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Achieving security in wireless sensor network is a challenging problem 

due to the inherent resource and computing constraints. Several key distribution 

techniques have been proposed in the technical literature for efficient distribution 

of keys to the nodes prior deployment. These techniques establish secure links 

for some pairs of physically connected nodes but leave other pairs alone. 

Remaining nodes use multi-hop scheme to form a secured path connecting these 

links. Using this technique, the  secret is disclosed to all the nodes on the path.  

Therefore, if any of the nodes are compromised by an adversary, secret is 

disclosed to the adversary. To solve this problem, a scheme called Babel was 

proposed recently that finds common bridge node to deliver secret link keys to 

their neighbors. In this scheme regular paths are used to deliver multiple keys 

with the common bridge node, hence key compromise probability is lowered 

compared to previous techniques. Our work is based on the Babel scheme and 

has several advantages. In our work we propose a new scheme that finds 

multiple bridge nodes to deliver secret link keys to all its physical neighbors. Keys 

are distributed to multiple bridge nodes instead of one common bridge node to 

establish secure connections to the disconnected nodes. Hence even if a few of 

the bridge nodes are compromised, secret will not be disclosed to the adversary. 
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We present the details of our scheme’s design and investigate the connectivity 

and security performance of our scheme in this thesis. 
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CHAPTER I 

INTRODUCTION 

I.1 Wireless Networks 

 Wireless network is associated with telecommunications network where 

terminals, nodes and links are connected together to enable communications 

among the users of the terminals without the use of wires. Driven by pressure to 

ease mobile computing, everyone is plunging into wireless networking [1]. 

Wireless networking makes the data portable, mobile and accessible. Moving 

data over wireless networks involve radio signals, data format and network 

structure. In a wireless network, the network interface adapters in each computer 

and base station convert digital data to radio signals, which they transmit to other 

devices on the same network, and they receive and convert incoming radio 

signals from other network elements back to digital data [2].  

Wireless networking proves to be very useful in public places where one 

might find wireless access to the Internet. Quality of Service (QoS) is not 

guaranteed in wireless network because if there is any interference with the link 

the connection may be dropped. Different types of wireless networks available 

are Wide area networks (WAN), Local area networks (LAN), Personal area 

networks (PAN), Metropolitan area networks (MAN) and Mobile device networks.  
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I.1.1 Mobile ad-hoc Networks 

 Ad-hoc networks are a key in the evolution of wireless networks [3]. 

Wireless networks are adopted to enable mobility [4]. They are a collection of two 

or more devices equipped with wireless communications and network capability. 

Such devices can communicate with another node that is immediately within their 

radio range or one that is outside their radio range [5]. They eliminate the final 

limitation of the traditional cellular and mobile networks in sense of infrastructure. 

These kinds of networks are self organizing and adaptive. They are comprised of 

equal nodes that communicate over the wireless links without any central control. 

They inherit traditional problems of both mobile and wireless communications. 

The highly dynamic nature of a mobile ad-hoc network (MANET) results in rapid 

and unpredictable change of the topology over time. The routes among the 

nodes in an ad-hoc network may include multiple hops and hence it is 

appropriate to call such networks “multi-hop wireless ad-hoc networks” [4]. 

Transmitting data in MANET is based on the RTS/CTS control sequence used by 

the popular IEEE 802.11. Short control frame named RTS, is sent from source 

station to the receiving station to announce the upcoming frame transmission. On 

receiving the RTS frame the destination station replies by a CTS frame to show 

that it is ready to receive the data frame. Both the RTS and CTS frames contain 

the total duration of the transmission that is the overall time needed to transmit 

the data frame and the related ACK. This information can be read by any station 

within the transmission range of either the source or the destination station. 
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Hence a station becomes aware of a transmission from a hidden station and the 

length of time the channel will be used for transmission [4]. As mobile ad-hoc 

networks rely on battery power or other exhaustible devices power consumption 

becomes a critical issue. 

I.1.2 Wireless Sensor Networks 

 Wireless sensor networks (WSNs) are an increasingly attractive means to bridge 

the gap between the physical and virtual world [6]. They are one form of an ad hoc 

wireless network. Recently these networks are drawing considerable attention because 

they are crucial for the digital battlefield. These networks will consist of hundreds or 

thousands of self-organizing, low-power, low cost wireless nodes deployed to monitor 

and affect the environment [7].  These sensor nodes are very minute in size which makes 

them hard to detect and destroy by the enemies. 

 Sensor nodes are densely deployed in multiple locations and helps in gathering 

the sensory information required by the smart environments. They use their processing 

and computational abilities to transmit only the required and processed data instead of 

sending the raw data to the nodes. They can be easily installed and maintained.  

