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Abstract: 

A firm is considered that manages its internal manufacturing operations according to a just-in-time system, but 

maintains an inventory of finished goods as a buffer against random demands from external customers. The 

finished goods inventory may be analysed by the methods of classical inventory theory in order to characterize 

the trade-off between inventory costs and schedule stability. A model is formulated in which the supply of 

finished goods is replenished by a small fixed quantity each time period. The size of the replenishment quantity 

may be revised only at pre-specified intervals. The single-interval problem is analysed, the cost-minimizing 

value of the replenishment quantity for a given revision interval length is computed, and the optimal cost is 

characterized as a function of the revision interval length. The dynamic problem is shown to be convex, with 

relatively easily computed optima. Finally, alternative formulations of the problem are described and 

suggestions made for further research. 

 

Article: 

1. Introduction 

Just-in-time (JIT), developed in Japan, has become an effective approach to gaining competitive advantage in 

manufacturing. This approach, which integrates and manages manufacturing activities, obviously leads to cost 

efficiency and to consistently high product quality. Its lean inventories also allow rapid response to the 

changing needs of the marketplace. Many firms have been successful in using JIT to integrate and manage  

their internal operations and even to coordinate their operations with those of their suppliers, but difficulties 

often arise at the interface with the marketplace. That is due to the demand for finished goods, which is often  

unmanageable and random. For this reason, many firms still maintain a buffer inventory of finished goods. 

These types of inventory systems are not well managed by the traditional models of stochastic inventory theory 

because JIT production processes assume stable production schedules. This paper proposes management models 

that are designed for balancing the conflicting needs of a stable JIT production schedule and the unpredictable 

demands of the marketplace. We consider two general approaches for restraining changes to the production rate. 

 

One approach requires the replenishment quantities (or number of Kanbans) to remain constant for a fixed 

interval of time, and to then allow revision to a series of larger or smaller quantities which remain fixed for the 

same time interval. One can investigate then how the optimal inventory policy and resultant costs depend upon 

the length of the interval. It is then left to the manager to make an informed trade-off decision between 

inventory costs and schedule stability. This environment may arise when a capacity constraint forces 

management to set the values of the replenishment quantities of all products simultaneously (see Section 6). The 

trade-off decision would necessarily be highly dependent upon the details of the manufacturing environment 

and possibly upon the firm’s marketing strategy as well. For example, schedule stability may be more highly 

valued in a very complex manufacturing system where bottlenecks may develop in a number of different areas 

when production schedules change. Ideally, the models of this paper would be linked to detailed models of the 

manufacturing system’s internal operations (a true CIM application). Then the specific internal impacts of 

schedule instability can be estimated and weighed against the inventory and service impacts predicted by the 

models of this paper. 
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A second approach requires the replenishment quantity to remain fixed unless the inventory of finished goods 

strays outside specified bounds, at which time it is increased or decreased. One can then investigate the cost and 

stability effects of various policies for setting the bounds and replenishment quantity change-amounts. As in the 

first approach, the objective is to provide managers with tools for making informed trade-off decisions between 

inventory costs and schedule stability. 

 

Ultimately, the results of this research could form a software module that could be integrated with other models 

that seek to improve the internal operation of JIT. Such models utilize the methods of queuing networks to 

investigate appropriate batch sizes and buffer stocks at multiple work centres within the manufacturing 

organization. If successfully developed, the models of this paper could form an important vital link between the 

technology of managing internal production logistics and the random forces of the marketplace, thus helping 

manufacturing managers to more effectively employ JIT to make their firms economically competitive and to 

gain strategic advantage. 

 

We survey the existing modelling literature in Section 2, and then proceed to study the model in which the 

replenishment quantity stays constant for fixed intervals of time. We formulate and analyse the single-decision 

case in Section 3, and then formulate and discuss the dynamic version of the problem in Section 4 (we present a 

sample of computational results as well). Section 5 discusses models that revise the replenishment quantity 

based on the level of inventory, and Section 6 formulates a multi-item version of the fixed-revision-interval 

model. Finally we discuss general research strategies in Section 7, and summarize our study in Section 8. 

