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Abstract: 

This article describes EZClimb, a set of SAS/IML steps useful in solving numerical optimization problems. The 

program uses the method of modified quadratic hill-climbing with either analytical or numerical derivatives to 

maximize a user-defined criterion function. Modified quadratic hill-climbing is one of the more powerful 

algorithms known for function optimization but is not widely available outside of the software package 

GQOPT. The efficacy of the SAS steps is illustrated using Rosenbrock's function, Savin and White's Box-Cox 

extended autoregressive model, and Klein's Model. 

Key words. Hill-climbing, maximum likelihood estimation, non-linear least squares, optimization. 

Abbreviations. BHHH: Berndt, Hall, Hall, and Hausman's optimization algorithm. FIML: full-information 

maximum-likelihood. SAS /IML: SAS Institute's Interactive Matrix Language. TSP: Time Series Processor 

software package. 

 

Article: 

1. Introduction 

Empirical analysis increasingly involves the use of maximum-likelihood or non-linear least-squares estimation. 

Historically, nonlinear least squares has been used more because of the high costs associated with maximum 

likelihood (Belsley, 1979). However, recent econometric developments (for example, Belsley, 1974, 1979, 

1980), in conjunction with new computer hardware and software have led to increasing use of maximum-

likelihood methods. Today, both maximum-likelihood and non-linear least-squares estimation are commonly 

treated in econometric texts (Chow, 1983; Greene, 1990; Judge et al., 1982; Kmenta, 1986; Maddala, 1977) and 

used in increasingly more sophisticated ways (for example, Moffitt, 1986). 

 

One of the more powerful algorithms for tackling these problems is the method of modified quadratic hill-

climbing (Goldfeld, Quandt, and Trotter, 1966, 1968). Unfortunately, this method is not widely available 

outside GQOPT, Goldfeld and Quandt's software package useful for a wide range of numerical optimization 

problems including several econometric applications. The purpose of this article is to describe a set of SAS 

steps in the form of a program called EZClimb which implements this algorithm in a manner accessible and 

useful to a broad range of researchers.
1
 Use of this program is illustrated with three well known problems 

including the Rosenbrock function, an autoregressive Box-Cox likelihood function, and FIML estimation of 

Klein's Model I. 

 

The issue of accessibility is not trivial. While there have been enormous strides in software development, most 

packages require a model to fit into one of several canonical forms. Where customization is possible, the 

documentation for that process is often cryptic. As a result, researchers often must compromise their model to 

fit the software. EZClimb provides a more accessible alternative which is applicable to a wide variety of 

problems including those not easily treated by current software packages. 

 

The accessibility of EZClimb is due in large part to the use of SAS /IML code. Unlike other languages such as 

Fortran (often used in current software), SAS/ IML does not require such preliminaries as space allocation, 
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dimensioning, or definition of variable type. Matrices are the basic unit with elements of matrices referred to in 

a standard row-column manner. Moreover, complex operations such as inversion, the calculation of 

eigenvalues, or the determination of row or column maxima can be performed in a straightforward way with a 

single command. As a result, SAS/IML code can be used easily by those familiar with matrix algebra. 

 

This accessibility allows the program to handle a broad range of estimation problems. While it is applicable to 

most problems in which an objective function is maximized or minimized, it is particularly well suited for 

problems involving complex or idiosyncratic error structures such as those associated with likelihood functions 

in which the likelihood of particular observations takes one of several functional forms. Other examples include 

nonlinear least-squares problems and qualitative dependent-variable models such as probit, logit, and Tobit. 

 

The program is sufficiently flexible to respond to the various needs its users. While default values are provided, 

the user has control over all parameters used in the estimation process. Derivatives can be calculated either 

analytically or numerically, and an optional statistical analysis based on asymptotic maximum-likelihood theory 

is also available. The structure of the program is such that the more sophisticated user can easily recode the 

program for alternative hill-climbing methods or an expanded statistical analysis. Indeed, the general 

accessibility of the program makes it a potentially useful tool in teaching hill-climbing estimation. 

 

2. A Review of the Hill-Climbing Algorithm 

EZClimb uses Goldfeld, Quandt, and Trotter's (1968) modified quadratic hill-climbing method as the 

foundation for its estimation procedure.
2
 This method belongs to a class of estimation procedures called hill-

climbing methods and which are based on the steepness and curvature of the function being maximized. 

