 

on Tests: How to Do It, Detect It, and Prevent It.  
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Most of the existing statistical cheating detection methods can be divided into 

three categories: (1) answer copying indices; (2) cheating detection models that 

directly estimate test cheating levels or effects; and (3) person fit indices that identify 

unusual response patterns, without necessarily specifying the causes. Copying indices 

(specifically, Wollack’s ω, Holland’s K index, and Sotaridona’s S indices) are 

reviewed first, followed by Segall’s cheating detection model. Finally, some typical 

person fit indices are discussed (e.g., lz index and ECI indices).  

29B28BStatistical Answer Copying Indices 

Test answer copying is one of the most obvious types of test cheating, where one 

examinee copies the answers from one or more other examinees. The source of the 

copying may or may not be a willing participant in the cheating. Most answer copying 

indices are designed to identify test cheaters based on some policy-based thresholds 

related to the statistical significance level or likelihood of the similarities between the 

response patterns of two examinees under suspicion (cheater and source). Given a 

very unlikely-by-chance level of similarity between two examinees’ response patterns, 

the plausible inference is that one of two examinees copied the answers of the other 

examinee. There is a plethora of answer copying indices from which to choose (e.g.,  

Bellezza & Bellezza, 1989; Frary, Tideman, &Watts, 1977; Hanson, Harris, & 

Brennan, 1987; Holland, 1996; Watson, Iwamoto, , Nungester, & Luecht, 1998; 

Sotaridona & Meijer, 2002, 2003;Wollack, 1997, 2003;Wollack & Cohen,1998; 
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Wollack, Cohen, & Serlin, 2001), and most of those indexes have been demonstrated 

to have differential effectiveness, given the nature of the data used and assumptions 

made about the nature of the copying (Wollack, 2006). 

Cizek (1999) classified answer copying indices as two types: (1) methods that use 

a theoretical distribution to compute the likelihood of observing the similarity by 

chance, called Type I copying indices; and (2) methods that use one or more reference 

samples of examinees taking the same test to estimate the likelihoods of observing 

particular similarities or response patterns, called Type II copying indicesFF

4
FF. It should 

be noted that most of the detection methods shown treat incorrect answers on 

multiple-choice questions as equally likely (i.e., all are scored wrong and the scored 

dichotomous data is sufficient for the detection analysis). There are exceptions (see, 

for example, Angoff, 1974; Watson, Iwamoto, Nungester, & Luecht, 1998), that 

condition on the actual incorrect choices selected. However, nothing germane to the 

present research study is gained by reviewing those more elaborate methods of 

analysis. They are mentioned only in the spirit of completeness.  

As for Type I Answer Copying Indices, generally speaking, any computed 

similarity index or indicator— such as counts of similarities or the length of strings of 

identical incorrect responses—can be viewed as having a particular sampling 

distribution. The probability of observing the computed statistic of interest is 

estimated by using a theoretical distribution such as the unit-normal cumulative 

                                                              
4  These labels should not be confused with Type I and II statistic errors of inference. 
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z-distribution, a t-distribution, or some other plausible sampling distribution.  

Comparing the observed (computed) statistic to its theoretical sampling distribution 

constitutes a significance test of the null hypothesis that the observed similarity 

between the potential copier and the source is strictly due to chance. Rejection of that 

hypothesis suggests an alternative, plausible hypothesis that the similarity between the 

two examinees’ response pattern could only have occurred due to one examinee 

copying from the other. The nominal significance level is typically set at a very 

conservative value (i.e., 1.0E-7) to minimize false-positives. Adjustments of 

experimental decisions errors can also be used if the number of hypothesis tests is 

large.  

Ultimately, those examinees with significant results are identified as potential 

copiers (who copy answers from others) or sources (whose answers are copied by the 

copiers). Wollack’s ߱ (1997) and Frary’s g2 index (1977) are the two examples of 

Type I answer copying indices reviewed below. (See Wollack [1997] for a more 

comprehensive review of answer copying indices.) 

Wollack (1997) characterizes answer copying as involving two types of 

examinees: (1) the “source”, represented by s, whose answers are copied by others; 

and (2) ”copier”, represented by the index c, who copies the source’s answers. 

Wollack’s notation hcs is used to represent the number of matching item responses 

between the copier and the sources.  
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Wollack’s cheating index uses item response theory (IRT), where both the test 

items and examinees are calibrated to a common metric, using a suitable IRT model 

for dichotomous items. The conditional expectation of hcs is the sum of conditional 

probabilities, using the IRT model probabilities, pi≡Prob(ui=1|θ) and qi≡1-pi:  

,ߝሺ݄௖௦ሃܧ ,௖ߠ ௦ܷሻ ൌ ∑ ௜݌
௨೔ כ ௜ݍ

ଵି௨೔௞
௜    (1) 

where: ߝ is a vector representing the IRT item parameter estimates; ߠ௖ is the 

copier’s latent ability or proficiency score; ௦ܷ is the source’s response pattern on 

i=1,…,k items; ݑ௜ is the source’s response an individual item, i; pi is the probability 

of a correct answer to the ith item given the copier’s ability; qi is the probability of 

incorrect answer to the ith item—i.e., the complement of pi. Using the binomial 

distribution, Wollack provides the conditional variance of the estimates about the 

expected value, hcs , as 

௛ܸ೎ೞ ൌ ∑ ௜݌ כ ௜ݍ
௞
௜                                                              (2) 

The answer copying index, Wollack’s ߱, is therefore a simple ratio of observed 

deviations about the expected value to the standard error of estimate: 

߱ ൌ ௛೎ೞିாሺ௛೎ೞሃఌ,ఏ೎,௎ೞሻ

ඥ௏೓೎ೞ
    .                                                     (3) 

The null hypothesis for the significance test assumes that ω follows a 

unit-normal distribution (i.e., a Gaussian distribution). If the value of ߱ of an 

examinee is greater than or equal to the critical unit-normal value at the nominal 
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significance level, the copier can be identified as a potential cheater, otherwise, the 

examinee is not flagged. For example, given a nominal significance level of 0.001, the 

corresponding inverse normal critical value would be 3.09 (using absolute value). Any 

copiers have computed values ߱ ൒ |3.09| would be flagged as potential copiers, 

requiring additional follow-up. 

Frary’s (1977) g2 is conceptually similar to Wollack’s IRT-based index, but only 

requires classical test theory statistic such as number-correct scores and item-level 

p-values. Frary’s method also classifies one examinee as the source (represented by s) 

and the other one is the copier (represented by c). Here, hcs is the observed number of 

shared, identical responses between the source and copier. The expected value of hcs is 

defined as:   

| ሺ݄௖௦ܧ ௦ܷሻ ൌ ∑ ௖ܲሺ ௜ܷ௦ሻ௞
௜                                                       (4) 

where: k is the number of items; Uis is the source’s response to the ith item; Pc(Uis) is 

the copiers’ response probability to have the same response as the source on the ith 

item. Frary (1977 provides extensions of the index that allow other features of the 

response pattern to be used (e.g., incorrect strings) calculate Pc(Uis). The variance of 

the ܧሺ݄௖௦ | ௦ܷሻ is defined as: 

௛ܸ೎ೞ ൌ ∑ ሾ ௖ܲሺ ௜ܷ௦ሻሿ כ ሾሺ1 െ ௖ܲሺ ௜ܷ௦ሻሿ௞
௜   .                                          (5) 

The test statistic is computed as 

݃ଶ ൌ
௛೎ೞିாቀℎ೎ೞ |௎ೞቁ

ඥ௏೓೎ೞ
                                                          (6) 
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Like Wollack’s ω, Frary’s g2 is assumed to be normally distributed with mean of 

zero and standard deviation one. The null hypothesis of this statistic is: H0: g2=μ=0.  

If g2 exceeds absolute value of the critical z-value at the nominal significance 

threshold, the subject would be flagged for additional follow-up.  

The ߱ and g2 indices are highly similar, but employ a different statistical 

mechanism to define the expected coincidence of responses. As noted above, the ߱ 

index is IRT-based while the g2 index is classical test theory-based. The advantage of 

these two indices is that they both make use of the full [scored] response vectors 

including both the correct and incorrect answers. However, both indices are somewhat 

limited in accuracy, for more extreme scores and lose substantial statistical power as 

the copier and source have greater numbers of shared responses. With the ߱ index, 

the copiers’ estimated proficiency will be positively or negatively inflated by 

including the copied responses in the full response string. A substantial increase in the 

number of test cheaters (copiers in the population) could increase the magnitude of 

the scale difference between the estimated examinees’ scores (with cheating) and 

examinees’ real proficiency scores, as measured by θ. Consequently, the expected 

coincidence (similarity) of responses would be contaminated and drift away from the 

true value, resulting in a non-centrality shift in the sampling distribution of ω. The 

critical implication is that computed ߱  statistic would no longer be normally 

distributed with mean of zero and standard deviation one. If we could estimate the 

non-centrality shift, a corrected sampling distribution could be used; however, a 
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plausible statistical non-centrality adjustment method has not been offered in the 

literature. 

Frary’s g2 is based on the observed data to calculate the expected number of 

coincident responses. This index itself will be greatly impacted by the population and 

item characteristics (classical item difficulties and discrimination indices). A 

fundamental limitation is that, similar to Wollack’s index, the g2 statistic does not 

distinguish an examinee’s true ability from that ability plus some incremental gain due 

to cheating, and is therefore susceptible to the same non-centrality shift as ω, when 

the number of copiers increases substantially.  

In summary, Type I answer copying indices such as Wollack’s ω and Frary’s g2 

have the advantage of making use of all of the responses (both incorrect and correct 

responses). As discussed below, broadly considering all the responses may be an 

advantage when compared to the Type II indices. However, the Type I copying indices 

tend to lose power and can lead to biased results when the magnitude of the cheating 

effectiveness or the number of cheaters in the population increases because these 

methods do not distinguish any examinee’s true proficiency and associated responses 

from the portion of the response affected by cheating. Furthermore, the assumption 

that the counts of coincident responses due to cheating or other forms of collaboration  

are normally distributed may be violated, rendering the use of a Gaussian probability 

distribution inappropriate.   
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As opposed to Type I Copying Indices, Holland’s K index (1996) and 

Sotaridona’s S index (2002)，are representative examples of the Type II copying 

indices. Both indexes assume that the similarity between the response patterns of 

copiers and sources can be modeled by using either the Binominal or Poisson 

distributions.  

Holland’ K could be implemented by either using an empirical sampling 

distribution or a theoretical distribution. For both implementations, the examinees are 

divided into some number of groups, denoted R, based on the number of wrong 

answers. Each group has the same number of wrong answer which is labeled as Wr. 

For example, all of the examinees having only one incorrect answer form Group 1, all 

of the examinees having two incorrect answers form Group 2, etc.. As with the Type I 

indices, there is a source student, labeled by s, whose answers may have been copied. 

The label rj is used to represent that the jth examinee from the rth group.  

For the empirical implementation, Kj is defined as the observed proportion of 

examinees in one subgroup (Rc) who having the same number of incorrect answer as 

the jth examinee and the examinees in the subgroup whose matching number of 

incorrect answer with the source is at least as large as the jth examinee (Sotaridona, 

2005). Specifically, Kj is defined as  

Kj= 
∑ I౟ౠ

౤
౟సభ

୬
 ,                                                                (7) 

where n is the total number of examinees in the sub-group (Rc) that have the same 
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number of incorrect answers with the jth examinee, and i represents the ith examinee in 

the sub-group. The variable Iij is a binary indicator that is set to zero when Mis<Mjs, or  

Iij= 1when Mi>=Mj. where Mis is the matching number of incorrect answer of ith 

examinee in that sub-group with the source. Mjs is the matching number of incorrect 

answer of jth examinee with the source. 

A small value of Kj means that the jth examinee may have taken the opportunity to 

cheat in the test by copying strings of responses. That is, the logical directionality of 

the test links possible copying with decreasing values of Kj. However, the count of 

matching incorrect items is sensitive to the ability level of both the copier and source. 

For example, if the copier and source are at the same ability level, they would be 

expected to have a relatively high number of identical matching number of incorrect 

answers.  As a result, more innocent test takers at similar ability levels might be 

misclassified as copiers using this index. In addition, this method is sample size 

dependent because the number of examinees in a particular subgroup is involved in 

this index, especially for the empirical implementation. 

For the theoretical implementation, the probability of the suspect having at least 

as large matching number of incorrect answers with the source as other examinees in 

the same subgroup is modeled using the binominal distribution. The number of 

matching wrong answer between the examinee rj and the source (s) is labeled as Mrj. 

Thus the K defined by Holland (1996) is:  

K୨ ൌ ∑ ൫௪ೞ
௪ ൯݌ௐ כ ሺ1 െ ሻௐೞିௐௐೞ݌

௪ୀெೝೕ
       (8) 
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where p is the expected probability of wrong answer matching, Ws is the number of 

wrong answers of the source. Note that p can be estimated in different ways. One of 

the more direct methods is to define p as ெೝതതതത

ௐೞ
 where ܯഥ௥ is the mean number of 

matched wrong answers between all the examinees from the rth group and the source. 

Holland also suggested a linear regression method of approximating p.  This 

regression approach uses the proportion of wrong answers (Qr) of each examinee in 

each subgroup as the predictor variable. Holland (1996) provided an example to show 

how the p was predicted using linear regression:  

݌ ൌ ൜
a ൅ bQ୰,                                       0 ൏ ܳ୰ ൏ 0.3

a ൅ 0.3b ൅ 0.4b כ ሺQ୰ െ 0.3ሻ,   0. 3 ൏ ܳ୰ ൏ 1 . (9) 

As a practical note, a and b must be pre-specified or otherwise estimated applying 

the conditional two-part regression models, based on Qr. For example, Holland (1996) 

set a=0.085 and b is differently set based on specific testing settings. How these 

coefficients a and b were estimated for different testing contexts is not clearly 

presented in Holland’s study (Sotaridona, 2003). 

Modified K indices (ܭഥଵand ܭഥଶ) were proposed by using all of the data from all 

the sub-groups to predict the p values using linear or polynomial regression models. 

The estimation methods of p in these two new indices is not the focus of this 

dissertation, thus readers could search more information about this by referring to 

Holland’s work. 

 



26 
 

Sotaridona (2002) similarly proposed two new indices called S1 and S2 to describe 

the probability of the suspect having at least as large matching number of incorrect 

answers as other examinee in the same subgroup, based on an assumed Poisson 

probability distribution. Examinees are also divided into R subgroups based on the 

number of incorrect answers, where examinees in each subgroup have the same 

number of wrong answers. The formula for calculating S1 is defined as:  

ଵܵ ൌ ∑ ௘షഋೝכఓೝ
ೈ

ௐ!
ௐೞ
ௐୀெೝೕ

                                                        (10) 

Where ߤ௥ ൌ ݁ఉబାఉభכௐೝ, and ߚ଴and ߚଵ is estimated based on the number of wrong 

answers and the mean number of matching wrong answers for each group (Wr). Ws is 

the number of wrong answer of the source (s). Mrj is the matching number of wrong 

answers between the jth examinee in the rth subgroup and the source. 

Notably, both Sotaridona’s S1 index and Holland’s K, only use the incorrect 

answers, disregarding with correct answers. In contrast, the S2 index, uses both correct 

answers and incorrect answers. It seems that S2 should be a promising copying index. 

However, it introduces a lot of other unverified transformation and factors which 

would jeopardize its reliability. For example, this index is hard to distinguish 

examinees who are competent enough to correctly answer to a certain item from those 

who correctly respond to the item by guessing or cheating. Thus a complicated 

mathematic transformation formula, which incorporates the guessing level of each 

item, is introduced to identify cheating effect embedded in the correct responses, by 
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removing the impact of guessing on the response patterns. However, such 

transformation formula is not theoretically or empirically verified so far, which is 

somewhat speculative. For more detailed information about this index, reader could 

refer to Stataridona’s work in 2003.     

In summary, the basic logic underlying these Type II indices is that a suspect who 

has a larger number of matching incorrect answer than most of other examinees in the 

same sub-group should be the one who copied answers from the source. A small value 

of both S and K indicates the high likelihood of answer copying. These two indices 

could be problematic sometimes. Firstly, it is hard to calculate the expected matching 

probability (p) for K and expected matching number (μ) for S1. Actually, some new 

methods (e.g.,ܭഥଵ,ܭഥଶ) are proposed to calculate the p and the μ; however, they are still 

unreliable and difficult to be estimated. Secondly, the Binominal or Poisson 

distribution is not theoretically validated to characterize the likelihood of the incorrect 

answer match between the suspect and source. Next, the two kinds of indices are 

easily impacted by the item difficulty, examinees’ ability and sample size of each 

subgroup. As a notice, these type II copying indices, except S2, only utilize the 

information of the matched incorrect answers, but they are preferred by practitioners  

in real settings because they seems to have higher level of power to detect test 

cheating relative copying.   

A number of other Type II cheating indices could have been included in this 

section (e.g., g1, ܭഥଵ,ܭഥଶ,S2), but most of them make the same relative assumptions and 
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focus on essentially the same data as the indices reviewed here. The copying indices 

are particularly developed to identify test cheating caused by direct answer copying. 

Although many copying indices have been demonstrated to be useful tools to detect 

test copying, they are limited and may be unreliable in many applied settings because 

of their strong assumptions on the distribution of the similarity statistics. Wollack 

(2006) pointed out that no one existing copying index was uniformly better than 

others given different amounts of or different types of answer copying.  