 WSNs generally consist of data acquisition network and data distribution network 

monitored and controlled by a management center [8]. These messages will be 

received and transmitted over the wireless links. These links can be formed by radio, 

infrared or optical medium [9].  

 Quality of service (QoS) which can be specified in terms of message delay, bit 

error rates, packet loss, economic cost of transmission, transmission power, etc is the 
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basic issue while designing the network topology for transmission of the messages. One 

unique feature of sensor nodes are its cooperative effort. Due to its features WSNs are 

used in wide range of applications such as military applications, habitat monitoring, 

environmental observations, health care and other commercial applications where 

nodes can be captured by an adversary. 

 

 

 
 
                        Figure. I.1 Typical wireless sensor network [8] 
 
 
 
 
 

I.2 Security in Wireless Sensor Networks 

 Sensor networks are typically characterized by limited power supplies, low 

bandwidth, small memory size and limited energy which leads to a very demanding 
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environment to provide security [7]. Also due to its broadcast nature WSNs are vulnerable 

to security attacks. Immediate concerns for wireless communications are device 

theft, denial of service, malicious hackers, malicious code, theft of service, 

industrial and foreign espionage [10]. As they increased popularity demand for 

effective security mechanisms also increased. Physical attacks by the adversaries are the 

most prominent security issues in WSNs. There is no fixed infrastructure for the 

management of the sensor networks hence security became more difficult.  

 Security requirements of a wireless sensor networks are data confidentiality, 

data integrity, data freshness, availability, self organization, time synchronization, secure 

localization and authentication [11]. To protect the sensitive data during the 

communication between the nodes security keys are distributed to each node. Lack of 

trusted servers nearby (for public/private key schemes), secret key schemes 

may be more viable to protect such communications [12].  

 Several mechanisms were proposed for security in wireless sensor 

networks. However there is no technique everyone accepts with regardless of 

the network. Few of them were applied in some environments and research is 

still going on actively for future solutions. 

I.3 Related Work 

 As physical topology of WSNs is unknown before deployment the only 

option for distribution of keys to sensor nodes are key pre-distribution. Keys 

must be installed in sensor nodes before deployment for secure connectivity 

among nodes.  
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 Traditional key pre-distribution offers two solutions 1) single mission key 

2) set of separate n-1 keys. Both solutions are inadequate because in single 

mission key same key is installed in all the nodes and hence if one of the 

sensor node is compromised the entire network will be compromised and in set 

of separate n-1 keys each sensor node must be installed with n-1 keys each 

being pair-wise privately shared with another node. This solution is impractical 

in large networks because memory dedicated for storing n-1 keys for each 

sensor network may not be sufficient and addition or deletion of the sensor 

nodes would become more expensive and complex. 

 In 2002, Eschenauer and Gligor proposed a simple key pre-distribution 

scheme that requires memory storage for only few tens to a couple of hundred 

keys, and yet has similar security and superior operational properties when 

compared to those of the pair-wise private key-sharing scheme [13]. In this 

scheme ring of keys are distributed to each sensor node. As the key ring is 

chosen randomly from large pool of keys some pair of nodes may not have a 

shared key. Such nodes deliver secrets using multi-hop path scheme where the 

secret is disclosed to all the nodes on the path. Hence if one of node on the 

path is compromised, the secret is disclosed to the adversary.   

 In 2007, Jing Deng and Yunghsiang S.Han proposed Babel Scheme that 

finds a common bridge node to deliver secret link keys to establish secure 

communication with the nodes which are not connected. The common bridge 

node will be the only node other than the source and the receiving nodes 
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knowing the secrets [12]. Hence the chance of secret disclosure is small 

compared to previous techniques but if the common bridge node is 

compromised the secrets of all the nodes which do not share keys with the 

source node will be disclosed to the adversary. 

I.4 Our Approach 

 Our scheme is to deliver multiple keys with the use of multiple common 

bridge nodes. In the Babel scheme [12] there is only one common bridge node 

which shares keys with all the disconnected nodes but in this scheme there are 

multiple bridge nodes to share keys with nodes those are not connected. This 

scheme lowers the compromise probability compared to other techniques as 

this does not disclose secrets of all the nodes on its path to the adversary. Thus 

this technique can be used in the networks where the communication with all 

the physical neighbors need to be done securely. 

I.5 Problem Formulation 

 The objective of the proposed work is to improve security aspect in 

wireless sensor networks using the technique of multiple bridge nodes. The 

chapters in this paper is organized in the following manner.   

§ Chapter I introduces the background of wireless networks and 

importance for its security.  

§ Chapter II explains various techniques proposed for the security in 

WSNs. 
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§ Chapter III describes the multiple bridge nodes secret delivery technique 

in detail.  