Amemiya (1983), Goldfeld and Quandt (1972), Judge et al. (1985), Powell (1970), and Quandt (1983) provide 

reviews of this class of estimation techniques. 

 

In hill-climbing, the goal is to maximize some criterion function f(p) by the appropriate choice of values for the 

parameter vector p. Let F denote the vector af/ap, S denote the matrix 32f/ ap2, and t denote the iteration. 

The method of quadratic hill-climbing is based on two observations: (1) the most direct way to improve the 

value of the function f(p) is to move uphill in the steepest direction (given by F), and (2) if the function were 

quadratic, the maximum could be found in one step (using S). The first observation leads to an iterative routine 

called the steepest-ascent method in which parameter values are changed by the first derivatives of the criterion 

function in order to increase the value of the function 

 

The second observation leads to an iterative routine often called the Newton—Raphson method in which 

parameter values are changed by the product of first and second derivatives 

 

Neither method (1) nor (2) is ideal. The steepest-ascent method can be slow and may be unable to get past small 

valleys. Use of the Newton—Raphson method, on the other hand, while often able to overcome problems such 

as small valleys, will perform poorly if the criterion function is not closely approximated by a quadratic 

function and will fail if S is singular. The quadratic hill-climbing method combines these two methods by 

weighting more heavily the method which is more likely to succeed. When the criterion function is closely 

approximated by a quadratic function, the Newton—Raphson method is more heavily weighted. When the 

quadratic approximation is poor, the steepest-ascent method is weighted more heavily. Thus, the quadratic hill-

climbing method is an iterative routine in which the change in parameter values is a combination of Equations 

(1) and (2) given by 

 
α is a negative function of the degree to which the criterion function can be approximated by a quadratic 

function.
3
 When α equals zero, Equation (3) becomes identical to Equation (2); as α rises above zero, Equation 

(3) approaches Equation (1). 

 



Two special cases may occur which cannot be handled by Equation (3). First, a may be negative. If this occurs, 

the quadratic approximation works well and the new parameter vector pt +1 is defined as 

 

Secondly, Ft may equal zero. If this occurs and St is negative definite, then a local maximum had been found, 

and the iterative process stops. However, if Ft = 0 and St is not negative definite, then the iterative process has 

found a saddlepoint or the bottom of a valley. In this case, both the steepest ascent and Newton—Raphson 

methods will fail. However, the step ± λ1U1 (where λ1 is the largest eigenvalue of St and U1 is the eigenvector 

associated with λ1) maximizes the quadratic approximation of the criterion function over a sphere of radius λ1 

centered at pt. (See Lemma 3 and the Appendix to Goldfeld, Quandt, and Trotter (1966).) Thus, when Ft = 0 and 

St is not negative definite, the new parameter vector pt + 1 is defined to be 

 

Intuitively, Equation (5) allows the quadratic hill-climbing method to step away from a saddlepoint or valley 

floor in what is approximately the best direction so that it may continue its search process. 

 

One criticism of the quadratic hill-climbing method is that it is likely to be slow in the presence of ridges 

because it searches for an improvement over a spherical region. The modified quadratic hill-climbing method 

allows the process to become quicker by changing the search region to an ellipsoidal one. This is accomplished 

by replacing the identity matrix I in Equation (3) with the positive definite matrix At so that pt +1 is defined to be 

 

The construction of At is based on "the heuristically plausible assumption that the most useful direction of 

search at any point is close to the direction of the immediately preceding step.
4
 Define δ1 to be the preceding 

step 

 

 

We can, of course, search for an improvement in the criterion function using the new coordinate system defined 

by the Bt transformation. However, searching over a spherical region under the transformed coordinate system 

is equivalent to searching over an ellipsoidal region in the original coordinate system. Hence, using the Bt 

transformation to define an ellipsoidal search region and converting back to the original coordinate system, we 

find At is defined to be 

 

β determines the degree to which the direction δt is to be emphasized. When the quadratic approximation of the 

criterion function is poor, it is likely that the value of searching over an ellipsoidal region will be high. Hence, β 

is set relatively close to one. When the quadratic approximation of the criterion function is good, there is less 



need for an ellipsoidal search region and so the value of β is smaller. In essence, a greater value of β results in 

greater stretching of the ellipsoidal search region in the direction of δt. 