 

2. The models 

JIT production systems attempt to reduce inventories of raw materials, work-in-process and finished goods. The 

general approach is simple: produce (or deliver) small batches of items in the precise amounts needed by 

subsequent production processes (or customers) at exactly the time needed. In general, JIT is a pull system, in 

which a production process pulls material from a prior process (which doesn’t operate unless there is need for 

its output) in support of the final assembly schedule, which is closely coordinated with customer demand 

(Krajewski and Ritzman 1987). 

 

There is general agreement that for JIT to work effectively, production schedules must be level and stable (Hall 

1983, Monden 1983, Vollmann et al. 1984). While this condition is agreed upon, research has tended to focus 

upon translating a sequence of known future demands for products into a final assembly schedule that demands 

parts as uniformly as possible over time (Miltenburg 1989, Steiner and Yeomans 1993). A parallel body of 

research investigates methods for devising effective schedules when the production system is not organized as a 

JIT pull process (Jackson et al. 1988, Maxwell and Muckstadt 1985, Roundy 1985). In both cases, the 

assumption of deterministic demand allows research to address the complex issues of detailed scheduling of 

multiple products and multiple workcentres. 

 

Research is less copious when demand is stochastic. Most papers model such production planning problems 

using stochastic inventory theory, i.e. they regard the production process as the supplier of goods and manage 

the finished goods warehouse in a manner that minimizes setup and inventory costs. Although many studies 

have been published, the complications of stochastic demand lead to single -item models with few details of the 

production process included (Gavish and Graves 1980, Doshi et al. 1978, De Kok et al. 1984, Altiok 1989). 

Much of the JIT literature, on the other hand, has been, until recently, qualitative. This should not be surprising, 

as the JIT approach is inherently organizational. Much of its appeal lies in its simplicity of operation and the 

subtle synergistic benefits that result. While promoters of JIT emphasize the advantages of reducing inventories 

to zero, some theorists and many practitioners recognize that some inventories are desirable (Zangwill 1987). 

This is especially likely when certain aspects of the system are unavoidably random. 

 

We formulate mathematical models aimed at one of the gaps between the mathematical analysis of inventories 

and the practical, non-mathematical realities of JIT. A stream of research already exists for the interface 

between suppliers of input materials and the JIT process (Yano and Gerchak 1989, Pan and Liao 1989, 



Ramasesh 1990). Other studies have modelled both the supply and delivery ends of the process, but with 

deterministic demand (Goldhar and Sarker 1992, Sarker and Parija 1994). We seek instead to model the 

interface between the JIT process and the random demands of customers. 

 

Many firms operate a JIT manufacturing process in-house, but produce to stock, that is, they maintain an 

inventory of finished goods as a buffer against random customer demands. The modelling approach we discuss 

here is to minimize the expected value of costs associated with finished goods inventories (or to effectively 

achieve customer service targets) while restraining changes in the replenishment quantity so as to preserve the 

stability of the production schedule that is so important to JIT production. 

 

One way in which the trade-off between the competing forces of schedule stability and inventory costs appears 

in the professional literature is production smoothing models. These models take the traditional inventory 

theory approach and add a cost for changing the replenishment rate to the usual costs of replenishment, holding 

inventory, and backlogging or losing unmet demand. It has been shown (Sobel 1969) that the form of an 

optimal policy is rather complicated, and considerably more difficult to compute than what is usually 

encountered in a pure inventory management model. We choose instead to ignore the cost of changing the 

production rate and leave the trade-off decision to management. It may be that other models could ultimately be 

linked to ours, allowing details of the production process to be factored into the trade-off decision. 

 

We consider two general approaches for restraining changes to the production rate: 

 

(1)  Fixed revision intervals. One approach is to require the replenishment quantities (or number of Kanbans) 

to remain constant for a fixed interval of time, and to then allow revision to a series of larger or smaller 

quantities which remains fixed for the same interval of time, and so on. One can then investigate how the 

optimal inventory policy and its costs depend upon the length of the interval. It is then left to the manager to 

make an informed trade-off decision between inventory costs and schedule stability. This environment may 

arise when a capacity constraint forces management to set the values of the replenishment quantities of all 

products simultaneously. 