§ Chapter IV shows the performance evaluation of our scheme with the 

simulation results. 

§ Chapter V ends with the conclusion and future work. 

§ Appendix A provides the code of our simulations. 
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CHAPTER II 

VARIOUS SECURITY MECHANISMS 

II.1 Key Pre-distribution in Wireless Sensor Networks 

 Key management is one of the fundamental building blocks of security 

services and is also a challenging problem in sensor networks. To solve this 

problem several key pre-distribution schemes have been proposed [14]. 

 Eschenauer and Gligor first proposed a random key pre-distribution 

scheme in wireless sensor networks [13] which is known as the basic scheme. 

Let P be the large pool of keys generated and k be the number of keys 

randomly chosen from P keys forming a key ring. This scheme has the three 

different phases. In the first phase knew as key pre-distribution, before sensor 

nodes are deployed k keys are stored into the sensor memory for each node. 

Each pair of nodes establishes a secure connection if they share at least one 

common key with a chosen probability.  

After the sensor nodes are deployed shared-key discovery phase is 

performed. In this phase nodes find out which of its neighbors share a key. 

When the nodes discover that they share a key with its neighbor then that key 

establishes a direct link between two nodes. After shared-key discovery phase 

is complete, a connected graph with secured links is formed in path-key 

establishment phase. Some pair of nodes may not share a key then these 
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nodes set up path keys by it’s securely connected neighbors. In this way key 

can be sent through the path from the source node to the targeted node 

securely. 

 Chan, Perrig and Song reviewed the approach in basic scheme and 

proposed three new mechanisms [15]. First in q-composite random key pre-

distribution scheme q common keys are needed from their key rings instead of 

single common key as in [13] to establish a secure link. As the amount of 

required keys increases it becomes harder for an attacker to break the link. 

Next in multi-path key reinforcement scheme security of an established link is 

strengthened through multiple paths. The basic idea of this scheme was 

explored by Anderson and Perrig [16]. For suppose we have a secure link from 

A to B after key-setup, their approach is to find out multiple paths from A to B 

where each path may have h hops or less. Suppose j be the number of disjoint 

paths from A to B. A then generates j random values which have same length 

as the encryption/decryption key. A then routes each random value along a 

different path to B. When B received all j keys then new link key can be 

computed by both A and B. In this way much more security is provided for the 

links.  

Finally in the last scheme random pairwise keys, a modification to basic 

pairwise keys scheme is done where not all n-1 keys need to be stored in the 

node’s key ring to have a connected graph with high probability. To achieve 

high probability p in a network with n nodes each node need to store a 
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random set of np pairwise keys instead of n-1 keys. This scheme is beneficial 

over purely random keys chosen from a given pool because this gives node-

node authentication properties where each nodes hold some key k, also stores 

the identity (ID) of other node which also holds k. Hence both nodes will be 

certain of the identity of one another when k is used to create a secure link with 

another node since no other nodes can hold k. This provides improved security, 

since any captured node reveals no information about links in which it is not 

directly involved [14]. 

Du, Deng, Han and Varshney proposed a new key pre-distribution 

scheme [17] which substantially improves the resilience of the network 

compared to the existing schemes [13, 15]. This scheme is built on Bloom’s key 

pre-distribution scheme [18] and combines with the random key pre-distribution 

method. In [18], Bloom proposed a key pre-distribution scheme which uses only 

λ+1 memory spaces to find a secret pairwise key between any pair of nodes. 

Compared to N in (N-1) pairwise key pre-distribution scheme λ is much smaller. 

While an adversary compromises less than or equal to λ nodes, 

uncompromised nodes are secure and when adversary compromises more 

than λ nodes then all pairwise keys of the entire network is compromised. 

Blom’s scheme uses one key space for all the nodes in which any pair 

can compute its pairwise key in this key space whereas the new scheme uses 

multiple key spaces. Du et. al. construct ω spaces using Blom’s scheme and 

each sensor node carries key information from Γ (2 ≤ Γ ≤ ω) randomly selected 
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key spaces. Pairwise key can be computed if two nodes carry key information 

from a common space and when two nodes do not carry key information from a 

common space they can compute their pairwise key via other nodes which 

share keys with them. This scheme is more resilient than Blom’s scheme and 

other key pre-distribution schemes because it uses same amount of memory. 

Liu and Ning [19] also developed similar method based on polynomial-based 

key pre-distribution [20].  

