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This study analyzes a stochastic lead time inventory model under the assump- 
tions that (a) replenishment orders do not cross in time and (b) the lead time 
distribution for a given order is independent of the number and sizes of 
outstanding orders. The study extends the existing literature on the finite- 
horizon version of the model and yields an intuitively appealing dynamic program 
that is nearly identical to one that would apply in a transformed model with all 
lead times fixed at zero. Hence, many results that have been derived for fixed 
lead time models generalize easily. Conditions for the optimality of myopic base- 
stock policies, and for the optimality of (s, S) policies are established for both 
finite and infinite planning horizons. The infinite-horizon model analysis is ex- 
tended by adapting the fixed lead time results for the efficient computation of 
optimal and approximately optimal (s, S) policies. 

W E CONSIDER a periodic review, single-item inventory system 
where unfilled demand is backlogged, demands during review 

periods are independent, and the lead time between placement and 
delivery of an order may vary randomly. We require the joint distribution 
of lead times to have the properties that (a) replenishment orders do not 
cross in time and (b) the marginal lead time distribution of each order is 
independent of the number and size of outstanding orders. These as- 
sumptions could be appropriate in practice when, for example, only a 
single supplier is used and when the stocking organization places orders 
that are small and infrequent from the supplier's point of view. Replen- 
ishment costs are comprised of a setup cost and a cost that is linear in 
the amount ordered; holding and shortage costs are incurred in each 
period as a function of period-end inventory. Our optimality criterion is 
minimization of the expected discounted cost incurred during a planning 
horizon which may be finite or infinite. Alternatively, when we consider 
an undiscounted, infinite-horizon model, our criterion is minimization of 
the expected cost per period. 

Kaplan [1970] analyzed a finite-horizon model of this system. The 
principal results were (a) that optimal policies can be computed using a 
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dynamic program having only a scalar state variable, representing inven- 
tory on hand plus items on order before ordering and (b) sufficient 
conditions can be found for the optimality of base stock policies and 
(s, S) policies. Although the findings in Kaplan represent a breakthrough 
in the study of stochastic lead time systems, the results had two compli- 
cating features that are not present in fixed lead time models. First, the 
parameters of the dynamic program were not simply related to the 
marginal lead time distribution. Second, his results did not specify 
sufficient conditions for the optimality of myopic ordering policies. 

In this paper we make two small adjustments to the model of Kaplan, 
allowing an intuitively appealing analogy with a zero lead-time model. 
Then we present conditions for the optimality of myopic base stock 
policies and establish conditions for the optimality of (s, S) policies. We 
also extend the model to encompass infinite planning horizons and show 
that optimal (s, S) policies exist under standard conditions on the cost 
functions. Finally, we present efficient algorithms for computing optimal 
and approximately optimal (s, S) policies in the infinite-horizon setting. 

1. MODEL SPECIFICATION 

We initially consider a finite planning horizon of N periods, numbered 
backward from the end of the horizon; that is, the final period is given 
number 1, and the initial period is given number N. Demands in succes- 
sive periods are independent, but not necessarily identically distributed. 
Specifically, let the demand in period n be represented by the random 
variable Dn with mean U and cumulative distribution function (Dn. Also, 
let (i j for j > i be the convolution of (i, . . ., 4Dj. We assume complete 
backlogging of unsatisfied demand, and so permit negative inventory 
levels. Also, there are no losses from the system other than through 
satisfying demand. 

Costs in different periods are related by the single period discount 
factor a. Let cn(z) be the cost of ordering z units in period n, with 

cn(z) = KnH(z) + cnz, 

where 

H(z) = , {? 0 

We assume that both the setup cost Kn and the linear portion of the 
replenishment cost are paid upon delivery of the order. This assumption 
does not entail a loss of generality, since payment of either portion at 
the time of ordering can be described via scaling Kn or cn by the expected 
value of aL, where L is the random lead time. 
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Let Cn(x) represent the holding and shortage costs in period n, where 
x is the ending inventory level in that period. Also, we define the function 

gn(i, y) ECnJ[y - (Dn + * + Dn_i)] 

rX ~~~~~~~~~~~(1) 
= J Cn-i(y -u)d(n,n-i(U) 

Expression 1 can be interpreted from the perspective of a model with a 
fixed lead time of i periods. When viewed in this way, gn(i, y) is the 
expected holding and shortage costs in period n - i when y is the value 
of inventory on hand plus items on order after ordering in period n. 

