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A model of JIT make-to-stock inventory with 
stochastic demand 
R Ehrhardt 
The University of North Carolina at Greensboro, USA 

We consider a firm that manages its internal manufacturing operations according to a just-in-time (JIT) system but 
maintains an inventory of finished goods as a buffer against random demands from external customers. We formulate a 
model in which finished goods are replenished by a small fixed quantity each time period. In the interest of schedule 
stability, the size of the replenishment quantity must remain fixed for a predetermined interval of time periods. We 
analyse the single-interval problem in depth, showing how to compute a cost-minimising value of the replenishment 
quantity for a given interval length, and characterising the optimal cost, inventory levels and service as functions of the 
interval length and initial inventory. The model displays significant cost and service penalties for schedule stability. A 
dynamic version of the problem is also formulated, and shown to be convex in nature with relatively easily computed 
optima. 
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Introduction 

Just-in-time (JIT) production systems attempt to attain the 
ideal of eliminating inventories of raw materials, work-in- 
process, and finished goods. The general approach is 
simple: produce (or deliver) small batches of items in the 
precise amounts needed by subsequent production 
processes (or customers) at exactly the time needed. In 
general, JIT is a pull system, in which a production process 
pulls material from a prior process (which doesn't operate 
unless there is need for its output) in support of the final 
assembly schedule, which is closely co-ordinated with 
customer demand.' 

There is general agreement that for JIT to work effec- 
tively, production schedules must be level and stable. 
While this condition is agreed upon, research has tended to 
focus upon translating a sequence of known future demands 
for products into a final assembly schedule that demands 
parts as uniformly as possible over time.S'6 A parallel body 
of research investigates methods for devising effective 
schedules when the production system is not organised as 
a JIT pull process.7-9 In both cases, the assumption of 
deterministic demand allows research to address the 
complex issues of detailed scheduling of multiple products 
and multiple work centres. 

Research is less copious when demand is modelled as a 
stochastic process. Most papers model production planning 
problems in the manner of stochastic inventory theory, 
namely they regard the production process as the supplier 
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of goods and manage the finished goods warehouse in a 
manner that minimises setup and inventory costs. Although 
many fine studies have been published, the complications 
of stochastic demand lead to single-item models with few 
details of the production process included.10-13 

Most of the JIT literature, on the other hand, has been 
quite non-mathematical until recently. This should not be 
surprising, as the approach is itself inherently non-mathe- 
matical. Much of its appeal lies in its simplicity of opera- 
tion and the subtle synergistic benefits that result. While 
promoters of JIT preach the advantages of reducing inven- 
tories to zero, some theorists and many practitioners recog- 
nise that some inventories are desirable.14 This is especially 
likely when certain aspects of the system are unavoidably 
random. 

In this paper we formulate a model aimed at one of the 
gaps between the mathematical analysis of inventories and 
the practical, non-mathematical realities of JIT. A stream of 
research already exists for the interface between suppliers 
of input materials and the JIT process.15-17 Other studies 
have modelled both the supply and delivery ends of the 
process, but with deterministic demand.18"19 We seek 
instead to model the interface between the JIT process and 
the random demands of customers. 

Many firms operate a JIT manufacturing process in- 
house, but produce to stock, that is, they maintain an 
inventory of finished goods as a buffer against random 
customer demands. For example, consider the Toyota 
assembly line for Corollas,20 which produces four major 
model types, each type comprising about 800 unique 
models. The line assembles approximately 3000 cars per 
day according to a fixed daily schedule that includes some 
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quantity of each model. The smoothed daily production 
schedule remains in effect for one month, and about one 
week before the end of the month the new daily production 
schedule for the upcoming month is finalised. The lead time 
requirement is needed to ensure that all affected parties 
(including suppliers and workforce schedulers) are able to 
make the necessary adjustments. 