II.2 Key Distribution Using Deployment Knowledge  

 In all the previous key pre-distribution schemes no deployment 

knowledge is available. Although they proposed viable solutions they have not 

exploited information that significantly improves their performance. This new 

scheme proposed by Du, Deng, Han, Chen, Varshney [21] shows that the 

knowledge regarding the actual non-uniform sensor deployment can help us 

improve the performance of a key pre-distribution scheme. In wireless sensor 

networks secure communications are done only between the neighboring nodes 

hence the knowledge about the nodes that are likely to be the neighbors of 

each node benefits the key pre-distribution scheme. Due to the randomness of 

the deployment knowing the exact set of neighbors of each node becomes 

unrealistic but we can know the set of possible or likely neighbors for each 

node. This scheme uses random key pre-distribution in [13] and exploits the 

deployment knowledge. Deployment knowledge can be modeled using 

probability density functions (pdfs). Due to the deployment knowledge the first 
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phase in basic key pre-distribution differs and the last two phases remain the 

same.  

 We presume that the sensor nodes are evenly divided into t * n 

groups Gi,j, for i=1,…,t, and j=1,…,n. Presume that the global key pool is S with 

size |S| and also presume that the deployment points are arranged in a grid. 

Each node carries m keys. In first phase called key pre-distribution, before 

deploying the sensor nodes the key pool S is divided into t*n key pools Si,j (for 

i=1,…,t and j=1,…,n), with Si,j corresponding with the deployment group Gi,j. 

Setting up key pool Si,j will allow the nearby key pools to share more keys and 

far away from one another share less keys. After key pool set up each sensor 

node in deployment group Gi,j, randomly selects m keys from its corresponding 

key pool Si,j, and load those keys into the memory of the node [21]. The secure 

links between nodes i and j can be found using flooding [22]. Key- sharing 

graph G may have isolated components which do not have secure links. Hence 

global connectivity of the graph G is measured. Global connectivity can be 

estimated using Erdos random graph theorem [23] when node distribution and 

key sharing are uniform. Since node distribution and key sharing is not uniform 

this theorem will not be a good estimation. Recently, Shakkottai and et. al. have 

determined the connectivity of a wireless sensor grid network with unreliable 

nodes [24]. Hence using deployment knowledge each node needs to carry only 

a fraction of keys compared to other key pre-distribution schemes but achieves 

same level of connectivity. This scheme reduces the memory requirement and 
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substantially improves network resilience against node capture.  

II.3 Key Distribution for Mobile Computing  

 Several other key distribution schemes have been introduced for mobile 

computing. Tatebayashi, Matsuzaki, and New-man proposed a key distribution 

protocol suitable for digital mobile communications [25]. In this scheme a public 

key cryptosystem is employed for uplink channels (from an user terminal to a 

network center) making the mobile communication free from key management 

problems. High speed performance is enabled at hardware-limited terminals by 

employing secret key cryptosystem for downlink channels (from a network 

center to the user terminal). This scheme introduces a structure in the 

transmitted data and a mechanism checking the replay attack to avoid a 

protocol failure based on multiplicative property of the RSA cryptography [26].  

 This work is further improved by Park et al. in [27] and proposed an 

encryption algorithm of an attack based on the algebraic properties. Although it 

suggests an improved protocol S has a shared secret with all parties in repaired 

protocols hence public key cryptography is not justified here. Various other key 

agreement and authentication protocols specifically designed for the use in 

mobile applications have been proposed in [28, 29, 30, 31]. A survey was made 

on most prominent security protocols proposed for mobile applications in [32] 

based on security, suitability and optimization. Zhou and Hass [33] proposed a 

secure key management service in an ad hoc networking environment. This 

scheme proposed threshold cryptography to distribute trust between a set of 
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servers. Kong et al. proposed a certificate based authentication approach 

based on asymmetric cryptographic defacto standard RSA [34]. They proposed 

localized public-key infrastructure mechanisms, based on secret sharing 

schemes. 

II.4 Path Key Establishment  

 Path key establishment has been introduced in [35]. In the key pre-

distribution schemes communications among end nodes are exposed to 

intermediate nodes along the path. In [35] multiple node-disjoint secure paths are 

used to establish the path key which decreases the risk of path key being 

revealed. Further Li et al. [36] proposed multiple one-hop paths instead of node 

disjoint paths to enhance the security of path key establishment. Traynor et al. 

proposed to use a few more powerful sensors to achieve key establishment [37]. 

Deng and Han proposed a scheme [38] to address the problem of compromised 

sensors modifying and eavesdropping the information passing through such 

multi-hop paths. They use MDS codes to develop the IRT scheme to provide 

protection for information delivery. Another multi-path pairwise key establishment 

scheme was proposed to counter Byzantine [39] attacks due to packet dropping 

and cheating [40]. This scheme can tolerates upto t faulty paths among the 

communication pairs. 