We specify replenishment lead times as identically distributed random 
variables that can take on values from zero up to a fixed maximum m. 
Let a given lead time be represented by the random variable L having 
the probability distribution 1i = P{L = i}, i = 0, **., m. The joint 
distribution of lead times is characterized by our assumptions (identical 
to those in Kaplan) that (a) replenishment orders do not cross in time 
and (b) the lead time of an order is independent of the number and size 
of outstanding orders. 

In developing the lead-time model, we follow the elegant explanation 
given by Nahmias [1979, pp. 911-913], who used the same lead time 
assumptions in analyzing a lost-sales inventory system. Nahmias ob- 
serves that the replenishment delivery process arises from a sequence of 
independent and identically distributed random variables {A1, A2, *.. 

AN}. Each of the random variables characterizes the delivery of orders in 
a given period. One can interpret An as the age of the youngest order 
arriving in period n. That is, the event {An = k} means that in period n 
all orders that have been outstanding for at least k periods are delivered. 
It is evident that this mechanism for specifying the delivery process 
guarantees that orders do not cross in time. Of course, if in period n 
there are no orders that have been outstanding for k or more periods, 
then the event {An = k} means that no delivery occurs in period n. 

Let the probability distribution of An be specified by the masses 
{Po, Pi, - Pm}, where pj = P{An = j} for j = 0, 1, 2, ... m. This 
distribution can be related to the distribution of an arbitrary lead time 
by focusing on an order placed in period n and its lead time L. The event 
{L = i} is equivalent to the event {An > 0, An+1 > 1, * * An+i-1 > i - 1, 
An+i ' i}. Observing that {A1, A2, ... , AN} are independent and identically 
distributed, we have 

P{L = i} = P{An > O}P{An+1 > 1} ... P{An+i-1 > i - 11}PAn+i < i}. 

Now, since 

P{An > k} = 1 - jLo pi9 
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the value of 1i = P{L = i} is given by 

rpo, i = 

4i = g (1 - Po) - Po - pi) ... (1 - EI'op=) oPj, (2) 

t ~~~~~~~~~i = 1, 2 , *' * *,m. 

Expression 2 is similar to one on p. 495 of Kaplan, which contains a 
minor error. The substantive results of Kaplan are entirely correct, 
though, since they are stated exclusively in terms of the pj's and do not 
depend on the relationship between the li's and Pj'S. We will show, 
however, that (2) simplifies the interpretation of the dynamic program 
in Kaplan. 

The final aspect of model specification concerns the costs which must 
be included in computing optimal policies. We include all costs that are 
incurred during periods N through 1, plus those that occur in the 
following m periods due to orders placed during the planning horizon. A 
terminal reward (or salvage value) is also applied to the inventory level 
at the end of the horizon. This procedure differs from Kaplan, who 
considers costs incurred only in periods N through 1, and sets the 
terminal reward arbitrarily at zero for all terminal states. The change in 
cost accounting allows us to derive conditions for the optimality of myopic 
base stock policies. 

2. FINITE PLANNING HORIZONS 

The central finding in Kaplan is that all policy-dependent costs can 
be included in a dynamic program that has inventory on hand plus items 
on order as its only state variable. Let hn(x) be the minimum expected 
discounted cost when x is the inventory on hand plus items on order 
immediately before ordering in period n. Theorem 4.1 of Kaplan gives a 
recursion for hn(x). The recursion remains valid if the model parameters 
vary from period to period, as Kaplan states on p. 493. It is also true that 
the recursion holds if we relax Kaplan's assumption of continuously 
distributed demand. With these adjustments, we have 

hn(x) = min:xJE{J=o aili[KnH(Y - x) + (y - x)cn + gn(i, y)] 

+ aEhn_l(y-Dn)} } (3) 
ho(x) = -cox Eo adli. J 

Notice in (3) that 1i appears in place of Kaplan's qii, which was specified 
as a function of the pj'S and equal to our Expression 2. Recursion (3) 
differs from Kaplan's also in that our cost accounting includes additional 
terms at the end of the horizon, as described above at the end of Section 
1. The terminal reward function ho(.) is derived in a manner similar to 
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the fixed lead time case of Veinott [1966b]. Cost accounting continues 
for one lead time beyond the last decision period, since these periods are 
influenced by the last decision. At that time we postulate that all the 
remaining inventory (or backlog) is salvaged (or purchased) at unit price 
co. If the last order has lead time i, then the salvage value (in period -i) 
is given by 

[cOX, i= O 

Lco(-X-Jj=-1 Dj), i = 1, ** *, m. 