30B29BCheating Detection Models 

Some researchers have chosen to focus on developing statistic models for more 

directly characterizing the severity and level of test cheating. Segall (2002) proposed 

an IRT-based cheating detection model to directly provide estimates of the population 

characteristics related to the test cheating. This model is particularly designed to 

detect test cheating caused by item exposure, item-preview, or item sharing via 

internet. The use of such models is obvious. If cheating becomes sufficiently 

problematic, change the item bank or otherwise implement changes to significantly 

reduce the benefits of prior exposure to the active item bank and test forms.   

In Segall’s (2002) model, the test items are separated into two mutually exclusive 

categories: one class of items which are probably compromised, as indicated by 

empirical exposure counts, time in use, or other indicators; the second class of items 

are considered to be secure due to recent release or other factors. Segall (2002) 
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defined the first class of items as those considered exposed to test takers beyond a 

span of a week, month, or a year, depending on empirical investigations or policy 

decisions.  

Using an IRT-based response function, the probability of a correct answer to an 

item under Segall’s test compromise model is:  

௜ܲ௝൫ ௜ܷ௝หߠ௝, ܽ௜, ܾ௜, ܿ௜, ௜௝൯ܭ ൌ 1 ൅ ൫1 െ ௜௝൯ܭ כ ሾܲ൫ ௜ܷ௝หߠ௝, ܽ௜, ܾ௜, ܿ௜൯ െ 1ሿ                   (11) 

ሺ ݈݈݅݋݊ݎ݁ܤ~௜௝ܭ ௜ܲ௝
ఠሻ                                                         (12) 

௜ܲ௝
ఠ ൌ ௜׎  כ ௜ߙሺߔ ൅ ௜ߚ כ ௝߱ሻ                                                   (13) 

P൫ ௜ܷ௝หߠ௝, ܽ௜, ܾ௜, ܿ௜൯=ܿ௜ ൅ ሺ1 െ ܿ௜ሻ כ ሾܽ௜ߔ כ ሺߠ௝ െ ܾ௜ሻሿ   (14) 

where Kij is the cheating status of the jth examinee on the ith item (where kij= 1 denotes 

prior exposure of that item to that particular examinee and kij= 0 denotes lack of 

exposure). The jth examinee’s cheating tendency ௜ܲ௝
ఠ is hierarchically modeled by a 

normal ogive model with a person parameter ωj and item parameters αi and βi . The 

parameter ׎୧ for the ith item is assumed to be known such that ׎୧ = 1 for exposed 

items, ׎୧ = 0 for unexposed items. Equation 13 is the usual three-parameter 

normal-ogive IRT model for the probability of a correct response of the jth examinee 

to the ith item, with examinee ability ߠ௝ and item parameters ܽ௜, ܾ௜ and ܿ௜.  

Compared with copying indices, Segall’s model has two distinctive advantages, 

from an explanatory perspective. One advantage is that, in addition to modeling the 
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test takers’ proficiencies and item operating characteristics under non-cheating 

conditions, it includes population-level characteristics related to test compromise. 

This provides actionable information to signal a testing agency of potentially high 

risks of cheating and suggest the need to introduce a new item bank or less-exposed 

test forms. The other advantage is the model makes use of the full [scored] response 

matrix, including all examinees. In contrast, most of the answer copying indices 

compare response similarities of only pairs of examinees: the source and copier 

suspect.  

Segall’s cheating detection model does make one rather strong assumption that 

may limit its flexibility and, possibly, its statistical power to correctly classify 

examinees and estimate the magnitude of the cheating in the population. That 

assumption is that the test cheater will correctly answer every item on which have 

been cheated with 100 percent certainty. It is certainly reasonable to believe that test 

cheating activities should increase test cheaters’ observed performance—that is, the 

probability of correctly answering most of the items to which they had prior access.  

But, it seems highly unlikely that every examinee will memorize every exposed item 

with certainty and be able to retrieve those answers while taking the test.  If we 

suppose that many of the cheaters are motivated to cheat because they lack the 

knowledge and skills to answer the questions by honest learning/studying or innate 

intelligence, then it makes little sense to assume that those same cheaters can 

memorize and successfully recall large blocks of exposed items, at least not without 
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auxiliary aids such as hidden “cheat sheets”, access to cell/text messaging, or other 

nefarious means of getting outside help. Insofar as the model is concerned, the 

probability of correctly answering the cheated items is not determined by the cheating 

activities itself. Other factors such as each cheaters’ real proficiency level and his/her 

capability to memorize items at different levels of difficulty, given different content 

and surface features of the items, are also key factors to impact a cheater’s probability 

of correctly answering the items which have been cheated by the cheater. 

As a point of interest, the Deterministic, Gated IRT Model (DGIRTM) presented 

in this dissertation attempts to overcome that assumptive limitation by relaxing the 

assumption that cheating examinees response perfectly to every item that may have 

been previously exposed. The DGIRTM also more generally deals with the issue of 

estimating the impact of cheating (gain scores) in the population than is possible using 

Segall’s model.  

31B30BPerson Fit Indices 

An extensive number of person-fit indices (PFI) have been developed, primarily 

to evaluate the date-model fit of various IRT models.  Examples include likelihood 

ratio tests such as lo (Levine & Rubin, 1979),  lz (Drasgow, Levine,& Williams, 

1985), and ECI1z, ECI2z, ECI4z, and ECI6z (Tatsuoka, 1984; see Meijer, 1996). Only 

the lz and ECI4z are reviewed in this dissertation, because prior research rather 

conclusively suggests that these two indices are the two of most useful tools. 
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 It seems worth noting that person-fit indices are intended to detect aberrant patterns 

of responses that differ from expected responses under a particular theoretical model. 

Assuming that the model holds for the majority of examinees in a particular 

population, those examinees having highly unusual patterns can be flagged and 

further evaluated for likely causes of the aberrance. For example, consider an 

examinee getting sick during the afternoon of a full-day examination, making it 

difficulty for her to concentrate. Her item responses are likely to suffer and may more 

progressively mimic random responses toward the end of the test. The person-fit 

statistics should be capable of flagging the rather dramatic changes in the patterns of 

response, earlier versus later in the test. This example has an obvious cause that seems 

consistent with the data. Suppose that another examinee has exactly the same 

response patterns, but his performance dropped off because he no longer was able to 

cheat—perhaps he lost or inadvertently forgot to bring the final page of answers. Did 

he cheat and does the statistically determined aberrant response pattern constitute 

sufficient evidence to come to that conclusion? This simple example characterizes the 

challenge of most person-fit indices for test cheating. The power to detect aberrant 

response patterns is usually independent of possible causes and alternative 

explanations for exactly the same data with different causes.  

The lz index is a standardized ratio function of a log-likelihood function, where 

the likelihood of the observed responses are compared to an expected value for the 

population or an appropriate reference group. The lz statistic can be expressed as  
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݈௭ ൌ ୪୬ൣL൫஘෡൯൧ିEሼ୪୬ ሾL൫஘෡൯ሿሽ

ට୴ୟ୰ሼ୪୬ ሾL൫஘෡൯ሿ
                                                     (15) 

where the log-likelihood of the observed data is given as 

lnൣL൫θ෠൯൧ ൌ ∑ ሼu୧ כ lnൣP୧൫θ෠൯൧ ൅ ሺ1 െ u୧ሻ כ ln ሾ1 െ P୧൫θ෠൯ሿሽ୬
୧ୀଵ                           (16) 

and with an expectation and variance defined as 

EሼlnൣL൫θ෠൯൧ ൌ ∑ ሼP୧൫θ෠൯ כ lnൣP୧൫θ෠൯൧ ൅ ቀ1 െ P୧൫θ෠൯ቁ כ ln ሾ1 െ P୧൫θ෠൯ሿሽ୬
୧ୀଵ                    (17) 

and 

varሼlnൣL൫θ෠൯൧ ൌ ∑ ሼP୧൫θ෠൯ כ ቀ1 െ P୧൫θ෠൯ቁ כ ሼ୪୬ൣP౟൫஘෡൯൧
ଵିP౟൫஘෡൯

ሽଶሽ୬
୧ୀଵ  . (18) 

Referring to Equations 15 to 18, i represents the items, ߠ෠ is the ability estimate 

(assumed to be estimated by maximum likelihood), ui is the response of the ith item, 

and ௜ܲ൫ߠ෠൯ is the probability of a correct item response for a given estimated of 

ability, ߠ෠,  based on a particular IRT model. 

If examinees respond according to the chosen IRT model (i.e., if their data fit the 

model), lz has a sampling distribution that is asymptotically normal with a mean of 

zero and standard deviation of one. Large negative values of lz indicate misfit or 

unlikely response patterns. Large positive values indicate over-fit, an estimation result 

that rarely surfaces with real data. Some research has shown that lz is the most 

efficient at detecting non-model-fitting response patterns when the test has items of 

varied difficulty and small lower asymptote parameters (Reise & Due, 1991). Using 

simulation studies, Drasgow and Levine (1986) found that lz performed satisfactorily 
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with detection rates approximately 65 percent correct identification of simulated 

cheaters, where cheating was induced.  

 In a slightly more complicated way, ECI4z  (Tatsuoka, 1984) was designed to 

isolate the difference between an observed response vector and an IRT-based or 

response function, incorporating both the difficulty of the item and the conditional 

[binomial] variance of estimation into the ratioFF

5
FF. It contains information of observed 

response and model predicated probability. ECI4z is defined as:  

ECI4୸ ൌ ∑ ሼൣP౟൫஘෡൯ି୳౟൧כሾP౟൫஘෡൯ିPഥ൫஘෡൯ሿሽ౤
౟సభ

ට∑ ሼP౟൫஘෡൯כቀଵିP౟൫஘෡൯ቁכሾP౟൫஘෡൯ିPഥ൫஘෡൯ሿమሽ౤
౟సభ

        (19) 

where തܲ൫ߠ෠൯ is defined as the condition mean of ௜ܲ൫ߠ෠൯ for a particular set of items, 

௜ܲ൫ߠ෠൯ is the model-predicted probability of a correct answer to the ith item, and ݑ௜ is 

the observed response of the ith item. Lewis (1999) asymptotically proven that ECI4z 

is distributed with a standardized normal distribution with a mean of zero and 

standard deviation of one. Large positive values may result from correctly answering 

more difficult items. Conversely, large negative values may result from an examinee  

correctly answering more easy items and fewer difficult items than would be expected 

on the basis of the IRT model in use.  

Despite their popularity and apparent value for general data-model misfit 

questions related to individual examinees, lz and ECI4z s may be fundamentally 

flawed for use in detecting cheaters for an obvious reason. Both of the two indices 

                                                              
5 This ECI4z statistic is conceptually very similar to other, more traditional data-model fit statistics (see for 
example., Wright & Stone, 1979 and Yen, 1983) 
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make use of the estimated ability or proficiency to calculate the likelihood values.  

However, the estimates are potentially contaminated by some unknown mixture of 

guessing, or response due to cheating, and maybe even some attempts to respond 

based on legitimate knowledge and skills. In that case, therefore, the null hypothesis 

of the two indices may not be held any more. Furthermore, when the number of 

cheaters in a test grows, the two indices may lose their power to identify unusual 

response patterns due to cheating (versus other causes). As noted above, factors other 

than test cheating may be equally or more plausible to explain aberrant responding, 

where identical aberrant responses may have vastly different explanations.  

15B14BSummary of the Cheating Detection Methods 

Three categories of statistical cheating detection methods were introduced and 

discussed in this section, with examples provided under each category. These methods 

have all been applied, at least in research settings—less so in applied testing 

settings—and generally shown to be useful tools. For example, Wollack’s (1997, 2006) 

research has suggested that the ω index consistently maintains expected level of 

statistical power and false positive error rates, even for small sample size applications. 

Segall’s model was also shown to work well with simulated cheating data.  For the 

person-fit statistics, as noted, Drasgow and Levine (1986) used simulation research to 

empirically demonstrate that the lz statistic could perform satisfactorily to help detect 

cheating that results in aberrant response patterns.  
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Because most of these detection methods require only access to the scored 

response data and sufficient computational resources, they are obviously 

cost/time-efficient; at least when compared to reviewing irregularity reports submitted 

by test proctors or carrying out extensive, physical investigations of opportunity and 

motive to cheat, as well as background checks on cheating suspects. At worst, most 

cheating analysis results provide only one type of evidence that may or may not be 

plausibly linked to suspected cheating activities. Few testing organizations would 

responsibly accuse somebody of cheating strictly based on a statistical index.  

However, even when the cheating indices produce the primary flagging mechanisms 

for suspected cheating—based almost solely on the observed data—we might 

arguably want to hold those indices to a very conservative standard to avoid falsely 

accusing individual examinees.  

As suggested in this chapter, most of the existing statistical cheating detection 

methods have various limitations—a point also made by Wollack (2006). There are 

obvious limitations such as conclusively identifying potential sources/causes and 

determining directionality, having somewhat speculative definitions of the parameters 

in some of the detection models, and a general neglect of those models to distinguish 

cheaters’ real proficiency from their proficiency due to cheating. More specifically, 

almost all of the copying indices are designed specifically to detect answer copying 

by comparing a suspected copier to a source, using similarity-based statistics.  

Although these methods have been effectively used with large-scale paper-and-pencil 
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tests, their effectiveness seems severely curtailed for many types of computerized 

tests (adaptive tests and the other types of computerized testing at many small centers 

on multiple days). For example, it is difficult to identify possible sources when most 

examinees take tests at different times and in a wider variety of locations, much less 

extract sufficient data, especially if fewer examinees ever see exactly the same items 

in the same order (Iwamoto, Nungester & Luecht, 1998).   

Cheating models such as Segall’s (2002) IRT-based cheating model might be 

limited by data demands—especially for smaller-sample applications and the 

plausibility of the rather strong assumption about the capability of cheaters to 

reproduce exposed materials with certainty. However, the inclusion of way to estimate 

the magnitude of score gain due to cheating is a particularly appealing aspect of 

Segall’s model that is extended in this dissertation. Finally, most person fit indices 

tend to confound real proficiency and proficiency due to cheating (i.e., cheating skill) 

and also suffer from sufficient explanation/proof of cheating as the cause of the 

aberrance. The lack of generalized utility of these indices and models was articulated 

by Dwyer and Hecht (1996):  

Our position, which is supported by both the courts and statisticians, is that one 
should never accept probabilistic evidence as sufficient evidence of cheating 
merely because a pattern of answers is deemed to be statistically improbable. In 
every case, reasonable competing explanations should be evaluated, limitations 
of the mechanical detection strategies must be taken into account, and the 
inherent variability in the reliability and validity of test design and 
administration of all but the most rigorous of standardized tests must be 
considered. (p.133) 
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In reality, building a probative argument for cheating is a matter of providing as 

many indicators and related, convincing evidence as possible that favors the 

hypothesis that cheating is the only plausible cause. This requires also demonstrating 

that alternative explanations or cause of the results are neither reasonable nor probable, 

in a relative sense. Most statistical models require assumptions. Those assumptions 

also need to be justified any time the model is used, not just taken on faith (or 

assumed to hold under some nebulous asymptotic statistical or mathematical theory.  

Roberts (1987) pointed out the consequence inappropriately applying statistical 

detection methods that lacking validity, saying “ To rely on statistical evidence alone 

when no observational evidence is available is not only considered poor practice…but 

requires the prosecution to prove charges of cheating based only a probability” (p.79).  

Acknowledging the apparent caveats about valid and ethical uses of test cheating 

detection methods, and a rather rich literature covering a plethora of statistical 

methods, this dissertation also recognizes the value and need to move the research 

forward in a credible and significant way. Toward that end, a new cheating detection 

model, called the Deterministic, Gated IRT Model is introduced and developed in  

Chapter 3. This new model, while certainly not immune to abuse or probative misuse, 

at least attempts to correct some of the technical limitations of other methods.
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6B6BCHAPTER III 

7B7BTHE DETERMINISTIC, GATED ITEM RESPONSE THEORY 

MODEL 

In this chapter, a new cheating detection model, called Deterministic, Gated Item 

Response Theory Model (DGIRTM), is proposed to detect and respond proactively to 

test cheating by groups, or individuals in paper-based tests (PBT) or computer-based 

tests (CBT). The new model is presented from different aspects, by describing its 

modeling philosophy, origin, mathematic equations, estimation framework, and its 

conceptual features. Then a simulation research is designed to demonstrate the 

DGIRTM’s characteristics, followed by a brief introduction a real dataset where the 

DGIRTM is applied to show its usefulness.  

16B15BThe Origin 

32B31B A New Way to Look at Test Cheating 

Test cheating, as a negative factor to impact test validity, is a long-existing and 

challenging problem for the testing industry since the first test was administrated. The 

knowledge obtained from cheating activities influences an examinee’ responses with 

respect to correctly or incorrectly answering items on which examinees cheated, and 

therefore their answers are not fully dependent on their true ability. The benefit 
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achieved by cheating is a threat to the validity and inference made based on tests. A 

growing benefit (i.e., positive or negative score gain) will result in an increased threat 

to the validity or accuracy of the inference made based on tests. Therefore, test 

cheating detection methods should be able to detect cheaters who obtain noticeable 

positive or negative benefit from test cheating, which severely jeopardizes the 

accuracy of the test inference. However, in real application it seems that it is not 

necessary to detect cheaters who actually have no or little benefit from cheating, 

because such cheaters who have no or little score gain (or benefit) accordingly have 

no or little impact on the validity or accuracy of the inference made based on tests and 

thus they could be treated as non-cheaters in most real applications. The DGIRTM 

was developed for the purpose of detecting test cheating by modeling the benefit that 

cheaters obtain from their cheating activities.  