In all the previous techniques there are still some local links which are not 

connected securely. This is because an extremely high local connectivity (on the 

security plane) would mean higher vulnerability and lower network resilience. 
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Hence Deng and Han [12] proposed a new scheme called Babel which focuses 

on delivering secret link keys from a source to multiple neighbors. This new 

technique called Babel is used to find a common bridge node to deliver secret 

link keys to these nodes which are disconnected. This scheme uses regular 

paths and delivers multiple keys using the common bridge nodes. As the 

delivered keys are disclosed only to one node the common bridge node unlike 

key pre-distribution scheme which discloses keys to all the nodes on the path, 

key compromise capability is lower compared to other delivery techniques. 
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CHAPTER III 

MULTIPLE-BRIDGE SECRET DELIVERY TECHNIQUE 

III.1 Design of the Proposed Scheme 

 

 

Figure III.1 Illustration of secure connectivity around node S. 

 

 

 The problem of delivering multiple secret link keys to the neighbor nodes 

are illustrated in the Fig. III.1. Here node S is the source node having several 

physical neighbors A, B, C, D, E, F and G clockwise. The solid lines in Fig. III.1 
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represents secure connectivity between the nodes as they share common keys. 

Hence links S-A, S-D and S-F are connected on security plane. Dotted lines 

represent physical connectivity as they do not share any common keys. Hence 

links S-B, S-C,S-E and S-G are disconnected on security plane. These nodes B, 

C,E and G are termed “to-be-connected neighbors”, Ntbc. Nodes Z1, Z2 and Z3 

are bridge nodes relatively far from the neighborhood but share keys with the 

source node S and some of the to-be-connected neighbors. 

We use the following notations and variables in our scheme. 

TTL: Predefined number of hops for the request message to travel; 

P: Large pool of Keys; 

m: Number of keys carried by each node; 

N: Total number of nodes in the network; 

S: Source node; 

BN: Bridge Nodes; 

Zi: Multiple bridge nodes where 1≤i<N;  

Ntbc: Set of to-be-connected neighbors of S; 

Ki,t: Keys on node i, i∈{S} â  Ntbc, 1≤ t ≤ m; 

Xc: Compromise Capability of the nodes; 

Xp: Probability of to-be-connected neighbors being compromised. 
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III.2 Operational Details of the Proposed Scheme 

 Main idea of our scheme is to find multiple bridge nodes that share keys 

with the source node and some of the to-be-connected neighbors. Its purpose is 

to deliver multiple secret link keys to the to-be-connected neighbors with lower 

compromise probability. Fig. III.1 is an example of Multiple Bridge secret delivery 

technique. Suppose S needs to send secret to one of the to-be-connected 

neighbors (B, C, E or G) it will collect Message Authentication Codes (MACs) of 

a challenge message based on each of the keys in KS, KB, KC, KE and KG. This 

information is broadcasted over the network which is control-flooded. Each node 

compares the MACs of the message based on the carried keys and responds if it 

shares a key with the source node and some of the to-be-connected neighbors. 

The reply will be the response to all the challenges with the shared key. For 

suppose, node Z1, Z2 and Z3 satisfies the above condition then they will respond 

and serve as bridge nodes. In our example we a have three bridge nodes which 

share keys with the source node S and atleast one of the to-be-connected 

neighbors. The shared keys with Ntbc could be same or different. Each to-be- 

connected neighbor may have more than one bridge node. So it may have 

different paths to share the secret link keys. Hence if one path is compromised 

the secret will not be disclosed to the adversary. For example node S wants to 

share secret with G, it has the two bridge nodes Z1 and Z3. If Z1 gets 

compromised still the secret link key can be sent through Z3. Also as Z2 does not 
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carry keys of all the to-be-connected neighbors the entire network will not be 

compromised if one of the bridge node is hacked. This way the message 

transmission can be done more securely. 

 Nodes which do not share keys forward the message with their ID 

attached at the end of the message. The message may travel only upto certain 

number of hops (TTL) and will be discarded when it has been forwarded TTL 

times. When node S receives response from Zi it sends the message to the to-

be-connected neighbors. Each to-be-connected neighbor validates the keys sent 

by S and ensures if Zi share key with itself. After that, node S sends secret link 

keys for the nodes B, C, E and G to their corresponding Zi. In our example we 

can see that Z1 shares keys with node B and G. Later the bridge node says Z1 

encrypts the secret link key of nodes B and G and sends it back to node S. Then 

S sends the encrypted key to their corresponding to-be-connected neighbors 

which decrypt the secret link keys. As the messages are sent using shared keys 

the chances for the secret to be disclosed is very low. We will investigate the 

effect of this scheme in Chapter IV. 
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CHAPTER IV 