Hence, the expected discounted cost of the salvage operation is 

-_ liacxvi(x) = -cox EI=o a aili + co ET,l liac? Eljo Dj. 
The terminal reward function ho(.) is taken as the first term on the right 
hand side, since the second term is independent of the replenishment 
decisions and cannot influence the choice of an optimal policy. 

Now let 

Eax" = amo Ol l, 

kn(Y) a X,=o ailign(i, A)/,03 

and Fn(x) hn(x)/13. 

Recursion (3) can be rewritten in terms of this notation as 

Fn(x) = miny2xfKIH(y - x) + (y - X)Cn + kn(Y) 

+ aEFn-l(y - DO) } A (4) 

Fo(x) = -cox. J 
Notice that (4) is of the same form as a recursion for a zero lead-time 
system with kn(.) representing the single-period expected holding and 
shortage costs. 

Following the approach of Veinott [1966b], we establish sufficient 
conditions for the optimality of myopic base stock policies. Consider the 
zero lead-time analogy for recursion (4), and let Fn(xn I Y) be the expected 
discounted cost in periods n through 0 when following a particular 
ordering policy Y and xn is the starting inventory in period j. Also let 
fyi, i = 1, *..., NJ be the sequence of inventory on hand after ordering 
and before demand. Then one can show that 

Fn(xnl Y) = Zn=. -anxiE[KjH(y -xi) + Gi(yi)] 

+ [E.n-a cn -iC, - C X,] 

where Gn(y) = (cn - aCn_i)y + kn(y). The functions Gn(.) are composites 
of expected holding and shortage costs and the linear purchase costs. 
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They can be interpreted (Veinott and Wagner [1965]) as the conditional 
expected holding and shortage cost functions of an equivalent model with 
unit purchase costs c,, set equal to zero. We shall use this interpretation, 
and hereafter refer to G,(.) as a conditional expected holding and 
shortage cost function. 

Consider the case of Kn = 0 for all n. It follows that if -Gn(y) is 
unimodal with a minimum at Yn, and if Yn -Dn < Yn-1 for n = 2, * * *, N 
with probability one, then it is optimal to order max(yn - xn, 0) in period 
n. For alternative conditions that ensure the optimality of myopic base 
stock policies, see Veinott [1966b]. 

An interesting parallel to the fixed lead time problem arises in the 
solution for the base-stock values YI- i = 1, ... , NJ when demand has a 
density and the single-period holding and shortage costs are given by 

Ln(X) = h max(x, 0) + p max(-x, 0), n = -m + 1, ** , N. (5) 

Then one can show that Yn is a solution to 

On(yn) = (P - Cn + acn -1)/(h + p), 

where 

MY(Y) = Zi=o aiiJ?nn-i(Y)/fV 

Notice that the functions in(y) are linear combinations of convoluted 
demand distributions and are legitimate distribution functions in their 
own right. 

When the model does not possess an optimal myopic base-stock policy, 
we consider the function 

fn(xn I Y) = Fn(xn I Y) -[i=-1 a c C1+1-nXn] 

= YaE=l ae'E[KiH(yi - xi) + Gi(yi)]. 

Notice that all policy-dependent costs are included in fn(xn I Y). There- 
fore, an optimal policy can be found by computing 

fn(x) = minyfn(x I Y) 

using the dynamic programming recursion 

fn(x) = miny2:tKnH(y - x) + Gn(Y) + aEftn-,(y-Dn)}4y 

n = N (6) 

fo(x) = 0. 

Expression 6 is easily recognized as a standard form in inventory theory. 
Therefore, conclusions about the structure of optimal policies are im- 
mediate. For example, if Kn = 0 for all n, one can show (Veinott 
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[1966b]) that a base-stock policy is optimal when G,(y) is convex for all 
n. The base stock levels are given by the values lYn* n = 1, * * *, NJ that 
minimize the expression in braces on the right-hand side of (6). 

For models having Kn > 0 for at least one value of n, there are several 
sets of conditions that establish the optimality of (s, S) policies. The 
function Gn(.) is typically required to be convex or unimodular, and 
additional conditions are imposed on the variability of parameters over 
time. See, for example, Denardo [1982], Schal [1976] and Veinott 
[1966a]. 

3. INFINITE PLANNING HORIZONS 

We consider an infinite horizon version of our model in which all data 
are stationary. Our notation is simplified in this setting by suppressing 
subscripts that denote period numbers whenever the quantity of interest 
does not vary with time. Hence, recursion (6) becomes 

fn(x) = miny,x{KH(y - x) + G(y) + aEfn(y - D)), n > 11 7 

fo(x) = 0, 

where 

G(y) = (1 - a)cy + k(y), 

and k(y) = EXto atilg(i, y)/f. 