The modelling approach we discuss here is to minimise 
the expected value of costs associated with finished goods 
inventories while restraining changes in the replenishment 
quantity so as to preserve the stability of the production 
schedule that is so important to JIT production. Our 
approach, like Toyota's as described above, is to forbid 
changes to the replenishment quantity (or number of 
kanbans) for a given interval of time, and show how the 
optimal inventory policy and cost depend upon the length 
of the interval. It is then left to the manager to make an 
informed trade-off decision between inventory costs and 
schedule stability. This environment could arise whenever 
multiple products and capacity constraints do not allow the 
schedule for each product to be changed without a major 
effort to resolve conflicting demands for resources, forcing 
management to set the values of the replenishment quan- 
tities of all products simultaneously. Although the models 
that follow are all single-item models, they could easily 
form a basis for multi-item analysis. 

This paper is mostly devoted to the analysis of the 
management of one interval of n time periods during 
which the replenishment quantity must remain constant. 
The reader may wish to skip forward to the fourth section, 
where a dynamic model is formulated, embedding the 
details of this model in a macro-sequence of revision 
intervals. Research on the dynamic model is ongoing. 
The next two sections discuss n-period models with (1) a 
penalty cost for backlogged demand and (2) a service 
criterion that constrains the average probability of back- 
logging demand in any single period. 

Minimising expected holding and shortage costs 

We consider a single decision to fix the replenishment 
quantity, followed by an eventual salvage of any excess 
stocks or satisfaction of any backlogged demand. Consider 
the problem of selecting a fixed replenishment quantity z to 
be delivered in each of n consecutive periods. Let xt 
represent the inventory level at the end of period t, after 
having experienced demand for Dt units of inventory. We 
assume that 9_ {Dt, t = 1, ... , n) is an i.i.d. sequence 
with common c.d.f. F and mean ,u. Letting x0 represent 
the beginning inventory level, we have 

x, =x~ ?tl+Z-Dt 

=x0 ?tz-LDi =x0 ?tz-St, t =1, .. .,n, 
i=l 

where the St = E-=l Di are the partial sums of -9. Let 
Ft(u) _ P{St < u} denote the t-fold convolution of F(.). 

Suppose the relevant costs consist of a linear replenish- 
ment cost and a holding or shortage cost in each period, and 
a salvage cost for any inventory remaining at the end of 
period n. We assume that conditions exist which make JIT 
production of frequent small lots attractive, namely negli- 
gible costs of changing models or products. Specifically, let 
c represent the unit replenishment cost, g(y, d) be the 
holding or shortage cost in any period if y is the inventory 
available to meet demand and d is the demand in that 
period, and s(x) be the salvage value of x items of inventory 
remaining on hand at the end of period n. Letting 
16(z, 9; xo) denote the total n-period cost if the initial 
inventory is xo, we have 

n 
Q(z, 0; xo) = E [cz + gt(xt-I + z, Dt)] - S(xn) 

t=1 

n 
= ncz + E gt(xo + tz -St-l, Dt) 

t=1 

- s(xo + nz -S) 

where SO _ 0. Suppose that s(.) is convex, and g(, d) is 
convex for each d. Defining g as the expectation operator, 
C(z; xo) =f(z, 9; xo) is a convex function, and first order 
conditions establish optimality. 

A special case of general interest is when the salvage 
value, and holding/shortage cost functions are piecewise 
linear: 

g(u, d) =h (u -d)+ +p (d -u)+ 

s(u) = s* (u)+ - c (-u)+, 0 s c, 

where (v)+ _ max{v, 0). That is, each excess unit costs h 
and each unit backlogged cost p. At the end of period n 
each excess unit is salvaged for a value s, while each unit of 
backlogged demand is satisfied by replenishing at cost c. 
Then 