PERFORMANCE EVALUATION 

 We performed simulations in Matlab to investigate our scheme. Our 

simulations mainly focused on finding the multiple bridge nodes and probability of 

secrets being disclosed. We used simplified circular connectivity model and 

focused on key sharing among the nodes hence other simulators such as ns2 or 

OPNET are unnecessary at this stage. N number of nodes are randomly 

deployed in a network size 1000 meters by 1000 meters. Radio transmission 

range is assumed to be 200 meters. Different m (from 2 to 40)number of keys are 

randomly chosen from a pool of P=2000 keys and distributed to each sensor 

node. A source node will look for bridge nodes within a time-to-live (TTL) hop and 

TTL=2. These system parameters remain the same throughout this work unless 

mentioned otherwise. 

 In our evaluation, we first study  the availability of multiple bridge nodes in 

different network set ups. We also look for the neighbors and to-be-connected 

neighbors for the source node S. Then we investigate the probability of to-be-

connected neighbors compromised for security analysis. Here we define BN as 

the total number of bridge nodes. 
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IV.1 Availability of Bridge Nodes 

 We investigate the availability of Multiple Bridge nodes in this section. First 

we run simulation for different N values. We assumed source node to be the N-th 

node (note that all nodes are randomly placed in the network). 

 

 

 

Figure IV.1: Number of bridge nodes as a function of memory size comparing 
different node densities. 

 

 

From the figure IV.1 we can see that, as the number of nodes (N) increases, the 

total number of common bridge nodes (BN) also increases. This is because the 
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number of to-be-connected neighbors increases with N so probability of finding 

the bridge nodes also increases. We can see that number of bridge nodes 

remained constant at nearly m=40. This is because number of bridge nodes 

reached the maximum value. From figure IV.2 we can observe that at m=2-14 we 

can find only less bridge nodes and from figure IV.1 we can see that at m>30  

bridge nodes reached maximum value. From both these figures we can conclude 

that m=15-20 is enough to find the bridge nodes 

 

 

 

Figure IV.2: Number of bridge nodes as a function of memory size comparing 
different node densities for lower m. 
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Figure IV.3: Number of bridge nodes for TTL=3 as a function of memory size 
comparing different node densities. 

 

 

 

 

Figure IV.3 shows the simulation results for TTL=3. From the figure we 

can see that as m value increased BN value also increased because keys carried 

by each node increases. Thus it increases the probability of finding the bridge 

node which share keys with the source node and some of the to-be-connected 

neighbors. We observed at nearly m=40 BN reached maximum value for TTL=3. 

But we do not need so many bridge nodes hence when m is close to 40 we only 
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need to look for TTL=1 or 2.  

 

 

Figure IV.4: Number of Bridge nodes for N=100 as a function of memory size 
comparing different pool of keys. 

 

 

From the figure IV.4 we can see that as P value increased the number of bridge 

nodes also increased. We can observe that when P=2000 number of bridge 

nodes raised slowly from zero but when P=4000 rise of BN is very small and is 

almost constant with increase of m value. Hence we can take large P and small 

m value for better performance but large P value decreases the physical 
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connectivity of the network. Therefore optimum P value should be small.  

 

 

 

Figure IV.5: Number of nodes for P=2000 as a function of memory size 
comparing different node densities. 

 

 

 

To find the availability of bridge nodes it’s also important to know how 

many neighbors and to-be-connected neighbors a source node has. This can be 

shown in the figure IV.5. Here we can see that as number of nodes N doubled 

total number of neighbors and to-be-connected neighbors also doubled. We can 
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also see the decrease in the to-be-connected neighbors with the increase in the 

m value. It becomes zero for large m. This is because if a node carries more 

keys then probability of finding the shared keys increases. This increases the  

physical connectivity between the nodes. Hence there will be none to-be-

connected neighbors and finding bridge nodes will be unnecessary at this point.. 

Number of neighbors remained almost constant with increase in m value even 

when the network topology is changed for each simulation run. From this we can 

understand that for any kind of network finding the neighbors remain same for 

same N and S. 

It’s also interesting to know the number of to-be-connected neighbors of a 

source. Here M=i shows that the bridge nodes share keys with source node S 

and i number of the to-be-connected neighbors. From the figure IV.6 we can see 

that when M=1 and M=2 number of bridge nodes increased after certain m value 

but when M=3 and M=4 they are almost zero for lower m. This is because when 

memory size is small number of shared keys among the nodes are low. Thus it 

decreases the probability of finding bridge nodes sharing keys with more number 

of to-be-connected neighbors.  
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Figure IV.6: Number of bridge nodes for N=50 as a function of memory size 
comparing different M values. 

