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Abstract: 

A periodic-review, random-demand inventory model is analyzed under the assumption that replenishment 

quantities are random fractions of the amounts ordered. Results of a previous study of a single-period model are 

generalized to form an easily computed heuristic adaptation of the (s, S) policy for use in this environment. The 

heuristic is based on the simple practice of scaling down pipeline inventories to estimate the inventory position, 

and scaling up the order quantity in anticipation of an average replenishment yield. Simulation experiments are 

used to estimate the most cost-efficient (s, S) policies and to estimate the performance of heuristic policies in 

environments where replenishment randomness ranges from mild (0-20% defectives) to moderate (0-50% 

defectives). The heuristic is shown to perform quite well, with expected total costs typically within a few 

percent of the best (s, S) costs. The results tend to support common practice in industry which is similar to the 

approach studied here. Although the heuristic is naive in the sense that it ignores the degree of randomness in 

the replenishment quantity, the simulation results support the speculation that unless the target service level is 

extremely high, the replenishment process must be extremely random for its variability to be a significant 

explicit factor in the selection of a practical, cost-effective policy. 
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Article: 

Consider a problem that might, for example, confront the production manager of an electronics manufacturing 

firm. The manager is responsible for producing a highly sophisticated component that must meet very stringent 

quality specifications. Each production run yields a batch having only a random portion of the components 

which pass inspection. The component is produced to stock in response to continuing demands of random size. 

The problem at hand is to specify the inventory replenishment policy for the component which will drive the 

production process. It is likely that an optimal policy will compensate by prescribing an order for more units 

than are actually desired. 

 

The problem is an example of a situation that is not addressed by traditional inventory management models. 

That is, one cannot prespecify the exact size of an inventory replenishment at the time of ordering. Rather, one 

is limited to choosing from a set of ordering levels that influence the probability distribution of a random 

replenishment quantity. While it is certainly true that all real inventory systems have this property, many 

systems have replenishment processes that are sufficiently predictable to assume that the quantities are 

deterministic. This is often the case when stocking a simple, standard item that is in abundant supply. On the 

other hand, it may not be appropriate to assume deterministic replenishment quantities in situations when 

quality requirements are unusually high or when the replenishment process itself is inherently random, such as 

in agriculture, blood donations and semiconductor chip production. 

 

Topics in the areas of random replenishment inventory systems and variable yield production systems have 

received considerable attention in recent years, yet little is known about optimal policies in a multi-period, 

random demand environment other than the fact that they do not possess many of the more elegant properties of 

their deterministic-replenishment counterparts. Silver [17], Sepheri et al. [15], Lee and Yano [10], and Shih [16] 
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analyze models with deterministic demand. Shih [16], Karlin [9], Noori and Keller [13] and Ehrhardt and Taube 

[4] discuss single-order problems with random demand and various assumptions about the ordering process, 

cost structure and demand distributions. 

 

Ehrhardt and Taube [4] show that when the replenishment quantity is a random fraction of the amount ordered, 

an optimal single-period ordering policy can be found with a simple generalization of the traditional 

newsvendor result. They also show that a simple scaling-up heuristic is an effective approximation to optimal 

performance. The heuristic computes an order size by starting with the order size that would be optimal with 

deterministic replenishment, and dividing it by the expected value of the replenishment yield fraction. 

 

Moinzadeh and Lee [11] study a continuous review system under Poisson demand, and analyze ordering 

policies confined to the approximately-optimal (r, Q) form, where the reorder point r is based on the sum of 

inventory on hand plus that on order. They perform an exact Markov-chain analysis of the system and find that 

the best values of r and Q, while difficult to compute, are nicely approximated by an intuitively appealing 

adaptation of the heuristic of Hadley and Whitin [6]. The adaptation, similar in spirit to Ehrhardt and Taube's 

[4], consists of merely scaling up the mean of the Poisson process by dividing it by the expected value of the 

replenishment yield fraction. Gerchak et al. [5] analyze a multi-period model with linear ordering cost and 

random demand. They establish the existence of order points, and find that optimal policies are in general 

difficult to compute and non-myopic in character. A significant theoretical contribution was made by Henig and 

Gerchak [7], who discuss single- and multi-period models with more general assumptions about the random 

replenishment distribution and the cost structure. They show that for a single-period model there exists, under 

very general conditions, an optimal order point whose value is independent of replenishment randomness. They 

also analyze a zero-leadtime multi-period model having replenishment quantities that are random fractions of 

the order sizes, and linear order costs. They know that optimal policies are not of the order-up-to type, and that 

the optimal order quantity and reorder point both tend to increase with replenishment randomness, although the 

strength of the relationships are not characterized. They also establish convergence of value functions to their 

infinite horizon counterparts, and that infinite-horizon optimal order points are no smaller than when 

replenishment is deterministic. Recently Bollapragada and Morton [1] analyzed a multiperiod model with 

normally distributed demand, linear cost functions, and replenishment quantities that are random fractions of the 

quantities ordered. They show that the problem is nearly myopic under certain assumptions, and present several 

accurate heuristics. Their model is very effectively analyzed using myopic and near-myopic methods, but it 

does not, however, include an order setup cost or a delivery lead time. 