C(z; xo) = ncz 
n 

+ ( E [h * (xo + tz-St)+ +p* (St -xo - tz) ] 
t=1 

- se(xo + nz - Sn)+ c(Sn - -nz), 

(1) 

which, after some manipulation, takes the form 

C(z; xo) = c(nl - xo) + (c - s) J (xo + nz - u)dFn(u) 
o 

p(C -z)n(n + 1) ? 2 
n (Xo+tz 

+ (h + p) , | (xo + tz -u) dFt (u). (2) 
t=l JO 
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Notice that the bracketed terms represent the costs of 
producing and salvaging goods, while the remaining 
terms represent the costs of inventories and backlogs. The 
function is continuous and differentiable, with derivative 

C'(x; xo) = (c - s)nFn(xo + nz) ( 2 ) 

n 

+ (h + p) E tFt(xo + tz). 
t=1 

We consider finding the minimum value of (2) first for 
continuously distributed demand and then for discrete 
distributions. 

If demand is continuously distributed, we set 
C'(z; xo) = 0, rearrange terms, and find that the optimum 
value of z is the solution z* to 

A(z*; xo) + 2(c 
- 

s) Fn(xo + nz*) = P (3) 

where 

2 n 

A(z; xo) "( E tFt(x + t) 

Finding z* using (3) is a relatively simple matter. Its left 
hand side involves convolutions of the demand c.d.f. and is 
nondecreasing in z*. A simple linear search is all that is 
required. 

If the demand distribution in discrete on the integers, 
then (2) is piecewise linear and its minimum will occur at a 
discontinuity in C'. If n = 1, the discontinuities in C' occur 
at integer values of z, so the minimum will occur at the 
smallest integer value of z* which makes the left side of (3) 
greater than or equal to the right side. This is the same as 
rounding up the solution of (3). If n > 1, the discontinuities 
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Figure 1 A(z; 0) vs z for n= 1, 3 and 8; Poisson demand with mean 4. 

in C' occur at rational numbers, so the best integer value of z 
may be either the rounded-up or rounded-down solution of 
(3). One must evaluate (2) at both possibilities and choose 
the value of z with the smaller expected cost. 

Notice that A(.; xo) has all the properties of a c.d.f., 
namely it is nondecreasing and has limits of 0 and 1. 
When n = 1, A is the demand c.d.f., F. Its form is illustrated 
in Figure 1 for three values of n. 

As the second term of (3) is concerned with salvage 
costs, it is clear that if c = s the optimal order size is 
governed by a generalised news vendor expression, namely 

A(z*; xo) = ph). (4) 

A significant consequence of this result is that, unlike the 
traditional newsvendor and (s, S) models, minimising 
expected costs does not result in a target service level 
(probability of satisfying all demand) which is uniquely 
determined by the value of p/h. The optimal service level 
will generally vary from one time period to another, and the 
average service level 

1n 
-E Ft(xo + tz) 
n t=1 

may be greater or less than the familiar ratio p/(p + h) 
which applies to optimal newsvendor and (s, S) models.21'22 

The expected cost per period C(z; 0)/n is graphed in 
Figure 2 assuming Poisson demand with mean 4, p = 9 and 
h = 1. We assume also that c = s = 0, as this is perhaps 
most applicable to the long-run dynamic model for which 
salvage value is irrelevant and, since one typically minimises 
the undiscounted expected cost per period, the purchase cost 
is also irrelevant if unsatisfied demand is backlogged. For 
this case, we find that z* decreases from 7 to 6 to 5 as n 
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Figure 2 Average cost per period vs z; Poisson demand with mean 4; p/h = 9. 

increases from 1 to 3 to 8. Figure 2 illustrates how the 
penalty for choosing a non-optimal value of z increases 
with n. For example, when n = 8 the expected cost per 
period is nearly double the optimal value if z is set at 4 
rather than 5. Here we see another significant managerial 
implication. The desire for a stable production schedule 
argues for larger values of n, with the unfortunate conse- 
quence of higher penalties for misspecified values of z. 
Many managers do not have precise demand information, 
and must rely upon statistical estimates of demand para- 
meters, so high penalties will likely be paid for stable 
production schedules. 

