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Abstract: 

A single-period random demand inventory model is analysed under the assumption that the replenishment 

quantity is a random function of the amount ordered. The structure of optimal policies is characterized for linear 

ordering cost functions, both with and without a setup cost. Generalizations of base-stock policies and (s, S) 

policies are shown to be optimal. Closed form analytic expressions for optimal policies are obtained for the 

special ease of linear ordering cost and uniformly distributed demand. Optimal policies are compared with two 

heuristics in a more general demand environment. It is shown that a very simple heuristic policy performs quite 

well. 

 

Article: 

1. Introduction 

Consider a problem that might, for example, confront the production manager of an electronics manufacturing 

firm. The manager must order semiconductor chips for assembly into a highly sophisticated component. 

Unfortunately, no supplier can reliably provide chips that meet the stringent performance specifications required 

for use in this component. The manager must order more chips than are actually desired, hoping that a 

reasonable number of them will be usable. But how many chips should be ordered? 

 

The problem is an example of a situation that is not addressed by traditional inventory management models. 

That is, one cannot prespecify the exact size of' an inventory replenishment at the time of ordering. Rather, one 

is limited to choosing among a set of ordering levels that influence the probability distribution of a random 

replenishment quantity. While it is certainly true that all real inventory systems have this property, many 

systems have replenishment processes that are sufficiently predictable to assume that the quantities are 

deterministic. This is often the case when stocking a simple, standard item that is in abundant supply. On the 

other hand, it may not be appropriate to assume deterministic replenishment quantities in situations such as: 

 

(a) choosing the size of a production run that is to replenish the stock of a high-quality product to be sold to 

clients; 

 

(b) attempting to replenish the supply of a rare blood type in a, blood bank; and 

 

(c) deciding on the amount of land to devote to growing a particular crop. 

 

The terminology used in this paper is that, of inventory models. The reader should remain aware that, as is true 

of most papers about inventory models, applications include a variety of scenarios. In particular, when the term 

replenishment quantity is used it merely refers to the amount of usable material that received from the 

ordering or production process. That is, the model encompasses situations where the amount received or 

produced is deterministic but the amount that passes inspection is random. The term perfect replenishment will 

be used when referring to the standard model in which the amount delivered is always equal to the amount 

ordered. 
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Literature in the topic area is sparse. Silver (1976), Sepehri et al. (1986), and Shih (1980) analyse models with 

deterministic demand and simple cost structures. Shill (1980) also briefly analyses a model with continuously 

distributed random demand, but stops after deriving an optimality condition for the single-period model with a 

simple cost structure. Karlin (1958) considers a single-period problem with random demand and general cost 

structure, but limits the ordering decision to only two alternatives: (a) don't order and (b) order with a given 

random result. A range of order sizes is not permitted. Recently, Noori and Keller (1986) have obtained results 

characterizing optimal order quantities for the specific eases of uniformly and exponentially distributed demand. 

There are apparently no results in the literature concerning a multi-period model with random demand. 

 

In the remainder of this paper we analyse a single-period model with random demand and an expected-cost 

optimality criterion. We characterize optimal policies and compare them with easily-computed heuristic 

policies. Specifically, in §2 we discuss a single-period model with general forms for the cost, functions, demand 

distribution and replenishment distribution. We present properties of optimal policies for the general model and 

the important special case of linear cost functions. In §3 we present detailed analytic results that apply when an 

assumption of uniformly distributed demand is added to the model. We discuss numerical results for negative 

binomial demand distributions in §4, and draw conclusions in §5. 

 

2. A single-period model 

We consider a model in which a single ordering decision is to he made so as to minimize expected total cost. 

The model applies to situations where a final order is placed for an item that will soon be obsolete, and to 

dynamic systems where the time between ordering decisions is so dong that either lost sales or salvaging takes 

place after demand is realized. The sequence of events is: order, delivery and demand. The actual times at 

which events occur needn't be specified, since the expected values of discount factors can be included in the 

cost functions. 

 

Let the amount of stock on hand before ordering be denoted by xo, the amount of stock ordered by z, and the 

amount that is actually delivered by a(z), a random variable with cumulative distribution function Bz. One 

would typically expect that a(z) possesses certain general properties. For example, it is reasonable to assume 

that if u ≥ v, then a(u) ≥ a(v) in a stochastic sense; that is Bu(x) ≤ Bv(x) for all x. 

 

Let c(u) be the ordering cost when u units of stock are delivered. Although this implies that only the delivered 

units are purchased, the model is easily adjusted to applications where all units ordered are purchased. The 

remaining costs are expressed as the function g(x), where x is the amount of stock remaining after demand is 

satisfied. (A negative value of x signifies an amount of unsatisfied demand.) The function g(x) includes the 

costs and revenues from holding and/or salvaging any excess stock when x ≥ 0, and the penalty costs of 

unsatisfied demand when x < 0. Let C(z; x0) be the expected total cost when z units are ordered (and a(z) units 

are delivered) with an initial inventory of x0. We have 

 

where F is the cumulative distribution function of demand. 