 

(2)  Inventory-triggered revision. A second approach is to require the replenishment quantity to remain fixed 

unless finished goods inventory strays outside of management specified bounds, at which time it is increased or 

decreased as appropriate. One can then investigate the cost and stability effects of various policies for setting 

the bounds and replenishment quantity change-amounts. As in the fixed revision interval case, the objective is to 

provide managers with tools for making informed trade-off decisions between inventory costs and schedule 

stability. 

 

The next section investigates in detail the management of one interval of n time periods during which the 

replenishment quantity must remain constant. The reader may wish to temporarily skip forward to the following 

section (Section 4) which formulates a dynamic model, embedding the details of this model in a macro-

sequence of revision intervals. Research on the dynamic model is ongoing.  

 

3. Fixed revision interval static model: analysis of a single decision 
We consider a single decision to fix the replenishment quantity, followed by an eventual salvage of any excess 

stocks or satisfaction of any backlogged demand. Consider the problem of selecting a fixed replenishment 

quantity zto be delivered in each of n consecutive periods. Let xt represent the inventory level at the end of 

period t, after having experienced demand of size Dt. We assume that Dº {Dt,t 5 1,...,n} is an iid sequence with 

common cdf F and mean l. Letting x0 represent the beginning inventory level, we have 

 



where the St   Σt
i = 1Di are the partial sums of D. Let Ft(u)  P{St ≤ u}denote the t-fold convolution of F(

.
). 

 

Suppose the relevant costs consist of a linear replenishment cost and a holding or shortage cost in each period, 

and a salvage cost for any inventory remaining at the end of period n. Specifically, let c represent the unit 

replacement cost, g(y,d) be the holding or shortage cost in any period if y is the inventory available to meet 

demand and d is the demand in that period, and s(x) be the salvage value of x items of inventory remaining on 

hand at the end of period n. Letting C(z, D, x0) denote the total n -period cost if the initial inventory is x0, we 

have 

 

where S0   0. Suppose that s(
.
) is convex, and g(

.
,d) is convex for each d. Then C(z;x0)   εC(z,D,x0) is a convex 

function, and first-order conditions establish optimality. 

 

A special case of general interest is when the salvage value, and holding/ shortage cost functions are linear: 

 

 
Notice that the bracketed terms represent the costs of producing and salvaging goods, while the remaining terms 

represent the costs of inventories and backlogs. Taking the derivative, we obtain  

 



non-decreasing and has limits of 0 and 1. When n =1, A is the demand cdf, F. One can show that as n increases, 

the mean of A remains fixed, while its variance increases. This fact is illustrated in Figure 1, and leads one to 

suspect that optimal expected costs per period would also increase with n. This result is similar to the concept of 

equivalent demand distributions (Naddor 1966). 
 

As the second term of equation (2) is concerned with salvage costs, it is clear that if c=s the optimal order size is 

governed by a generalized news vendor expression, namely the smallest non -negative z* satisfying 

 
A significant consequence of this result is that, unlike the traditional news vendor and (s,S) models, minimizing 

expected costs does not result in a target service level (probability of satisfying all demand) which is uniquely 

determined by the value of p/h. The optimal service level will generally vary from one time period to another, 

and the average service level 

 
may be greater or less than the familiar ratio p/ (p+h). For example, when n=8, demand follows the Poisson 

distribution with mean 4, p=9, h=1 and c=s=0, the optimal average service level is 0
.
869, which violates the 

news vendor criterion (service greater than or equal to 0
.
9). 

 

 
The expected cost per period C(z;0)/ n is graphed in Figure 2 assuming Poisson demand with mean 4, p =9 and 

h =1. We assume also that c=s=0, as this is perhaps most indicative of the behaviour of the long-run dynamic 

model. For this case, we find that z* decreases from 7 to 6 to 5 as n increases from 1 to 3 to 8. 

 

Figure 2 illustrates how the penalty for choosing a non-optimal value of z increases with n. For example, when 

n =8 the expected cost per period is nearly double the optimal value if z is set at 4 rather than 5. Here we see 

another significant managerial implication. The desire for a stable production schedule argues for larger values 

of n, with the unfortunate consequence of higher penalties for misspecified values of z. Many managers do not 

have precise demand information, and must rely upon statistical estimates of demand parameters, so high 

penalties will likely be paid for stable production schedules. 