Figures 3, 4 and 5 show how the initial inventory level xo 
affects model behavior. Figure 3 demonstrates that z* can 
become less sensitive to xo as n increases. It is clear from 
the form of (4) that z* is a non-increasing function of xo. As 
n increases, however, there is greater incentive to move z 
closer to ,u. Figure 4 shows how the service levels of 
optimal policies vary by time period for three different 
values of xo. When xo is small (or large) the replenishments 
are large (or small), so service tends to increase (or 
decrease) with time. For this particular example xo = 3 
results in nearly constant service. Notice that when xo = 0 
the average service level is less than the classical news- 
vendor optimum,21 which would be at least 0.9. This 
departure from classical theory would be especially signifi- 
cant in situations where the unit shortage cost p is difficult 
to measure, and management resorts to a target service 
level and the classical p/(p + h) expression to set the value 
of p. 

Figure 5 shows that in our example when p/h is as high 
as 9, the optimal expected inventory levels vary nearly 
linearly with time. Notice in particular that when xo = 3 

the expected inventory increases to approximately 11 at the 
end of the 8-period interval, as z* = 5. Recall that Figure 3 
shows a nearly constant service level for this case. The 
increasing variance of the convoluted demand distributions 
require higher inventory levels to sustain a given service 
level. These observations give clues to likely properties of a 
dynamic model which links successive multi-period inter- 
vals (see the fourth section). If service is constant during one 
n-period interval (as in Figure 4 for xo = 3), then it is likely 
that a large ending inventory level (as in Figure 5 for xo = 3) 
will cause a smaller z decrease service during the next 
interval. 

The computations described above all assume that 
demand follows the Poisson distribution, but they are 
generally representative of a wider body of results. Table 
1 summarises calculations for three values of n: 1, 3 and 8; 
four values of xo: 0, 2, 4 and 8; and three families of demand 
distributions: a2/p = 1 (Poisson), a2/jt = 3 (negative bino- 
mial) and a2/t = 5 (negative binomial). Notice that z* and 
the optimal total cost per period both increase with a2/I for 
each combination of values for n and xo. Regardless of the 
value of a2//i, z* and the optimal total cost per period 
display similar dependence upon the other parameters. In 
particular, notice that the optimal cost per period roughly 
doubles when n is increased from 1-8 regardless of the 
value of xo or a2/j,. Also, for each combination of values of 
n and a2/ , Z* increases with xo, although the changes are 
smaller for larger values of n. Finally, focusing on each 
value of xo, z* shows roughly the same dependence upon n 
for all values of a2/ . When xo = 0, z* decreases with n; 
when xo = 2, z* remains constant or slightly decreases with 
n; when xo = 4, z* remains constant or slightly increases 
with n; and when xo = 8, z* increases with n. 
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Figure 3 Optimal replenishment quantity; Poisson demand, ,u = 4,p/h = 9. 

Minimising inventory with a service constraint 

Many management environments do not lend themselves to 
the specification of a penalty cost p for each unit of demand 
backlogged in a period. This difficulty is sidestepped in 
many inventory management settings by instead specifying 
a minimum service level and noting that a policy which 
minimises the expected sum of holding and shortage costs 
will have a service level of p/(p + h) if demand is contin- 
uous (or slightly more if demand is discrete). As this result 
does not hold in our model, a more direct approach is of 
interest. 
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Figure 4 Optimal service levels. Poisson demand, ju = 4, p/h = 9, n = 8. 