 

 

 

Comparing figure IV.7 with figure IV.6 we can see that number of to-be-

connected neighbors sharing keys with the bridge nodes increased when N=100. 

We are not interested at m>40 so if we observe both the figures for  m=20, we 

can see the BN value is almost same for M=3 and M=4 in both the figures but it 

increased for M=1 and M=2 in figure IV.7. From these figures we can say that at 

optimum m value BN has less number of to-be-connected neighbors.    
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Figure IV.7: Number of bridge nodes for N=100 as a function of memory size 
comparing different M values. 

 

 

 

Figure IV.8 compares number of bridge nodes for different hop count. When 

TTL=2,3,4 and 5 rise in m value increases the number of bridge nodes. When 

m=20 we can observe that BN value differs only a little for TTL=2,3,4 and 5. 

From this we can understand that for lower m value hop count does not matter 

for finding the bridge nodes. But if we increase the m value then we need to 

reduce the hop count to find the bridge nodes.  
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Figure IV.8: Number of bridge nodes for N=100 as a function of memory size 
comparing different hops. 

 

 

 

IV.2 Security Analysis 

 In the previous section we found the availability of bridge nodes for 

sharing secret link keys in different network topologies. In this section we 

investigate the number of to-be-connected nodes compromised in the entire 

network as some of the  nodes are randomly chosen as compromise. We also 

analyze percentage of the to-be-connected nodes compromised for different 

compromise capability. From this analysis we can find out the secure level of our 
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scheme. Here we define xp as the ratio of number of the bridge nodes 

compromised to the total number of bridge nodes for each to-be-connected 

neighbors. xc is assumed to be the compromise capability of the node. m=20, 

P=2000 and TTL=2 in this section. 

Figure IV.9 compares the number of to-be-connected neighbors 

compromised for different N and xc values. From the figure we can see that 

number of to-be-connected neighbors compromised increases for N=200 than in 

N=100. Here xp>0.3 indicates that if more than 30% of the bridge nodes sharing 

keys with particular to-be-connected neighbor are compromised then that  to-be-

connected neighbor is said to be compromised. We can see that at N=100 for 

different xp values the to-be-connected neighbors compromised varied slightly 

but at N=200 it shows much difference. From these two observations we can say 

that the network is more secure at lower N value when the absolute numbers of 

compromised bridge nodes are concerned. 
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Figure IV.9: Number of to-be-connected neighbors compromised as a function of 
xc. 

 

 

 

Figure IV.10 shows the percentage of to-be-connected neighbors compromised 

for different node compromise capability. This figure shows that at xp > 0.3, 

percentage of to-be-connected neighbors compromised is more than xp > 0.5. 

This is because finding compromised to-be-connected neighbors is less when we 

say a node is compromised only when the percentage of bridge nodes 

compromised is more. Hence for the network to be more secure  xp should be  

high but it cannot have very large value. Note that xp value is a system parameter 
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to be determined by how the key is encoded.  

 

 

 

Figure IV.10: Percentage of to-be-connected neighbors compromised as a 
function of xc. 
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CHAPTER V 

CONCLUSION 

Security is an important aspect in wireless sensor networks as they are 

crucial for the digital battlefield. Hence keys are used for encryption and 

authentication purposes between the communicating nodes. Many key 

agreement schemes have been investigated but unsuitable for wireless sensor 

networks. Lately several key pre-distribution schemes were proposed but they 

focused only on the connectivity of physical neighbors. 

To overcome this problem we proposed “Multiple Bridge secret delivery 

scheme” to deliver secret link keys to the to-be-connected neighbors in wireless 

sensor networks. As the source node does not share keys with all its neighbors 

this scheme uses multiple bridge nodes to share keys with the source node and 

some of the to-be-connected neighbors. We designed this scheme for secure 

communication between the nodes. 

 In our performance evaluation we have observed that probability of finding 

bridge nodes increased with increased number of nodes. On the other hand it 

decreases the percentage of to-be-connected neighbors being compromised. 

Hence for a secure network, number of nodes compromised must be low and the 

capacity of the to-be-connected neighbor being compromised must be high when 
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number of bridge nodes compromised for each to-be-connected neighbor 

increased. We also observed that, distributing large number of keys to each node 

is unnecessary because the number of bridge nodes remained the same but this 

requires larger memory space, a precious resource. We also observed that 

number of to-be-connected neighbors sharing keys with the bridge nodes 

increased with increased N and m value. Network can be more secure when Ntbc 

is high for the bridge nodes because it increases the paths to deliver secret link 

keys. So if one of the paths is compromised we will still have other paths to send 

secrets.  