In this new model, cheaters have two skills, the skills are their true proficiency 

determined by his/her native cognitive ability and the second skill is their cheating 

skills determined by the combination of their true proficiency in addition to the 

cheating information that they have obtained. Thus, the difference between the true 

proficiency and their cheating ability is the benefit from their cheating. As a note, 

such difference between the true proficiency and cheating ability is also called score 

gain in this dissertation. It is a normal sense to believe that the score gain due to test 

cheating is positive (i.e., cheating ability is greater than true ability). The score gain 

can be used to reflect the effectiveness of the cheaters’ cheating on tests. The validity 
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of the inference made based on tests can be jeopardized by effective cheaters with 

significantly large score gain, but is only slightly impacted by un-effective cheaters 

(those who cheat but have no or little score gain). The new model is designed to 

detect effective cheaters with a noticeable score gain.  

Conceptually, this model defines test cheaters based on the effectiveness of 

cheating activities, but not on whether cheaters have or have not conducted cheating 

activities. In other words, the model treats the test takers who are un-effective cheaters 

as non-cheaters, where an un-effective cheater may have cheated, but did not 

significantly improve his or her score in cheating. The threshold between the effective 

cheaters and non-cheaters is mainly determined by the level of measurement error-as 

determined by the DGIRTM’s estimation and the confidence level to identify test 

cheaters (i.e., a cut point for determining who are cheaters; this cutting point will be 

discussed in the model estimation section). Specifically, non-effective cheaters whose 

score gain are within the standard error of the model estimation are more likely to be 

classified as non-cheaters, and otherwise effective cheaters whose score gain is above 

the standard error of model estimation are more likely to be identified as cheaters 

under the DGIRTM framework. 

Essentially, the DGIRTM treats the un-effective cheaters’ score gain as scoring 

error. From the practical standpoint, it is safer to treat un-effective cheaters as 

non-cheaters, because the severity of the impact of their score gain on test score 

validity is at the level that is the same as the standard error of the model estimation. 
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From the statistical standpoint, it is difficult to distinguish the un-effective score gain 

from the standard error of examinee scoring. From the educational and legal 

standpoint, we would prefer to believe that test takers are honest and innocent in their 

tests unless presented with strong evidence otherwise.   

As discussed in Chapter 2, test cheating due to item preview, item memorization 

or internet collaboration now noticeably exists due the evolvement of computerized 

testing, which provides more administration windows with a higher frequency. In 

such cheating due to item preview, item memorization or internet collaboration, it is 

reasonable for us to argue that examinees are only possible to review the exposed 

items (i.e., the items have been used in previous forms) and they are impossible to 

have access to the unexposed items (i.e., the items have not been used). Generally 

speaking, the DGIRTM is developed to detect test cheating conditional on the item 

exposure status (exposed or not exposed) in a test by modeling examinees’ score gain.  

33B32BThe General Cheating Model 

A statistic model is proposed to describe test cheating context by distinguishing 

cheaters’ true proficiency from their proficiency due to cheating. The model is called 

the general cheating mode, which is the origin of the DGIRTM. In this model, two 

latent traits are used to separately characterize a cheater’s real knowledge level and 

cheating.  One is test takers’ true ability (θt), which is the latent trait to characterize 

test takers’ real knowledge level, and the other ability is their cheating ability (θc), 
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which is the latent trait to describe the examinees performance due to cheating. As a 

note, it is argued that cheating ability is a combination of examinee true ability and a 

score gain. Mathematically, the score gain (labeled by Δ) is the difference of examinee 

cheating ability and true ability (Δ=θc -θt). As stated before, in reality it is reasonable 

to believe that the score gain is greater than zero.  

Test takers will only rely on their true ability to answer items when they do not 

cheat on tests, while they will use their cheating ability to solve items when they cheat. 

Based on this logic, the expected probability of a correct answer to an item according 

to the general cheating model is defined as equation 20, equation 21 or equation 22:  

P൫U୧୨ ൌ 1|θ୲, θୡ, I୧, T୨൯ ൌ ሺ1 െ I୧ሻ כ P൫U୧୨ ൌ 1หθ୲൯ ൅ I୧ כ ሾ൫1 െ T୨൯ כ P൫U୧୨ ൌ 1หθ୲൯ ൅ T୨ כ P൫U୧୨ ൌ 1หθୡ൯ሿ  

(20) 

P൫U୧୨ ൌ 1|θ୲, θୡ, I୧, T୨൯ ൌ ൫1 െ ௝ܶ൯ כ ܲ൫ ௜ܷ௝ ൌ 1หߠ௧൯ ൅ ௝ܶ כ ሾሺ1 െ ௜ሻܫ כ ܲ൫ ௜ܷ௝ ൌ 1หߠ௧൯ ൅ ௜ܫ כ ܲ൫ ௜ܷ௝ ൌ 1หߠ௖൯ሿ 

                                                                     (21) 

P൫U୧୨ ൌ 1|θ୲, θୡ, I୧, T୨൯ ൌ ൫1 െ ݆ܶ כ ൯݅ܫ כ ܲ൫ܷ݆݅ ൌ 1หݐߠ൯ ൅ ݆ܶ כ ݅ܫ כ ܲ൫ܷ݆݅ ൌ 1หܿߠ൯               (22) 

And  

ܲ൫ ௜ܷ௝ ൌ 1หߠ௧൯ ൌ ௧ߠሺߔ െ ܾ௜ሻ                                                    (23) 

ܲ൫ ௜ܷ௝ ൌ 1หߠ௖൯ ൌ ௖ߠሺߔ െ ܾ௜ሻ                                                    (24) 

where Tj is the jth examinee’s cheating tendency which is a parameter to represent the 

cheating degree at the examinee level, Ii is the ith item’s cheating difficulty which is a 

parameter representing how many examinees can cheat on the ith item. As a special 
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note, Tj and Ii are continuous variables in the general cheating model, where Tj is 

re-defined as a dichotomous gating variable and Ii become a dichotomous model input 

to define the item exposure status in the DGIRTM.  P൫U୧୨ ൌ 1หθ୲൯ and P൫U୧୨ ൌ 1หθୡ൯ 

are the probability of a correct answer given an examinee’s true ability and cheating 

ability, and bi is the ith item’s difficulty.  Equation 20 and 21 are essentially 

equivalent, the difference is that equation 20 represents that test cheating is modeled 

from item prospective, and in equation 21 the test cheating is modeled from examinee 

prospective. Both equation 20 and equation 21 could be simplified into equation 22. 

The statistic model represented by equation 22 is the simplified general cheating 

model. 

The general cheating model has a mixed structure by using two latent traits to 

characterize the characteristics of each examinee. Specially, the probability of a 

correct response is defined conditional on the product of examinees’ cheating 

tendency and items’ cheating difficulty ( ௝ܶ כ  ,௜, in Equation 22). Given this informationܫ

the probability then depends on either the examinees true ability or cheating ability 

(i.e., examinees will only use their cheating ability if they are, in fact, cheaters and 

they have seen the item). In this dissertation, the measurement part of the general 

cheating model is chosen to be Rash model based, because the Rash model is 

well-accepted and applied by practitioners in real settings.   

The distinctive feature of the general cheating model is that it makes use of two 

categories of examinee’s abilities together with examinee’s cheating tendency and 
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item cheating difficulty to generally characterize test cheating contexts. Unlike the 

person fit indices, copying indices and Segall’s cheating model, the general cheating 

model provides a new philosophy to characterize test cheating. Under the general 

cheating model, when Ii decreases (i.e., the ith item becomes increasingly difficult to 

be cheated on), examinees will increasingly rely on their true ability to solve the item, 

no matter how strongly they want to cheat. In addition, when an item is easily 

assessed and cheated by examinees, examinees with a low degree of cheating 

tendency tend to answer the item using their true ability, and examines with a high 

degree of cheating tendency would like to respond to the item based on their cheating 

ability. Although the general cheating model defines an effective philosophy for 

cheating, this model is not identified. Thus, a modified cheating model, called the 

Deterministic, Gated Item Response Theory Model (DGIRTM), is derived from the 

general cheating model, which will be presented in the next section.   

17B16BThe Deterministic, Gated IRT model 

34B33BThe Parameters of the Deterministic, Gated IRT Model  

The Deterministic, Gated IRT model (DGIRTM) is still based on a Rash model 

that is conditional on whether a person is a cheater or a non-cheater by using a set of 

two abilities (true ability and cheating ability) to characterize cheaters real knowledge 

and cheating severity, but Tj and Ii are modified to fix the estimation indeterminacy of 

the general cheating model.  The DGIRTM is defined as equation 25:  
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P൫U୧୨ ൌ 1൯ ൌ P൫Uij ൌ 1หθt൯1െTj כ ሾሺ1 െ Iiሻ כ P൫Uij ൌ 1หθt൯ ൅ Ii כ P൫Uij ൌ 1หθc൯ሿTj  

(25) 

And  

ܲ൫ ௜ܷ௝ ൌ 1หߠ௧൯ ൌ ௧ߠሺߔ െ ܾ௜ሻ                                                    (26) 

ܲ൫ ௜ܷ௝ ൌ 1หߠ௖൯ ൌ ௖ߠሺߔ െ ܾ௜ሻ                                                    (27) 

where θt is the true ability determined by examinee’s cognitive nature, θc is the 

cheating ability determined by examinees’ cheating skill (a combination of true ability 

and score gain), bi is the item difficulty and ф is the logistic function . Tj in equation 

25 is not continuous parameter any more as it defined in the general cheating model. 

It is an indicator, or gated, variable used to label cheating status which is defined as:  

Tj=൜ 1, when cheating
0, when no cheating                                                      (28) 

where Tj=1 represents that the jth examinee cheats when given the opportunity, and 

Tj=0 represents that the jth examinee does not cheat. No middle phase between 

cheating and non-cheating exists in the DGIRTM. The Tj is called a gated variable 

because it classifies examinees into two groups (cheating and non-cheating group). 

When an examinee obtains a noticeable score gain from their cheating activities, the 

gated variable Tj will assign him or her to the cheating group, he or she will remain in 

the non-cheating group otherwise. The tendency of assigning examinees into the 

cheating group increases when their score gain increases.  
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The second modification to the general cheating model is that the latent variables  

Ii in equation 25 is now defined as model input that describes item status with respect 

to possible exposure (i.e., possibility that cheaters can cheat on this item). Note that Ii 

can be dichotomously or continuously defined based on specific applied settings. In 

the continuous case, Ii is the probability that an examinee cheats on the ith item in 

general. For example, Mcleod, Lewis & Thissen (2003) made an assumption that item 

cheating difficulty has a non-linear relationship with item-difficulty, which is defined 

in equation (29): 

ሺ݉௜|ܾ௜ሻ݌ ൌ ଵ
ଵାୣ୶୮ ሺିୠ౟ሻ

                                                         (29) 

where bi is the ith item’s difficulty; ݌ሺ݉௜|ܾ௜ሻ refers to the probability of the ith item 

being memorized given its item difficulty. Such probability of being memorized could 

be used as Ii to represent the items’ cheating difficulty. Other reasonable assumptions 

with respect to item cheating difficulty could be incorporated into this model as a way 

to identify cheaters according to specific needs.  

The variable Ii can also be dichotomously defined relative to item status. 

Specifically, Ii can be used to specify item exposure status, which is defined as:  

௜ܫ ൌ ൜ 1, if exposed
0, if unexposed                                                          (30) 

where Ii =1 means that the ith item has been exposed, and Ii=0 means that the ith item 

has not been exposed. The dichotomous definition of Ii implies that items have been 

divided into two categories: exposed items and unexposed items. Empirically, 
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examinees could only have beneficial information of those exposed items, but no 

chance to assess item information of those unexposed items. As stated previously, it is 

argued that score difference between the exposed items and unexposed items should 

be due to test cheating by the item over-exposure or item preview. In this dissertation, 

the dichotomous definition of Ii is adopted because the exposure information about 

items is easily accessed by practitioners in real settings. 

As a demonstration, when Tj=1 and Ii=1, P(Uij=1|θt, θc, bi, Tj)=P(Uij=1|θc, 

bi),which implies that when examinees cheat and the items have been exposed, the 

probability that the jth examinee correctly answers the ith item is defined by that 

examinee’s cheating ability. When Tj=1 and Ii=0, P(Uij=1|θt, θc, bi, Tj)=P(Uij=1|θt, bi), 

which means that the probability that the jth examinee correctly answers the ith item is 

defined by his true proficiency, because the jth examinee could not cheat on an 

unexposed item although he wants to cheat.  In addition, when Tj=0 and Ii=1, 

P(Uij=1|θt, θc, bi, Tj)=P(Uij=1|θt, bi), which means that the probability of a correct 

answer is defined by the jth examinee’s true ability, because the jth examinee does not 

want to cheat although he has chance to cheat on the ith exposed item. Thus, 

successful cheating on a test is jointly determined by both examinees’ cheating status 

and the status of the items on the test. Under the DGIRTM definition, test takers only 

successfully cheat on a test when they want to cheat and items have been exposed.  

Generally, the DGIRTM has the model input I to specify item exposure status 

and four model parameters which will be estimated based on the response data (e.g., 



49 
 

item difficulty b, examinees’ true ability θt, examinees’ cheating ability θc and 

cheating status T). Cheating ability θc is the latent trait to characterize cheaters’ 

cheating level, which is essentially a combination of true ability and score gain, and 

the true ability θt, is the latent trait to characterize examinees’ real knowledge level or 

competence. The two latent trait abilities (cheating and true ability abilities) and one 

single item parameter (item difficulty) imply that cheaters’ cheating activities only 

change cheaters’ ability and have no impact on item characteristics. 

In the DGIRTM, the true ability parameter is scored mainly by the unexposed 

items and the cheating ability is scored mainly based on the exposed items. Given a 

certain examinee, if his/her two latent traits scored by the two different sets of items 

exhibit a noticeable difference (i.e., a score gain above scoring error), the gated 

variable T will trigger and assigns him/her into the cheating group. A higher score 

gain results in a higher likelihood to be treated as a cheater. In the model estimation 

section, the algorithm of how the model could assign the examinees with noticeable 

score as cheaters is presented.  

35B34BModel Estimation of the Deterministic, Gated IRT model 

Markov Chain Monte Carlo (MCMC; Patz & Junker, 1999a, 1999b; Mislevy, 

Almond, Yan, D., & Steinberg,1999; Templin & Henson 2006; Templin, Henson, 

Templin, & Rousso, 2008; Henson, 2009. etc…), as a representative Bayesian 

estimation algorithm, is now gaining popularity in educational measurement field. As 
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Patz and Junker (1999a & 1999b) stated, MCMC is a sampling method to simulate 

posterior distributions for multivariate variables based on the prior information 

available-that is a Bayesian approach, so the features of posterior variables could be 

characterized based on the simulated posterior distributions.  In Bayesian estimation, 

a variety of prior distributions of the model parameters could be easily incorporated 

into estimation. Hierarchical Bayesian inference via MCMC sampling (i.e., a MCMC 

estimation procedure embedded with a hierarchical parameters) is widely used (e.g., 

in diagnostic classification models) due to its ability to deal with multi-dimensions as 

well as computer’s increasing computational power. As Fu pointed out (2005) that  

Unlike the Bayesian model estimation, where the parameter space is searched to 
find the modal point of the posterior distribution, Bayesian inference with 
MCMC draws a sufficient number of samples from the posterior distribution, 
and then makes inferences based on the distribution of these samples, such as 
the mean and variance of the distribution. (p.96).  

Considering the two dimensions of the model, a Hierarchical MCMC algorithm 

is adopted to estimate the DGIRTM. Specifically, the prior distribution of each 

parameter in the DGIRTM is defined as following:  

 ௧~ܰሺ0,1ሻ                                                                  (32)ߠ

 ௖~ܰሺ0,1ሻ                                                                  (33)ߠ

ܾ~ܰሺ0,1ሻ                                                                   (34) 

ܶ ൌ 1, ௧ߠ ݄݊݁ݓ ൏  ௖                                                          (35)ߠ
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The true proficiency (ߠ௧), cheating ability (ߠ௖) and item difficulty (b) have 

independent standardized normal distribution as their priors, and the cheating status (T) 

is governed by the relationship between the prior of true proficiency (ߠ௧) and the prior 

of cheating ability (ߠ௖). When the prior of an examinee’s true proficiency is greater 

than the prior of his/her cheating ability, T will be assigned 0 as its prior, which 

implies he or she is proposed to be a non-cheater; otherwise, T will be assigned 1 as 

its prior, which means that she or he is proposed to be a cheater. The theoretical base 

of the MCMC is not the focus of this dissertation, but the detailed MCMC estimation 

algorithm for this DGIRTM in R statistic language is provided in the Appendix I of 

this dissertation. As a note, in the set of R code in the Appendix, the mean of cheating 

ability is hierarchically modeled, allowing for its change according to the samples, as 

opposed to a fixed mean zero in equation 33. The benefit of allowing a changing 

mean of the cheating ability is to solve, or at least reduce, the scale shift problem 

when cheating size is large (the scale shift problem will be discussed in the Chapter 

4).   

As implied in Equation 35, a cheaters’ cheating ability is always greater than 

their true ability as is defined in the prior distribution for T.  Thus, examinees have a 

higher probability of correctly answering items with beneficial knowledge from 

cheating than without cheating. From a practical standpoint, those cheaters who 

obtain positive score gain from their cheating activities are those who bias our 

inference of ability from test scores. The degree of such bias grows given an 
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increasing score gain. It should be noted that even though cheaters might have 

negative score gains due to the wrong information they obtained from their cheating 

activities, such cheaters with negative score gain will not be of interest because they 

have already punished themselves by their own cheating activities.  