 

In the remainder of this paper, we analyze a multi-period model with independently distributed demands and an 

expected-cost optimality criterion. Specifically, in the next section we specify a dynamic model having linear 

holding and shortage costs, an ordering setup cost, and a rather simple mechanism for generating replenishment 

quantities. An Appendix is also provided to place the model in a more general context, and to discuss the 

theoretical reasons for difficulties in computing exactly optimal ordering policies. In the following section we 

introduce an easily-computed heuristic (s, S) policy that is inspired by results from a previously published 

single-period version of the model. Then we present the results of a simulation experiment comparing the 

performance of the heuristic policy with that of the best policy of the (s, S) form. Finally, we briefly draw 

conclusions. 

 

A DYNAMIC INVENTORY MODEL 

In this section we describe the model that we analyzed in detail with a simulation experiment. We develop our 

reasons for confining attention to a model this specific, and for resorting to simulation rather than mathematical 

analysis, in Appendix A, where we briefly present a more general theoretical discussion of random 

replenishment dynamics. 

 

We consider a periodic review inventory system in which demands in successive periods are independent and 

identically distributed. The sequence of events within a period is order, receipt of any replenishment, and 



demand. There is a fixed lead time L ≥ 0 between the period in which an order is placed and the period in which 

it is delivered. We assume that any unsatisfied demand in a period is completely backlogged. 

 

Let the amount of stock ordered be denoted by z, and the amount that is actually delivered by a (z), a random 

variable with cumulative distribution function Bz . One would typically expect that a (z) possesses certain 

general properties. For example, it is reasonable to assume that if u ≤ v, then a (u) ≤ a (v) in a stochastic sense, 

i.e. Bu (w) ≥ Bv(w) for all w. The remainder of this paper is based on the assumption that a (z) = Az, where A, 

the fraction of the order that is actually delivered, is a random variable with support [0, 1] and mean μa. We 

shall refer to μa as the average replenishment yield. 

 

The cost of ordering stock is composed of a setup cost K and a unit purchase cost c for each unit of stock 

delivered. Although this implies that only the delivered units are purchased, the modeling approach also 

encompasses applications where all units ordered are purchased. There is a holding cost h for each unit of 

inventory on hand at the end of a period, and a backlog penalty cost p for each unit backlogged at the end of a 

period. The management objective is to minimize the long-run average undiscounted total cost per period. 

 

A MODIFIED (s, S) HEURISTIC POLICY 

We note that the heuristic policy defined below is sufficiently robust to be applied in more general 

environments (nonstationary demand, convex cost structures, etc.), but we evaluate its performance only in an 

infinite horizon setting with stationary demand distributions and linear holding and shortage costs. 

 

The heuristic policy we define is based upon the deterministic-replenishment version of the model, and relies on 

the decision maker's knowledge of μa to (1) scale up the desired order size when ordering, and (2) to scale down 

the on-order quantity when assessing the inventory position. The optimal policy form for the deterministic-

replenishment version of the model is (s, S). That is, if the inventory position w (stock on hand plus on order) is 

less than or equal to s, then order an amount z = S — w; otherwise order nothing. 

 

The heuristic policy is defined as follows. Let x1 and z1 be the starting on-hand inventory and the order size in 

period t, and let (s*, S*) be a policy that is optimal for the deterministic-replenishment version of the model. We 

first define the inventory position in period t (before ordering and delivery) as 

 

wt = x t + μa[zt – L + z t - L + 1 

   + zt – L + 2 + … + zt – 1]. 

 

Then the prescribed order size in period t is zero unless wt ≤ s*, in which case it is given by 

 

z t = (S* — w t)/ μa. 

 

In practice, the optimal deterministic-replenishment policy can be replaced by a good, easily computed 

approximation (see [2, 3, 12, 14]). If so, the total cost performance should not suffer by more than a percent or 

so, given the accuracy of the approximations in the deterministic replenishment environment. If a theoretically 

exact calculation of (s*, S*) is desired, a good approximation can be improved by using the efficient algorithm 

of Zheng and Federgruen [21]. 