 

Now suppose that g(•) is convex, and that both c(•) and a(•) are linear, that is c(u) = cu and a(z) – Az, where c is 

a given constant and A is a random variable with support [0, 1], distribution function H and mean μa. 

Incorporating these assumptions, we have 

 

Now C(z; x0) is convex on z ≥ 0, and an optimal policy may be found by examining first order conditions. Since 

eqn. (1) differs from the perfect replenishment version only in the expectation with respect to the distribution 



function H, optimal policies are found with essentially the same techniques. It is normally standard practice in 

inventory theory when assuming a linear ordering cost to transform variables so that the inventory position 

(stock on hand plus on order), rather than the order size, is of interest (Veinott 1966). This procedure is not 

applicable here because the random variable A premultiplies z, but not x0 in the function g. Hence, optimal 

policies will generally not be of the traditional base-stock or (s, S) forms. 

 

For the commonly considered special case of linear holding and shortage costs, namely 

 

where p is the mean of the demand distribution. As in the standard newsboy problem, linear revenues from 

satisfying demand and/or salvaging excess stock are easily incorporated by adjusting the values of h and p 

(Heyman and Sobel 1984, p. 21). Using the same general approach, we make an additional simplification in 

notation by setting c = 0 without loss of generality. Under this convention, the model is easily adjusted to 

situations with c > 0 by transforming the holding and shortage cost parameters. All policy-dependent terms of 

C(z; x0) and all expressions for optimal policies are recaptured if c is added to h and subtracted from p. 

 

Defining the dimensionless parameter π =p/h, we observe that when C(z; x0) is given by eqn. (2), the optimal 

order size z*(x0) has the simple form: 

 

which always has a solution when F(x0)<π/(1 +π). If demand is continuously distributed, eqn. (3) will be solved 

as an equality. 

 

This optimal policy specification differs from the more complicated form of eqn. (19) in Shih (1980), which can 

be obtained from eqn. (3) by (a) assuming that demand is continuously distributed, (b) assuming that x0 = 0, and 

(c) integrating by parts. Expression (3) is especially interesting in its given form because it is a generalization of 

the standard newsboy result (Wagner 1975, p. 804): 

 
Notice that eqn. (3) reduces to eqn. (4) if the replenishment random variable A equals one with probability one. 

 

It is of interest to consider the form of the optimal policy when a setup cost K is added to the ordering cost 

function. In this case we modify eqn. (2) by adding a constant term K when z > 0. Then it will not be optimal to 

order unless the setup cost can be offset by savings in other cost components. That is, we must have: 

 
where C is given by eqn. (2) and z0 by eqn. (3). Let s be the largest value of x0 that satisfies eqns. (5) and (6). If 

s exists, then the optimal order size is given by 



 

This policy is the random-replenishment analogue of the optimal (s, S) policies in perfect replenishment settings 

(Kardin 1958). 

 

For t he remainder of this paper, we simplify the exposition by assuming that the initial inventory x0 = 0. Hence, 

the optimal order size z* will be the same as the optimal stock level after ordering and before demand. Although 

one can generalize the ensuing results for x0 > 0, they will become more complicated in form. We do not 

believe, however, that the thrust of our general conclusions is affected by the assumption. 

 

3. Uniform demand—analytic results 

We find additional structure by considering the ease of uniformly distributed demand with support [0, b]. As 

discussed in §2, we analyse the model with both c and x0 set to zero. Recall that π = p/h is the ratio of unit 

shortage cost to unit holding cost. Then, if the replenishment quantity were perfect, the optimal order size would 

be given by 

 

When the replenishment quantity is random, the optimal order size is found by solving eqn. (3), which, for 

uniformly distributed demand is given by. 

 
upon the entire distribution H, only its first two moments. This is not necessarily the case when x0 > 0. 

 

Finally it is interesting to examine the properties of a heuristic policy that ignores the variability of the 

replenishment quantity and merely attempts to correct for the average level of replenishment: 

 

   = z/μa    (9) 

Notice that    ≤ z* ≤   , and that z* converges to    as σ
2

a approaches zero. 

 

Analytic expressions for the expected total cost of each policy can be developed by substituting eqns. (7)-(9) for 

z in eqn. (2). After considerable algebraic manipulation, we find the following expressions in terms of the 

dimensionless parameters π and α = σ
2

a / μ
2

a. 
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A great deal of information can be gleaned from these expressions, but unfortunately they are not valid for all 

interesting values of the model parameters. In particular, the optimal policy expressions [ z* and C(z*)] are 

valid only when 

 

     μa + σ
2

a /μa  ≥ / (1 + π)    (10) 
 

and the expression for C(  ) is valid only when    ≤ b. Another expression for C(  ) was derived for    > b. It is 

considerably more complicated and is not reproduced here. 

 

Table 1 display's the cost performance of the policies   , z* and    for a typical set of parameter values, which 

were chosen to satisfy eqn. (10). The replenishment distributions were assumed to be uniform over the upper-

range of replenishment quantities. That is, the random variable A was assumed to be distributed uniformly on 

the interval [(2μa — 1). 1]. Therefore the variance of the replenishment distribution is given by σ
2

a = (1 — 

μa)
2
/3. Note that the perfect replenishment policy can be costly in the random environment. The apparently 

naive policy does quite well in all cases except when μa, the mean fraction of the order that is actually delivered, 

is very small. 