We consider a variant of the model in which we mini- 
mise the expected holding cost while constraining the 
average service during the n-period interval to be at least 
cx, namely 

1n 
-L Ft(xo + tz) > o. 
n t= 

The cost function that applies is (1) with p = 0: 
n 

C(z; xo) = ncz + ? E h * (xo + tz-St) 
t=1 

- so(xo + nz - Sn)+ c(Sn - xo-nz) 
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Figure 5 Expected inventory levels. Poisson demand, p = 4, p/h = 9, n = 8. 

which can be expressed as 

C(z; xo) = c(nii - xo) + (c - s) f (xo + nz - u)dFn(u) 

n x+ tz 
+ h E (xo + tz - u)dFt(u). 

t=1 o 

Assuming c > s, C(.; xo) is nondecreasing so the optimal 
value of z is given by the smallest nonnegative z* satisfying 

1n 
- Ft(xo + tz*) cx, (5) 
n t=1 

which is clearly a different result from what one would get 
using (4) with p/(p + h) = a. Notice that (5) is also a 

Table 1 Dependence of optimal policies upon xo, au2/y and n 

Optimal policies and expected costs per period 

n=l: n=3: n=8: 
Xo a2/i Z* C(z*; xo)/n z* C(z*; xo)/n z* C(z*; xo)/n 
0 1 7 3.85 6 5.36 5 7.91 
0 3 9 7.60 7 10.21 6 14.57 
0 5 10 10.29 8 13.74 7 19.65 
2 1 5 3.85 5 5.20 5 7.76 
2 3 7 7.60 6 10.03 6 14.50 
2 5 8 10.29 7 13.57 6 19.14 
4 1 3 3.85 4 5.37 4 8.27 
4 3 5 7.60 5 10.06 5 14.17 
4 5 6 10.29 6 13.54 6 19.00 
8 1 0 4.34 2 6.55 4 8.89 
8 3 1 7.60 4 10.52 5 14.94 
8 5 2 10.29 4 13.85 5 19.04 

generalised newsvendor result, as the average of convoluted 
c.d.f.s also satisfies all the properties of a legitimate c.d.f. 

We graphically illustrate properties of this model in 
Figures 6-8, assuming Poisson demand with [u = 4, and 
a = 0.9. Notice that this value of a is equal to p/(p + h) 
when p/h = 9, as we assumed in the examples of the 
previous section. Figure 6 shows how the optimal replen- 
ishment quantity varies with xo and n. The patterns are 
similar to those in Figure 3, except for higher values of z* 
in some cases. Figure 7 shows how optimal service levels 
increase (or decrease) with time when xo is small (or large). 
Although the patterns are somewhat different from those in 
Figure 4, xo = 3 still results in the most nearly constant 
service. 

In Figure 8, xo = 1 O(z* = 4) results in essentially 
constant inventory throughout the 8-period interval, 
although Figure 7 shows decreasing service for this case. 
When xo = 0 (z* = 6) or xo = 3 (z* = 5), however, large 
expected inventories are built by the end of the interval, to 
bring up service levels that start out low. 

Dynamic model formulation: sequential decisions 

Consider a sequence of N decisions like the one described 
above in section 2. We shall refer to each sequence of n 
periods with constant replenishment quantity as a revision 
interval. Let zi be the replenishment quantity chosen at the 
beginning of the ith revision interval, and let xi,t and Di,t be 
the ending inventory and demand for the tth period within 
the ith revision interval, respectively. We assume that 

9 =_ [Di't; t = I, ...,n,i= 1,...,N} 
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Figure 6 Optimal replenishment quantity; Poisson demand, it = 4, a = 0.9. 

is an i.i.d. sequence with common c.d.f. F. Letting 
=-{zi, i = 1, . . ., N} be the sequence of replenishment 

quantities chosen, and -(Y; x) be the total cost for all 
revision intervals when the initial inventory is x, we have 

N n 
Y-(-e; X1,o) = E >[czi + g(xit-I + Zi, Di t)]- S(XN,n) 

i=1 t=1 

N + n 

= E ncz, 
+ E g(xi, 0 + tzi -Si, t- I Di, t) 

i=1 _ t=1 

1.05 

1.00 

s,0.951 --o/ Xo= 
-0- Xo=0 
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Figure 7 Optimal service levels; Poisson demand, it 4, a = 0.9, n = 8. 