 

The logic of the heuristic is simple: take credit only for the expected value of the amount of outstanding orders, 

and order so that the expected value of the order size matches the deterministic-replenishment order size. Aside 

from the common sense appeal of the heuristic, it is motivated by the computational results of Ehrhardt and 

Taube [4] who found that the same scaling-up approach was quite effective in the single period version of the 

model with no setup costs. They compared the scaling-up policy with exactly optimal policies in a very random 

replenishment environment (uniform on [0 1]), and found that it was within 0.8% of optimal total cost when the 

holding-to-shortage cost ratio p/h was 4 or 9. When p/h was 24, the heuristic averaged within 1.4% of optimal 

total cost except for one item which was 9.1 % above optimal. It clearly outperformed another, more 



complicated heuristic which was designed to adjust the ordering policy for both the mean and variance of the 

replenishment yield variable A. 

 

We note that the heuristic could be considered naive in that it ignores the degree of randomness in the 

replenishment distribution. Indeed, it would prescribe the same policy for a replenishment yield distributed 

uniformly on [0.4, 0.6] as for one distributed uniformly on [0, 1]. In view of the fact that such a naive approach 

was very effective in a single-order environment [4], we investigate its potential in a dynamic environment 

despite the established result [7] that it is not exactly optimal. We estimate the effectiveness of the heuristic 

using a simulation experiment described in the following section. 

 

A SIMULATION EXPERIMENT 

We focus on the long-run behavior of the model. To characterize the performance of the heuristic (s, S) policy, 

we compare it with the best known (s, S) policy, estimated using a simulation experiment. The simulation, 

written in Pascal, searches for the (s, S) policy having the smallest average total cost per period. For each item 

simulated, we record the sample means and 95% confidence intervals of the following performance 

characteristics: holding cost per period, order cost per period, shortage cost per period, total cost per period, and 

backlog frequency. We describe details of the experimental design and summarize results below. 

 

We simulated a full factorial permutation of the parameter settings listed in Table 1, resulting in 256 distinct 

inventory items. Without loss of generality, we have set the unit holding cost rate h equal to 1, and the unit 

revenue r and unit purchase cost c equal to zero. The replenishment yield distributions are uniform on [0.5, 1.0] 

and [0.8, 1.0] for the mean values 0.75 and 0.90, respectively. For each of the 256 items (parameter 

combinations), we computed the optimal deterministic replenishment policy (s*,S*) utilizing the algorithm of 

Veinott and Wagner [19], which we then modified to a heuristic policy using the method described in the 

previous section. 

         
The heuristic policy was the center of a range of policies we simulated to assess cost performance. We 

determined the range by first varying the quantity D = S — s by 10% above and below the heuristic value, and 

then for each value of D by varying s above and below its heuristic value by the larger of 10% or 10. In those 

instances where the lowest-cost policy was found to be at the end of the range of either D or s, we extended the 

range until a local minimum was established. We refer to the policy found by this simulation response surface 

method as the best (s, S) policy. Approximately 54,600 policies were simulated in studying the 256-item 

collection of parameter combinations. The number of policies simulated for an individual item ranged from a 

minimum of 33 [for an item having a heuristic policy of (2, 13)] to a maximum of 1073 [for an item having a 

heuristic policy of (88, 134)]. For every policy simulated, we ran 101 independent replications of 1000 periods. 

The first run of 1000 periods was discarded before collecting data. The program computed mean values and 

95% confidence intervals for the total cost per period as well as its components and the backlog frequency. The 

confidence intervals are within ± 1.8% of the mean value, on average. 

 

The total cost performance of the heuristic policy is quite close to that of the best (s, S) policy in our simulation 

experiment. In Table 2, we list frequency statistics for the estimated percentage difference between the mean 

total costs of the best (s, S) policy and the heuristic. Notice that the heuristic is within 0.5% of the best (s, S) 

policy's total cost for 50.8% of the 256 items, and within 2.0% for 90.0% of the items. The average percent 

difference in mean total cost is 0.93% for all 256 items. The largest percent difference is 19.7%, for the item 



having Poisson demand, μ = 16, L = 2, μa = 0.75, K = 64 and p = 99. The heuristic policy for this item is (55, 

95), while the best (s, S) policy is (64, 99). Although five of the seven items having a cost difference greater 

than 5% have p = 99, it is difficult to explain the larger difference for this particular item. The same item with 

μa increased to 0.9 has a cost difference of only 1.38%. It appears as if managers should be wary if they wish to 

design extremely high-service inventory systems in the presence of significantly random replenishment 

quantities. 