Recursion (7) is just like one for a fixed lead-time model, with G(y) 
representing the conditional expected holding and shortage costs. Hence, 
we know that if G(y) is convex, a stationary (s, S) policy is optimal in 
(7), as n approaches infinity. The conclusion is supported by the argu- 
ment in Iglehart [1963], which also establishes the existence of f(x) = 
lim,xfn(x). Also from Iglehart, we know that f(x) satisfies the functional 
equation 

f(x) = miny..tKH(y - x) + G(y) + aEf(y - D)}. (8) 

The only difference between (8) and a fixed lead-time model is in the 
function G(.). In fact, G(.) can be expressed in the same form as the 
conditional expected holding and shortage cost function of a fixed lead- 
time model with a transformed demand distribution. We have 

G(y) = (1 - a)cy + k(y) 

= (1 - a)cy + ZJ=o aig(i, y)/f 

= (1 - ta)cy + YZ=o a f L(y - u)db*( )(u)1#, 
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where Vi is the j-fold convolution of the demand distribution 4. Hence, 
G(.) can be expressed in the form 

00 

G(y) = (1 - a)cy + f L(y - u)dTa(u), (9) 

where 

T'I'(x) = Dtlo ailib*(i+) (x)/3. (10) 

Notice that the function Tja() has all the properties of a distribution 
function. Therefore, we call TI'() the discounted lead time demand 
distribution. 

When demand is discrete and G(.) is convex, expressions (9) and (10) 
allow a simple adaptation of the efficient Veinott-Wagner procedure for 
computing optimal (s, S) policies. Veinott and Wagner assume a fixed 
lead time X, and compute the conditional holding and shortage cost 
function using the convoluted lead time demand distribution 4*(X+1). To 
adapt Veinott and Wagner for our stochastic lead-time model, we merely 
substitute T,' in place of V*(X+1) in any computation related to G(.). 
Specifically, the important expressions in Veinott and Wagner that 
require modification are (20), (21), (22), (23), (26), (27), and the two 
unnumbered expressions immediately preceding (21). 

We have performed computations using the procedure described above. 
We summarize the results below, in Section 4. 

We conclude this section with a discussion of approximately optimal 
(s, S) policies for the infinite horizon model. We have just shown how to 
compute optimal (s, S) policies by modifying a fixed lead-time procedure. 
Basically, the same kind of modification can be used to compute approx- 
imately optimal (s, S) policies as well. 

For example, consider the common assumptions of a = 1 and linear 
holding and shortage costs (as given by (5)). Roberts [1962] analyzed 
this model using asymptotic renewal theory to characterize the limiting 
behavior of an optimal policy (s*, S*) as the parameters K and p grow 
large. He obtained the following expressions for optimal policy param- 
eters s* and D* -S*- as D* becomes large: 

D* = 2K,u/h + o(D*), 

(u - S*)d4*(X+l)(u) = D*/(1 + p/h) + o(D*), 
s* 

where X is the fixed lead-time, ,u is the single period demand mean, and 
o(D*)/D* converges to zero as D* becomes infinite. Ehrhardt [1979] used 
these expressions to construct an approximately optimal policy (the 
Power Approximation) that is easy to compute and requires for demand 
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information only the mean and variance of demand. Specifically, the 
Power Approximation requires the single-period demand mean and var- 
iance, ,u and a2, as well as the mean and variance of *("+1), ux and ax2. 

We suggest modifying the Power Approximation for our stochastic 
lead-time model by replacing ,ux and ax2 with the mean and variance of 
T 1.1,ai and '. Specifically, expressions (13)-(16) in Ehrhardt require 
this change. In computing ul and 2, we note that a = 1 implies that d = 
1 also. Therefore, 

00 m 00 
iui = udTI(u)= E 1i ud4*(i+l)(u) o i=o O (11)O 

81 = YTo li(i + l),u = (EL + 1)u, 
00 

and l= u2dfi'(u)- = (EL + 1)o2 + M2Var(L). (12) 

Notice that , and ol2 are merely the mean and variance of demand during 

TABLE I 

LEAD-TIME DISTRIBUTIONS 

Probability Mass li, i = 0, .. *, 4 
- - - - ~~~~~~EL Var L zy 
i:0 1 2 3 4 

0 0 1 0 0 2 0 0 
0 0.250 0.500 0.250 0 2 0.50 0.354 
0.0667 0.2333 0.4000 0.2333 0.0667 2 1.00 0.500 
0.2 0.2 0.2 0.2 0.2 2 2.00 0.707 

(L + 1) periods. The use of (11) and (12) in place of ux and ax2 is a 
familiar heuristic approach for modifying a fixed lead-time policy. Until 
now, however, this approach has not been theoretically justified for 
periodic review systems. 