The DGIRTM only provides an item difficulty to represent the item 

characteristics, which are constrained to be equal between the cheater and non-cheater 

for a given item. The DGIRTM estimated by the Hierarchical MCMC also provides 

three parameters to characterize each examinee. One is the examinees’ true 

proficiency (ߠ௧), which is a parameter representing examinee’s real knowledge level. 

The second examinee parameter is the examinees’ cheating ability (ߠ௖) which is a 

parameter to characterize the level of ability when that examinee cheats. Finally, the 

last parameter related to examinees is the gated variable T, which is essentially an 

indicator if the ability characterized by the exposed items (i.e., cheating ability) is 

significantly greater than the true ability mainly characterized by the unexposed items.  

Given an examine, the probability (represented by ෨ܶ) that his/her cheating 

ability is significantly greater than his/her true ability is the estimated mean of the 

posterior distribution of T (the posterior distribution of T is obtained via MCMC 

sampling procedure). Statistically, throughout the MCMC estimation algorithm, ෨ܶ௝ 

describes the proportion of proposals where Tj=1 among all the proposed Tj, which 

measures the posterior probability that the jth examinee’s cheating ability is greater 

than its true ability. Therefore, ෨ܶ௝ could be explained as a p-value of a significance 
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test on the difference between the two latent traits scored by exposed and unexposed 

items for the jth examinee. The directionality of the magnitude of ෨ܶ  positively links 

to difference between the cheating ability and true ability (i.e., a greater difference 

leads to a greater level of ෨ܶ). Therefore, ෨ܶ  could be directly explained as the 

probability that examinees’ cheating ability is significantly greater than their true 

ability. Most importantly, ෨ܶ௝ does not define the probability that examinee is a cheater, 

but instead defines the probability that the cheating ability is higher than the true 

ability. However, conditional on the item exposure status in the DGIRTM where 

cheating is the reasonable explanation of a significant difference between the cheating 

ability and true ability, ෨ܶ  could indirectly serve as an indicator that examinees cheat 

or not.   

Examinees could be classified as cheaters or non-cheaters by setting a cut point 

Pc (Pc Ԗ ሺ0,1ሻ) for ෨ܶ , as shown in equation 36,  

௝ܶ ൌ ቊ
1, T෩୨ ൒ pୡ

0, T෩୨ ൏ pୡ 
                                                       (36) 

If the ෨ܶ௝ is greater than Pc, then examinees should be classified as cheaters 

(Tj=1); if the ෨ܶ௝ is less than the Pc, examinees should be classified as non-cheaters 

(Tj=0). Specifically, a greater ෨ܶ  results in a higher chance to be classified as a test 

cheater under the DGIRTM. The selection of cutting point Pc is a critical factor to 

impact the False Positive and False Negative rate of the classification. When Pc 

increases, it will correspondingly decrease the False Positive rate of classification, 
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since less non-cheaters are mis-classified as cheaters; when Pc decreases, it will 

accordingly increases the False Positive rate because more non-cheaters will be 

mis-classified as cheaters.  

In MCMC, the posterior distribution of cheating status T, as determined by 

Bayesian Theorem, is jointly determined by its prior and the cheating information 

carried by the real response data. In terms of the prior of T, the prior probability for 

each examinee being a cheater is 0.5 (i.e., the probability of T=1), which is 

determined by the relationship between the prior of the true proficiency and the prior 

of cheating ability. Specifically, the prior of T is equal to the prior probability that true 

ability is greater than the cheating ability. Because the prior for true ability and 

cheating ability is defined such that they are independent normal distributions with 

mean zero and variance equal to unity, this prior probability of T=1 is 0.5.   

The amount of cheating information is determined by cheaters’ score gain. As 

stated above, the score difference of interest is essentially the difference between 

examinee’s ability scored by the unexposed items and that scored by the exposed 

items. As implied by the DGIRTM, ability by the exposed items is assumed to be 

always greater than the ability scored by the unexposed items for cheaters and 

otherwise there would be no difference. Such score gain that goes above the scoring 

error level would result in a high value of ෨ܶ௝. When the cheating ability is greater than 

the true ability, there is enough information for the DGIRT model via MCMC to 

“accept” the assumption that the cheating ability is greater than the true ability, but 
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when the score gain is small (i.e., below the standard error of the model estimation), 

not enough information is available for the DGIRTM via MCMC to “accept” that the 

cheating ability is greater than the true ability. 

With respect to non-cheaters, no score difference theoretically exists between the 

exposed and unexposed items, because non-cheaters use their true ability to answer 

both (i.e., no cheating information is available in real data and thus the priors will 

determine the posterior distribution). As a result, the marginal posterior distribution of 

a non-cheater’s true ability should be identical to the marginal posterior distribution of 

the cheating ability. In addition, there should be no association between the cheating 

ability and the true ability given an examinee, as determined by the fact that the 

cheating and true ability are independently proposed by two standardized normal 

distribution. Thus, the probability of the cheating ability being higher than the true 

ability for the posterior distribution of a non-cheater will equal 0.5, theoretically.  

That is, a ෨ܶ௝ ൌ 0.50 is an indication that an examinee is not a cheater (as opposed to 

෨ܶ௝ ൌ 0.00ሻ.  

With respect to test cheaters, a score difference theoretically exists because 

cheaters use their real competence to answer unexposed items and use their cheating 

ability to respond to exposed items. Such score difference or score gain by cheaters 

increases along with their increasing cheating effectiveness. Cheating effectiveness is 

used to describe how effective cheaters’ cheating activities are, which represents the 

cheating information embedded in the real response data. Effective cheaters will have 
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noticeable score gain and thus the posterior mean for the cheating ability is expected 

to be higher than the posterior mean of the true ability. As a result, the probability of 

the cheating ability being greater than the true ability will be higher than 0.5 (which is 

the assumed probability of the prior distribution). Notice that an un-effective cheater 

is expected to perform in a similar way as a non-cheater and, thus, cannot be 

distinguished from a non-cheater (i.e., the model treats an un-effective cheater as a 

non-cheater). Therefore, a ෨ܶ௝ ൌ 0.50 is also an indication that an examinee is a 

un-effective cheater who acts similarly as non-cheater, and in contrast, a ෨ܶ௝ close to 

one indicates that the jth examinee is a highly likely test cheaters. The closer to one, 

the higher certainty that the cheating ability is greater than the true ability with a 

noticeable difference, which implies a high probability of being a cheater.  

Because non-cheaters or un-effective cheaters’ ability scored by the unexposed 

items would be exactly equal to their ability scored by the exposed items, ෨ܶ௝ of 

non-cheaters/un-effective cheaters should be equal 0.5. As a result, if 0.5 is set as ෨ܶ௝’s 

cut point, around one half of non-cheaters would be incorrectly classified as cheaters. 

In other words, we only have a 50 percent confidence level to classify the jth examinee 

as a test cheater. However, a basic requirement of test cheating detection model is to 

sensitively identify cheaters with a small degree of error, because of our testing 

evaluation purpose to allocate right talents into right learning or working positions 

and to treat innocent test takers with fairness. Testing agencies might also expose 

themselves to potential law suit charges when an innocent test taker is classified as 
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test cheaters. Thus, as an introduction to the DGIRTM in this dissertation, the cut 

point for ෨ܶ௝ is set as 0.9, as opposed to 0.5 which might be used in a traditional two 

class model, which implies the jth examinee is classified as a test cheater or 

non-cheater with a 90 percent of confidence level. As a note, practitioners could also 

choose 0.95 as the cut point for ෨ܶ௝, which implies a 95 percent confidence level.  

Hierarchical MCMC, as the model estimation algorithm, offers flexibility to 

incorporate a variety of priors and conduct a large number of dimensions of 

estimation while allowing for the conceptual expectations on the DGIRTM. The 

features of the DGIRTM are conceptually discussed and compared with the reviewed 

cheating detection methods in next section. 

18B17BFeatures of the Deterministic, Gated IRT model 

Generally, the DGIRTM is a Rash based mixture model. It incorporates two 

categories of latent abilities to separately characterize examinees’ real knowledge 

level and cheaters’ cheating degree. The model input related to item status classifies 

test items as exposed and unexposed items, and therefore an examinee is expected to 

perform better on the exposed items than on the unexposed item, if he or she is 

cheating. The cheating status parameter is a direct index to represent the level of the 

score difference between exposed and unexposed items, and thus indirectly serves as 

an indicator that the flagged examinees by the DGIRTM might cheat on the exposed 

items.  
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    Under the DGIRTM framework, the item difficulty is fixed on a single scale for 

both cheaters and non-cheaters (i.e., the item difficulty is equivalent for cheating and 

non-cheating cases). It is assumed that the cheating scale determined by the exposed 

and unexposed items are the same, and the difference is that through examinees who 

cheat on test appear to have a higher ability along with the fixed scale. Conceptually, 

we believe that the ability of examinees improves and the item characteristics do not 

change in cheating context. 

The model input is dichotomously defined to represent exposed and unexposed 

items, which helps to define inner person comparisons conditional on the two groups 

of items (exposed or unexposed items). As already stated, a cheaters’ cheating ability 

is defined by their response to exposed items and their true ability is estimated by 

their response to unexposed items. A noticeable difference between the two categories 

of abilities (true ability and cheating ability) is detected as an evidence of test cheating. 

One direct cause of a statistical difference between the true and cheating ability is that 

examinees have the opportunity to cheat on exposed items and no opportunity to cheat 

on unexposed items.  

Essentially, the cheating probability is estimated by the model to represent the 

severity of the score gain. Statistically, it could be explained as a p-value of a 

significance test. A significant value of the cheating probability represents a notable 

score gain which is above the random error of examinee scoring. In real settings, it is 

the group of effective cheaters (e.g., who cheat and obtain a significant score gain) 
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who severely damage the test validity. The DGIRTM is designed to identify such kind 

of effective cheaters. In addition, notice that because this “test” for cheating is within 

a person, it is not necessary to have a large proportion of cheaters in the sample to 

allow for the identification of a cheating group. 

As compared to cheating detection indices, this model also measures the level of 

cheaters’ real competence and the severity of their cheating activities. Unlike some 

copying indices and person fit indices where cheaters’ true ability is confounded with 

their cheating information, the DGIRTM distinguishes cheaters’ real competence from 

their cheating skill.  As a result, estimation and identification of cheaters is not 

dramatically affected by the proportion of cheaters relative to non-cheaters, like other 

indices (e.g., lz index). In addition, this model could incorporate outside information 

related to item status. Specifically, the parameter Ii could be defined as a continuous 

variable with a value interval [0,1] rather than a dichotomous input. When the model 

input (I) is used to represent the item status relative to exposure status, the DGIRTM 

is particularly useful to detect test cheating caused by item exposure, as discussed in 

this dissertation. If the model input is defined as items status relative to different item 

points of its administration, the DGIRTM is able to monitor examinees’ growth over 

time.   

The DGIRTM is designed to detect effective cheaters by distinguishing cheaters’ 

real knowledge level from their cheating skills. Its features conceptually make the 

DGIRTM a promising tool to identify test cheating due to item over-exposure.  
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19B18BThe Simulation Design 

In this section, a simulation study is designed to illustrate the characteristics of 

the Deterministic, Gated IRT model and its power to detect test cheating. Three 

categories of conditions are considered in this simulation design. The conditions about 

item characteristics are first introduced, which is followed by a description of the 

simulation of examinees’ ability. Next the conditions about cheating characteristics are 

presented. At the end of this chapter, a data generation model (a model used to 

generate response data) is introduced and an example process is described to 

demonstrate how the response data is generated. As a practical note, the number of 

examinees is set as 2000 in every condition, and the chain length of each MCMC 

chain is 5000 where the first 3000 steps serve as the burning period. Although in 

actual applications of this model the chain must be much longer, because the true 

model is known this chain length and burn-in is sufficient to achieve convergence and 

reliable estimates. 

36B35BSimulated Item Characteristics 

Three variables describing item characteristics are considered, which are item 

number, item difficulty location and standard deviation. Test length is a key factor 

determining test reliability. Although the DGIRTM is designed to detect test cheating 

at the examinee level, the information provided by items plays a critical role on the 

accuracy of cheating detection. In this study, two levels of test length are considered: 
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(1) a short test with 40 items; and (2) a long test with 80 items.  

Other than test length, item difficulty, or location, is a key factor impacting the 

test information location, while the standard deviation of item difficulty is a key factor 

determining the magnitude of test information. Test information location refers to the 

point along the ability distribution where a test has the greatest amount of information. 

Amount of test information refers to the magnitude of information at a certain 

difficulty point. Two conditions of item difficulty location are simulated to control 

this information location. One condition is that the mean item difficulty for the 

exposed items is equal to the average of the cheaters’ cheating ability, and the mean 

item difficulty of unexposed items is equal to the average of the true ability of all the 

test takers. A second condition is that the mean of item difficulty is set as zero. In 

terms of the standard deviation of item difficulty, in one condition the standard 

deviation is set as 0.5, which represents a high degree of information at the difficulty 

location, and in the other condition the item standard deviation is set as one, 

representing a normal degree of amount of information.  

Such design is practically meaningful for the computerized adaptive tests (CATs) 

and normal CBT. In CATs, items are typically selected based strictly on examines 

estimated ability level. Those items in a CAT test normally have a mean at the mean 

of the examinees’ estimated ability with a relatively small standard deviation. Thus, 

the performance of the DGIRTM under the settings which are similar to CAT 

applications is computed, especially given the fact that the DGIRTM is designed to 
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detect test cheating caused by item over-exposure. In contrast, items are usually 

distributed with a mean zero and a unit standard deviation in normal CBT testing 

settings.  

The DGIRTM model separates items in a test into two categories: exposed items 

which can be cheated by examinees and unexposed items which cannot be cheated by 

examinees. The number of exposed items and unexposed items should inevitably 

impact the accuracy of cheating detection. In terms of the number of exposed items 

and unexposed items, three designs are considered in this simulation: a balanced 

design where the number of exposed items is equal to that of exposed items, an 

over-exposed design where the number of exposed items is greater than that of 

unexposed items, and a under-exposed design where the number of exposed items is 

less than that of unexposed items. Specially, 50 percent of items were exposed in the 

balanced items, 70 percent of items were exposed in the over-exposed design and 30 

percent of items were exposed in the under-exposed design. As a summary, all the 

conditions related with item characteristics considered in this simulation are listed in 

the Table 1. 

Table 1. Item Conditions 
Conditions Value  
Test length  C(40, 80) 
Proportion of exposed items in a test C(0.3, 0.5, 0.7) 
Item difficulty location bu=Mt, be=Mc or b=Md

Standard deviation of item difficulty 0.5 and 1 
bu =the mean of unexposed item difficulty, be =the mean of exposed item difficulty, b= the mean of 
all-item difficulty,Mt= the mean of all examinees’ true ability, Mc= the mean of the cheaters’ cheating 
ability, Md= the mean of the difference between the true ability and cheating ability. 
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37B36BSimulated Cheating Characteristics 

Cheating characteristics, including Cheating size, Cheating degree and Cheating 

effectiveness, are also considered in this simulation design. Cheating size is used to 

refer to how many examinees in a test are involved in cheating activities. Cheating 

degree represents how many cheaters cheated on specific exposed items. Cheating 

effectiveness is used to describe how effective cheating activities are (i.e., how much 

score gain cheaters obtain from their cheating activities). These three factors together 

determine the amount of test cheating information embedded in response data. 

Different tests could have different rates of cheating. For example, a test with 

items which have been exposed for a long period of time may be cheated on by a 

large number of test takers, but a test with recently exposed items may have lower 

rates of cheating. Three levels of cheating size are considered: a low level cheating (5 

percent of test takers cheating in a test), medium level cheating (35 percent of test 

takers cheating in a test), and high level cheating (70 percent of test takers cheating in 

a test). The 70 percent cheating size is simulated to represent the organized concert 

cheating (i.e., group cheating), which has been known to occur in reality. For instance, 

some test takers share items they remembered by internet (called internet 

collaboration), or some individuals purposely memorize items and sell them to test 

takers afterwards.  

In addition to Cheating size, each exposed item has been cheated on by a 

different number of cheaters. Essentially, each exposed item has a different cheating 
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degree. Two levels in terms of cheating degree are considered. In the low cheating 

degree condition 50 to 80 percent of cheaters cheat on a given exposed item. In the 

high cheating degree condition 80 to 100 percent of cheaters cheat on an exposed 

item. 

Cheating effectiveness is the last factor we considered in terms of cheating 

characteristics. As stated above, some cheaters are less likely to correctly respond on 

all the cheated items. Therefore, even though cheating can improve the overall 

observed performance, it may be to different degrees because of many real factors 

(e.g., their true ability, the degree of correctness of source information) besides the 

fact that cheaters conduct cheating activities.  Cheaters, therefore, are not necessarily 

equally effective. Specifically, some cheaters might be effective enough to correctly 

answer all cheated items that should originally be incorrectly answered according to 

their true ability. Some cheaters might still incorrectly answer some of the exposed 

items although they cheat on the exposed items. Thus, cheaters in this study are 

classified as high-effective cheaters, medium-effective cheaters and low-effective 

cheaters.  

The high-effective cheaters have the largest score gain from their cheating 

activities, low-effective cheaters have the smallest score gain from their cheating 

activities, and medium-effective cheaters’ score gain is between that of the 

high-effective cheaters and that of the low-effective cheaters. To be detailed, the delta 

of the high-effective cheaters is simulated by Beta (9, 4)*3 (called Delta1), the delta 

of medium-effective cheaters is simulated by Beta (5, 5)*3 (called Deta2 ) and that of 
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low-effective cheaters is simulated by Beta(1.5, 5)*3 (called Delta3). The 

distributions for the simulated cheating gain scores, Delta1, Delta2, and Delta3, are 

shown in Figure 1 to Figure 3. The empirical statistic characteristics of Delta1, Delta2, 

and Delta3 are provided in Table 2.  