 
4. Other demand distributions—computational results 

The uniform demand ease is interesting because it provides closed form solutions for the optimal policy and 

expected costs. A useful model, however, must produce results for more realistic demand distributions and a 

wider range of parameter values. We momentarily depart from the assumption that a(z) = Az. and examine a 

model with integer-valued demand following the negative binomial distribution. 

 

Consider a random replenishment process that orders from an infinite source that has a known fraction x of 

defective items. Then the number of items delivered a(z) out of an order of size z follows the binomial 

distribution, that is 

 

 P{a(z) = μ} =   
 
  r

  - a
(1 – r)

a
,u = 0,1,…,z.  (11) 

 

Next suppose that the fraction r is unknown, and is replaced by a random variable R. For the sake of 

mathematical convenience, suppose that R follows a beta distribution having density 

 

 FR(r) = 
        

         
 r

α – 1
(1 – r)

β – 1
, 0 ≤ r ≤ 1  ( 12) 

 

Although this assumption is made merely to facilitate the computation of results, it is not very limiting to the 

model. The beta distribution encompasses a wide variety of density functions on [ 0, 1 ]. Using eqn. (11) with 

(12), we find that the number of items delivered, a(z), has the probability distribution 

 



P{a(z) = u} =   
 
 

                             

                                 
 

 

We report sample calculations for the special case of α = β = 1, which results in the discrete uniform 

replenishment distribution 

 

P{a(z)= u}=1/(1+z), u = 0,1,2,…, z 

  

Therefore, if we choose in this special case to formulate the replenishment process as a(z) = Az, the random 

variable A has the uniform distribution 

 

P{A = a} = 1/(1 + z), a = 0, 1/z, 2/z, …, (z – 1)/z, 1  (13) 

 

This distribution is utilized in eqn. (2) (the c.d. f. H) to compute the expected cost of an ordering policy. 

 

We retain our assumption (discussed in §2) that x0 = c = 0, and evaluate the expected cost of three heuristic 

ordering policies. The first is the newsboy policy given by the general version of eqn. (7) 

 

   = min {u : F(u) ≥ π/(1 + π)} 

 

This policy would be optimal if the amount delivered always equalled the amount ordered. The second policy is 

the heuristic given by 

 

   =   /μa 

 

which corrects for the expected value of the amount delivered but not for its variability. The third policy is 

inspired by eqn. (8) and given by 

 

z
+ 

=   μa /(σ
2

a + μ
2

a) 

 

As shown in §3, this policy is optimal when demand is uniformly distributed and eqn. (10) holds. We choose to 

examine this policy because it would appear to be a good approximation for the optimal policy z*. This 

conclusion is based on the frequently observed phenomenon that optimal inventory policies tend to be 

insensitive to the form of the demand distribution (beyond its mean and variance) when an expected-cost 

optimality criterion is specified. It would be an attractive formula because of its closed form and the fact that 

only the first two moments of the replenishment distribution (rather than the entire distribution) are needed. 

 

We compute the expected costs of the heuristic policies by substituting eqn. (13) for the distribution H in eqn. 

(2). The optimal policy z* is also found by evaluating eqn. (2) in the neighbourhood of the heuristics until the 

minimum expected cost is found. 

 

We illustrate the numerical results in Table 2 for 24 items having negative binomial demand. The results are for 

a full factorial design with mean demands of 2, 4, 8 and 16, demand variance-to-mean ratios of 3 and 9, and unit 

shortage cost ratios of 4, 9 and 24. Replenishment quantity distributions are uniform with a mean of one-half the 

amount ordered, which should be a difficult test of the less sophisticated approximation   . 
 

Notice that the perfect replenishment policy   , gives very poor performance, up to 75%, above optimal cost . 

The best heuristic is clearly   , with costs typically within a few percent of optimal. Although the supposedly 

more sophisticated heuristic z
+
 performs nearly as well for low shortage costs, it is clearly inferior for high 

shortage costs. It appears that the fact that    > z
+
 gives    an added cushion against high penalties when 

shortages are costly. 

 



 
5. Conclusions 

We have analysed a single-period, random demand inventory model under the assumption that the 

replenishment quantity is a random function of the amount ordered. Simple generalizations of base-stock 

policies and (s, S) policies are optimal when a linear ordering cost function is assumed either without or with a 

setup cost. We have found closed form analytic expressions for optimal policies and their costs for the special 

case of linear ordering cost and uniformly distributed demand. 

 

The most significant result is that a very simple heuristic policy, one that accounts for the expected value of the 

replenishment quantity but not its variability, performs quite well for both uniformly distributed demand and 

negative binomial demand. Although a common approach in practice, that is the first evidence of its 

effectiveness in a random demand environment. The result is especially interesting in light of results obtained 

by Sepehri et al. (1986) showing poor performance of this heuristic in a multi-period model deterministic 

demand. 
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