      
We found that the percentage difference in total cost between the best (s, S) policy and the heuristic is in general 

not very sensitive to the parameter settings. The average percentage difference in total cost between the two 

policy rules is no more than 1.57% when aggregated over all items having the same value of any single 

parameter setting. The variance in total cost percentage differences is significant at the 0.05 level only when 

comparing the two demand distributions, mean demand values of 2 and 8, the two levels of mean replenishment 

yield, unit shortage cost values of 4 and 99, or unit shortage cost values of 9 and 99. 

 

It is interesting to examine how the two policy rules differ in the values of their cost components. In Table 3 we 

list the average values of total cost per period and the components of total cost per period when aggregated over 

all items having the same value of the average replenishment yield μa. Notice that the best (s, S) policies tend to 

hold more inventory, have smaller shortages, and have slightly larger setup cost per period than the heuristic 

policies. The differences are more pronounced for the smaller replenishment yield value. It appears that the best 

(s, S) policies are holding more safety stock and ordering slightly smaller batches than the heuristic policies. 

This observation is supported when the actual policy numbers are examined. Although the differences in 

shortage cost appear significant, we judge this simple heuristic to be surprisingly effective in its overall (total 

cost) performance. 

 

Finally, we examine the backlog performance of the two policies by computing their values of backlog 

protection, which is the fraction of periods in which a backlog does not exist. Managers are often interested in 

such a measure because the backlog penalty cost parameter is often not based on real costs, but rather used as a 

tool to strike a reasonable balance between carrying costs and customer service. We tabulate backlog protection 

values of the two policy rules, and compare them to their theoretical bounds in a perfect replenishment 

environment. Recall that in a periodic review system with deterministic replenishment, and optimal (s, S) policy 

has backlog protection equal to p /(h + p) if demand is continuously distributed. If demand is discrete, then the 

optimal backlog protection is equal to or slightly greater that this figure [19, p. 539]. In Table 4 we list average 

simulated backlog protection aggregated over all items with the same value of p/h and average replenishment 

yield μa. Notice that the heuristic policies have somewhat lower backlog protection, which is consistent with our 

observations about the cost components listed in Table 3. The best (s, S) policies tend to behave more as 

optimal (s, S) policies would in a perfect replenishment environment, in that they give slightly higher protection 

than the theoretical target value. The heuristic policies, appear to be just as close to the target value on average. 

Notice that these results parallel the analytic result [7] for K = 0 that random replenishment tends to increase the 

optimal reorder point above its deterministic replenishment value. These results would seem to indicate, 

however, that such an effect is rather weak for the parameter values used in this study. 

 

CONCLUSIONS 

We have formulated a dynamic model of an inventory system having random replenishment quantities. 

Although the mathematics of computing optimal policies are quite cumbersome, we have shown that an easily-



computed modified (s, S) heuristic performs well compared with other policies within the modified (s, S) class 

when there is mild to moderate randomness in replenishment quantities. 

 

The results should offer some encouragement to inventory managers, since the heuristic approach (scaling-up 

replenishment lots) parallels a common industry practice for items known to have variable replenishment quan-

tities, and is easily adapted to other policy forms, (Q, r) for example. Although the scaling-up heuristic tends to 

order lots that are slightly too large and hold safety stocks that are slightly too small, its good total cost 

performance and its closeness to traditional backlog protection targets provide quantitative evidence that the 

practice is a sound one. We note that although we did not simulate environments with extremely random 

replenishment yields, our parameter set focused on relatively low values of demand variance, which were the 

more challenging cases for this type of heuristic in an earlier study [4]. We expect that the heuristic would 

perform at least as well as noted here if larger values of demand variance were simulated. It may turn out, 

however, that the heuristic is not as efficient for extremely random replenishment yields. Limited evidence in 

this study also points to the possibility that very high service level targets (values of p/h in the neighborhood of 

99) may also be associated with sensitivity of optimal policies to randomness in replenishment quantities. 

 

From a theoretical perspective, there is room for improvement in the heuristic due to the fact that its safety 

stocks are consistently smaller than those of the best policies found, even though the difference is not large. It is 

also true that this study does not compare the heuristic with truly optimal policies. Although significantly better 

total cost performance may be possible with true optimal policies, the enormous complexity of computing and 

implementing them would seem to make them of interest primarily to mathematical analysts. That is not to say 

that additional research is not warranted. It appears, though, that the most promising avenues of investigation 

are those that confine attention to convenient policy forms [11]. 