 

 
Figure 1. The Delta Distribution of High-Effective Cheaters 
 

 
Figure 2. The Delta Distribution of Medium-Effective Cheaters 
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Figure 3. The Delta Distribution of Low-Effective Cheaters 

Table 2. The Characteristics of Delta1, Delta2, and Delta3 
Delta Delta1=Beta(9,4)*3 Delta1=Beta(5,5)*3 Delta1=Beta(1.5,5)*3 
Mean 2.078 1.500 0.692 
SD 0.369 0.453 0.462 
Min 0.443 0.088 0 
Max 2.965 2.928 2.738 

As a further illustration, Delta 1 is negatively skewed, Delta 2 is normally 

distributed and Delta 3 is positively skewed. In Delta 1, most of cheaters tend to be 

effective cheaters, but some of them are not as effective as others, in Delta 3, most of 

the cheaters are non-effective, but a small proportion of cheaters might be effective. 

Based on the cheating characteristics, the two latent traits are described in next 

section.  
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this simulation. True ability (ߠ௧) was simulated by the standardized normal 
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difference between the true ability and cheating ability. As a note, the Delta is always 

greater than zero, because logically we believe that cheaters will have a positive score 

gain due to beneficial information cheaters obtain from their cheating activities.   

θ୲~ܰሺ0,1ሻ                                                                  (37) 

θୡ ൌ θ୲ ൅  ∆                                                                 (38) 

∆~Beta ሺα, βሻ כ A െ B                                                         (39) 

where the parameters A and B in equation (39) are scaling factors to change the lower 

and upper limits of the Beta distribution (this distribution is also commonly referred 

to as a four-parameter Beta distribution). Specifically, A is set as 3 and B is set as 0 in 

this simulation design.  

Empirically, examinees who are competent normally tend to rely on their own 

knowledge and competence to respond to items. However, those examinees who are 

not competent enough would be more likely to seek for cheating to help them respond 

to items, and thus they could obtain a greater test score. From the practical standpoint, 

test cheaters who are competent are less likely to obtain a noticeable score gain, 

because there is not much room for them to improve their scores. In contrast, cheaters 

who are less competent might be more likely to obtain a noticeable score gain than 

cheaters who are actually competent. In other words, test cheaters who are less 

competent might have a greater degree of invalidating the inference made based on 

tests. Therefore, in this simulation design, 60 percent of cheaters are sampled from the 

low ability students whose true ability is less than -0.5, 30 percent of cheaters are 
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randomly sampled from the medium ability students whose true ability is between 

-0.5 and 0.5, and 10 percent of cheaters are randomly selected from the high ability 

students whose true ability is greater than 0.5. The composition of test cheating 

population is represented in Table 3.  

Table 3. Cheaters’ Distribution 
Conditions Cheating size=5% Cheating size=20% Cheating size=70% 
True ability< -0.5 60%ൈ5%ൈ2000 60%ൈ35%ൈ2000 60%ൈ70%ൈ2000 
True ability=U(-0.5, 0.5) 30%ൈ5%ൈ2000 30%ൈ35%ൈ2000 30%ൈ70%ൈ2000 
True ability> 0.5 10%ൈ5%ൈ2000 10%ൈ35%ൈ2000 10%ൈ70%ൈ2000 

 

As an illustration, when the cheating size is 5 percent (the first column in Table 

4), and thus total number of cheaters in this case is 2000*5%=100. 60 (60%*100) out 

of the 100 cheaters are low ability students whose true abilities are below -0.5, 30 

(30%*100) out of the 100 cheaters are the students whose true abilities are between 

-0.5 and 0.5, and 10 (10%*100) out of the 100 cheaters are capable students whose 

abilities are greater than 0.5. Together with the cheating effectiveness, the different 

categories of test cheaters are listed in Table 4.  

Table 4. Joint Conditions of Ability Distribution 
Conditions Delta1 Delta2 Delta3 

True ability< -0.5 Yes Yes Yes 
True ability[-0.5,0.5] Yes Yes Yes 

True ability> 0.5 Yes Yes Yes 

Category High-effective cheaters
Medium-effective 

cheaters 
Low-effective 

cheaters 
Note: “Yes”= the joint conditions of column and row is considered in this research.  
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As shown in Table 4, the two conditions (i.e., the composition of examinees’ real 

proficiency and cheating effectiveness) are fully crossed to create three categories of 

test cheaters: high-effective, medium-effective and low-effective cheaters. All the 

conditions considered in this simulation design are listed in Table 5 as an overall 

summary. 

Table 5. Joint Conditions 
Conditions  Number of conditions 
Test length 2 
Proportion of exposed items  3 
Item Difficulty location  2 
Standard deviation of item difficulty 2 
The cheating degree on exposed items 2 
Cheating size  3 
Cheating category  3 
Guessing level 1 

 

A total number of joint conditions considered in this research is 432 (2ൈ3ൈ 2 ൈ

2 ൈ2ൈ3ൈ3). A small number of replications is a common practice when using MCMC 

as the estimation algorithm, so each joint condition is replicated for 10 times in the 

simulation. 

39B38BData Generation Process 

Considering the complexity of data generation, a more general model called data 

generation model is used to generate the response data, which is defined as:  

ܲ൫ ௜ܷ௝ ൌ 1൯ ൌ ሺ1 െ ሻݏ כ ܲ൫ ௜ܷ௝ ൌ 1หߠ௧൯ ൅ ݏ כ  ܲ൫ ௜ܷ௝ ൌ 1หߠ௖൯                    (40) 

where S=T*I. T is the dichotomous cheating parameters for each examinee, which is a 
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vector Nൈ1; I is the model input relative item exposure status, which is a vector 1ൈJ. 

Thus S is a matrix with NൈJ, which is a joint parameter used to define the probability 

that a specific examinee cheats on a given item. N is the number of examinees and J is 

the number of items. 

As an important note, I is not as a dichotomous parameters any more as it is in 

the Deterministic, Gated IRT model. In the data generation model, Ii is defined as:  

௜ܫ ൌ ൜
0,         unexposed items
Ԗ Uሾl୪, l୳ሿ, exposed items                                            (41) 

Where, Ii will be set as 0 if the ith item is unexposed items, otherwise Ii will be 

uniformly sampled from U [ll, lu] (ll is the lower limit and lu is upper limit of the 

uniform distribution). As defined above, U [ll, lu] has two levels: U(0.5, 0.8) and 

U(0.8, 1). Ii=0 for those unexposed items, which implies that examinees have no 

chance to cheat on ith item. Ii= U [ll, lu] for those exposed items, which implies that 

each exposed items could be randomly cheated by different cheaters with different 

cheating degree.  

Cheaters are randomly sampled from the specific true ability domain (defined in 

Table 4) by controlling the total number of cheating. As an illustration, the case that 

cheaters are high-effective cheaters is used as an example to present the sampling 

process. 

1) Identifying target domain (D). In terms of the true ability, the target domain 

consists of three sub-domains, where D=C(D1,D2,D3). D1=C(ߠ௧< -0.5), 
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D2=C(-0.5<ߠ௧< 0.5), and D3= C(ߠ௧> 0.5). The cheating ability equals to the sum 

of true ability and delta1, which is ߠ௖ ൌ ௧ߠ ൅  .1ܽݐ݈݁ܦ

2) Determining sample size from each sub-domain. For example, if the 20percent of 

examinees cheat in the test, the total number of cheaters is 20%*2000=400. Then 

cheaters in the sub-domain D1 is 400*60%=240, the cheaters from sub-domain D2 

is 400*30%=120, and the cheaters from sub-domain D3 is 400*10%=40.  

3) Sampling cheaters from sub-domains with the correct cheating size. The T of each 

cheater is assigned a value 1, or it will be assigned a value 0.  

In order to make sure each sub-domain has enough samples, a population with 

100,000 samples is simulated. Then cheaters and non-cheaters are sampled from this 

big population by following all the simulation specification. All the conditions related 

to items, two categories of abilities, cheating characteristics and cheating population 

are jointly integrated together in the simulation process.  

40B39BComparison Baseline 

The lz index and a simple t-test is used as the baseline for comparison to 

demonstrate the model’s improvement in capability to detect test cheating. The lz 

index, like the DGIRTM, is used to detect test cheating at the examinee level. As 

stated before, previous research (Reise & Due, 1991, Drasgow & Levine, 1986) 

shows that the lz index is among the best indices to detect misfit response pattern 

caused by test cheating.  
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As opposed to use the existing lz index as comparison-baseline, a simple t-test is 

designed which originally comes from the model itself. The model separates the items 

into two sets (exposed and unexposed items). The DGIRTM could be essentially 

described as a model to identify the examinees with significant score difference 

between the two sets of items. Similarly, the t-test is designed based on the two sets of 

items without a complex model equation and estimation algorithm. In the t-test, each 

examinee is separately scored using an IRT model by his/her exposed items and 

unexposed items, thus each examinee has a pair of ability or theta scores (i.e., the 

latent score for each examinee), one theta score is obtained on the basis of the 

exposed items and the other theta score is on the basis of the unexposed items. Then a 

t-test on the score difference between the pair of theta scores is conducted for each 

examinee. The t-test is essentially a non-central t for two estimates of ability, where a 

pooled standard error of estimate is used in the denominator.  That is,  

ݐ ൌ ఏ෡భିఏ෡మ
ௌா೛೚೚೗೐೏

                                                      (42) 

where the numerator of the t-test is the observed score difference for estimates of 

θ respectively computed using the exposed items and unexposed items. As noted 

above, the pooled standard error of estimate is used as the denominator of the t-test.  

The null hypothesis is that the difference is only observed by random error in 

estimation and should be normally distributed with a mean zero and a unit standard 

deviation. The null hypothesis is that the difference by chance, should be normally 
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distributed with a mean zero and a unit standard deviation. A significant value of the 

t-test (i.e, the observed statistic value of the t-test for an examinee is greater than the 

preset critical value, 0.05) might imply an alterative: an unusual score difference 

between exposed and unexposed items exists which should not be due to chance.   

By comparing to the t-test, the model’s advanced ability in separating cheaters from 

innocent test takers can be fully exhibited.  

Two indices (i.e., sensitivity and specificity) are used to evaluate the accuracy 

and reliability of DGIRTM as well as the lz index and the t-test. Sensitivity is the 

proportion of true cheaters who are correctly detected as cheaters by this model, and 

Specificity refers to the proportion of real innocent test takers who are correctly 

classified as non-cheaters by this model. The sensitivity is an index to measure the 

model’s power to detect test cheaters, while the specificity is an index to represent the 

degree of misclassifying non-cheaters as test cheaters. Given a greater sensitivity, the 

power to detect test cheaters grows. In contrast, a greater specificity implies a smaller 

degree of error. In one word, a good test cheating detection model should acquire an 

ability to maintain a high level of both sensitivity and specificity. In this way, the 

cheating detection method can efficiently identify test cheaters and yet derive a small 

degree of error.   
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8B8BCHAPTER IV 

9B9BRESULT AND ANALYSIS 

In this chapter, the results of the simulation study are summarized to illustrate the 

accuracy and reliability of the model under a variety of conditions (e.g. cheating 

effectiveness, test length, information location, etc….). The DGIRTM’s specificity is 

first presented followed by a detailed discussion on the DGIRTM’s sensitivity in 

every joint condition. Next, the accuracy of the model estimation is described by 

using root mean square error and correlation between the estimation of the DGIRTM 

and the true value. Finally, as a comparison baseline, the lz index and a simple t-test 

(which will be fully presented in the following section) are incorporated in this 

dissertation to demonstrate the model’s improvement in capability to detect test 

cheating.  

20B19BModel’s Specificity 

Given that every examinee should be treated with fairness, to correctly identify 

the innocent test takers is as important as to sensitively detect test cheaters. The 

DGIRTM seems to be powerful for correctly identifying innocent test takers based on 

its consistently high level of specificity in every joint condition. 
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Table 6. The Sensitivity and Specificity of the Informative Test with 50% Exposed Items 
Conditions High Effective Medium Effective Low effective 

Degree Length Cheat Size Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

0.8-1 

Short 

70% 45.60% 98.90% 34.20% 99.10% 18.10% 99.30% 

35% 76.60% 96.20% 56.40% 97.40% 25.90% 98.00% 

5% 84.80% 95.00% 66.40% 96.30% 28.70% 96.80% 

Long 

70% 82.00% 97.70% 62.00% 98.60% 28.30% 98.90% 

35% 92.50% 95.80% 79.40% 96.70% 38.50% 97.60% 

5% 94.50% 94.70% 83.80% 95.40% 45.00% 96.50% 

0.5-0.8 

Short 

70% 32.97% 98.77% 24.93% 98.98% 12.82% 99.20% 

35% 62.54% 96.99% 42.16% 97.65% 17.97% 97.98% 

5% 72.10% 94.97% 53.00% 96.78% 20.70% 96.84% 

Long 

70% 65.97% 97.78% 45.16% 98.67% 19.21% 99.03% 

35% 85.77% 96.02% 66.06% 96.89% 27.37% 97.95% 

5% 89.30% 94.49% 72.00% 95.54% 33.90% 96.50% 

Degree= cheating degree; Length=Test length; short= test with 40 items; long= test with 80 items; High Effective=high effective cheaters; Medium 
Effective=medium effective cheaters; Low Effective=low effective cheaters. 70%=70% examinees cheat in the simulated test; 35%=35% examinees cheat in the 
simulated test; 5%=5% examinees cheat in the simulated test; 0.8-1=each exposed items are cheated by 80%-100% test cheaters; 0.5-0.8=each exposed items are 
cheated by 50%-80% test cheaters.
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Table 7. The Sensitivity and Specificity of the Normal Test with 50% Exposed Items 
Conditions High Effective Medium Effective Low effective 
Degree Length Cheat Size Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

0.8-1 

Short 
70% 37.26% 99.95% 27.19% 99.67% 15.22% 99.10% 
35% 69.56% 99.05% 50.46% 98.49% 23.41% 97.73% 
5% 80.60% 97.99% 61.50% 97.16% 27.10% 96.36% 

Long 
70% 78.38% 99.62% 56.02% 99.20% 24.82% 99.00% 
35% 91.87% 98.53% 75.63% 97.83% 35.77% 97.50% 
5% 94.90% 97.06% 81.80% 96.58% 43.40% 96.15% 

0.5-0.8 

Short 
70% 24.14% 99.95% 18.34% 99.53% 10.32% 98.83% 
35% 49.49% 98.85% 33.10% 98.72% 16.16% 97.58% 
5% 60.10% 97.72% 42.30% 97.51% 19.70% 96.55% 

Long 
70% 55.36% 99.58% 35.94% 99.33% 17.07% 98.73% 
35% 79.07% 98.25% 57.37% 97.98% 25.39% 97.68% 
5% 84.60% 97.15% 68.00% 96.36% 31.40% 96.21% 

Degree= cheating degree; Length=Test length; short= test with 40 items; long= test with 80 items; High Effective=high effective cheaters; Medium 
Effective=medium effective cheaters; Low Effective=low effective cheaters. 70%=70% examinees cheat in the simulated test; 35%=35% examinees cheat in the 
simulated test; 5%=5% examinees cheat in the simulated test; 0.8-1=each exposed items are cheated by 80%-100% test cheaters; 0.5-0.8=each exposed items are 
cheated by 50%-80% test cheaters. 
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As an illustration, the detailed specificity as well as sensitivity of the DGIRTM 

across test length, cheating degree, cheating effectiveness, and cheating size is 

presented in Table 6 and Table 7. 

The specificity in Table 6 and Table 7 is stably distributed around 96 percent, 

which implies that almost all the innocent test takers (or non-cheaters) are correctly 

identified. Specifically, the minimum specificity in these two tables is 94.49 percent 

(located in the column 2 and last row in Table 6) and the maximum specificity is 

almost 100percent. Each of the conditions considered in this simulation study has no 

or only slight impacts on the model’s specificity.  

As a further demonstration, the specificity within different levels of cheating 

effectiveness (high, medium and low effectiveness) is box-plotted in Figure 4 to 

exhibit the DGIRTM’s stable specificity in all the conditions. As shown in Figure 4, 

the specificity in all different cases is greater than 90 percent with fairly small 

variance. Especially, when 70 percent of test takers are test cheaters, the model’s 

specificity is almost 1, which means the model makes no mistake in detecting 

non-cheaters. The factors, including test length, test information, proportion of 

exposed items, cheating size and cheating effectiveness, only slightly impact the 

model’s specificity. One of the valuable characteristics of the DGIRTM is its 

capability to maintain a high level of specificity across different conditions, which 

ensures that the innocent test takers are correctly identified and treated with fairness.  
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Figure 4. The Specificity across Different Conditions. “cs1”=cheating size with 5% cheaters; 
“cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; “p3”=70% items are exposed; “High Effective”= high effective 
cheaters; “Medium Effective”= medium effective cheaters; “Low Effective”= low effective cheaters.