 

In practice, there are several algorithm variables, such as β, whose initial values need to be set and whose later 

values are a function of prior successes. Two algorithm variables of particular interest with the modified 

quadratic hill-climbing algorithm are R (a scaling factor which is used in the calculation of α and which goes to 

zero as the quadratic approximation gets better) and h (a scalar initially set at one and then increased in order to 

speed up the estimation process by stretching the step —(St — αAt)
-1

Ft. The actual implementation of Equation 

(6) thus becomes 

 

After having chosen initial values for the algorithm parameters, the user chooses a set of starting values, p0. The 

user then iterates over Equation (13) (or Equations (4) or (5) if need be) until a maximum is found. A more 

formal statement of the algorithm is given in the Appendix. 

 

A particular advantage of quadratic hill-climbing methods when engaged in maximum likelihood estimation is 

the use of S to estimate the information matrix. Although the information matrix is the expectation of the 

negative of the second derivative matrix, ignoring the expectation and using the negative of the second 

derivative matrix yields a consistent estimator of the information matrix (Cramer, 1986, pp. 27-28). This use of 

second derivatives to estimate the information matrix provides EZClimb with an advantage over programs like 

TSP which rely only on first-derivative methods in their maximum likelihood routines. The failure to use 

second derivatives in algorithms like BHHH, used for example by TSP in its FIML command, may generate 

inaccurate (though consistent) estimates of the maximum-likelihood standard errors. Spitzer (1984), for 

example, has shown that in finite samples the Hessian for the Box-Cox likelihood function cannot be correctly 

evaluated by the BHHH method and that, in fact, for Box-Cox likelihood functions, all first-derivative iterative 

estimation methods will overestimate variances (p. 651).
5
 Thus, while programs like TSP may permit easy 

coding of a model for maximum-likelihood estimation, an algorithm like quadratic hill-climbing used in 

EZClimb is preferable when interest centers on accurate evaluation of the second-derivative matrix to obtain 

standard errors. 

 

The EZClimb program provides an optional statistical analysis in which asymptotic standard errors are 

calculated based on the second-derivative matrix and the assumption that the Cramer-Rao lower bound is met. 

 

3. Illustrative Examples 

The use of the modified quadratic hill-climbing algorithm with EZClimb is fast, accurate, and straightforward. 

Consider three familiar problems drawn from the optimization and econometric literatures. 

 

The first problem is the maximization of Rosenbrock's function. Long known as a test function (Rosenbrock, 

1961; Fletcher and Powell, 1963; Goldfeld, Quandt, and Trotter, 1966, 1968; Goldfeld and Quandt, 1972), it 

was used with EZClimb to illustrate the general ability of the program to find a maximum, to test the efficacy of 

the numerical derivative modules, and to aid in the determination of the default values for the several variables 

used by the program. 

 

The Rosenbrock function, which has a surface which resembles a narrow, U-shaped ridge, is defined by 

 

and takes a maximum value of zero at the point (1, 1). Using either analytical or numerical derivatives, the 

program generally performed well in its search for the maximum. Table I provides a summary of the iterations. 

As can be seen, results using numerical derivatives closely approximated the results using analytical derivatives 

and were reasonably close to the results of Goldfeld, Quandt, and Trotter (1968).
6 

 



 

The second problem, taken from the econometric literature, was to estimate Savin and White's (1978) Box-Cox 

extended autoregressive model of consumption function derived from Klein's Model I. This problem was 

chosen to illustrate the EZClimb's ability to handle econometric problems with complicated likelihood 

functions. The likelihood function for this problem as given by Savin and White (1978, p. 5) is: 

 

with   2
(λ, p) defined in terms of the Box-Cox transformed data. The results of estimating this model using 

EZClimb along with Savin and White's results are reported in Table II. Derivatives were calculated numerically, 

and with one exception (the rate with which h is increased) only default values of the hill-climbing algorithm's 

variables were used. As can be seen, the results are identical to Savin and White's results without resorting to 

the two-dimensional grid search over λ and p that they employed. Note also that Savin and White's parameter 

estimates are only accurate to two places because of limitations inherent in the SHAZAM program. 