We assess the effectiveness of the modified Power Approximation in 
Section 4, below, which compares it with optimal policies for a variety of 
parameter settings. 

4. NUMERICAL RESULTS 

We have performed computations using the procedures described above 
for infinite horizon problems. In this section we consider a set of 12 
inventory items under a variety of assumptions about the distribution of 
lead time. First, we show how optimal expected costs vary with the 
variance of the lead-time distribution. Then we compare the performance 
of optimal policies with that of the Power Approximation as modified by 
(11) and (12). 
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TABLE II 
OPTIMAL TOTAL COST PER PERIOD OF 12 ITEMS FOR 4 DIFFERENT LEAD-TIME 

DISTRIBUTIONS 

Costs Aggregated by Parameter Value 
Lead-Time Total Ag- 

gregate Penalty cost Setup cost Mean demand 

Mean Variance Cost 4 9 32 64 2 4 8 

2 0 280 129 150 124 156 64 90 126 
2 '/2 293 135 159 131 162 65 93 135 
2 1 306 140 166 137 168 66 96 143 
2 2 327 149 178 149 179 69 102 156 

Consider a system of 12 inventory items, each having a negative 
binomial demand distribution with a variance-to-mean ratio of 3. Mean 
demand ,u has three values, 2, 4, and 8. Each item has linear holding and 
shortage costs as given by (5). Since the total cost function is linear in 
the parameters h, p, and K, the value of the unit holding cost is a 
redundant parameter which is set at unity. The unit shortage costs are 4 
and 9, and the setup cost values are 32 and 64. The computations 
considered all combinations of these parameter settings, yielding 12 
items. 

We consider the four lead-time distributions displayed in Table I. Each 
is a symmetrical triangular distribution over the range [0, 4], with a mean 
value of 2. The variance of lead time ranges from a minimum of 0 for the 
deterministic case to a maximum of 2 for the uniform distribution. We 
also list the coefficient of variation -y of each lead-time distribution, 
which is defined as the ratio of the standard deviation to the mean. 

Table II shows optimal total cost per period as a function of parameter 
values for each of the four lead-time distributions given in Table I. Notice 
that the total aggregate cost of the 12 items increases monotonically with 
lead-time variance. The largest lead-time variance yields an optimal total 
cost of 327 for the 12 items, 17% higher than the deterministic lead-time 

TABLE III 
PERCENTAGES ABOVE OPTIMAL TOTAL COST PER PERIOD FOR 12-ITEM 

SYSTEMS UNDER APPROXIMATELY OPTIMAL CONTROL 

Costs Aggregated by Parameter Value 

Lead-Time Total Penalty 
Aggre- cost Setup cost Mean demand 

gate Cost c 
Mean Variance 4 9 32 64 2 4 8 

2 0 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.1 
2 1/2 0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 
2 1 0.2 0.3 0.1 0.2 0.1 0.2 0.2 0.1 
2 2 0.3 0.3 0.2 0.4 0.2 0.0 0.3 0.4 
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cost of 280. When costs are aggregated by parameter values, we see that 
the larger lead-time variances produce slightly larger cost increases for 
items with a penalty cost p of 9, than for those with p equal to 4. Items 
with a setup cost K of 32 as opposed to those with K equal to 64 also 
exhibit slightly larger cost increases. The bulk of the cost increase, 
however, can be attributed to items with the largest value of mean 
demand. Notice that items with ,u equal to 8 shows a 24% increase in 
total cost from 126 for the deterministic lead-time system to 156 for the 
high lead-time variance system. The corresponding percentage increase 
for items with A equal to 2 is merely 8%. This fact is not surprising, since 
we have held the demand variance-to-mean ratio constant. Therefore, 
items with the largest mean demand also have the largest variance of 
demand, yielding especially large values of ol in (12). 

Table III lists percentage increases in expected total cost per period 
when Power Approximation policies are compared with optimal policies. 
The Power Approximation yields costs within a few tenths of a percent 
of optimal for all parameter settings. This level of performance is com- 
parable with the data in Ehrhardt, who considered only deterministic 
lead times. 
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