 

4. Fixed revision interval dynamic model: sequential decision making 

Consider a sequence of N decisions like the one described above. We shall refer to each sequence of n periods 

with constant replenishment quantities as a revision interval. Let zi be the replenishment quantity chosen for the 



ith revision interval, and let xi,t and Di,t be the ending inventory and demand for the tth period within the ith 

revision interval, respectively. We assume that  

 

 
 

is an iid sequence with common c.d.f. F. Letting Z   {zi,i =1,...,N}be the sequence of replenishment quantities 

chosen, and T(Z ; x) be the total cost for all revision intervals when the initial inventory is x, we have 

 

if the replenishment quantity can be adjusted without cost at the start of each revision interval. To find the 

replenishment policy that minimizes the expected total cost, it is convenient to formulate the problem as a 

dynamic program. Let 

 

Notice that if the holding and shortage costs are linear, then G(z,x) has the same form as the single decision cost 

function C(z;x) (1) if s=c=0. Defining fi(x) as the minimum expected cost from revision interval i through the 

end of the horizon, if we start revision interval i with x units of inventory, we have 

 
 

 
The recursion is similar to those governing standard inventory problems with linear purchase cost functions. 

Optimal policies can be characterized by studying the properties of the function G(z,x). Of particular interest is 

how the optimal expected cost per period varies with n. This information would be of managerial interest 



because it characterizes the trade-off between the stability of the production schedule and finished goods 

inventory costs. The recursion is different from the standard inventory problem’s because the function G is 

more complicated. It cannot be simplified by conversion to a function of y   x+z because of the sum over 

periods within each revision interval. Because of this, it almost certainly does not admit myopic optimal policies 

(Heyman and Sobel 1984). 

 

We illustrate the behaviour of dynamic optima, using recursion (5) to compute optimal dynamic policies for the 

assumptions of Section 3, setting n =1, 3 and 8, and N=1, 2, 3 and 4. We compare optimal policy functions in 

Figures 3 and 4, where first-period optima (N periods remaining) are graphed. 

 

When the revision interval length n is only 3 periods, Figure 3 displays near-myopic optima, as optimal policies 

are identical for N=2, 3 and 4, and the single-interval policy (N=1) is also the same when beginning inventory 

levels are at least
  
-2. The situation is quite different for the longer revision interval of 8 periods. Figure 4 

displays significantly different ordering policies as N is increased from 1 to 4. 

 

Although additional research is needed to clearly understand this model, especially for the important infinite 

horizon problem, the following observations can be made at this point. First, the recursion formulated above 

defines a Markov decision process so we can conclude that the infinite horizon version of the problem has a 

stationary optimal policy. Even though the problem is more complicated than the standard stochastic inventory 

problem, the cost functions are all convex so that relatively simple rules should govern the computation of 

optimal policies. It seems reasonable to speculate that the infinite horizon optimal policy for a given value of n 

would be given by a function z*(x), a non-decreasing function of the starting inventory level x of the revision 

interval. Results from the single-decision model suggest that the expected cost per period would be increasingly 

sensitive to misspecified replenishment quantities as n increases, a property with potentially serious 

implications for managerial decision making. 

 
5. Inventory-triggered revision of replenishment quantities 

The inventory-triggered revision models allow the replenishment quantity to remain fixed unless finished goods 

inventory strays outside of management specified bounds, at which time it is increased or decreased as 

appropriate. We shall use the term target range to indicate those inventory levels between the upper and lower 

bound for which the replenishment quantity remains fixed. When inventory strays outside the target range, the 

replenishment quantity maybe changed in a variety of ways. We discuss two possible ways. The first is to 

increase or decrease z by a fixed amount a, so that replenishments stay this new size until inventory is again 

outside the target range. Defining zt to mean the replenishment quantity in time period t, the inventory level at 

the end of period t would be given by 



 
 

 
 

The second way to adjust the replenishment quantity when inventory strays outside the target range is to order a 

double batch or no batch at all for the next period only, that is, a one-time added or missed lot. The first 

approach would appear to be more effective when demand distributions are likely to vary with time, while the 

second approach might be more appropriate when demand distributions are time homogeneous. Random 

walk theory could be used to better understand the dynamics of this model. Of special interest is the relationship 

between the expected revision frequency and the model’s control parameters U, L and a. Numerical 

computations could focus on values of the control parameters that match expected revision frequencies with 

those investigated in the fixed revision interval study to make comparisons between models easier. 