if the replenishment quantity can be adjusted without cost 
at the start of each revision interval. To find the replenish- 
ment policy that minimises the expected total cost, it is 
convenient to formulate the problem as a dynamic program. 
Let 

n 

G(z, x)-=ncz + of ,: g(x + tz -St-,, Dt) 
t=1 

Notice that if the holding and shortage costs are linear, then 
G(z, x) has the same form as the single decision cost 
function C(z; x) (1) if s = c = 0. Defining fJ(x) as the 
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minimum expected cost from revision interval i through the 
end of the horizon, if we start revision interval i with x units 
of inventory, we have 

f,(x) = min{G(z, x) + 9f+1(x + nz-S)}, i = 1, ...,N, 
z >' o 

fN+1(X) = -S(X). 

The recursion is similar to those governing standard 
inventory problems with linear purchase cost functions. 
Optimal policies can be characterised by studying the 
properties of the function G(z, x). Of particular interest is 
how the optimal expected cost per period varies with n. This 
information would be of managerial interest because it 
characterises the trade-off between the stability of the 
production schedule and finished goods inventory costs. 
The recursion is different from the standard inventory 
problems because the function G is more complicated. It 
cannot be simplified by conversion to a function of 
y _x + z because of the sum over periods within each 
revision interval. Because of this, it almost certainly does 
not admit myopic optimal policies.23 

Although additional research is needed to clearly under- 
stand this model, the following observations can be made at 
this point. First, the recursion formulated above devines a 
Markov decision process so we can conclude that the 
infinite horizon version of the problem has a stationary 
optimal policy. Even though the problem is more compli- 
cated than the standard stochastic inventory problem, the 
cost functions are all convex so that relatively simple rules 
should govern the computation of optimal policies. It seems 
reasonable to speculate that the infinite horizon optimal 
policy for a given value of n would be given by a function 

z*(x), a non decreasing function of the starting inventory 
level x of the revision interval. Results from the single- 
decision model (second section) suggest that the expected 
cost per period would be increasingly sensitive to mis- 
specified replenishment quantities as n increases, a property 
with potentially serious implications for management deci- 
sion making. 

Other versions of the dynamic model which could be 
analysed include (i) a cost associated with changing the 
production quantity, and (ii) the possibility of adjusting the 
inventory level at the same time as the production quantity. 
Variant (i) is quite similar to the classical production 
smoothing problem, which has very complex and diffi- 
cult-to-compute optimal policies, while (ii) is an easier 
problem to analyse, but not very realistic. 

Summary and conclusions 

We have formulated a variety of models for studying the 
trade-off between finished goods inventory costs and JIT 
manufacturing schedule stability. First we studied a single 
decision to fix replenishment quantities for a sequence of n 
periods, and found a generalisation of the classical news- 
vendor result. Numerical illustrations suggest that as n 
grows larger, expected costs per period become more 
sensitive to setting the replenishment quantity subopti- 
mally. This could have serious implications for the 
manager who wishes to have a very stable production 
schedule and therefore desires a large value of n. We 
have also shown that the model which minimises the sum 
of expected holding and shortage costs does not exhibit the 
familiar newsvendor service level, mailing the choice of an 
appropriate penalty cost p more difficult in some applied 
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settings. Numerical illustrations also indicate that increas- 
ing inventory levels are needed to provide approximately 
constant service, or conversely, that decreasing service 
results from approximately constant expected inventory 
levels. 

We also formulated a dynamic version of the model and 
showed how it is more complicated than the classical 
stochastic inventory model. The infinite horizon model 
should have a stationary optimal policy with a reasonably 
simple form, though. Future research will focus on the 
efficient computation of optimal policies, near-optimal 
heuristic policies, and the behaviour of the dynamic 
model when demand parameters must be statistically esti- 
mated from historical data. 
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