 In our future work, we will investigate the proposed scheme under more 

realistic network environments. For example, nodes might be compromised in a 

region instead of randomly throughout the network. The performance of our 

scheme may be affected by such a compromise model. Furthermore, we have 

not studied the effect of node mobility. Moving nodes may change the 

connectivity and security connection as well. 
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APPENDIX A 

SIMULATION CODE 

 
A.1 Network Setup 

N=100; % Number of nodes 

R=200; % Transmission range 

P=2000; % Pool of keys 

M=50 % Number of keys 

% -----------Randomly distribute the nodes-------------% 

X=1000*rand ( 1, N );  

Y=1000*rand ( 1, N ); 

% --------------------Neighbor matrix-----------------------% 

for i=1:N 

for j=1:N 

D ( i, j )=sqrt ( ( x(j) - x(i) )^2+( y (j)- y(i) ) ^2 ); % Distance between the nodes 

If ( D ( i, j ) > 0 && D ( i ,j ) < R) 

NB ( i, j )=1; 

else 

NB ( i, j )=0; 

end  
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end  

end  

% --------------------Neighbors of Source Node-----------------------% 

NB_S=zeros (1, N ); 

for i=N % Source Node 

for j=1:N-1 

if (NB ( i ,j ) == 1 ) 

NB_S ( j )=1; 

end 

end 

end 

% --------------------TTL-----------------------% 

for TTL=1:3 

for i=1:N-1 

if(NB_S ( i )==TTL) 

for j=1:N-1 

if(NB ( i ,j )==1 && NB_S ( j )==0) 

NB_S ( j )=TTL+1; 

end 

end 

end 

end 
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end 

A.2 Key Distribution 

Keys = zeros ( N, M ); 

for I = 1:N 

temp = randperm(P); % Randomly distribute keys from Pool of keys 

for j=1:M 

Keys ( i, j ) = temp ( j ); 

end 

end 

% -------------------- Shared Neighbors-----------------------% 

k1=1; 

for i=1:N-1 

if (NB_S(i) ==1) 

temp1=intersect ( Keys ( i, : ), Keys ( N, :) );  

t( k1) = numel ( temp1 ); 

if (t ( k1 ) > 0) 

SN ( i ) = 1; 

else 

SN ( i ) = 0; 

end 

k1 = k1+1; 

end 
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end 

% -------------------- To-be-Connected Neighbors-----------------------% 

for i=1:N-1 

if ( NB_S (i) == 1 && SN (i) == 0 ) 

TN ( i ) =1;  

elseif (NB_S (i)==1 && SN (i)==1) 

TN ( i )=0; 

else 

TN ( i )=0; 

end 

end 

 

A.3 Multiple-Bridge Nodes 

k2=1; 

k3=1; 

Index=find ( TN ( 1, : ) );  

N_TN=numel ( Index ); % Number of to-be-connected neighbors 

for i=1:N-1 

for j=1:N_TN 

if ( NB_S ( i )==TTL) 

temp2 = intersect ( Keys ( i, : ), Keys ( N, : ) ); 

s ( k2 ) = numel ( temp2 ); 
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if ( s (k2) > 0 ) 

temp3 = intersect ( keys ( Index (j), : ), Keys (i , :) ); 

g ( k3 ) = numel ( temp3 ); 

if ( g ( k3 ) > 0 ) 

BN ( i , j )=1; % Multiple bridge nodes 

else 

BN ( i , j )=0; 

end 

k3 = k3+1; 

end 

k2 = k2+1; 

end 

end 

end 

 

A.4 Network Security

xc = 0.4   % Compromise capability 

temp4 = rand ( 1, N ); 

compromised = zeros ( 1, N ); 

for i=1:N 

if ( temp4 (i) < xc ) 

compromised ( i ) = 1; % Nodes compromised 
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else 

compromised ( i ) = 0; 

end 

end 

total_BN=zeros ( 1, N_TN ); 

comp_BN=zeros ( 1, N_TN); 

for i=1:N-1 

for j=1:N_TN 

if ( BN ( i , j )==1 && compromised ( i )==1 ) 

comp_BN ( j )=comp_BN ( j )+1; % Compromised BridgeNodes 

end  

end 

end 

for i=1:N-1 

for j=1:N_TN 

if ( BN ( i , j ) ==1 ) 

total_BN ( j )=total_BN ( j )+1; % Total number of BrigeNodes 

end 

end 

end 

xp= 0.5     % Compromise probability 

C_TN=0; 
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for i=1:N_TN 

if (comp_BN ( i ) / total_BN ( i ) > xp ) 

C_TN=C_TN+1;  % Total number of to-be-connected neighbors compromised 

end 

end 

 

 