 

APPENDIX A 

A Mathematical Model of the Dynamic Inventory System 

In this Appendix we discuss a general version of the random replenishment inventory model. The discussion 

illuminates the difficulties surrounding the computation and implementation of theoretically optimal policies, 

and motivates the need for effective heuristic policies that are easily implemented. 

 

We consider a multi-period model of length T periods in which time-related quantities are labelled with the 

subscript t, but such subscripts will be suppressed in the interest of simplicity of exposition wherever clarity 

permits. The sequence of events within a period is order, receipt of any replenishment and demand. Assume 

initially that replenishment orders are delivered immediately (the leadtime L = 0). Demand Dt in each period is 

independent and identically distributed. Let the amount of stock on hand before ordering be denoted by x, the 

amount of stock ordered by z, and the amount that is actually delivered by a (z), a random variable with 

cumulative distribution function Bz. Also, let yt = x t + a (zt) denote the amount of stock available to meet 

demand in period t, and assume that all unsatisfied demand is backlogged. One would typically expect that a (z) 

possesses certain general properties. For example, it is reasonable to assume that if u ≤ a (v), then a (u) ≤ a (v) 

in a stochastic sense, i.e. Bu(w) ≥ Bu(w) for all w. The model that follows is based on the assumption that a (z) = 

Az, where A is a random variable with support [0, 1] and mean μa. 

 

We follow the general pattern of stochastic inventory model analysis presented by Heyman and Sobel [8, pp. 

306-327]. All cost functions and parameters are assumed to include the necessary discount factors so that they 

represent values discounted to the first period of decision making. Let ct (u) be the ordering cost in period t 

when u units of stock are delivered. Although this implies that only the delivered units are purchased, the model 

is easily adjusted to applications where all units ordered are purchased. We assume, unless otherwise noted, that 

the ordering cost has a linear component ctu as well as a setup cost K,. For example, if these derive from a 

constant unit purchase cost c and a constant setup cost K, then, when u > 0, 

 

ct (u ) = Kt + ctu = α
t - 1

(K + cu), 



α being the discount factor per period. We express the remaining costs in period t as the function gt(y, Dt), 

where y is the amount of stock available to meet demand, that is, the initial stock plus the replenishment 

quantity received in that period. (A negative value of y signifies a persisting amount of unsatisfied demand, 

which we assume to be completely backlogged.) For example, if h and p are the respective unit costs of 

inventories and backorders, and r is the price, then 

 

gt (y, d) = α
t – 1

[h (y — d)
+
 + p (d — y)

+
 — rd] 

 

if all revenue is received at the time goods are demanded. Finally, let gT(yT, DT) include all costs and revenues 

associated with salvage of excess stock or liquidation of an backlog at the end of the decision-making horizon. 

 

Let B denote the present value, at the beginning of period 1, of all costs that are incurred during periods 1, . . . , 

T + 1. Then 

 
where δ (x) =1 if x is positive and zero otherwise. It is clear that the following dynamic programming recursion 

is appropriate for minimizing the expected value of B. 

 

 

We identify ft(x) as the minimum expected discounted (to period 1) total cost for periods t through T, starting 

with an inventory level of x. 

 

At this point it is clear that the model cannot be transformed in the traditional way to one in which the decision 

variables are the amounts of stock available to meet demand {yt , t = 1, . . . , T }, since choosing a value for z„ 

does not fix the value of yt; it merely determines its probability distribution. It follows that the structure of 

optimal policies that has been developed for deterministic replenishment models [myopic optima, (s, S) policies, 

etc.] will not transfer directly to our model. In fact, it has been shown [7] that an order-up-to policy will not 

generally be optimal. It appears that true optimal policies are generally both complicated to compute and, once 

computed, would be tedious to implement. 

 

Additional complications arise when the replenishment lead time L is positive. In this case we define a state 

vector having L + 1 components. The first component is the stock on hand at the beginning of a period (before 

receipt of any outstanding order and before demand), and the remaining components are the sizes of outstanding 

replenishment orders in order of delivery. Therefore, the state in period t is given by 

 

 



 

after one period. The state space cannot be collapsed into a scalar inventory position, as is the case in more 

standard backlogging models. Therefore, the model has the same state space as the lost-sales model, and also 

shares the same curse of dimensionality. Optimal policies are significantly more difficult to compute than for 

the zero-leadtime model described above, and they would be even more tedious to implement. This is why we 

turn our attention to heuristic policies that are both easily-computed and easily-implemented, and why we resort 

to simulation rather than analytic computation. 
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