 

6.  A multi-item model 

The multi-item model can be conceptualized in the following manner. A fixed-revision-interval approach is 

assumed because the capacity constraint would make the inventory-triggered approach unmanageable. Consider 

a family of m products that are managed on the same fixed revision interval, and let x and z be m-vectors. A 

production capacity constraint is imposed each time the products’ replenishment quantities are revised. New 

versions of (4) and (5) are 

 

This recursion, and its infinite horizon version could be analysed to better understand how to manage a capacity 

constrained manufacturing facility where schedule stability is valued. As the recursion suffers from dynamic 

programming’s infamous curse of dimensionality, obtaining computational insights may be challenging. 

 



7.  Research themes 

The objectives of the models described above are both to shed light on possible new methods of managing 

manufacturing systems and to contribute to the modelling literature of industrial engineering and management 

science. It is imperative that research aimed at applying theoretical results to real management systems 

recognizes the limiting aspects of information availability and computing complexity in applied settings. 

Therefore, a three-fold procedure is proposed in examining these models: 
 

(1) Theoretical analysis is employed to understand the mathematical properties of optimal policies under the 

most general assumptions that yield analytic solutions. 

 

(2) The properties of optimal policies are exploited to derive analytic approximations (heuristic policies) that 

are numerically accurate and more amenable to use in applied settings. Issues of computational simplicity and 

limited statistical information regarding parameter values are of central interest here. 

 

(3) The approximations are functionally adapted to be effective in the context of applying statistical 

estimates as values for the model parameters. The approximations may be explicitly modified to accommodate 

the statistical context, or the research may examine the effects of using standard statistical estimates in place of 

actual parameter values. 

 

An example of this general approach is found in the context of the classical stochastic dynamic inventory model 

with independent and identically distributed demands, linear holding and shortage costs, and a replenishment 

setup cost. It was first shown (Scarf 1959) that the optimal policy is of the (s,S) form, and then an iterative 

algorithm was devised (Veinott and Wagner 1965) to compute optimal policies. Asymptotic renewal theory was 

then used (Roberts 1962) to find limiting functional forms that governed policy behaviour as parameters grow 

large, and those functional forms were used (Ehrhardt 1979) to devise approximately optimal closed-form 

expressions for the policy. These formulas are not iterative and therefore extremely fast to compute. Further, 

these analytic approximations are immediately amenable to the context of statistically estimated demand 

parameters since they involve only the mean and variance of the demand distribution (and the lead-time 

distribution, when the lead-time is stochastic). It was also shown (Ehrhardt 1979) how the formulas performed 

when exact values are used for the demand parameters, and also how performance is affected when the 

parameter values are replaced with periodically revised statistical estimates. This entire approach was later 

extended (Ehrhardt 1984) to a generalization of the model that includes stochastic delivery lead times. 

 

8. Summary and conclusions 

We have formulated a variety of models for studying the trade-off between finished goods inventory costs and 

JIT manufacturing schedule stability. First we studied a single decision to fix replenishment quantities for a 

sequence of n periods, and found a generalization of the classical news vendor result. Numerical illustrations 

suggest that as n grows larger, expected costs per period become more sensitive to setting the replenishment 

quantity suboptimally. This could have serious implications for the manager who wishes to have a very stable 

production schedule and therefore desires a large value of n. 

 

We also formulated a dynamic version of the model and showed how it is more complicated than the classical 

stochastic inventory model. The infinite horizon model should have a stationary optimal policy with a 

reasonably simple form. 

 

Finally, we indicated other types of model formulations which could apply to the general finished goods 

management problem. These models would be more responsive to the inventory level, but could lead to 

frequent schedule adjustments when multiple products are managed in a single facility. 
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