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Short test and High Effective

Exposure Conditions

S
pe

ci
fic

ity

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Long test and High Effective

Exposure Conditions

S
pe

ci
fic

ity

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Short test and Medium Effective

Exposure Conditions

S
pe

ci
fic

ity

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Long test and Medium Effective

Exposure Conditions

S
pe

ci
fic

ity

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Short test and Low Effective

Exposure Conditions

S
pe

ci
fic

ity

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Long test and Low Effective

Exposure Conditions

S
pe

ci
fic

ity



79 
 

21B20BModel’s Sensitivity 

Compared to the specificity which is consistently stable across different 

conditions, the sensitivity of this model is greatly impacted by cheating effectiveness, 

cheating size, cheating degree, information and test length. Generally, the test length, 

cheating effectiveness, cheating degree and test information increase the model’s 

sensitivity, but the cheating size decreases the model’s sensitivity.  

41B40BThe Impact of Cheating Effectiveness 

As stated before, the model is designed to detect effective cheaters who have 

noticeable score gain and might treat the low effective cheaters who have no or little 

score gain as innocent test takers. As a result, the sensitivity of the model to detect test 

cheaters should increase along with cheaters’ cheating effectiveness (score gain). The 

results in Table 6 and Table 7 show that the model is able to detect effective cheaters 

but loses its power at low-effective cheaters. For example, the sensitivity of the model 

is 94.9 percent when the cheaters effectively cheat in a normal test with 80 items and 

cheating degree within 0.8 to 1, but it sharply drops to 43.4 percent when the cheaters 

low-effectively cheat on the exposed items. In other words, 94.9 percent of the high 

effective cheaters are correctly identified, but only 43.4 percent of the low effective 

cheaters are correctly detected by the model. The sensitivity across three different  
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levels of cheating effectiveness for the informative test is presented in Figure 5 and 

for more straightforward illustration is presented in Figure 6.  

 
Figure 5. The sensitivity of the Informative Test. “lh0.70”= the long test, 0.8-1 cheating degree and 
70% cheating size; “sh0.35”=the short test, 0.8-1 cheating degree and 35% cheating size; “ll0.70”= the 
long test, 0.5-0.8 cheating degree and 70% cheating size; “sl0.35”=the short test, 0.5-0.8 cheating degree 
and 35% cheating size.  

 
Figure 6. The sensitivity of the Normal Test. “lh0.70”= the long test, 0.8-1 cheating degree and 70% 
cheating size; “sh0.35”=the short test, 0.8-1 cheating degree and 35% cheating size; “ll0.70”= the long 
test, 0.5-0.8 cheating degree and 70% cheating size; “sl0.35”=the short test, 0.5-0.8 cheating degree 
and 35% cheating size. 
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In both Figure 5 and Figure 6, the solid line (represents the sensitivity in the high 

effective cheaters cases) is the highest, and the dotted line (represents the sensitivity 

in the low effective cheaters cases) is the lowest and the dash line (represents the 

sensitivity in the medium effective cheaters cases) is located at the middle. Based on 

the position of the three lines in Figure 5and Figure 6, high effective cheaters are 

mostly likely to be detected, medium effective cheaters are less likely to be identified 

and the low-effective cheaters are least likely to be detected.  

Other than the stable specificity of the DGIRTM, another valuable characteristic 

of this model is that test cheaters are more likely identified by the model when their 

cheating activities become increasingly effective. In real settings, those effective 

cheaters obtains significant score gain, and such score gain will lead us to make 

wrong inference on the cheaters. Effective cheaters severely invalidate the inferences 

made based on tests. Actually, the degree of invalidation would be increasingly worse 

when cheating effectiveness goes up. To detect such kind of cheaters, therefore, is 

practically meaningful and important for stakeholders. Together with the model’s 

stability and accuracy in specificity, the model is capable of detecting effective 

cheaters and makes a small degree of mistakes in cheating detection. 

42B41BImpact of Test Length and Number of Exposed Items 

Test length is a critical factor impacting this model’s sensitivity. In this 

simulation study, two conditions about test length are considered: a short test with 40 
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items and a long test with 80 items. The average sensitivity within the short test and 

long test along different cheating size is presented in Table 8, and the detailed 

sensitivity in each condition within short/long test is plotted in Figure 4 and Figure 5. 

As shown in Table 8, the average sensitivity within long test cases (represented 

by the second, fourth and sixth row in Table 8 ) is uniformly greater than the 

sensitivity in the corresponding conditions within short test cases( represented by the 

first, third and fifth row in the Table 8). Based on the results, the model is more 

sensitive to detect test cheaters in tests with a larger total number of items than those 

with a smaller total number of items.  
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Table 8. The Average Sensitivity by Test Length 
Cheating 
Effective 

Test length
5% 35% 70% 
cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3 

High 
Effective 

S-Test 69.53% 74.31% 71.25% 56.28% 63.98% 58.34% 33.96% 34.54% 25.34%
L-Test 88.64% 90.61% 87.69% 84.52% 87.04% 82.56% 65.37% 69.87% 61.18%

Medium 
Effective 

S-Test 55.19% 55.34% 46.70% 41.94% 45.03% 38.28% 26.04% 25.84% 20.36%
L-Test 73.98% 76.08% 71.05% 65.45% 69.42% 61.35% 45.95% 49.18% 42.11%

Low 
Effective 

S-Test 28.03% 24.09% 18.98% 22.19% 20.80% 14.04% 15.06% 14.14% 9.88% 
L-Test 40.43% 38.98% 33.96% 32.07% 31.67% 26.40% 22.45% 22.17% 18.45%

cs1”=cheating size with 5% cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; “p3”=70% items are exposed.”S-Test”= short test with 40 items; “L-Test”=long test with 80 items. 

 

Table 9. The Sensitivity by Test Information and Cheating Degree in High Effective Cheating 
Length Cheating degree cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3 

Short Test
High cheating degree

81.30% 84.80% 81.20% 67.29% 76.63% 71.80% 41.56% 45.62% 36.80%
74.00% 80.60% 77.30% 60.69% 69.56% 65.13% 36.65% 37.26% 25.33%

Low cheating degree
66.60% 72.10% 71.80% 53.64% 62.54% 57.19% 31.37% 32.97% 25.69%
57.30% 60.10% 53.60% 45.46% 49.49% 40.37% 26.13% 24.14% 14.76%

Long Test
High cheating degree

94.30% 94.50% 92.40% 91.46% 92.47% 90.27% 76.96% 82.01% 76.05%
92.20% 94.90% 91.80% 89.87% 91.87% 88.51% 73.29% 78.38% 70.54%

Low cheating degree
88.20% 89.30% 86.30% 82.81% 85.77% 80.89% 60.18% 65.97% 58.99%
80.90% 84.60% 81.60% 74.83% 79.07% 70.50% 51.14% 55.36% 38.19%

“cs1”=cheating size with 5% cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are exposed; 
“p2”=50% items are exposed; “p3”=70% items are exposed
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Figure 7. The Sensitivity of Short Test. “cs1”=cheating size with 5% cheaters; “cs2”=cheating size 
with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% 
items are exposed; “p3”=70% items are exposed. 
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Figure 8. The Sensitivity of Long Test. “cs1”=cheating size with 5% cheaters; “cs2”=cheating size 
with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% 
items are exposed; “p3”=70% items are exposed. 

Like Table 8, Figure 7 and Figure 8 also show that the DGIRTM is more 

sensitive in the long test cases than it is in the short test cases. The DGIRTM classifies 

items as two types (exposed and unexposed items). An increase in the total number of 
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items means an increase in the number of both exposed and unexposed items. The 

model becomes more sensitive to detect test cheaters when there is an increase in the 

number of both exposed items and unexposed items.  

Other than the difference in the total number of exposed and unexposed items, 

the relationship between the number of the exposed items and that of the unexposed 

items also plays a critical role to impact the model’s sensitivity. As exhibited by Table 

8, the sensitivity of the conditions with 50 percent exposed items (which is the 

number of exposed items equal to that of unexposed items) is greater than the case 

with 30 percent exposed items where the number of exposed items is less than that of 

unexposed, and the case with 70 percent exposed items where the number of exposed 

items is greater than that of unexposed items. For example, when the cheating size is 

5percent, the sensitivity of the case with 50percent exposed items in the short test for 

effective cheaters is 74.31 percent, which is greater than the sensitivity of the 

corresponding cases with 30percent exposed items (69.53 percent) and 70 percent 

exposed items (71.25 percent). Figure 6 is plotted to demonstrate the impact of test 

length (the total number of items) and relationship between the number of exposed 

items and that of unexposed items.  
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Figure 9. The Average Sensitivity by Test Length. “+”= the short test; “Δ”= the long test; 
“cs1”=cheating size with 5% cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size 
with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% items are exposed; “p3”=70% items are 
exposed. 

In Figure 9, the sensitivity in the long test cases (represented by “Δ”) is 

uniformly greater than that in the short test cases (represented by “+”). Within each 

cheating size (each group of three points linked together by lines), the middle points 

representing the cases with 50 percent exposed items are higher than the other two 

points which represents the 30 percent and 70 percent exposed items. This cheating 
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detect test cheaters. A decrease of either exposed or unexposed items could undermine 

this model’s power to detect test cheaters, even though the test has a large total 

number of items. Generally, the model seems to be more sensitive when the number 

of exposed items is less than that of unexposed items. In contrast, the model is slightly 

more conservative when the number of the exposed items is greater than that of 

unexposed items.  

As a summary, an item number increase in either exposed or unexposed items 

can improve the model’s power to detect test cheaters. Given a certain total number of 

items in tests, the model would derive a greater degree of sensitivity in tests with a 

balanced number of exposed and unexposed items (the number of exposed items 

equal to that of unexposed items) than in tests with an unbalanced number of exposed 

and unexposed items (the number of exposed items is either greater or less than that 

of unexposed items).   

43B42BImpact of Test Information, Cheating Degree and Cheating Size 

The impact of test information, cheating degree and cheating size is discussed 

only in high effective cheating cases because the impact of these three factors has the 

same pattern in the three different level of cheating effectiveness. The sensitivity 

across cheating degree, information and cheating size in high effective cheating cases 

is presented in Table 9 and also plotted in Figure 10. 
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In Table 9, the sensitivity of the informative testFF

6
FF (bolded rows) is uniformly 

higher than that of the normal testFF

7
FF (not bolded rows) in every condition. Test 

information can improve the model’s power to detect test cheaters. Similarly, the 

sensitivity of the conditions in the high cheating degree cases (exposed items being 

cheated by 80 percent-100 percent of the whole cheaters) is uniformly higher than that 

of the corresponding conditions in the low cheating degree cases (exposed items being 

cheated by 50 to 80 percent of the whole cheaters). An increasing cheating degree can 

lead to a higher degree of cheating information, and thus make the model more 

sensitive in terms of cheater detection. However, the model’s sensitivity decreases 

along with the increasing cheating size. It seems that the model is not efficient to 

identify cheaters when a large scale of cheating activities occurs in tests, such as 

cheating by group.  

 

                                                              
6  Informative test: a test with exposed item difficulty distribute with a mean equal to the mean of cheating ability 
and standard deviation 0.5, and unexposed item difficulty with a mean equal to the mean of true ability and 
standard deviation 0.5.   
7  Normal test: a test with item difficulty with a mean equal to the mean of true and cheating ability and standard 
deviation 1.   
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Figure 10. The Sensitivity by Test Information and Cheating Degree. “+”= the normal test; “Δ”= 
the informative test; “cs1”=cheating size with 5% cheaters; “cs2”=cheating size with 35% cheaters; 
“cs3”=cheating size with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% items are exposed; 
“p3”=70% items are exposed. 

As shown in Figure 10, the sensitivity of the high cheating degree cases (the two 

plots on the right hand) is greater than that of the low cheating degree cases (the two 

plots on the left hand). The decreasing line means that the sensitivity decreases along 

with the increasing cheating size. The line represented by “Δ” is always higher than 

the line represented by “+”, which implies that the sensitivity of the informative test is 

uniformly higher than that of the normal test. 

The informative test with targeted location and higher degree of information 

amount enables the model to derive a greater level of accuracy relative to cheating 

identification.  As a note, such feature is practically important, especially for the 

computer adaptive tests (CAT). In CAT context, items are purposely selected 

according to the average of examinee ability, which results in the selected set of items 

have a mean equal to examinee’s ability and small standard deviation. In other words, 
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the model might be highly useful in monitoring test cheating relative to item exposure 

in CAT settings.  

Like the cheating effectiveness, cheating degree is also a critical factor to impact 

the DGIRTM’s cheating sensitivity. The DGIRTM’s sensitivity grows when cheating 

degree increases. In other words, the cheaters with a higher level of cheating degree 

are more likely to be identified by the DGIRTM.  

As opposed to the positive impact of test information and cheating degree on the 

model’s sensitivity, the cheating size has a negative impact on the DGIRTM’s 

sensitivity. The impact of the cheating size should be due to the scale shift of the 

exposed items. Under the DGIRTM, the scale for the estimated item difficulty and 

examinee score is expected to be determined by the unexposed items. The scale 

determined by the unexposed items is the scale of the true ability for all examinees 

taking tests and items. The score difference is obtained based on this scale, by 

comparing cheaters’ cheating ability and their true ability. However, when the 

cheating size increases, the true ability scale for all the examinees is hard to align on 

the scale determined by unexposed items, but moves forward to a mixed scale 

determined by both the exposed and unexposed items instead. The scale shift moves 

further towards to the mixed scale determined by both the exposed and unexposed 

items when the cheating size goes up. This shift apparently appears with a cheating 

size above 50 percent. As a result, the score difference between the exposed items and 

unexposed items are reduced because the true ability for all examinees moves closer 
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to cheaters the cheating ability, and thus the sensitivity of the DGIRTM model 

correspondingly decreases when the cheating size 

22B21BModel Estimation Accuracy 

The DGIRTM provides both cheaters and non-cheaters true ability estimation as 

well as cheaters’ score gain, which helps stake-holders (e.g., teachers or universities) 

to make correct inference about the students’ real knowledge level and cheating 

degree. The ability to distinguish cheaters’ true ability and cheating skill is another 

unique advantage of the DGIRTM. The average Root Mean Square Difference 

(RMSD) of item difficulty and examinees’ true ability in the high effective cases is 

presented in Table 10. The RMSD of item difficulty in all the conditions in high 

effective cheating cases is plotted in Figure 8 to demonstrate the variance of RMSD. 

As a note, the accuracy of the model estimation is only discussed within the high 

effective cheating cases, because the estimation accuracy in the high effective 

cheating is of the same degree as the other two levels of cheating effectiveness. 

Table 10. The Average RMSD of Item Difficulty by Test Length in the High Effective Cheating 

Type Test length 
5% 35% 70% 

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3
Item 

Difficulty 
Short Test 0.16 0.20 0.22 0.18 0.17 0.17  0.38  0.40 0.41 
Long Test 0.20 0.23 0.25 0.13 0.14 0.14  0.29  0.31 0.36 

True 
Ability 

Short Test 0.33 0.36 0.39 0.37 0.40 0.45  0.49  0.53 0.61 
Long Test 0.23 0.25 0.27 0.22 0.24 0.27  0.28  0.30 0.36 

“cs1”=cheating size with 5% cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size 
with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% items are exposed; “p3”=70% items are 
exposed. 
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Figure 11. RMSD of Item Difficulty. “cs1”=cheating size with 5% cheaters; “cs2”=cheating size 
with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% 
items are exposed; “p3”=70% items are exposed. 

In Table 10, the RMSD in the long test cases is greater than the RMSD in the 

corresponding cases in the short test. The RMSD in the 70 percent cheating size is the 

greatest (i.e., the maximum RMSD of item difficulty is 0.36) and that in the 35 

percent cheating size is the smallest (i.e., the minimum RMSD is 0.13). Figure 11 also 

shows that the variance of the RMSD in the 70 percent cheating size case is 

noticeably greater than that in the other two cheating size cases, but the variance of 

the RMSD in the 5 percent and 35 percent cheating size cases is relatively small and 

stable.  The RMSD of examinee score in all conditions is plotted in Figure 12.  
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Figure 12. RMSD of True Proficiency. “cs1”=cheating size with 5% cheaters; “cs2”=cheating size 
with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are exposed; “p2”=50% 
items are exposed; “p3”=70% items are exposed. 

Similar to the item difficulty, the RMSD of examinee score increases along with 

the increasing cheating size. It reaches its highest point when cheating size is 70 

percent. Within each cheating size, the RMSD when the proportion of the exposed 

items is 70 percent reaches its greatest point. Unlike the variance of the RMSD of 

item difficulty, the variance of the RMSD of the true proficiency in different cases is 

constantly small in different exposure conditions.  

The increasing RMSD of both item difficulty and examinee score along with the 

increasing cheating size can serve as a strong evidence of the scale shift problem, 
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which is discussed in the impact of the cheating size. The increasing RMSD partly 

explains why the sensitivity drops along with the increasing cheating size. The RMSD 

of both item difficulty and true ability in the long test (the second and fourth row in 

Table 10) is greater than that of the corresponding cases in the short test (the first and 

third rows in Table 10), which explains why the sensitivity of the cheating model in 

the long test is greater than that in the short test.  

The RMSD of true ability is greater than that of item difficulty in this simulation 

study, which is partly impacted by the simulation design. Because 60 percent of the 

2000 examinees are purposely selected with a true ability less than -0.5, 30 percent of 

them are between -0.5 and 0.5 and 10 percent of them are above 0.5, which leads to 

the examinees being distributed with a mean -0.3. However, the prior of the true 

ability is set as standardized normal distribution with a mean 0. The gap between 

examinees’ simulated distribution and the prior contributes to the greater level of 

RMSD of the true ability as well as the cheating ability.  