 

The last problem, which illustrates EZClimb's ability to handle simultaneous-equations models, was to estimate 

the well known Klein's Model I. Using the form estimated by Chow (1968) and Goldfeld and Quandt (1972) 

and using 21 observations in deviation-from-mean form, Klein's Model I can be written as: 

U = YB + XA , (16) 

where U is a 21 x 3 matrix of normally distributed errors, Y is a 21 x 3 matrix of dependent variables, X is a 21 

x 7 matrix of independent variables, and B and A are the conformable coefficient matrices: 



 

 



Table III presents the results of estimating this model with EZClimb along with the results of Chow and of 

Goldfeld and Quandt. Using numerical derivatives, results are close to Goldfeld and Quandt's who also used the 

modified quadratic hill-climbing algorithm and virtually identical to Chow's who used a Newton—Raphson 

method with analytical derivatives. As with the Savin and White example, the only deviation from EZClimb 

default values was to increase the rate with which h was increased. 

 

4. Implementation of EZClimb 

Figure 1 provides a schematic overview of EZClimb's code structure. The beginning of the program identifies 

the location of external data and control files and inputs them into the program. After invoking the IML 

command (PROC IML), the program then defines a few labels used in the output process. Following this are a 

number of utility modules which perform much of the detailed calculation required. The module FUNCTION is 

used to define the criterion function (for example, a likelihood function) to be maximized and is written by the 

user. (Minimization problems can be solved by defining the criterion function in EZClimb to be the negative of 

the actual criterion function.) Other modules which may or may not be of concern to the user are: 

 

 DATADEF — transforms or scales data 

 FIRST— calculates analytical first derivatives 

 SECOND — calculates analytical second derivatives 

 DEPVAR — identifies the dependent variable and calculates predicted values of that variable for use in a 

statistical analysis. 

 

There are five other modules (FDERIV, SDERIV, RVALUE, AMATRIX, and STEP) which need no 

modification. These calculate numerical derivatives and perform the calculations needed to perform the hill-

climbing routine. 

 

As example, consider the code used to estimate Klein's Model I. Because numerical derivatives were used, the 

insertion of code into the EZClimb program required: 

 

 the location and contents of the external files (in the DATA section) 

 the creation of labels (in the LABELS section) 

 data conversion to deviation-from-mean form (in the module DATADEF) 

 definition of the likelihood function (in the module FUNCTION). 

 

After specifying the location and contents of the external files and creating the desired labels, the module 

DATADEF was used to transform the data into deviation-from-means form. The code for that module was: 

 

START DATADEF(D,OTH);  

UNITCOL-SHAPE(1.0,21,1); 

D-D-UNITCOL*D[:,];  

FINISH; 

 

where UNITCOL is a vertical vector of ones and D[:,] creates a horizontal vector whose elements are the means 

of the variables. Notice that D is both the matrix of original observation data (input to the module) as well as 

the matrix of transformed observation data (output from the module). OTH, the vector of constant-across-

observations data, is not used for this problem. 

 

Finally, the module FUNCTION was used to define the likelihood function (Equation (19) above). The code for 

that module was: 



 
Notice that P represents the vector of parameters of the model and that most of this module maps the P vector 

into a more readable code and defines the matrices A and B. Given those matrices, the definition of the 

likelihood function is located in the five lines before the FINISH command. Note also that the value of the 

likelihood function must be set equal to the variable FNVAL. 

 



Once the desired code is inserted into the modules of interest, the MAIN module provides the overall guidance 

for implementing the modified quadratic hill-climbing method. Figure 2 provides a schematic representation of 

the logical structure of this module. After some initializations and conversion of the data into matrix form (with 

optional manipulations through the module DATADEF), the MAIN module begins by calculating a value for R 

using the module RVALUE and the old parameter vector pt. A tentative set of new parameter values associated 

with that R are then calculated using the modules AMATRIX and STEP. If the tentative set of new parameter 

values increases the value of the criterion function calculated with the module FUNCTION, the program moves 

on to determining whether a larger step in the same direction would improve the function still more. If the 

tentative set of new parameter values does not result in a greater criterion function value, R is recalculated and 

the process is repeated. 

 

Step length is easily calculated. If the tentative set of new parameter values results in a greater criterion function 

value, the step is multiplied by the positive scalar h(>1) and a second tentative set of new parameter values is 

generated. If the criterion function increases with this second tentative set of new parameter values, h is made 

still larger. When the criterion function no longer increases, the last step for which an increase occurred is used 

to define the new parameter vector pt + 1. The MAIN module then tests whether the convergence criteria (chosen 

before the program was run) have been met. See Table IV If the convergence criteria have not been met, the 

new parameter vector becomes the old parameter vector, and the program begins again to the search for a vector 

of parameter values which increases the criterion function. If the convergence criteria are met, the program 

performs an optional statistical analysis using the module DEPVAR before stopping. Throughout this process, 

information about each iteration is sent to an output file. At the end, summary information on the final 

parameter values and convergence status is printed. 