As a complement to describe the model’s estimation accuracy, the correlation 

between the estimated values and their true values are plotted in Figure 13 for both 

item difficulty and true ability. With respect to item difficulty, the correlation is stably 

as high as one with small variance in the cases with 5 percent and 35 percent cheating 

size, however, the correlation sharply drops and variance greatly increases in the case 

with 70 percent cheating size. With respect to the correlation of true ability, it is less 

than that of item difficulty with greater variance. In the case with 70 percent cheating 
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size, the correlation reaches its lowest among all the three cheating sizes. The lowest 

correlation between the estimated values and true values in the 70 percent cheating 

size cases is a strong evidence to indicate that the scale shift problem does exist and 

become increasingly apparent with increasing cheating size.  

 
Figure 13. The Correlation between the True and Estimated Values. “cs1”=cheating size with 5% 
cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% 
items are exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 

In summary, the estimation error increases in both the item and true ability when 

the cheating size increases. When cheating size is less than 70 percent, the RMSD of 

both item difficulty and true ability is maintained at a low level, however, it sharply 

goes up when cheating size is at 70 percent level. The correlation similarly has the 

opposite directionality linked with increasing cheating size. Altogether, the DGIRTM 
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does not perform as well as expected and has low levels of power to detect cheaters 

and unacceptable model estimation error when cheating size is at 70 percent level. 

The increasing estimation error in both item difficulty and true ability confirms that 

the model’s scale drifts away from its original scale of true ability due to the selection 

of a prior distribution towards to the scale determined by the cheating ability. The 

increasing estimation error serves as one of key causes of the decreasing sensitivity 

along with the increasing cheating size. However, a greater test-length can improve 

the DGIRTM’s estimation accuracy resulting in a greater level of sensitivity which 

somewhat remedies the negative impact of the scale drift. As a note, the scale shift 

problem can be fixed by improving the DGIRTM’s estimation algorithm, which will 

be briefly discussed in the following section.  

23B22BComparison of DGIRTM with lz Index and t-test 

44B43BComparison with lz Index 

The lz index, as one of the best person-fit indices to detect unusual response 

patterns, is conducted to serve as a baseline for comparison to illustrate the model’s 

improvement in detecting test cheating. The sensitivity of the lz index and the 

DGIRTM in the set of short test conditions is plotted in Figure 14 and the set of long 

test conditions is plotted in Figure 15. In Figure 14 and Figure 15, the sensitivity of 

the cheating model is represented by “Δ” and that of the lz index is represented by 

“+”. There are totally 16 lines in these two figures, where eight lines are formed by 

the cheating model by three full crossed conditions (two levels of standard deviation 
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of item difficulty, two locations of the mean of item difficulty and two levels of 

cheating degree for exposed items).  

Like the DGIRTM, the sensitivity of the lz index is impacted by the cheating 

effectiveness and cheating size. The sensitivity of the lz index increases when the 

cheating effectiveness grows, and its sensitivity drops down when the cheating size 

increases. In Figure 14, the lz index has its greatest sensitivity in the 5 percent 

cheating size and high-effective cheating cases. Its sensitivity is almost at 0 in all the 

three levels of cheating effectiveness when the cheating size is 70 percent, and in the 

low-effective cheating cases, its sensitivity is close to 0 at all the three levels of 

cheating size.   

Compared to the DGIRTM, the lz index seems to be less sensitive than the 

DGIRTM. The DGIRTM exhibits a greater degree of robustness over the cheating size 

and cheating effectiveness.  
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Figure 14. The Sensitivity of the lz and the Cheating Model in Short Test. “Δ”=the sensitivity of 
the cheating model; “+”= the sensitivity of lz index; “cs1”=cheating size with 5% cheaters; 
“cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 

The lz index in the long test cases exhibits a similar pattern as it exhibits in the 

short test cases, as shown in Figure 15. Its sensitivity drops when the cheating size 

decreases or the cheating effectiveness drops. Especially, when the cheating size is 70 

percent or when the cheating activities are low effective, the lz index has no power to 

detect cheating. Although the lz index achieves a higher level of sensitivity in the long  

test than it does in the short test, the DGIRTM has a greater sensitivity level than the 

lz index in long test cases. 
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Figure 15. The Sensitivity of the lz and the Cheating Model in Long Test of Delta 1. “Δ”=the 
sensitivity of the cheating model; “+”= the sensitivity of lz index; “cs1”=cheating size with 5% 
cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% 
items are exposed; “p2”=50% items are exposed; “p3”=70% items are exposed 

Unlike the sensitivity, the lz index has as a high level of specificity as the 

DGIRTM. The specificity of both the lz index and the DGIRTM in the set of short test 

conditions is plotted in Figure 16 and that in the set of long test conditions is plotted  

in Figure 17, where “Δ” represents the specificity of the cheating model and “+” 

represents the specificity of the lz index.  
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Figure 16. The Specificity of the lz and the Cheating Model in Short Test of Delta 1. “Δ”=the 
sensitivity of the cheating model; “+”= the sensitivity of lz index; “cs1”=cheating size with 5% 
cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% 
items are exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 

As shown in Figure 13, the lz index and the DGIRTM do not exhibit much 

difference. However, the specificity of the DGIRTM shows a higher level of stability 

than the lz index. For instance, the specificity of the lz index has some sharply drops 
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in the high effective cheating cases when the cheating size is 70 percent.  

Similarly, the lz index in Figure 17 is able to maintain its specificity at the same 

level as the DGIRTM does. However, the specificity of the lz index exhibits some 

sharp drops in both high effective and medium effective cheating cases when the 

cheating size is 70 percent. Compared to specificity in the short test cases, the 

specificity in the long tests is slightly less stable in the long test cases.  

As a summary, the sensitivity of the lz index is strongly impacted by the cheating 

effectiveness and cheating size. It seems to lose its power to detect cheating activities 

when the cheating size is around or above 35 percent and the cheating activities is at 

the medium or low level effective. However, the lz index is able to maintain a high 

level of specificity (above 95 percent) in most of the conditions, but its specificity 

exhibits unusual drops in some cases. Although the test length could increase the 

power of the lz index to detect test cheating, it also undermines the stability of the 

specificity of the lz index. Compared to the lz index, the DGIRTM is better in terms of 

both the sensitivity and specificity.  
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Figure 17. The Specificity of the lz and the Cheating Model in Long Test of Delta 1. “Δ”=the 
sensitivity of the cheating model; “+”= the sensitivity of lz index; “cs1”=cheating size with 5% 
cheaters; “cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% 
items are exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 
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45B44BComparison with a t-test for MLEs (Exposed and Non-exposed Items) 

The t-test is designed based on the two sets of items (exposed and unexposed 

items). As opposed to the cheating model, the t-test is simple and well-accepted by 

practitioners. If the t-test could derive a better sensitivity and specificity, it would be 

redundant for us to develop and conduct such a complex cheating model analysis. The 

sensitivity of the t-test and the cheating model in the set of short test conditions is 

plotted in Figure 18 and its corresponding specificity is plotted in Figure 19, where 

“Δ” still represents the specificity of the cheating model and “+” represents the 

specificity of the t-test.  

In Figure 18, the sensitivity of the t-test decreases when the cheating size 

increases, but its sensitivity does not experience a sharp drop when the cheating 

effectiveness decreases. The t-test’s sensitivity is uniformly greater than that of the 

DGIRTM in all the conditions.  However, the t-test is not as effective as the cheating 

model in terms of the specificity.  

The t-test’s specificity is not stable, as shown in Figure 19, across difference 

cheating sizes. For example, its specificity is approximately 60 percent when the 

cheating size is 5 percent and it reaches approximately 90 percent when the cheating 

size is 70 percent. In addition, the cheating effectiveness also greatly impacts its 

specificity. For example, its specificity is almost as high as that of the cheating model 

in the 70 percent cheating size cases when the cheating is high effective, but its  
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specificity is uniformly less than that of the cheating model in all the conditions when 

the cheating is at low effective level.   

 
Figure 18. The Sensitivity of the t-test and Cheating Model in Short Test. “Δ”=the sensitivity of the 
cheating model; “+”= the sensitivity of the t-test; “cs1”=cheating size with 5% cheaters; 
“cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; p3”=70% items are exposed. 

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
0

0.
4

0.
8

Short Test and High Effective

Expsoure conditions

Se
ns

itiv
ity

+ + + + + +

+ + +

+ + +
+ + +

+ + +

+ + + + + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
0

0.
4

0.
8

Short Test and Medium Effective

Expsoure conditions

Se
ns

itiv
ity

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

+ + +
+ + +

+ + +

cs1p1 cs1p2 cs1p3 cs2p1 cs2p2 cs2p3 cs3p1 cs3p2 cs3p3

0.
0

0.
4

0.
8

Short Test and Low Effective

Expsoure conditions

Se
ns

itiv
ity

+ + + + + +
+ + +

+ + +
+ + +

+ + +

+ + + + + +
+ + +

+ + +
+ + +

+ + +

+ + + + + + + + +
+ + + + + + + + +

+ + + + + +
+ + +

+ + + + + + + + +



106 
 

 
Figure 19. The Specificity of the t-test and Cheating Model in Short Test. “Δ”=the specificity of the 
cheating model; “+”= the specificity of the t-test; “cs1”=cheating size with 5% cheaters; 
“cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 
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The sensitivity of the t-test and the cheating model is plotted in Figure 20 for the 

set of conditions in long test and the corresponding specificity is shown in Figure 21. 

The t-test still outperforms the cheating model in terms of the sensitivity, and the 

degree of outperformance is much less than that in the short test. Similarly, the 

cheating model is still better than the t-test in terms of the specificity, and the degree 

of difference between the cheating model’s specificity and t-test’s specificity is less 

than that in the short test cases.  

Although the t-test is a simple significance test, it is effective at detecting test 

cheaters. However, it is unable to maintain a constant high level of specificity. 

Specifically, its sensitivity is also impacted by the cheating size and cheating 

effectiveness. An increasing cheating size or a decreasing cheating effectiveness 

results in a less sensitive t-test. The t-test is able to derive a higher level of specificity 

when cheating size grows, but a lower level of specificity when cheating effectiveness 

drops.  

As compared to the DGIRTM, the t-test is better in terms of the sensitivity, but 

worse in terms of the specificity. From an ethical and practical standpoint, having a 

low rate of false positives should rank as the first priority and should be the first 

principle for all practitioners in preventing or detecting test cheating. Based on this 

principle, the cheating detection model shows extreme promise for application in real 

settings across many conditions.  
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Figure 20. The Sensitivity of the t-test and Cheating Model in Long Test. “Δ”=the sensitivity of the 
cheating model; “+”= the sensitivity of the t-test; “cs1”=cheating size with 5% cheaters; 
“cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 
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Figure 21. The Specificity of the t-test and Cheating Model in Long Test. “Δ”=the specificity of the 
cheating model; “+”= the specificity of the t-test; “cs1”=cheating size with 5% cheaters; 
“cs2”=cheating size with 35% cheaters; “cs3”=cheating size with 70% cheaters. “p1”= 30% items are 
exposed; “p2”=50% items are exposed; “p3”=70% items are exposed. 
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As a note, the scale shift problem faced by the cheating model, to a large degree, 

can be fixed by adjusting the estimation algorithm, and the model’s sensitivity level 

could also be increased using this new estimation algorithm (which will be discussed 

in the final chapter).  The cheating model is a promising and attractive tool that 

practitioners could use to respond proactively to individual and organized test 

cheating.  

24B23BConclusion 

In the simulated settings, the Deterministic, Gated IRT model seems to be a 

promising tool for detecting test cheating with a small degree of mistakes. One of the 

valuable characteristics of the model is that its specificity is maintained at a high level 

in every joint condition considered. The practical implication is that the model 

generally makes a small degree of mistakes in different applied settings. Such 

characteristics ensure that innocent test takers are treated with fairness in the cheating 

analysis.  

As compared to the model’s specificity, the model’s sensitivity is greatly 

impacted by test cheating effectiveness. Generally speaking, cheating effectiveness 

and cheating degree are two aspects measuring cheating severity that determine the 

model’s sensitivity. As shown in the study, the sensitivity in the high-effective 

cheating cases is the highest, the sensitivity of the low-effective cases is the lowest, 

and the sensitivity of the medium-effective cases is between that of the high-effective 
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and medium-effective cases. Given a certain cheater’s increasing cheating 

effectiveness, his/her probability of being detected grows. Other than cheating 

effectiveness, an increasing cheating degree (the degree of each exposed items have 

been cheated by cheaters) can increase the probability of cheaters being detected. In 

other words, the probability of cheaters being detected grows when he/she cheats on a 

greater number of items.  

Test length, as a critical factor determining test information, exhibits its power to 

impact model’s sensitivity and estimation accuracy. An increasing test length results 

in an increasing model sensitivity and a greater level of accuracy to characterize 

cheaters’ real knowledge level and cheating severity. More specifically, the sensitivity 

is impacted by the number of exposed items and unexposed items. Given a certain 

total number of items, if the item number of exposed items is less than that of 

unexposed items, the model tends to be conservative and makes less degree of 

mistakes (which means a higher degree of specificity and a lower degree of 

sensitivity). However, if the number of exposed items is greater than that of 

unexposed items, the model tends to be more literal and makes a slightly higher 

degree of mistakes (which means a higher degree of sensitivity and a lower degree of 

sensitivity). When the number of exposed items is equal to that of unexposed items, 

the model derives the highest level of sensitivity and specificity. In other words, the 

model requires a decent number of exposed items and unexposed items to derive a 

high level of sensitivity and specificity.  
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In the two comparisons, the DG-IRT model greatly outperforms the lz index in 

terms of sensitivity and performs as well as the lz index in terms of specificity. The lz 

index seems to lose its power when the cheating size is large or cheating effectiveness 

is low. The t-test seems to be more powerful to detect test cheating due to its higher 

level of sensitivity. As study shows that it could almost identify every cheater, but the 

lz is too liberal. A lot of non-cheaters are identified as cheaters, especially in the cases 

where cheating size is low (e.g., 5% and 35% cheating size cases). Although the 

model is not as sensitive as the t-test, it maintains a high degree of specificity in every 

case.  

As a special note, the DG-IRT model becomes less and less sensitive when the 

cheating size becomes greater and greater. In practice, it means that the model might 

not be an efficient tool to detect and respond to concert or organized test cheating. 

This limitation is referred to as a scale shift problem of the model in the previous 

section. Apparently, the scale of the estimated item difficulty and examinee score 

drifts away from its true ability scale to a scale of the combination of true ability scale 

and cheating ability scale. Essentially, the model’s basic assumption that the item does 

not change whether the examinee cheats or not is violated. However, it could be fixed 

by changing the prior of cheating ability, by allowing a free estimation of the mean 

and standard deviation of the normal distribution of the cheating ability. Such new 

estimation algorithm in R, which fixes the scale shift problem, is provided in the 

index at the end of this dissertation.  
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The DGIRTM is a promising tool to detect test cheating due to item preview, 

item memorization or internet collaboration on the basis of its performance in the 

simulated and real setting 
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25B24BCHAPTER V 

26B25BSIGNIFICANCE, LIMITATION AND FUTURE RESEARCH 

27B26BSignificance 

Test cheating, as a negative factor invalidating the inference made based on tests, 

is commonly recognized by stake-holders of various tests. Testing agencies or other 

stakeholders have suffered great pain from diffusedly existing test cheating, especially 

in high-stake tests. Statistical cheating detection methods, as one of important 

methodologies to detect test cheating, have been proposed and researched by 

intelligent precedents, however, they re frail in terms of their methodology design, 

sensitivity, specificity and information they provide. Unlike traditional approaches 

(e.g., copying indices, person fit indices) which rely on aggregation of individual 

statistics (Segall, 2002), the Deterministic, Gated IRT model derives test cheating or 

test compromise summaries by response matrix. This cheating model seems to be an 

attractive and promising tool for practitioners to respond to test cheating by both 

individual and organized cheating, given its modeling design, the provided 

information, sensitivity and specificity level

This cheating model is designed to detect the score gain (the score gain from the 

cheating activities). In real testing settings, the effective cheaters (e.g., those who 

cheat make significant score gains) jeopardize the validity of tests. The more effective 
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cheaters are, the greater the impact on the validity of tests grows. From a practical 

standpoint, “effective cheaters” must be identified, so that the impact on test validity 

can be examined and appropriate actions can be taken to reduce the impact of 

cheating (when deemed necessary). As shown by the study, under this cheating model, 

high effective cheaters are most likely to be detected, medium effective cheaters are 

less likely to be detected and low effective cheaters are least likely to be identified. 

Although this cheating model is not effective to identify low-effective cheating, it is 

the low-effective cheaters who have no or little impact on the validity of tests. What 

makes this cheating model even more attractive is that it is able to maintain a high 

level of specificity in every joint condition considered in this dissertation. This 

cheating detection model is able to detect effective cheaters with a small degree of 

error.  

The other nice feature of this cheating model is the information it provides. One 

of the key information provided by the cheating model is the cheating probability for 

each single examinee ( ෨ܶ). Given higher value of ෨ܶ  for a certain test taker, the 

probability of being a cheater for that test taker grows. Such probability represents the 

degree of severity of cheating tendency. Not only providing a single cheating 

probability, this model also characterizes cheaters’ real knowledge level by (θt) and 

the severity of their cheating activities (θc), which enable practitioners to have deeper 

inside analysis on the characteristics of cheaters and non-cheaters.  
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Based on the current study, we believe that the Deterministic, Gated IRT model 

is an effective model that can be used to detect test cheaters. The stability and high 

accuracy in specificity, capability to characterize cheaters’ real knowledge level and 

cheating degree, and its sensitiveness in detecting effective cheaters, make it a 

promising tool to proactively respond to the individual or organized test cheating. 

28B27BLimitation and Future Study 

This model is designed to mainly detect test cheating by item-preview, item 

memorization or internet-collaboration. Its application in other cheating settings might 

be limited and demand further research and investigation. Based on current study, this 

model proves to be useful in large-scale tests where a large number of examinees and 

items are available, but its application feasibility in tests with small sample sizes (e.g., 

classroom level formative assessment) might be limited. The reason for this is that 

MCMC is used as the model’s estimation algorithm. MCMC estimation requires a 

large sample size to obtain reliable and accurate estimation. The model is Rash-Model 

based which does not take guessing and item discrimination into account. However, 

guessing does exist when examinees answer the questions, and a lot of practitioners 

believe that items’ different levels of discrimination should be estimated. Therefore, 

the impact of guessing on the model’s sensitivity and specificity should be further 

researched. As a further research direction, this model may be extended by 

incorporating both pseudo-guessing and item discrimination parameters.  
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Generally speaking, the Deterministic, Gated IRT model is not only a cheating 

model which can only be applied in detecting test cheating. It can be seen as a general 

model to distinguish two groups of examinees and be able to characterize the two 

groups of examinees with two latent traits. For instance, if the model input is defined 

as item status relative exposure status, it is the model that is used to detect test 

cheating caused by item exposure (the case discussed in this dissertation). The group 

of cheaters who have significant score gain is distinguished from the group of 

non-cheaters who have no significant cheaters. The cheating ability (a combination of 

true ability and score gain) is the latent trait to characterize the group of cheaters and 

the true ability is the latent trait to characterize the group of non-cheaters. If the model 

input is used to group items by two different administration time, it becomes a model 

that can be used to monitor the examinee growth made between the two testing time. 

Specifically, it could distinguish a group of students who have significant growth 

from a group of students who have not significant growth. Therefore, the model’s 

appropriate application in other areas, such as Differential Item Functioning, Student 

Growth, Scaling Shift, is another research direction which deserves attention.  

Although the DGIRTM successfully overcomes some limitations of the previous 

cheating detection techniques, this new model is certainly not immune to abuse or 

probative misuse. “There remains an enormous amount of empirical research left to 

be done before its real application.” (Luecht, 2010). The successful and appropriate  

 



118 
 

application in different real settings is the ultimate purpose for us to develop, and the 

final standard to evaluate the Deterministic, Gated IRT model.  



119 
 

10B10BREFERENCES 

Angoff, W. H. (1974). The development of statistical indices for detecting cheaters. 
Journal of the American Statistical Association, 69, pp. 44-49. 
 
 
Bellezza, F. & Bellezza,S. (1995). Detection of copying on multiple-choice tests: An 
update. Teaching of Psychology. 22(3), pp.180-182. 
 
 
Cizek, G. J. (1999). Cheating on Tests: How to Do It, Detect It, and Prevent It. 
Mahway, NJ: Lawrence Erlbaum Associates. 
 
 
Drasgow, Levine,& Williams (1985). Appropriateness measurement with 
polychotomous item response models and standardized indices. British Journal of 
mathematical & statistical psychology. 38 (1), pp.67-86.  
 
 
Drasgow, F., & Levine, M. V. (1986). Optimal detection of certain forms of 
inappropriate test scores. Applied Psychological Measurement, 10, pp.59–67. 
 
 
Drasgow, F.; Luecht, R. M.; & Bennett, R. (2006). Technology and Testing. In R. L. 
Brennan (Ed.), Educational Measurement, 4th Edition, pp. 471-515. Washington, DC:  
American Council on Education/Praeger Publishers.  
 
 
Dwyer, D.J., & Hecht, J.B., (1996) Using statistics to catch cheaters: Methodological 
and legal issues for students personnel administrators. NASPA Journal, 33(2), 
pp.125-135. 
 
 
Frary, R. Tideman, N. &Watts, T. (1977). Indices of cheating on multiple choice tests. 
Journal of Educational Statistics. 2(4), pp.235-256. 
 
 
Fu,J. (2005). A polytomous extension of fusion model and its Bayesian parameter 
estimation. Unpublished doctoral dissertation. The University of Wisconsin-Madison.  



120 
 

Hanson, B. Harris, D. & Brennan, R. (1987). A comparison of several methods for 
examining allegations of copying. ACT research report NO 87-15. Iowa City, IA: 
American College Testing.  
 
 
Hambleton,R,K. & van de Linden,W.J.(1982). Advances in Item Response Theory 
and Applications: An Introduction. Applied Psychological Measurement, 6(4), 
pp.373-378 
 
 
Holand, P.(1996). Assessing unusual agreement between the incorrect answers of two 
examinees using the K-index: Statistical theory and empirical support ETS Technical 
Report No.96-4. Princeton, NJ: Educational Testing Service. 
 
 
Henson,R. Templin, J. & Willse, J. (2009). Defining a Family of Cognitive Diagnosis 
Models Using Log-Linear Models with Latent Variables. Psychometrika. 74(2), pp 
191-210. 
 
 
Iwamoto, C.K., Nungester, R.J., & Luecht, R.M. (1998). Use of response similarity 
methods in multistage computer adaptive testing.  Paper presented at the Annual 
Meeting of the American Educational Research Association, San Diego. 
 
 
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few 
assumptions, and connections with nonparametric item response theory. Applied 
Psychological Measurement, 25, pp.258–272. 
 
 
Levine, M. V., & Rubin, D. B. (1979). Measuring the appropriateness of 
multiple-choice test scores. Journal of Educational Statistics, 4, pp.269–290. 
 
 
Lord, F.M.(1980). Applications of item response theory to practical testing problems. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 
 
 
Luecht, R.M. (1998). A framework for exploring and controlling risks associated with 
test item exposure over time. Paper presented at the National Council on 
Measurement in Education Annual Meeting, San Diego. 
 



121 
 

Lewis,C., & Thayer, D.,T.,(1998). The power of K-index to detect test copying. 
Research report 08541. Princetion, NJ: Educational Testing Service. 
 
 
Luecht, R. M. (2005). Some Useful Cost-Benefit Criteria for Evaluating 
Computer-based Test Delivery Models and Systems. Association of Test Publishers 
Journal. (HHUwww.testpublishers.org/journal.htmUHH) 
 
 
Lewis,C.,(2006). Note on unconditional and conditional hypothesis test: a discussion 
raised by van den Linden and Sotaridona. Journal of Educational and Behavioral 
Statistics, 31(3), pp.305-309. 
 
 
Messick,S.,(1990). Validity of test interpretation and use. Princeton, NJ: Educational 
Testing Service. 
 
 
Meijer, R. R. (Ed.). (1996). Person-fit research: Theory and applications [Special 
issue]. Applied Measurement in Education, 9(1), pp.9–18. 
 
 
Nering, M. L. (1996). The effects of person misfit in computerized adaptive testing. 
Unpublished doctoral dissertation, University of Minnesota, Minneapolis. 
 
 
Nering, M. L. (1997). The distribution of indexes of person fit within the 
computerized adaptive testing environment. Applied Psychological Measurement, 21, 
pp.115–127. 
 
 
Mcdonald, R.P. (1999). Test theory: a unified treatment. Mahwah, NJ: Lawrence 
Erlbaum Associates.  
 
 
Mcleod,L., & Lewis,C., (1999). Detecting item memorization in CAT environment. 
Applied Psychological Measurement. 23(2, pp.147-159. 
 
 
Mcleod, L., Lewis,C.,& Thissen,D.,(2003). A Bayesian Method for the Detection of 
Item Pre-knowledge in Computerized Adaptive Testing. Applied Psychological 
Measurement. 27(2), pp.121-137. 



122 
 

Mislevy, R. J., Almond, R. G., Yan, D., & Steinberg, L. S. (1999). Bayes nets in 
educational assessment: Where do the numbers come from? In K. B. Laskey & H. 
Prade (Eds.), Proceedings of the fifteenth conference on uncertainty in artificial 
intelligence (pp. 437-446). San Francisco, CA: Morgan Kaufmann. 
 
 
Rost, J,(1990).Rash models in latent classes: An integration of two approaches to item 
analysis. Applied Psychological Measurement,14(3), pp.271-282. 
 
 
Patz, R. J., & Junker, B. W. (1999a). A straightforward approach to Markov chain 
Monte Carlo methods for item response models. Journal of Educational and 
Behavioral Statistics, 24, pp.146–178. 
 
 
Patz, R. J., & Junker, B. W. (1999b). A straightforward approach to Markov Chain 
Monte Carlo methods for item response models. Journal of Educational and 
Behavioral Statistics, 24(2), pp.146-178. 
 
 
Rupp,A., Templin,J.,&Hesnon,R.(2009). Diagnostic Measurement: Theory, Methods, 
and Applications. New York: Guildford Press. 
 
 
Stocking, M. L., Ward, W. C., & Potenza, M. T. (1998). Simulating the use of 
disclosed items in computerized adaptive testing. Journal of Educational 
Measurement, 35, pp.48–68. 
 
 
Segall, D,(2002).An item response model for characterizing test comprise. Journal of 
Educational and Behavioral Statistics, 27(2), pp.163-179. 
 
 
Segall,D,(2004).A sharing item response theory model for computerized adaptive 
testing. Journal of Educational and Behavioral Statistics, 29(4), pp.439-460. 
 
 
Sotaridona,L .S & Meijet, R.R (2003). Two new statistics to detect answer copying. 
Journal of Educational Measurement, 40(1), pp.53-69. 
 
Sotaridona,L .S (2003). Statistical methods for the detection of answer copying on 
achievement tests. Twente University Press, Netherland: AE Enschede. 



123 
 

Tatsuoka,K. (1996). HHUse of generalized person-fit indexes, zetas for statistical pattern 
classificationHH. Applied Measurement in Education. 9(1, pp.65-75.  
 
 
Templin, J. & Henson, R. (2006). Measurement of Psychological Disorders Using 
Cognitive Diag-nosis Models. Psychological Methods, 11 (3), pp.287-305. 
 
 
Templin,J, Henson,R., Templin,S., & Rousso,L.,(2008). Robustness of Hierarchical 
Modeling of Skill Association in Cognitive Diagnosis Models. Applied Psychological 
Measurement (OnlineFirst) 
 
 
van der Linden, W. J., & Hambleton, R. K. (Eds.), (1997). Handbook of modern item 
response theory. New York: Springer-Verlag. 
 
 
van der Linden, W.J. & Sotaridona, L.S.(2006). Detecting answer copying when the 
regular response process follows a known response model. Journal of Educational 
and Behavioral Statistics. 31(3), pp.283-304 
 
 
Watson, S.A., Iwamoto, C.K., Nungester, R.J., & Luecht, R.M. (1998).  The use of 
response similarity statistics to study examinees who benefit from copying.  Paper 
presented at the National Council on Measurement in Education Annual Meeting, San 
Diego. 
 
 
Wollack,J.A(1997). A nominal response model approach for detecting answer copying. 
Applied Psychological Measurement. 21(4), pp.307-320. 
 
 
Wollack, A. & Cohen, A. (1998). Detection of answer copying with unknown item 
and trait parameters. Applied measurement in education. 22(2), pp.144-152.  
 
Wollack,A. Cohen,A. & Serlin,R. (2001). Defining error rate and power for detecting 
answer copying. Applied Psychological Measurement.25(4), pp.385-404.  
 
 
Wollack, J. A. (2006). Simultaneous Use of Multiple Answer Copying Indexes to 
Improve Detection Rates. Applied Measurement in Education, 19(4), pp.265-288 



124 
 

11B11BAPPENDIX A: THE CODE OF THE DETERMINISTIC, GATED IRT 

MODEL  

The Deterministic, Gated IRT model estimation is provided in this appendix. 
This code is built within R static language by following the specification of the prior 
distributions listed in the model estimation section.  
 
# Rash Model 
Rash<-function(thetas,betas,alphas){ 
p<-matrix(NA,length(thetas),length(betas)) 
for(i in 1:length(betas)){            
p[,i]<- 1/(1+exp(-1.7*alphas[i]*(thetas-betas[i])))} 
p} 
 
#The Deterministic, Gated IRT Model 
mix<-function(true,cheating,betas,alphas,expose,T){ 
tr<-Rash(true,betas,alphas) 
ch<-Rash(cheating,betas,alphas) 
p<-tr^(1-T)*(t((1-expose)*t(tr)+expose*t(ch)))^T} 
 
# Module for estimating the mean and standard deviation of cheating ability 
draw.mu<-function(cheat0,T0,mu0,sd0){ 
mu1<-runif(1,max(0,mu0-0.1),min(3,mu0+0.1)) 
sd1<-runif(1,max(0,sd0-0.1),max(3,sd0+0.1)) 
theta<-cheat0[T0*(1:N)] 
temp<-exp(-(theta-mu0)^2/sd0^2)/sd0 
likehood0<- sum(log(temp)) 
temp<-exp(-(theta-mu1)^2/sd1^2)/sd1 
likehood1<- sum(log(temp)) 
accept<-likehood1-likehood0 
accept<-ifelse(accept>0,1,exp(accept)) 
accept<-ifelse(accept>1,1,accept) 
accept<-ifelse(runif(1)<accept,1,0) 
mu<-ifelse(accept,mu1,mu0) 
sd<-ifelse(accept,sd1,sd0) 
output<-c(mu,sd) 
output 
} 
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#Module for estimating the examinee’s abilities and cheating status 
draw.person<-function(cheat0,true0,T0,betas0,mu0,sd0,N,X,expose){ 
true1<-rnorm(N,0,1) 
cheat1<-ifelse(T0==1, rnorm(N,mu0,sd0),rnorm(N,0,1)) 
T1<-rep(0,N) 
T1[cheat1>true1]<-1 
temp<-mix(true0,cheat0,betas0,rep(1,length(betas0)),expose,T0) 
temp<-ifelse(X,temp,1-temp) 
likehood0<-apply(log(temp),1,sum)+log(dnorm(cheat0,mu0,sd0))*T0+log(dnorm(true0))*(1-T0) 
 
temp<-mix(true1,cheat1,betas0,rep(1,length(betas0)),expose,T1) 
temp<-ifelse(X,temp,1-temp) 
likehood1<-apply(log(temp),1,sum)+log(dnorm(cheat1,mu0,sd0))*T1+log(dnorm(true1))*(1-T1) 
 
accept<-likehood1-likehood0 
accept<-ifelse(accept>0,1,exp(accept)) 
accept<-ifelse(accept>1,1,accept) 
accept<-ifelse(runif(N)<accept,1,0) 
tr<-ifelse(accept,true1,true0) 
delta<-ifelse(accept,cheat1-true1,cheat0-true0) 
ch<-ifelse(accept,cheat1,cheat0) 
ten<-ifelse(accept,T1,T0) 
output<-cbind(tr,delta,ten,ch) 
output 
} 
 
# Module for estimating the item difficulty 
draw.item<-function(cheat0,true0,T0,betas0,N,X,expose){ 
betas1<-rnorm(length(betas0),0,1) 
 
temp<-mix(true0,cheat0,betas0,rep(1,length(betas0)),expose,T0) 
temp<-ifelse(X,temp,1-temp) 
likehood0<-apply(log(temp),2,sum) 
 
temp<-mix(true0,cheat0,betas1,rep(1,length(betas0)),expose,T0) 
temp<-ifelse(X,temp,1-temp) 
likehood1<-apply(log(temp),2,sum) 
 
accept<-likehood1-likehood0 
accept<-ifelse(accept>0,1,exp(accept)) 
accept<-ifelse(accept>1,1,accept) 
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accept<-ifelse(runif(length(betas0))<accept,1,0) 
dif<-ifelse(accept,betas1,betas0) 
dif 
} 
 
#Sampling procedures 
MCMC_MIX<-function(iter,N,J,X,expose){ 
betas0<-rep(1,J) 
true0<-rnorm(N) 
cheat0<-true0 
T0<-rep(1,N) 
mu0=0 
sd0=1 
a=0 
delta<-matrix(NA,N,iter,dimnames=list(c(paste("C",c(1:N),sep="")),c(paste("iteration",c(1:iter))))
) 
tre<-matrix(NA,N,iter,dimnames=list(c(paste("C",c(1:N),sep="")),c(paste("iteration",c(1:iter))))) 
be<-matrix(NA,J,iter,dimnames=list(c(paste("Item",c(1:J),sep="")),c(paste("iteration",c(1:iter))))) 
Ten<-matrix(NA,N,iter,dimnames=list(c(paste("T",c(1:N),sep="")),c(paste("iteration",c(1:iter))))) 
mu<-matrix(NA,1,iter) 
sd<-matrix(NA,1,iter) 
while(a<iter){ 
a=a+1 
print(a) 
tem<-draw.person(cheat0,true0,T0,betas0,mu0,sd0,N,X,expose) 
true1<-tem[,1] 
T1<-tem[,3] 
cheat1<-tem[,4] 
ipar<-draw.mu(cheat1,T1,mu0,sd0) 
betas1<-draw.item(cheat1,true1,T1,betas0,N,X,expose) 
be[,a]<-betas1 
Ten[,a]<-T1 
delta[,a]<-tem[,2] 
tre[,a]<-true1 
mu[,a]<-ipar[1] 
sd[,a]<-ipar[2] 
betas0<-betas1 
cheat0<-cheat1 
T0<-T1  
true0<-true1 
mu0<-ipar[1] 
sd0<-ipar[2]} 
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output<-list(Delta=delta,true=tre,T=Ten,betas=be,mu=mu,sd=sd)  
output 
} 
 
In this set of code, N is the number of examinees, J is the number of items. X is the response 
pattern, Expose is the model input to label the item exposure status. Iter is the number of iterations 
for MCMC. 
 