 

 

Two preliminary steps are needed before the program can be submitted for execution. First, the user must insert 

the desired code into the program to locate external files and define the criterion function. Secondly, the user 

must create a few external files which provide data and control the program: 

 

 START— contains parameter starting values, that is, po (REQUIRED) 

 CONTROL — controls the operation of the program (REQUIRED) 

 RAWDAT1— contains data by observation (OPTIONAL) 

 RAWDAT2— contains data constant across observations (OPTIONAL). 

 

Note that while the two raw data files are optional, RAWDAT1 will in all likelihood be used. The purpose of 

RAWDAT2 is to allow the user to input ancillary data such as, for example, a tax rate used in computing 



disposable income or weights to be used in scaling the data in RAWDAT1. Note also that the names of the files 

above are those used internally by EZClimb. Externally, the user can give them whatever names are desired. 

 

Table V provides a summary of the contents of the control file. Line 1 provides information on which files are 

to be used, whether the program is to modify the raw data input (that is, whether to run the module DATADEF), 

whether a statistical analysis is desired, and whether analytical derivatives are to be used (that is, whether to run 

the modules FIRST and SECOND). Line 2 provides information on which set of convergence criteria are to be 

used and at what tolerance levels. See Table IV for a summary of the various convergence criteria. Line 3 

establishes particular values for the several variables used in the hill-climbing routine. Line 4 provides similar 

information for the variables used in the calculation of numerical derivatives. Default values are provided for 

lines 2, 3, and 4 and can be invoked by using 0 for the variable's value. All variables in the control file must be 

specified whether used or not. Having written the necessary code and created the desired external files, the 

program is submitted to SAS in the usual way. 

 

5. Conclusion 

The description of EZClimb and illustration of its efficacy is intended to make more sophisticated estimation 

methods available to a broader range of re-searchers. To be sure, there are now a large number of software 

packages available. Their ability to deal with non-standard model forms, however, is limited for those not 

conversant with Fortran (or other less accessible languages) or not willing to tinker with the internal structure of 

software. EZClimb may provide a safer alternative.* Its relatively transparent structure and its use of matrix 

notation make it both flexible and accessible. 



 
Notes: 
1
 The working paper `EZClimb: SAS/IML coding to accompany "Modified quadratic hill-climbing with 

SAS/IML"' contains a copy of the SAS steps and is available from the author upon request. The SAS steps are 

also available on floppy disk (for a small fee to cover postage and floppy costs) or via BITNET in ASCII text. 

The author's BITNET address is leyden@uncg. 
2
 Goldfeld, Quandt, and Trotter (1968) refer to the method as improved quadratic hill-climbing, while Goldfeld 

and Quandt (1972) refer to it as modified quadratic hill-climbing. I have chosen the latter appellation because of 

its later date. 
3
 If α is defined so that (St — αI) is negative definite, then pt + 1 will be the parameter vector which maximizes 

the quadratic approximation of the criterion function over a sphere centered at pt. In order to ensure that (St — 

αI) is negative definite, α must be no less than λ1, the largest eigenvalue of S,. See Lemmas 1 and 2, the 

Theorem, and the Appendix to Goldfeld, Quandt, and Trotter (1966).  
4
 The quote can be found in both Goldfeld, Quandt, and Trotter (1968, p. 5) and Goldfeld and Quandt (1972, 

page 8). Goldfeld, Quandt, and Trotter provide a detailed discussion of the derivation of At. Goldfeld and 

Quandt provide a more concise statement of that derivation. 
5
 It should be noted that Berndt, Hall, Hall, and Hausman (1974) argued for the BHHH algorithm on the basis of 

guaranteed convergence and that they suggest the use of likelihood-ratio testing rather than the calculation of 

/maximum-likelihood standard errors. 
6
 In the three problems examined in this paper, the numerical derivative modules performed well. It should be 

noted, however, that such success is a function of both the problem being examined and the parameters used to 



calculate the numerical derivatives. Particularly when first derivatives are close to zero and/or the second-

derivative matrix is close to being singular, the user may be better off using analytic derivatives. 
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